

概述

应用

DS2482-101是I²C至1-Wire[®]桥接器件,可直接与标准(最大 100kHz)或快速(最大400kHz)的I²C主控制器连接,实现I²C 主机和下游1-Wire从机之间的双向协议转换。相对于1-Wire 从器件而言,DS2482-101是一个1-Wire主机。芯片内部经 过工厂校准的定时器将系统主处理器从繁琐的1-Wire波形 定时控制中解放出来,同时支持标准和高速1-Wire通信。 为优化1-Wire波形生成,DS2482-101在1-Wire的上升和下降 沿进行摆率控制,并提供附加的可编程功能,以便使1-Wire 驱动特性与具体的从机环境相匹配。可编程强上拉特性 可用于为EEPROM和传感器等1-Wire器件提供1-Wire供电。 DS2482-101将这些功能整合在一起,并提供一路可控制外 部MOSFET的输出,用于在某些应用中提供更强的强上拉。 I²C从地址分配受控于一个二进制地址输入,以解决与系 统中其它I²C从器件可能存在的地址冲突问题。当器件未 使用时,可将其置于休眠模式,使功耗降到最低。

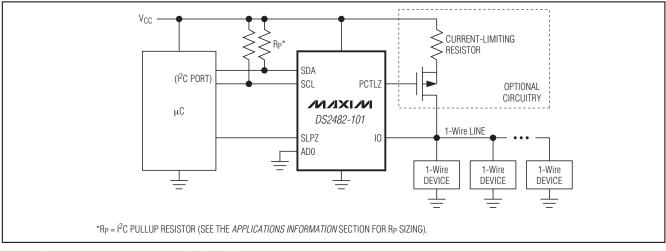
工业传感器

蜂窝电话、PDA

_ 特性

DS2482-101

- ◆ I²C主机接口,支持100kHz和400kHz I²C通信速率
- ◆ 1-Wire主控制器IO,带有可选的有源或无源1-Wire上拉
- ◆ 提供复位/应答, 8位、单位和3位1-Wire IO序列
- ◆标准和高速1-Wire通信速率
- ◆ 1-Wire边沿摆率控制
- ◆可选1-Wire从机应答脉冲下降沿屏蔽,以便控制1-Wire 线上的快速边沿
- ◆ 通过内部低阻抗信号路径提供1-Wire强上拉
- ◆ PCTLZ输出至可选控制外部MOSFET, 用于强上拉
- ◆ 支持节省功耗的休眠模式
- ◆ 一个地址输入引脚用于I²C地址分配
- ◆ 工作范围: 2.9V至5.5V, -40°C至+85°C
- ◆ 8引脚(150mil) SO封装、9焊球WLP封装


定	购	信	劁
	~		

PART	TEMP RANGE	PIN-PACKAGE
DS2482S-101+	-40°C to +85°C	8 SO (150 mils)
DS2482S-101+T&R	-40°C to +85°C	8 SO (150 mils)
DS2482X-101+T	-40°C to +85°C	9 WLP (2.5k pieces)

+表示无铅(Pb)/符合RoHS标准的封装。

T/T&R = 卷带包装。

典型工作电路

1-Wire是Maxim Integrated Products, Inc.的注册商标。

打印机

医疗仪器

引脚配置在数据资料的最后给出。

_ Maxim Integrated Products 1

本文是Maxim正式英文资料的译文,Maxim不对翻译中存在的差异或由此产生的错误负责。请注意译文中可能存在文字组织或 翻译错误,如需确认任何词语的准确性,请参考 Maxim提供的英文版资料。

索取免费样品预调查,FPP发扬数件解述的。零件管理:TPP性:TP30113692265 QQ:38537442

ABSOLUTE MAXIMUM RATINGS

Voltage Range on Any Pin Relative to Ground	0.5V to +6V
Maximum Current into Any Pin	±20mA
Operating Temperature Range	-40°C to +85°C

Junction Temperature	+150°C
Storage Temperature Range	55°C to +125°C
Soldering Temperature	Refer to the IPC/JEDEC
- .	J-STD-020 Specification.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 2.9V \text{ to } 5.5V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C.)$

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.7 .5 V .5 .0 μA V .9 V
Supply Current ICC Sv 4.5 5.0 50 Supply Current ICC (Note 1) 7 Supply Current ICC Sleep mode (SLPZ low), V _{CC} = 5.5V 0.5 1 1-Wire Input High (Notes 2, 3) V_{IH1} 3.3V 1.9 1.9 1-Wire Input Low (Notes 2, 3) V_{IL1} 3.3V 3.4 1 1-Wire Output Low (Notes 2, 3) V_{IL1} 3.3V 1 1 1-Wire Output Low (Notes 2, 3) V_{IL1} Standard 2.3 2.5 2 1-Wire Output Low VOL1 At 4mA load 0 0 16 1-Wire Output Low VOL1 At 4mA load 0 0 16 Active Pullup On Time (Notes 4, 5) $tAPUOT$ Standard 2.3 2.5 2 Strong Pullup Voltage Drop ΔV_{STRPU} $V_{CC} \ge 3.2V, 1.5mA load$ 0 0 0 Pulldown Slew Rate (Note 6) PD_{SRC} Standard (3.3V ±10%) 1 2 6	.5 μA .0 ν .9 ν
$\begin{array}{c ccccc} Sleep mode (SLPZ low), V_{CC} = 5.5V & 0.5 & 1 \\ \hline Sleep mode (SLPZ low), V_{CC} = 5.5V & 0.5 & 1 \\ \hline Sleep mode (SLPZ low), V_{CC} = 5.5V & 0.5 & 1 \\ \hline Sleep mode (SLPZ low), V_{CC} = 5.5V & 0.5 & 1 \\ \hline Sleep mode (SLPZ low), V_{CC} = 5.5V & 0.5 & 1 \\ \hline Sleep mode (SLPZ low), V_{CC} = 5.5V & 0.5 & 1 \\ \hline Sleep mode (SLPZ low), V_{CC} = 5.5V & 0.5 & 1 \\ \hline SV & 3.4 & 1.9 & 0.5 & 0 \\ \hline SV & 3.4 & 0.5 & 0 & 0 \\ \hline SV & 5V & 5V & 0 & 0 & 0 \\ \hline SV & 5V & 5V & 0 & 0 & 0 \\ \hline SV & 5V & 5V & 0 & 0 & 0 \\ \hline SV & 1000 & 16 & 0 & 0 \\ \hline SV & 1000 & 16 & 0 & 0 \\ \hline SV & 1000 & 16 & 0 & 0 \\ \hline SV & 1000 & 16 & 0 & 0 \\ \hline SV & 1000 & 16 & 0 & 0 \\ \hline SV & 1000 & 16 & 0 & 0 \\ \hline SV & 1000 & 16 & 0 & 0 \\ \hline SV & 1000 & 16 & 0 & 0 \\ \hline SV & 1000 & 16 & 0 & 0 \\ \hline SV & 1000 & 1000 & 16 & 0 \\ \hline SV & 1000 & 1000 & 16 & 0 \\ \hline SV & 1000 & 1000 & 16 & 0 \\ \hline SV & 1000 & 1000 & 16 & 0 \\ \hline SV & 1000 & 1000 & 100 & 0 \\ \hline SV & 1000 & 10$.0 μA .0 V .9 V
1-Wire Input High (Notes 2, 3) V_{IH1} Sleep mode (SLPZ low), $V_{CC} = 5.5V$ 0.5 1.9 1-Wire Input Low (Notes 2, 3) V_{IL1} $3.3V$ 3.4 3.4 1-Wire Input Low (Notes 2, 3) V_{IL1} $3.3V$ 3.4 0.5 0.5 0.5 1-Wire Neak Pullup Resistor RwPU (Note 4) 1000 1000 1000 1000 1000 1-Wire Output Low VOL1 At 4mA load 0.4 0.5 0.6 1-Wire Output Low VOL1 At 4mA load 0.4 0.5 0.6 Active Pullup On Time $0.4V_{STRPU}$ $V_{CC} \ge 3.2V, 1.5mA$ load 0.4 0.5 0.6 Strong Pullup Voltage Drop ΔV_{STRPU} $V_{CC} \ge 3.2V, 1.5mA$ load 0.4 0.5 0.6 Pulldown Slew Rate (Note 6) PDSRC $Standard (3.3V \pm 10\%)$ 1 0.6 Pulldown Slew Rate (Note 6) PD_{SRC} $Standard (5.0V \pm 10\%)$ 2 0.6	.0 V .9 V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.9 V
5V3.41-Wire Input Low (Notes 2, 3) V_{IL1} $3.3V$ $3.3V$ 1-Wire Weak Pullup ResistorRwPU(Note 4) 1000 1600 1-Wire Output LowVOL1At 4mA load 2.3 2.5 2.5 Active Pullup On Time (Notes 4, 5) $1APUOT$ $5andard$ 2.3 2.5 2.5 Strong Pullup Voltage Drop ΔV_{STRPU} $V_{CC} \ge 3.2V, 1.5mA load$ 0.4 0.5 0.4 Pulldown Slew Rate (Note 6)PDSRC $5andard (3.3V \pm 10\%)$ 1 $2a$.9 V
1-Wire Input Low (Notes 2, 3) V_{IL1} $5V$ 11-Wire Weak Pullup ResistorRWPU(Note 4)10001601-Wire Output Low V_{OL1} At 4mA load000160Active Pullup On Time (Notes 4, 5) t_{APUOT} Standard2.32.5200Strong Pullup Voltage Drop ΔV_{STRPU} $V_{CC} \ge 3.2V, 1.5mA load$ 0.40.5000Pulldown Slew Rate (Note 6) PD_{SRC} PD_{SRC} Standard (3.3V ±10%)1000Pulldown Slew Rate (Note 6) PD_{SRC} PD_{SRC} PD_{SRC} $Drematic Mathematical Standard (5.0V ±10%)$ 2 $Drematical Standard (5.0V ±10%)$	V
1-Wire Weak Pullup Resistor R_{WPU} (Note 4)1000161-Wire Output Low V_{OL1} At 4mA load	~ V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.2
$ \begin{array}{c} \mbox{Active Pullup On Time} \\ (Notes 4, 5) \end{array} & \begin{array}{c} \mbox{taPUOT} & \begin{array}{c} \mbox{Standard} & 2.3 & 2.5 & 2.$	675 Ω
$\frac{\text{taPUOT}}{\text{(Notes 4, 5)}} \xrightarrow{\text{taPUOT}} \frac{\text{taPUOT}}{\text{Overdrive}} \xrightarrow{\text{Overdrive}} 0.4 0.5 0.5 0.4 0.5 0.$.4 V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.7
$\frac{\Delta V_{\text{STRPU}}}{V_{\text{CC}} \ge 5.2V, 3\text{mA load}} \qquad $.6 µs
Pulldown Slew Rate (Note 6) PDSRC Standard (3.3V ±10%) 1 2 Standard (5.0V ±10%) 2 6	.3 V
Pulldown Slew Rate (Note 6) PD _{SRC} Overdrive (3.3V ±10%) 5 2 Standard (5.0V ±10%) 2 6	.5
Pulldown Slew Rate (Note 6) PD _{SRC} Standard (5.0V ±10%) 2	.2
Standard (5.0V ±10%) 2 6	2.1
	.5 V/µs
Overdrive (5.0V ±10%) 10	0
Standard (3.3V ±10%) 0.8	4
Dullup Slow Data (Nata 6) Dulana Overdrive (3.3V ±10%) 2.7	20
Pullup Slew Rate (Note 6)PUSRCStandard (5.0V ±10%)1.3	6 V/μs
Overdrive (5.0V ±10%) 3.4 3	31
Power-On Reset Trip Point VPOR 2	.2 V
1-Wire TIMING (Note 5) (See Figures 3, 5, 6, and 7)	
Standard 7.6 8 8	.4
Write-One/Read Low Time tw1L Overdrive 0.9 1	.1 µs
Deed Sample Time Standard 13.3 14	5
Read Sample TimetMSROverdrive1.41.51	.8 µs
	2.8
1-Wire Time Slot tsLot Overdrive 9.9 10.5 1	μs

2

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 2.9V \text{ to } 5.5V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
		Standard (3.3V to 0V)	0.54		3.0		
Fall Time High-to-Low		Overdrive (3.3V to 0V)	0.10		0.59		
(Notes 6, 7)	tF1	Standard (5.0V to 0V)	0.55		2.2	μs	
		Overdrive (5.0V to 0V)	0.09		0.44		
Muite Zene Lever Time -		Standard	60	64	68	μs	
Write-Zero Low Time	twor	Overdrive	7.1	7.5	7.9		
Write Zero Decevery Time	taraa	Standard	5.0	5.3	5.6		
Write-Zero Recovery Time	^t REC0	Overdrive	2.8	3.0	3.2	μs	
Reset Low Time	ta arr	Standard	570	600	630		
Reset Low Time	^t RSTL	Overdrive	68.4	72	75.6	μs	
Dresses Datest Comple Time		Standard	66.5	70	73.5		
Presence-Detect Sample Time	tMSP	Overdrive	7.1	7.5	7.9	μs	
Compliant for Chart and Interrupt		Standard	7.6	8	8.4		
Sampling for Short and Interrupt	tsı	Overdrive	0.7	0.75	0.8	μs	
Depart Link Time		Standard	554.8	584	613.2		
Reset High Time	^t RSTH	Overdrive	70.3	74	77.7	μs	
Presence-Pulse Mask START	tPPM1	(Note 8)	9.5	10	10.5	μs	
Presence-Pulse Mask STOP	tPPM2	(Note 8)	57	60	63	μs	
CONTROL PIN (PCTLZ)	1		I				
Output Low Voltage	VOLP	V _{CC} = 2.9V, 1.2mA load current			0.4	V	
Output High Voltage	VOHP	0.4mA load current	V _{CC} - 0.5V			V	
SLEEP PIN (SLPZ)	1	1					
		$V_{CC} = 2.9V \text{ to } 3.7V$	-0.5		0.25 × V _{CC}		
Low-Level Input Voltage	VIL	$V_{CC} = 4.5V \text{ to } 5.5V$	-0.5		0.22 × V _{CC}	V	
High-Level Input Voltage	VIH		0.7 × V _{CC}		V _{CC} + 0.5V	V	
Input Leakage Current	lı lı	Input voltage at pin is between 0.1 x V _{CC(MAX)} and 0.9 x V _{CC(MAX)}			1.0	μA	
Wakeup Time from Sleep Mode	tswup	(Notes 9, 10)			100	μs	
I ² C PINS (SCL, SDA, AD0) (Note	11) (See Figu	ure 10)					
Low-Level Input Voltage	VIL	$V_{CC} = 2.9V \text{ to } 3.7V$	-0.5		0.25 × V _{CC}	V	
		$V_{CC} = 4.5V$ to 5.5V	-0.5		$0.22 \times V_{CC}$	v	
High-Level Input Voltage	VIH		0.7 × V _{CC}		V _{CC} + 0.5V	V	
Hysteresis of Schmitt Trigger Inputs	VHYS		0.05 × V _{CC}			V	

3

ELECTRICAL CHARACTERISTICS (continued)

(V_CC = 2.9V to 5.5V, T_A = -40°C to +85°C.)

DS2482-101

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Low-Level Output Voltage at 3mA Sink Current	V _{OL}				0.4	V
Output Fall Time from V _{IH(MIN)} to V _{IL(MAX)} with a Bus Capacitance from 10pF to 400pF	tOF		60		250	ns
Pulse Width of Spikes That Are Suppressed by the Input Filter	tsp	SDA and SCL pins only			50	ns
Input Current Each Input/Output Pin with an Input Voltage Between 0.1 x V _{CC(MAX)} and 0.9 x V _{CC(MAX)}	lı	(Notes 12, 13)	-10		+10	μA
Input Capacitance	Cl	(Note 12)			10	pF
SCL Clock Frequency	fscl		0		400	kHz
Hold Time (Repeated) START Condition (After this period, the first clock pulse is generated.)	thd:sta		0.6			μs
Low Period of the SCL Clock	tlow		1.3			μs
High Period of the SCL Clock	thigh		0.6			μs
Setup Time for a Repeated START Condition	tsu:sta		0.6			μs
Data Hold Time	thd:dat	(Notes 14, 15)			0.9	μs
Data Setup Time	tsu:dat	(Note 16)	250			ns
Setup Time for STOP Condition	tsu:sto		0.6			μs
Bus Free Time Between a STOP and START Condition	^t BUF		1.3			μs
Capacitive Load for Each Bus Line	Св	(Note 17)			400	pF
Oscillator Warmup Time	toscwup	(Note 9)			100	μs

Note 1: Operating current with 1-Wire write-byte sequence followed by continuously reading the Status Register at 400kHz in overdrive.
 Note 2: With standard speed, the total capacitive load of the 1-Wire bus should not exceed 1nF. Otherwise, the passive pullup on threshold V_{IL1} may not be reached in the available time. With overdrive speed, the capacitive load on the 1-Wire bus must not exceed 300pF.

Note 3: Active pullup guaranteed to turn on between VIL1(MAX) and VIH1(MIN).

Note 4: Active or resistive pullup choice is configurable.

Note 5: Except for t_{F1}, all 1-Wire timing specifications and t_{APUOT} are derived from the same timing circuit. Therefore, if one of these parameters is found to be off the typical value, it is safe to assume that all these parameters deviate from their typical value in the same direction and by the same degree.

Note 6: These values apply at full load, i.e., 1nF at standard speed and 0.3nF at overdrive speed. For reduced load, the pulldown slew rate is slightly faster.

Note 7: Fall time high-to-low (tF1) is derived from PDSRC, referenced from 0.9 x VCC to 0.1 x VCC.

Note 8: Presence-pulse masking only applies to standard speed.

Note 9: I²C communication should not take place for the max t_{OSCWUP} or t_{SWUP} time following a power-on reset or a wakeup from sleep mode.

Note 10: Guaranteed by design and not production tested.

- Note 11: All I²C timing values are referred to $V_{IH(MIN)}$ and $V_{IL(MAX)}$ levels.
- 4

MIXIM

- Note 12: Applies to SDA, SCL, and ADO.
- Note 13: The input/output pins of the DS2482-101 do not obstruct the SDA and SCL lines if V_{CC} is switched off.
- Note 14: The DS2482-101 provides a hold time of at least 300ns for the SDA signal (referred to the V_{IH(MIN)} of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- Note 15: The maximum t_{HD:DAT} need only be met if the device does not stretch the low period (t_{LOW}) of the SCL signal.
- **Note 16:** A fast-mode I²C bus device can be used in a standard-mode I²C bus system, but the requirement $t_{SU:DAT} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line $t_{R(MAX)} + t_{SU:DAT} = 1000 + 250 = 1250$ ns (according to the standard-mode I²C bus specification) before the SCL line is released.
- Note 17: C_B—Total capacitance of one bus line in pF. If mixed with high-speed-mode devices, faster fall times according to *I*²C-Bus Specification Version 2.1 are allowed.

引脚说明

引	脚	名称	功能
SO	WLP	1 10 10	功能
1	B3	Vcc	电源电压输入端。
2	C3	IO	1-Wire输入/输出驱动。
3	C2	GND	参考地。
4	B1	SCL	I ² C串行时钟输入,必须通过上拉电阻连接至V _{CC} 。
5	B2	SDA	I ² C串行数据输入/输出,必须通过上拉电阻连接至V _{CC} 。
6	A1	PCTLZ	低电平有效控制输出,用于控制外部p沟道MOSFET,为1-Wire总线提供额外的供电能力,例如:为1-Wire器件临时提供更大的电流。
7	A2	SLPZ	低电平有效控制输入,用于激活低功耗休眠模式。该引脚应采用推挽端口驱动。
8	A3	AD0	I ² C地址输入端,必须连接至V _{CC} 或GND。

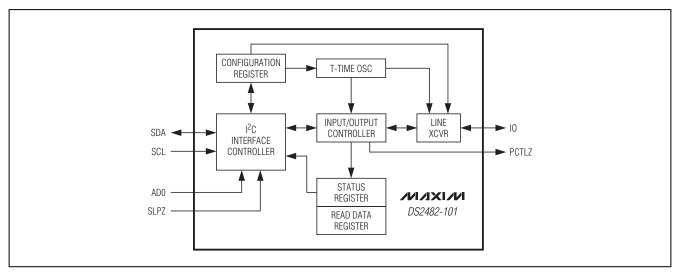


图1. 方框图

项目开发 芯片解密 零件配单 TEL:15013652265 QQ:38537442

JS2482-101

详细说明 DS2482-101是自定时1-Wire 主机控制器,支持高级的1-Wire 波形特性,包括标准和高速的速率、有源上拉、电源供电 的强上拉和应答脉冲屏蔽。有源上拉影响1-Wire上的上升 沿。强上拉功能与有源上拉采用同一上拉晶体管,但控制 算法不同。此外,强上拉激活PCTLZ引脚,用于控制可选 的外部电路,以便提供比片内上拉晶体管能力高的额外功 率。一旦提供了命令和数据,DS2482-101的输入/输出控制 器可实现严格定时的1-Wire通信功能,诸如复位/应答脉冲 检测周期、读字节、写字节、单个R/W位和三位一组的ROM 搜索,而无需主机处理器参与。主机通过状态寄存器获得 反馈(1-Wire功能完成状态、应答脉冲、1-Wire短路,选择的 搜索路径),或通过读数据寄存器读取数据。DS2482-101可 以通过I²C总线接口实现在标准模式或高速模式下与主机处 理器的通信。一个地址引脚的逻辑状态确定DS2482-101的 I²C从地址,允许最多2个器件工作在同一总线上,而无需 网络集线器。图1所示为方框图。

DS2482-101有三个I²C主机读取的寄存器:配置寄存器、状态寄存器和读数据寄存器。通过读指针对这三个寄存器进行寻址。读指针的位置,也就是主机在随后的读操作中读取的寄存器是通过最后对DS2482-101执行的指令来定义的。 主机通过读、写配置寄存器使能1-Wire总线功能。

配置寄存器

DS2482-101可以通过配置寄存器使能或选择四个1-Wire功能。这些功能为:

• 有源上拉(APU)

器件寄存器

- 应答脉冲屏蔽(PPM)
- 强上拉(SPU)
- 1-Wire速率(1WS)

能以任何组合来选择这些特性。APU、PPM和1WS能够保 持其设定状态,而SPU会在强上拉结束后返回至无效状态。 器件复位(重新上电或由Device Reset命令初始化)后,配置 寄存器为00h。当对配置寄存器进行写操作时,只有高四位 (第7位至第4位)是低四位(第3位至第0位)的反码时,才接 受新的配置数据。当对配置寄存器进行读操作时,高四位 保持为0h。

有源上拉(APU)

APU位控制由有源上拉(摆率受控的晶体管)还是由无源上拉 (R_{WPU}电阻)驱动1-Wire总线从低电平至高电平。当APU=0 时,禁止有源上拉(电阻模式)。如果1-Wire总线足够长(几 十米)或者有多个的(20个或更多)器件连接到1-Wire总线上, 应该选择有源上拉。**有源上拉并不作用于应答脉冲的上** 升沿或在1-Wire总线上出现短路后的恢复。

控制上升沿的电路(图2)工作过程如下:在 t_1 时刻,下拉(从 DS2482-101或1-Wire从器件)结束。从这一时刻开始,1-Wire 总线通过DS2482-101内部的电阻R_{WPU}被拉高。上拉斜率 由V_{CC}和1-Wire总线上的容性负载决定。如果有源上拉被 禁止(APU = 0),电阻上拉继续工作,如实线所示。在有源 上拉使能(APU = 1)条件下,当电压在 t_2 时刻达到V_{IL1(MAX)} 和V_{IH1(MIN})之间时,DS2482-101采用受控的摆率有源拉高 1-Wire总线,如虚线所示。继续有源上拉,直到在 t_3 时刻 达到 t_{APUOT} 延时终止。在此之后,一直保持电阻上拉。保 持上拉晶体管在超出 t_3 时刻后导通的方法可参见强上拉 (SPU)部分。

配置寄存器位分配

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
1WS	SPU	PPM	APU	1WS	SPU	PPM	APU

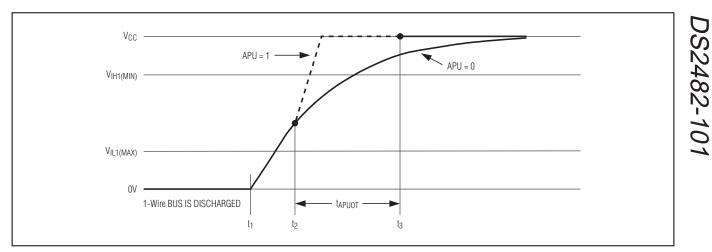


图2. 上升沿上拉

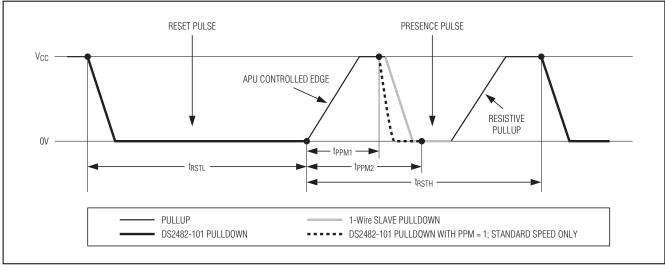


图3. 应答脉冲屏蔽

应答脉冲屏蔽(PPM)

PPM位是用来控制DS2482-101是否屏蔽应答脉冲的第一个 边沿(下降沿)。当PPM=0时,屏蔽被禁止。应答脉冲屏蔽 仅适用于标准的1-Wire速率(1WS=0)中;如果1WS=1(高 速模式),PPM位无效。应答脉冲屏蔽可以改善大型1-Wire 网络性能,因为应答脉冲屏蔽可以阻止1-Wire从器件产生 的应答脉冲的快速下降沿的网络传播和反射。反射能够 在网络中引起干扰脉冲,反过来可能导致从器件与1-Wire 主机失去同步。

PPM的时序参考如图3所示。如果使能(PPM = 1),在复位低电平时间t_{RSTL}终止后,DS2482-101在t_{PPM1}时刻拉低1-Wire总线。在t_{PPM2}时刻,下拉结束;如果存在1-Wire从器件,从器件将继续拉低1-Wire总线。应答脉冲屏蔽下降沿是由摆率控制的。

项目开发 芯片解密 零件配单 TEL:15013652265 QQ:38537442

JS2482-101

强上拉(SPU)

SPU位用于在1-Wire Write Byte命令或1-Wire Single Bit命 令之前激活强上拉功能。在对1-Wire EEPROM器件执行复 制暂存器数据到主存储器功能或进行SHA-1算法时,以及 对寄生供电的温度传感器或模数转换器操作时,通常需要 强上拉特性。在对应的器件数据资料中规定了在通信协议 中启用强上拉的位置。对于那些将1-Wire器件置于要求额 外电源状态的命令,则必须在发出命令之前立即设置SPU 位。强上拉与有源上拉采用相同的内部上拉晶体管。对于 内部强上拉无法满足需求的情况,可用PCTLZ引脚控制外 部p沟道MOSFET,以便为1-Wire总线提供超出DS2482-101 驱动能力的额外功率。根据*Electrical Characteristics*表中给 出的ΔV_{STRPU}参数,来判断内部强上拉是否足以驱动器件 上的电路负载。

如果SPU为1,DS2482-101将在强上拉开始的那个时隙的上 升沿施加有源上拉。然而,与有源上拉相比,强上拉(例如, 内部上拉晶体管)保持导通,如图4所示,直到发生下来三 种情况的任意一种:DS2482-101接收到产生1-Wire通信的 命令(典型情况)、配置寄存器中的SPU位置零或DS2482-101 接收到Device Reset命令。只要强上拉保持有效,PCTLZ输出就为低电平。强上拉结束后,SPU位自动复位至0。采用强上拉功能不会改变配置寄存器中APU位的状态。

1-Wire 速率(1WS)

1WS位决定DS2482-101产生的任意1-Wire通信的定时。所 有的1-Wire从器件都支持标准速率(1WS = 0),其中在65µs 内完成单个位(图4中的t_{SLOT})的传输。许多器件也能以较 高的速率进行通信,称之为高速模式。为了从标准模式切 换到高速模式,1-Wire器件则需要接受Overdrive-Skip ROM 或Overdrive-Match ROM命令,如在1-Wire器件数据资料中 说明的那样。1-Wire器件接受速率改变命令代码后,速率 变换操作立即开始。DS2482-101必须参与这个速率变化以 保持同步。在1-Wire字节命令之后立即将配置寄存器中 1WS位写为1,来实现1-Wire器件速率的改变。将配置寄 存器中的1WS位写为0,紧接着发送1-Wire Reset命令,则 将改变DS2482-101和选通1-Wire总线上的任何1-Wire器件 返回至标准速率。

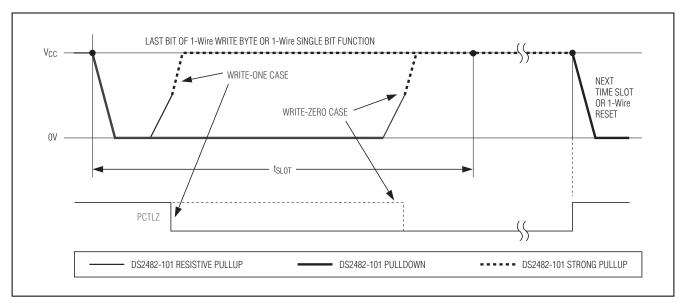


图4. 低阻抗上拉时序

8

状态寄存器位分配

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
DIR	TSB	SBR	RST	LL	SD	PPD	1WB

状态寄存器

只读状态寄存器用于DS2482-101向主处理器报告1-Wire总 线的数据位类型、1-Wire忙状态和其自身复位状态等信息。 所有的1-Wire通信命令和Device Reset命令都将读指针指向 状态寄存器,以便主机处理器以最小的协议开销进行读取。 仅在执行某些命令时,才更新状态寄存器中的内容。详细 的内容请参见下面给出的各个状态位说明。

1-Wire忙(1WB)

1WB位告知主处理器1-Wire总线是否处于忙状态。在1-Wire 通信时,1WB为1;一旦命令执行完毕,1WB将返回其默 认值0。1WB在何时改变状态以及保持为1状态的时间可详 细参见功能命令部分。

应答脉冲检测(PPD)

短路检测(SD)

在每次1-Wire Reset命令之后将更新PPD位。如果在应答检 测周期中, DS2482-101在t_{MSP}时刻检测到1-Wire器件的应 答脉冲, PPD位被设置为1。如果在随后的1-Wire Reset命 令中,没有应答脉冲或1-Wire总线被短路,该位则返回为 默认值0。

在每次1-Wire Reset命令之后将更新SD位。应答脉冲检测 周期中,在tsr时刻,如果DS2482-101在1-Wire总线上检测 为逻辑0, SD位则被设置为1。如果无短路存在, 随后的 1-Wire Reset命令可使该位返回至默认值0。如果SD为1时, 那么PPD则为0。DS2482-101无法区分短路和DS1994或 DS2404发送的1-Wire中断信号。出于此原因,如果在这个 应用中采用DS2404或DS1994,中断功能必须禁止。在相 应的器件数据资料中介绍了发送中断信号。

LL位指示在没有进行任何1-Wire通信的情况下,选通1-Wire 总线的逻辑状态。每次读取状态寄存器,1-Wire总线状态 就被采样。当主机处理器以读模式寻址DS2482-101时(在应 答周期内),将采样和更新LL位,前提是读指针指向状态 寄存器。

器件复位(RST)

逻辑电平(LL)

如果RST位为1,则DS2482-101执行了内部复位周期,可由 上电复位引起也可从执行Device Reset命令开始。当DS2482-101执行Write Configuration命令,RST位自动清除,以保存 所期望1-Wire特性的选择。

单个位结果(SBR)

SBR位告知1-Wire Single Bit命令在tMSR时刻采样有源1-Wire 总线的逻辑状态或1-Wire Triplet命令的第一位。SBR的上 电默认值为0。如果1-Wire Single Bit命令发送0位, SBR 则应该为0。在执行1-Wire Triplet命令时, SBR为0还是1, 取决于所连接的1-Wire器件的响应。1-Wire Single Bit命令 发送1位时,结果与此相同。

三位中的第二位(TSB)

TSB位表示1-Wire Triplet命令的第二位在t_{MSR}时刻采样有源 1-Wire总线的逻辑状态。TSB的上电默认值为0。仅在1-Wire Triplet命令时该位才更新,在其它命令时不起任何作用。

选择的搜索路径(DIR)

无论何时执行1-Wire Triplet命令,该位将告知主机处理器 1-Wire Triplet命令中的第三位所选择的搜索路径。DIR的 上电默认值为0。仅在1-Wire Triplet命令时才更新该位,不 受其它命令影响。更多信息请参见1-Wire Triplet命令和应 用笔记187: 1-Wire搜索算法。

DS2482-101

M/XI/M

JS2482-101

_ 功能命令

DS2482-101接受8个功能命令,分为四个类型:器件控制、 I²C通信、1-Wire设置和1-Wire通信。主机的反馈通道是由 读指针控制,由每个功能命令自动设置,便于主机有效 地访问相关的信息。主机处理器利用I²C接口以一个或两 个字节的字符串发送这些命令和合适的参数。I²C协议要 求每个字节都被接收单元应答,以确定接受,或者字节 没有被应答则指示为错误状态(无效命令代码或参数),或 结束通信。I²C协议细节,包括应答方式,请参见I²C接口 部分。

功能命令如下所示:

1) 器件复位 (Device Reset) 5) 1-Wire单个位 (1-Wire Single Bit)

- 2) 设置读指针
- (Set Read Pointer) 3) 写配置
- (Write Configuration) 4) 1-Wire复位
- (1-Wire Reset)

6) 1-Wire写字节 (1-Wire Write Byte)

- 7) 1-Wire读字节
- (1-Wire Read Byte) 8) 1-Wire三重指令
- (1-Wire Triplet)

表1. 有效的指针代码

REGISTER SELECTION	CODE
Status Register	F0h
Read Data Register	E1h
Configuration Register	C3h

器件复位

命令代码	F0h.
命令参数	无。
说明	执行状态机逻辑的全局复位。终止任何正在进行的1-Wire通信。
典型应用	在上电后器件初始化,或按照所期望的重新初始化(复位)。
限制	无(可在任意时间内执行)。
错误响应	无。
命令持续时间	最大时间为525ns,从命令代码应答位的SCL下降沿开始计时。
1-Wire有效性	最长需要262.5ns,在命令代码应答位的SCL下降沿后。
读指针位置	状态寄存器(适用于忙轮询)。
受影响的状态位	RST置为1; 1WB、PPD、SD、SBR、TSB、DIR设置为0。
受影响的配置位	1WS、APU、PPM、SPU置为0。

设置读指针

命令参数 指针代码(参见表1)。 说明 设置读指针至指定寄存器。覆盖任何进程中1-Wire通信命令的读指针位置。 典型应用 准备读取1-Wire Read Byte命令的结果;寄存器的随机读取。 限制 无(可在任意时刻执行)。 出错响应 如果指针代码无效,则指针代码不被应答,命令将忽略。		这里 <i>这</i> 里这个问题。
说明 设置读指针至指定寄存器。覆盖任何进程中1-Wire通信命令的读指针位置。 典型应用 准备读取1-Wire Read Byte命令的结果;寄存器的随机读取。 限制 无(可在任意时刻执行)。 出错响应 如果指针代码无效,则指针代码不被应答,命令将忽略。	命令代码	E1h.
典型应用 准备读取1-Wire Read Byte命令的结果;寄存器的随机读取。 限制 无(可在任意时刻执行)。 出错响应 如果指针代码无效,则指针代码不被应答,命令将忽略。	命令参数	指针代码(参见表1)。
限制 无(可在任意时刻执行)。 出错响应 如果指针代码无效,则指针代码不被应答,命令将忽略。	说明	设置读指针至指定寄存器。覆盖任何进程中1-Wire通信命令的读指针位置。
出错响应 如果指针代码无效,则指针代码不被应答,命令将忽略。	典型应用	准备读取1-Wire Read Byte命令的结果;寄存器的随机读取。
	限制	无(可在任意时刻执行)。
	出错响应	如果指针代码无效,则指针代码不被应答,命令将忽略。
审令持续时间	命令持续时间	无,在指针代码应答位的SCL上升沿,更新读指针。
1-Wire有效性 不受影响。	1-Wire有效性	不受影响。
读指针位置 如指针代码所指定。	读指针位置	如指针代码所指定。
受影响的状态位	受影响的状态位	无。
受影响的配置位	受影响的配置位	无。

10

写配置

DS2482-101

命令代码	D2h.
命令参数	配置字节。
说明	写新配置字节。新的设置立即有效。注意:在写入配置寄存器时,只有高四位(第7位至第4位)是低四位 (第3位至第0位)的反码时,才接受新数据。在读配置寄存器时,高四位一直为0h。
典型应用	定义下一个1-Wire通信特性。
限制	在DS2482-101处理这个命令之前,1-Wire动作应该终止。
出错响应	如果在接收命令代码时1WB=1,则命令代码和参数不被应答,该命令将被忽略。
命令持续时间	无,在配置字节应答位的SCL上升沿,更新配置寄存器。
1-Wire有效性	无。
读指针位置	配置寄存器(以校验写操作)。
受影响的状态位	RST设置为0。
受影响的配置位	更新1WS、SPU、PPM、APU位。

1-Wire复位

命令代码	B4h.
命令参数	无。
说明	在1-Wire总线上产生1-Wire复位/应答检测周期(图5)。在t _{SI} 和t _{MSP} 时刻采样1-Wire总线的状态,并通过状态寄存器PPD和SD位将结果告知主处理器。
典型应用	开始或结束任意1-Wire通信时序。
限制	在DS2482-101处理这个命令之前,1-Wire动作应该终止。
出错响应	如果在接收命令代码时1WB=1,则命令代码不被应答,该命令将被忽略。
命令持续时间	$t_{RSTL} + t_{RSTH} + 最大时间262.5ns,从命令代码的应答位的SCL下降沿开始计时。$
1-Wire有效性	在命令代码的应答位的SCL下降沿之后,最长需要262.5ns。
读指针位置	状态寄存器(用于轮询忙操作)。
受影响的状态位	1WB (t _{RSTL} + t _{RSTH} 时设置为1); t _{RSTL} + t _{MSP} 时,更新PPD;在t _{RSTL} + t _{SI} 时,更新SD。
受影响的配置位	更新1WS、PPM、APU位。

1-Wire单个位

命令代码	87h。
命令参数	位字节。
说明	产生单个1-Wire时隙,1位数值为"V",与1-Wire线上的位字节规定相同(参见表2)。V值为0b时产生一个写0时隙(图6);V值为1b时产生一个写1时隙,也可作为读数据时隙(图7)。在任意两种状态中,在t _{MSR} 时刻采样1-Wire总线上的逻辑电平,并更新SBR。
典型应用	当必须进行单个位通信时(有例外),以便在1-Wire线上执行单个位的写或读操作。
限制	在DS2482-101处理这个命令之前,1-Wire动作应该终止。
出错响应	如果在接收命令代码时1WB = 1,则命令代码和位字节不被应答,该命令将被忽略。
命令持续时间	t _{SLOT} + 最大时间262.5ns,从位字节的第一位(MSB)的SCL下降沿开始计时。
1-Wire有效性	在位字节的MSB位的SCL下降沿之后,最长需要262.5ns。
读指针位置	状态寄存器(用于轮询忙和读数据操作)。
受影响的状态位	1WB (t _{SLOT} 期间设置为1);在t _{MSR} 时,更新SBR;DIR (可以改变其状态)。
受影响的配置位	更新1WS、APU、SPU位。

表2. 位字节的位分配

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
V	х	х	х	х	х	х	х

x = 无关。

DS2482-101

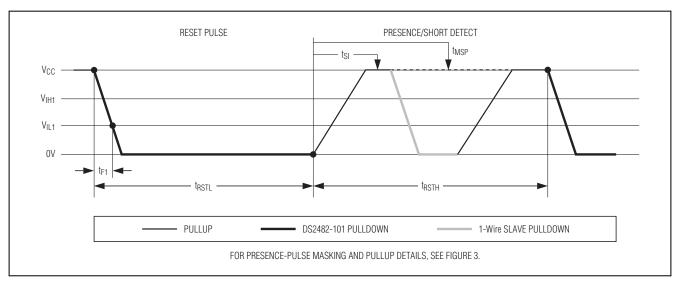


图5.1-Wire复位/应答检测周期

12

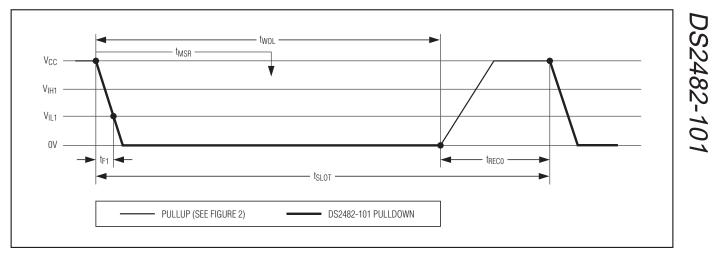


图6. 写0时隙

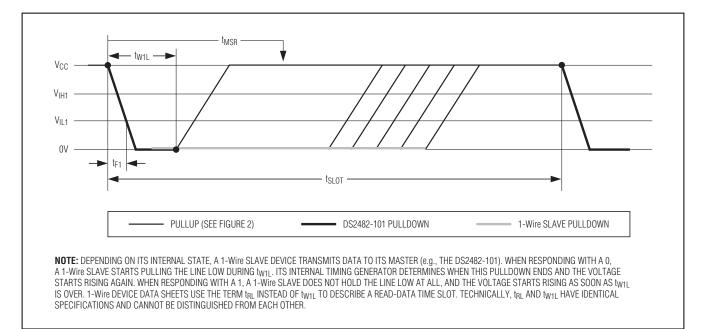


图7. 写1和读数据时隙

13

1-Wire写字节

命令代码	A5h.
命令参数	数据字节。
说明	写单个数据字节至1-Wire线。
典型应用	向1-Wire线写入命令或数据;相当于执行8个1-Wire Single Bit命令,但由于更少的I ² C通信而速度更快。
限制	在DS2482-101处理这个命令之前,1-Wire动作应该终止。
出错响应	如果在接收命令代码时1WB = 1,则命令代码和数据字节不被应答,该命令将被忽略。
命令持续时间	8 x t _{SLOT} + 最大时间262.5ns,从数据字节的最后一位(LSB)的下降沿开始计时。
1-Wire有效性	数据字节LSB位的SCL下降沿后,最长需要262.5ns (例如,在数据字节应答之前)。注意:在1 ² C总线和在1-Wire总线的位次序不同(1-Wire:LSB在前;I ² C:MSB在前),因此,在DS2482-101接收全部数据字节之前,不能开始1-Wire动作。
读指针位置	状态寄存器(用于轮询忙操作)。
受影响的状态位	1WB (8 x t _{SLOT} 期间设置为1)。
受影响的配置位	更新1WS、SPU、APU位。

1-Wire 读字节

命令代码	96h.
命令参数	无。
说明	在1-Wire总线产生8个读数据时隙,并将结果保存在读数据寄存器中。
典型应用	读取1-Wire总线上数据。相当于执行带有V = 1 (写1时隙)的8个1-Wire Single Bit命令,但由于减少了I ² C 通信,速度更快。
限制	在DS2482-101处理这个命令之前,1-Wire动作应该终止。
出错响应	如果在接收命令代码时1WB = 1,则命令代码不被应答,该命令将被忽略。
命令持续时间	8 x t _{SLOT} + 最大时间262.5ns,从命令代码的应答位的SCL下降沿开始计时。
1-Wire有效性	在命令代码应答位的SCL下降沿后,最长需要262.5ns。
读指针位置	状态寄存器(用于轮询忙操作)。注意:从1-Wire线读取接收到的数据字节,发送Set Read Pointer命令和选择读数据寄存器,然后在读模式下,访问DS2482-101。
受影响的状态位	1WB (8 x t _{SLOT} 期间设置为1)。
受影响的配置位	更新1WS、APU。

项目开发 芯片解密 零件配单 TEL:15013652265 QQ:38537442

DS2482-101

1-Wire三重指令

命令代码	78h.
命令参数	方向字节。
说明	在1-Wire线上产生3个时隙: 2个读时隙和1个写时隙。写时隙的类型取决于读时隙的结果和方向字节。 如果两个读时隙都为0 (典型状态),方向字节确定写时隙的类型。在这种状态下,如果V = 1, DS2482-101产生写1时隙;V = 0,则产生写0时隙,参见表3。 如果读时隙为0和1时,紧跟着开始写0时隙。 如果读时隙为1和0时,紧跟着开始写1时隙。 如果读时隙均为1 (错误状态),接下来的为写1时隙。
典型应用	执行一次1-Wire Search ROM时序,整个时序需要执行64次这个命令来识别和寻址到一个器件。
限制	在DS2482-101处理这个命令之前,1-Wire动作应该终止。
出错响应	如果在接收命令代码时1WB = 1,则命令代码和方向字节不被应答,该命令将被忽略。
命令持续时间	3 x t _{SLOT} + 最大时间262.5ns, 从方向字节的第一位(MSB)的SCL下降沿开始计时。
1-Wire有效性	在方向字节MSB的SCL下降沿之后,最长需要262.5ns。
读指针位置	状态寄存器(用于轮询忙操作)。
受影响的状态位	1WB (3 x t _{SLOT} 期间设置为1)。在第一个t _{MSR} 时间,更新SBR;在第二个t _{MSR} 时间(即,在t _{SLOT} + t _{MSR}), 更新TSB和DIR。
受影响的配置位	更新1WS、APU。

表3. 方向字节的位分配

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
V	х	х	х	х	х	х	х

x = 无关。

M/X/W

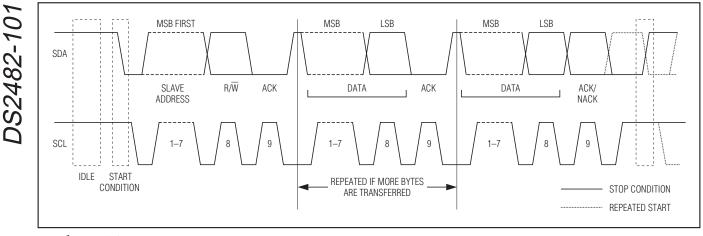


图8. I²C协议总结

I²C接口

通用特性

I²C总线采用数据线(SDA)和时钟信号(SCL)进行通信。SDA 和SCL都是双向线,通过上拉电阻连接到电源端正极。不进行通信时,这两条线为高电平。连接到总线的器件的输出级应该是漏极开路或集电极开路,来实现线与功能。 I²C总线上的数据在标准模式下以高达100kbps的速率进行传输,而在快速模式下则以高达400kbps的速率进行传输。 DS2482-101可在两种模式下工作。

总线上发送数据的器件作为发射器,而接收数据的器件作 为接收器。控制通信的器件称之为主机。主机控制的器件 为从机。为了能被主机独立的访问,每一个器件都应该有 从机地址,以便不会与总线的其它器件发生冲突。

总线只有在空闲时,才有可能传送数据。主机产生连续的时钟(SCL)信号,控制总线访问,产生START和STOP条件,并确定START和STOP(图8)之间所传送的数据字节的个数。数据以字节传送,最高有效位在前。在每个字节的后面紧跟一个应答位,使得主机与从机保持同步。

从地址

DS2482-101所响应的从地址如图9所示。地址引脚AD0的 逻辑状态确定了地址位A0的值。地址引脚允许器件可以 响应2个从器件地址中的一个地址。从器件地址是从器件 寻址/控制字节的一部分。从器件寻址/控制字节的最后一 位(R/W)被定义为数据方向。当设置为0时,接下来的数 据从主机到从机传输(写操作)。当设置为1时,从从机到 主机进行传输数据(读操作)。

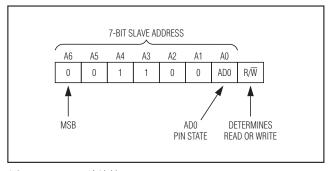


图9. DS2482-101从地址

项目开发 芯片解密 零件配单 TEL:15013652265 QQ:38537442

图10. I²C时序图

I²C定义

下面的术语通常是用来描述I²C数据传输。在图10中定义时 序参考。

总线空闲或不忙: SDA和SCL均为无效状态和处于其逻辑高状态。

START条件:为了实现与从器件的通信,主机必须产生一个START条件。SCL保持高电平期间,SDA从高变化为低作为START条件。

STOP条件:为了实现与从器件的通信结束,主机必须 产生一个STOP条件,SCL保持高电平期间,SDA从低变 化至高作为STOP条件。

重复START条件: 重复START条件一般应用于读操作, 选择指定的数据源或读取的地址。在数据传输结束时, 主机使用重复START条件,紧跟在当前数据之后,立 即开始新的数据传输。产生重复START条件与产生一 般的START条件方式相同,只是在STOP条件后,无需 保留总线为空闲状态而已。

数据有效:除START和STOP条件外,SDA变化仅可能 在SCL为低电平时进行。在SCL的整个高电平脉冲和所 需的启动与保持时间(SCL下降沿之后的t_{HD:DAT}和SCL 上升沿之前的t_{SU:DAT},如图10所示)期间,SDA上的数 据必须保持有效不变。每一位数据要求一个时钟脉冲。 在SCL的上升沿,数据移入到接收器中。 写操作结束时,主机必须释放SDA总线,以便在下一个 SCL的上升沿之前有足够的启动时间(最小值为:t_{SU:DAT} + t_R,参见图10)开始读取数据。在SDA线的前一个SCL 脉冲的下降沿,从器件移出每个数据位。在当前SCL脉 冲的上升沿,数据位有效。主机产生所有的SCL时钟信 号,包括那些需要从从器件读取的脉冲。

应答信号:通常,当寻址某个接收器件时,在收到每 一个字节后要求产生应答信号。主机必须产生一个与 这个应答位相关的脉冲。在应答脉冲期间,应答器件 必须以这种方式拉低SDA,即在相关的应答脉冲高电 平时间加上所需的建立和保持时间(SCL的下降沿后的 t_{HD:DAT}和SCL上升沿之前的t_{SU:DAT})期间,SDA处于稳 定的低电平。

从器件不应答:从器件可能不能接收或传输数据,例 如,由于该器件忙于执行某些实时功能或处于休眠模 式。在这种情况下,从器件不会应答其从地址,SDA线 一直为高电平。做好通信准备的从器件将至少应答其 从器件的地址。然而,有时从器件可能拒绝接受数据, 例如无效的命令代码或参数。在这种状态下,从器件 对所拒绝接收的任何字节不进行应答,并保持SDA线 为高电平。在上述任意两种状态下,从器件应答失败 后,主机首先需要产生一个重复START条件或在STOP 条件之后产生一个START条件,以开始传输新的数据。

17

主机不应答:有时接收数据时,主机必须向从器件发送一个数据终止信号。为了获得这个信号,主机不用应答所接收的由从器件发送的最后一个字节。作为响应,从器件释放SDA,允许主机产生STOP条件。

写入DS2482-101

为了对DS2482-101进行写操作,主机必须以写模式访问从 器件,即发送从器件地址时必须将方向位设置为0。发送 的下一个字节为命令代码,可能还紧跟一个命令参数, 这取决于命令。DS2482-101将应答有效命令代码和所期望 的/有效的命令参数,而额外的字节或无效命令参数不被 应答。

读取DS2482-101

为了读取DS2482-101, 主机必须以读模式访问从器件。也就是说,发送从器件地址时必须将方向位设置为1。读指 针确定了主机从哪个寄存器开始读取。主机可能重复的读 取同一个寄存器,而无需重新设置地址,例如查看1WB从 1至0的变化。读取不同的寄存器,主机必须发送Set Read Pointer命令,然后再以读模式访问DS2482-101。

I²C通信实例

I²C通信图表和数据方向标识可分别参见表4和表5。

表4. I²C通信—图表

SYMBOL	DESCRIPTION
S	START Condition
AD, 0	Select DS2482-101 for Write Access
AD, 1	Select DS2482-101 for Read Access
Sr	Repeated START Condition
Р	STOP Condition
А	Acknowledged
A\	Not Acknowledged
(Idle)	Bus Not Busy
<byte></byte>	Transfer of One Byte
DRST	Command "Device Reset", F0h
SRP	Command "Set Read Pointer", E1h
WCFG	Command "Write Configuration", D2h
1WRS	Command "1-Wire Reset", B4h
1WSB	Command "1-Wire Single Bit", 87h
1WWB	Command "1-Wire Write Byte", A5h
1WRB	Command "1-Wire Read Byte", 96h
1WT	Command "1-Wire Triplet", 78h

表5. 数据方向标识

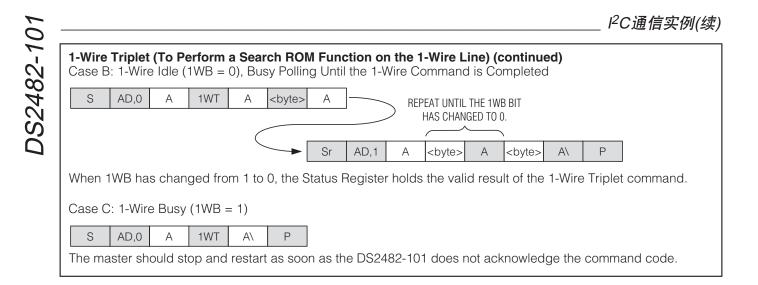
Master-to-Slave Slave-to-Master

I²C通信实例(续)

DS2482-101

Device	Reset	(After	Power	·Up)							
S	AD,0	А	DRST	Α	<u>Sr</u>	<u>AD,1</u>	A	<byte></byte>	A	Р	
Activiti	es that a	are uno	derlined	denot	e an op	tional ı	read ac	ccess to	verify	the suc	ccess of the command.
Set Re	ad Poir	nter (To	o Read	from <i>i</i>	Anothe	r Regi	ster)				
Case A	: Valid	Read F	Pointer (Code							
S	AD,0	А	SRP	А	C3h	A	Р				
C3h is	the vali	d read	pointer	code	for the	Configu	uration	Registe	r.		
Case E	3: Invalio	d Read	l Pointe	r Code							
S	AD,0	А	SRP	A	E5h	A١	Р]			
E5h is	an inval	id read	d pointe	r code		•		-			
Write (Configu	ration	(Befor	e Starl	ting 1-\	Vire Ac	tivity)				
Case A	: 1-Wire	e Idle (1WB =	0)							
S	AD,0	А	WCFG	А	<byte></byte>	A	<u>Sr</u>	<u>AD,1</u>	<u>A</u>	<byte></byte>	<u>A\</u> P
Activiti	es that a	are und	derlinec	denot	e an op	otional i	read ad	ccess to	verify	the suc	ccess of the command.
Case E	3: 1-Wire	e Busy	(1WB =	= 1)							
S	AD,0	А	WCFG	A١	Р]					
The ma	aster sh	ould st	op and	restar	as soc	on as th	e DS24	482-101	does	not ack	nowledge the command code.
1-Wire	Reset	(To Be	gin or	End 1-	Wire C	ommu	nicatio	on)			
Case A	: 1-Wire	e Idle (1WB =	0), No	Busy P	olling to	o Read	the Res	sult		
S	AD,0	А	1WRS	А	Р	(Idle)	S	AD,1	А	<byte></byte>	A\ P
											e) for the 1-Wire reset to complete. In reset from the Status Register.
	-										-
		e Idle (0), Bus	sy Pollir 1	-	the 1-		mman	d is Coi I	mpleted, then Read the Result
S	AD,0	A	1WRS	A	Sr	AD,1	A	<byte></byte>	A	<byte></byte>	A\ P
						REPE	AT UNTIL	THE 1WB	BIT HAS (CHANGED	TO 0.
Case (C: 1-Wire	e Busy	(1WB =	= 1)							
S	AD,0	A	1WRS	A١	Р]					
The ma	aster sh	ould st	op and	restar	as soc	n as th	e DS24	482-101	does	not ack	nowledge the command code.
		1									19

1-Wire Single Bit (To Generate a Single Time Stot on the 1-Wire Line) Case A: 1-Wire Idle (1WB = 0), No Busy Polling S AD.0 A 1WSB A cbyte> A P (Idle) S AD.0 A 1WSB A cbyte> A P (Idle) S AD.0 A 1WSB A cbyte> A P (Idle) S AD.0 A 1WSB A cbyte> A P The idle time is needed for the 1-Wire function to complete. Then access the device in read mode to get result from the 1-Wire Single Bit command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed S AD.0 A 1WSB A cbyte> A P When IWB has changed from 1 to 0, the Status Register holds the valid result of the 1-Wire Single Bit command Case C: 1-Wire Busy (1WB = 1) S AD.0 A 1WSB A P The water should stop and restart as soon as the DS2482-101 does not acknowledge the command code. 1-Wire Idle (1WB = 0), No Busy Polling S AD.0 A </th <th></th> <th> I²C通信实例</th>		I ² C通信实例
S AD.0 A TWSB A P (idle) S AD.1 A A P (idle) S AD.1 A A P The idle time is needed for the 1-Wire function to complete. Then access the device in read mode to get result from the 1-Wire Single Bit command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed S AD.0 A 1WSB A REPEAT UNIL THE TWB BIT HAS CHANCED TO 0. Ven S AD.0 A 1WSB A A Device A P When 1WB has changed from 1 to 0, the Status Register holds the valid result of the 1-Wire Single Bit command Case C: 1-Wire Busy (1WB = 1) S AD.0 A 1WSB A P The master should stop and restart as soon as the DS2482-101 does not acknowledge the command code. 1 1 Exercise Command Code to the 1-Wire Line) Case A: 1-Wire Idle (1WB = 0), No Busy Polling S AD.0 A 1 WWWE A 33 A P (idle) 33 33 A P Idle) S AD.0 A IWWE A A A P Idle		
The idle time is needed for the 1-Wire function to complete. Then access the device in read mode to get result from the 1-Wire Single Bit command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed S AD.0 A 1WSB A 		
The idle time is needed for the 1-Wire function to complete. Then access the device in read mode to get result from the 1-Wire Single Bit command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed SAD.0 A TWSB A <bytes a<br="">STAD.1 A <bytes <bytes="" a="" a<br="">STAD.1 A <bytes <bytes="" a="" a<br="">STAD.1 A <bytes <bytes="" a="" a<br="">When 1WB has changed from 1 to 0, the Status Register holds the valid result of the 1-Wire Single Bit comman Case C: 1-Wire Busy (1WB = 1) SAD.0 A TWSB A P The master should stop and restart as soon as the DS2482-101 does not acknowledge the command code. 1-Wire Write Byte (To Send a Command Code to the 1-Wire Line) Case A: 1-Wire Idle (1WB = 0), No Busy Polling SAD.0 A TWWB A 33h A P (Idle) 33h is the valid 1-Wire ROM function command for Read ROM. The idle time is needed for the 1-Wire function complete. There is no data read back from the 1-Wire Command is Completed. SAD.0 A TWWB A 33h A P (Idle) SAD.0 A TWWB A 33h A P (Idle) When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. SAD.0 A TWWB A 33h A P (Idle) When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. Case C: 1-Wire Busy (1WB = 1) SAD.0 A TWWB A 39h A P</bytes></bytes></bytes></bytes>		
result from the 1-Wire Single Bit command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed S AD.0 A 1WSB A Sr AD.1 A Sr AD.1 A Sr AD.1 A Sr AD.1 A Sr AD.1 A Sr AD.1 A Sr AD.1 A Sr AD.1 A Sr AD.1 A Sr AD.1 A Sr AD.1 A 	S AD,1 A <byte> A\ P</byte>	
S AD.0 A 1WSB A sr AD.1 A Sr AD.1 A Sr AD.1 A Sr AD.1 A Sr AD.1 A Sr AD.1 A <		read mode to get
S AD.0 A 1WSB A sr AD.1		
When 1WB has changed from 1 to 0, the Status Register holds the valid result of the 1-Wire Single Bit commar Case C: 1-Wire Busy (1WB = 1) S AD,0 A 1WSB A P The master should stop and restart as soon as the DS2482-101 does not acknowledge the command code. 1-Wire Write Byte (To Send a Command Code to the 1-Wire Line) Case A: 1-Wire Idle (1WB = 0), No Busy Polling S AD,0 A 1WWB A 33h A P (Idle) 33h is the valid 1-Wire ROM function command for Read ROM. The idle time is needed for the 1-Wire functio complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. S AD,0 A 1WWB A 33h A P (Idle) S AD,0 A 1WWB A 33h A P (Idle) When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. Case C: 1-Wire Busy (1WB = 1) S AD,0 A 1WWB A P		
When 1WB has changed from 1 to 0, the Status Register holds the valid result of the 1-Wire Single Bit commarCase C: 1-Wire Busy (1WB = 1)SAD,0A1WSBA\PThe master should stop and restart as soon as the DS2482-101 does not acknowledge the command code.1-Wire Write Byte (To Send a Command Code to the 1-Wire Line)Case A: 1-Wire Idle (1WB = 0), No Busy PollingSAD,0A1WWBA33hAP(Idle)33h is the valid 1-Wire ROM function command for Read ROM. The idle time is needed for the 1-Wire functio complete. There is no data read back from the 1-Wire line with this command.Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed.SAD,0A1WWBA33hAPWhen 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed.Case C: 1-Wire Busy (1WB = 1)SAD,0A1WWBAP		
When 1WB has changed from 1 to 0, the Status Register holds the valid result of the 1-Wire Single Bit commarCase C: 1-Wire Busy (1WB = 1)SAD,0A1WSBA\PThe master should stop and restart as soon as the DS2482-101 does not acknowledge the command code.1-Wire Write Byte (To Send a Command Code to the 1-Wire Line)Case A: 1-Wire Idle (1WB = 0), No Busy PollingSAD,0A1WWBA33hAP(Idle)33h is the valid 1-Wire ROM function command for Read ROM. The idle time is needed for the 1-Wire functio complete. There is no data read back from the 1-Wire line with this command.Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed.SAD,0A1WWBA33hAPWhen 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed.Case C: 1-Wire Busy (1WB = 1)SAD,0A1WWBAP		P
Case C: 1-Wire Busy (1WB = 1) S AD,0 A 1WSB A P The master should stop and restart as soon as the DS2482-101 does not acknowledge the command code. 1-Wire Write Byte (To Send a Command Code to the 1-Wire Line) Case A: 1-Wire Idle (1WB = 0), No Busy Polling S AD,0 A 1WWB A 33h A P (Idle) 33h is the valid 1-Wire ROM function command for Read ROM. The idle time is needed for the 1-Wire functio complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. S AD,0 A 1WWB A 33h A P (Idle) S AD,0 A 1WWB A 33h A P (Idle) When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. Case C: 1-Wire Busy (1WB = 1) S AD,0 A 1WWB A P		
S AD,0 A 1WSB A\ P The master should stop and restart as soon as the DS2482-101 does not acknowledge the command code. 1-Wire Write Byte (To Send a Command Code to the 1-Wire Line) Case A: 1-Wire Idle (1WB = 0), No Busy Polling S AD,0 A 1WWB A 33h A P (Idle) 33h is the valid 1-Wire ROM function command for Read ROM. The idle time is needed for the 1-Wire function complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. S AD,0 A 1WWB A 33h A P When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. S AD,0 A IWWB A P When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. Case C: 1-Wire Busy (1WB = 1) S AD,0 A IWWB A P	when TWB has changed from T to U, the Status Register holds the valid result of the T-Wire	Single Bit commar
The master should stop and restart as soon as the DS2482-101 does not acknowledge the command code. 1-Wire Write Byte (To Send a Command Code to the 1-Wire Line) Case A: 1-Wire Idle (1WB = 0), No Busy Polling S AD,0 A 1WWB A 33h A P (tdle) 33h is the valid 1-Wire ROM function command for Read ROM. The idle time is needed for the 1-Wire function complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. S AD,0 A 1WWB A 33h A P When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. S AD,0 A 1WWB A P When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. S AD,0 A 1WWB A P	Case C: 1-Wire Busy (1WB = 1)	
1-Wire Write Byte (To Send a Command Code to the 1-Wire Line) Case A: 1-Wire Idle (1WB = 0), No Busy Polling S AD,0 A 1WWB A 33h A P (tdle) 33h is the valid 1-Wire ROM function command for Read ROM. The idle time is needed for the 1-Wire function complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. S AD,0 A 1WWB A 33h A P When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. S AD,0 A 1WWB A P When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. Case C: 1-Wire Busy (1WB = 1) S AD,0 A 1WWB A P	S AD,0 A 1WSB A\ P	
Case A: 1-Wire Idle (1WB = 0), No Busy Polling S AD,0 A 1WWB A 33h A P (Idle) 33h is the valid 1-Wire ROM function command for Read ROM. The idle time is needed for the 1-Wire functio complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. S AD,0 A 1WWB A 33h A REPEAT UNTIL THE 1WB BIT HAS CHANGED TO 0. S AD,0 A 1WWB A 33h A REPEAT UNTIL THE 1WB BIT HAS CHANGED TO 0. Vhen 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. Case C: 1-Wire Busy (1WB = 1) S AD,0 A 1WWB A P	The master should stop and restart as soon as the DS2482-101 does not acknowledge the	command code.
Case A: 1-Wire Idle (1WB = 0), No Busy Polling S AD,0 A 1WWB A 33h A P (Idle) 33h is the valid 1-Wire ROM function command for Read ROM. The idle time is needed for the 1-Wire functio complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. S AD,0 A 1WWB A 33h A REPEAT UNTIL THE 1WB BIT HAS CHANGED TO 0. S AD,0 A 1WWB A 33h A	1-Wire Write Byte (To Send a Command Code to the 1-Wire Line)	
33h is the valid 1-Wire ROM function command for Read ROM. The idle time is needed for the 1-Wire function complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. S AD,0 A 1WWB A 33h A REPEAT UNTIL THE 1WB BIT HAS CHANGED TO 0. Sr AD,1 A <byte> A <byte> A <byte> A\ P When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. Case C: 1-Wire Busy (1WB = 1) S AD,0 A 1WWB A\ P</byte></byte></byte>		
complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. S AD,0 A 1WWB A 33h A REPEAT UNTIL THE 1WB BIT HAS CHANGED TO 0. Sr AD,1 A <byte> A <byte> A\ P When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. Case C: 1-Wire Busy (1WB = 1) S AD,0 A 1WWB A\ P</byte></byte>	S AD,0 A 1WWB A 33h A P (Idle)	
Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
S AD,0 A 1WWB A 33h A REPEAT UNTIL THE 1WB BIT HAS CHANGED TO 0. Sr AD,1 A <byte> A<</byte>	33n is the valid 1-wire ROM function command for Read ROM. The idle time is needed for	r the 1-Wire functio
HAS CHANGED TO 0. $HAS CHANGED TO 0.$ HAS		r the 1-Wire functio
HAS CHANGED TO 0. $Fr AD, 1 A < byte > A < byte > A A P$ When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. Case C: 1-Wire Busy (1WB = 1) $Fr AD, 0 A = 10$	complete. There is no data read back from the 1-Wire line with this command.	r the 1-Wire functio
When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. Case C: 1-Wire Busy (1WB = 1) S AD,0 A 1WWB A\ P	complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed.	r the 1-Wire functio
When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. Case C: 1-Wire Busy (1WB = 1) S AD,0 A 1WWB A\ P	complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. S AD,0 A 1WWB A 33h A REPEAT UNTIL THE 1WB BIT	r the 1-Wire functio
Case C: 1-Wire Busy (1WB = 1) S AD,0 A 1WWB A\ P	complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. S AD,0 A 1WWB A 33h A REPEAT UNTIL THE 1WB BIT HAS CHANGED TO 0.	
S AD,0 A 1WWB A\ P	complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. S AD,0 A 1WWB A 33h A REPEAT UNTIL THE 1WB BIT HAS CHANGED TO 0. Sr AD,1 A <byte> A <byte> A\</byte></byte>	
	complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. S AD,0 A 1WWB A 33h A REPEAT UNTIL THE 1WB BIT HAS CHANGED TO 0. Sr AD,1 A <byte> A <byte> A\</byte></byte>	
	complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. S AD,0 A 1WWB A 33h A REPEAT UNTIL THE 1WB BIT HAS CHANGED TO 0. Sr AD,1 A <byte> A <brte> A <byte> A <brte> A</brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></brte></byte></brte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte></byte>	
	complete. There is no data read back from the 1-Wire line with this command. Case B: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed. S AD,0 A 1WWB A 33h A REPEAT UNTIL THE 1WB BIT HAS CHANGED TO 0. Sr AD,1 A <byte> A <byte> A\ When 1WB has changed from 1 to 0, the 1-Wire Write Byte command is completed. Case C: 1-Wire Busy (1WB = 1)</byte></byte>	


20

项目开发 芯片解密 零件配单 TEL:15013652265 QQ:38537442

PC通信实例(续)				
1-Wire Read Byte (To Read a Byte from the 1-Wire Line) Case A: 1-Wire Idle (1WB = 0), No Busy Polling, Set Read Pointer After Idle Time				
S AD,0 A 1WRB A P (Idle)				
S AD,0 A SRP A E1h A Sr AD,1 A byte> A\ P				
The idle time is needed for the 1-Wire function to complete. Then set the read pointer to the Read Data Register (code E1h) and access the device again to read the data byte that was obtained from the 1-Wire line.				
Case B: 1-Wire Idle (1WB = 0), No Busy Polling, Set Read Pointer Before Idle Time				
S AD,0 A 1WRB A Sr AD,0 A SRP A E1h A P				
(Idle) S AD,1 A <byte> A\ P</byte>				
The read pointer is set to the Read Data Register (code E1h) while the 1-Wire Read Byte command is still in progress. Then, after the 1-Wire function is completed, the device is accessed to read the data byte that was obtained from the 1-Wire line.				
Case C: 1-Wire Idle (1WB = 0), Busy Polling Until the 1-Wire Command is Completed				
S AD,0 A 1WRB A REPEAT UNTIL THE 1WB BIT				
HAS CHANGED TO 0.				
Sr AD,1 A <byte> A <byte> A\</byte></byte>				
Sr AD,0 A SRP A E1h A Sr AD,1 A <byte> A\ P</byte>				
Poll the Status Register until the 1WB bit has changed from 1 to 0. Then set the read pointer to the Read Data Register (code E1h) and access the device again to read the data byte that was obtained from the 1-Wire line.				
Case D: 1-Wire Busy (1WB = 1)				
S AD,0 A 1WRB A\ P				
The master should stop and restart as soon as the DS2482-101 does not acknowledge the command code.				
1-Wire Triplet (To Perform a Search ROM Function on the 1-Wire Line) Case A: 1-Wire Idle (1WB = 0), No Busy Polling				
S AD,0 A 1WT A <byte> A P (Idle)</byte>				
S AD,1 A <byte> A\ P</byte>				
The idle time is needed for the 1-Wire function to complete. Then access the device in read mode to get the result from the 1-Wire Triplet command.				
21				

项目开发 芯片解密 零件配单 TEL:15013652265 QQ:38537442

DS2482-101

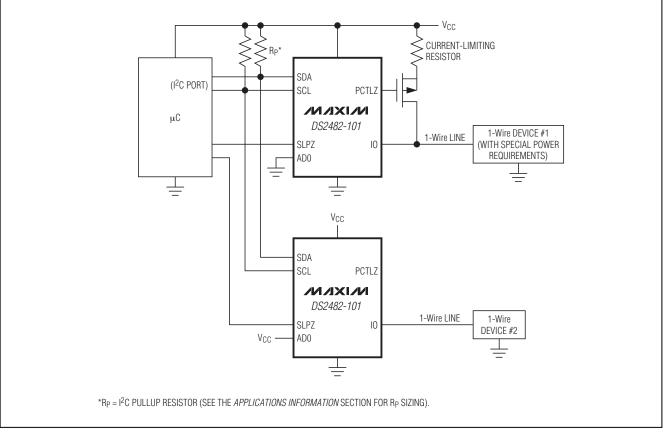


图11. 应用电路示意图

22

M/X/W

应用信息

SDA和SCL上拉电阻

SDA是DS2482-101的漏极开路输出,需要一个上拉电阻来 实现高逻辑电平。因为DS2482-101仅使用SCL作为输入(无 时钟扩展),因此主机可以通过带有上拉电阻的漏极/集电 极开路输出,或推挽式输出驱动SCL。

上拉电阻RP的大小

根据I²C指标,在V_{OL}为0.4V时,从器件必须能够吸入至少3mA的电流。这个直流状态确定了上拉电阻的最小值:

 $R_{P(MIN)} = (V_{CC} - 0.4V)/3mA$

采用5.5V的工作电压,上拉电阻的最小值为1.7kΩ。如图 12所示的"MINIMUM R_P"曲线表示了最小上拉电阻与工作 电压之间的变化关系。

对于I²C系统,从上拉电压的30%到上拉电压的70%来测量 上升时间和下降时间。最大容量的总线电容C_B为400pF。 标准模式下,最大上升时间不能超过1000ns;而在高速模 式下,则不能超过300ns。假定以最大的上升时间计算,在 所给定的电容C_B下最大的电阻值计算为:

R_{PMAXS} = 1000ns/[C_B x ln(7/3)] (标准模式)

R_{PMAXF} = 300ns/[C_B x ln(7/3)] (高速模式)

对于400pF的总线电容而言,标准模式下,最大上拉电阻为 2.95kΩ,而在高速模式下,则为885Ω。1.7kΩ和2.95kΩ 之间的电阻值可以满足标准模式下的所有要求。

由于上拉电阻为885Ω,需要可以满足在高速和400pF总线 电容下的上升时间的指标。885Ω上拉电阻比在5.5V下要 求的R_{P(MIN)}要低,因此必须找出另一种方法。首先计算 在任何给定的工作电压("MINIMUM R_P"曲线)下的最小上 拉电阻,接着再计算产生300ns的上升时间各自对应的总 线电容,就可成生如图12所示的"MAX LOAD AT MIN R_P FAST MODE"线。

对于3V或更低的上拉电压而言,能够允许400pF的总线容 性负载。而对于4V或更低的上拉电压来说,能接受300pF 或更低的总线容性负载。对于高速模式下的任何上拉电压, 总线电容不能超过200pF。"MINIMUM R_P"曲线表示了各 种电压下相应的上拉电阻值。

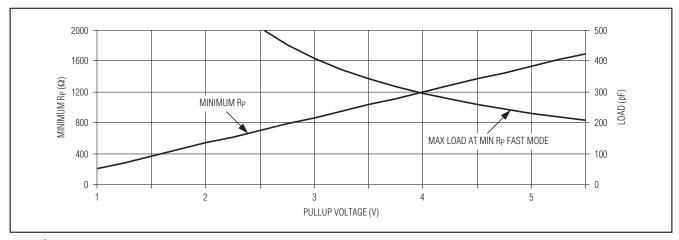
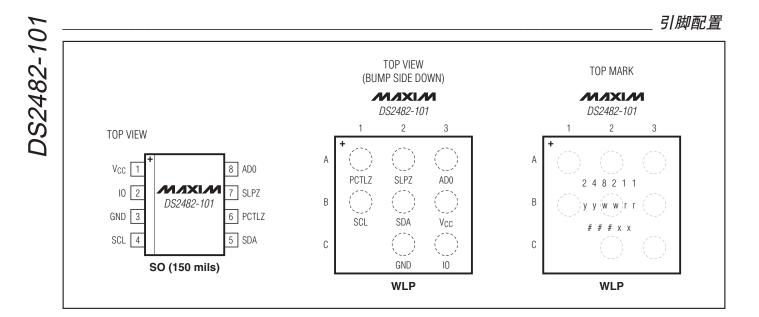



图12. I²C高速模式下的上拉电阻选择曲线

DS2482-101

封装信息

如需最近的封装外形信息和焊盘布局,请查询 www.maxim-ic.com.cn/packages。

封装类型	封装编码	文档编号	
8 SO (150mil)	S8+4	<u>21-0041</u>	
9 WLP	W92A1+1	<u>21-0067</u>	

修订历史

修订次数	修订日期	说明	修改页
0	7/08	最初版本。	—
1	8/08	删除了典型工作电路和图11中的1-Wire端接电阻以及连接至该电阻的基准。	1, 22

Maxim北京办事处

北京 8328信箱 邮政编码 100083 免费电话: 800 810 0310 电话: 010-6211 5199 传真: 010-6211 5299

Maxim不对Maxim产品以外的任何电路使用负责,也不提供其专利许可。Maxim保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

© 2008 Maxim Integrated Products

Maxim 是 Maxim Integrated Products, Inc. 的注册商标。

___ 25