录音》放音前置放大电路

主要用途: 用于在音响设备中作监听器。具有输出激励信号能力较大的音频前置放大器, 该电路可以直

接用以驱动指示电平表,内部还具有自动电平调整(ALC)功能。

电路特点: ①工作电源电压范围宽。②接通电源时,无爆破噪声。③ALC范围宽。④输出激励信号强,

 V_{cc} =9V, R_L =820 Ω 时,输出电压典型值为 2 V_{rm} ,可以直接加至 ALC 整流电路和电平指示表。⑤

噪声低。芯片电路原理见图 3-20, 典型应用电路见图 3-21。

封装结构: 9脚SIP, 单列直插塑料封装结构, 外形见图3-18。

技术参数: $T_a = 25$ °C, $V_{cc} = 9$ V, f = 1kHz

参数	符号与单位	最小值	典型值	最大值		备 注
工作电压	$V_{cc}(V)$	3	9	16	极限额定值为 16V	
功耗	$P_d(mW)$, iso T	_	500	极限额定值	
功耗额定值递减率	<i>Kθ</i> (mW / °C)	-		5	<i>T_a</i> >25℃	
工作温度	$T_{opr}(\mathbb{C})$	-25	_	75	极限额定值	
存贮温度	$T_{stg}(\mathbb{C})$	-55	_	125	极限额定值	
电源电流	$I_{cc}(mA)$	-	2.7	5.0		$V_i = 0$
开环电压增益	$G_{\nu o}(\mathrm{dB})$	65	76		测	$V_o = 0.3 \text{V}$
谐波失真	THD(%)	-	0.09	0.3		$V_o = 0.3 \text{V}$
最大输出电压	$V_o(Vrms)$	1.7	2.1	_	试	THD=1%
折合到输人端噪声电压	$V_{no}(\mu V)$		1.3	2.5	条	$R_g = 2.2k\Omega$ $BW = 30Hz \sim 20kHz$
ALC 集电极电压	$V_c(V)$	–	0.1	1.0	件	
输入阻抗	$Z_i(\mathbf{k}\Omega)$	60	100	_	,	

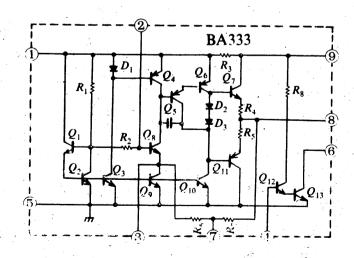


图 3-20 BA333 电路原理图

录音/放音前置放大电路

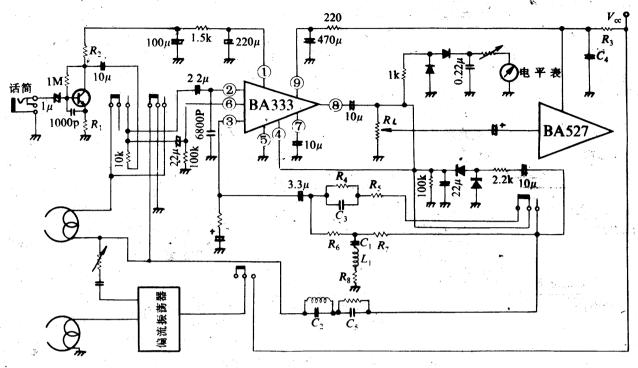


图 3-21 BA333 典型应用电路图

现代音响系统的降噪技术

现代音响系统中都采用优良的降噪技术,来降低磁带或唱片的本底噪音,达到几乎听不到的程度。其中杜比降噪技术是美国杜比实验室的专利,它是电声技术上专门研究降噪技术的一个机构。最早研究成功的杜比-A(DOBLY-A)型降噪系统,后来专门为盒式磁带录噪,开发了杜比-B(DOBLY-B)型降噪系统,所对 500Hz 以上的信号进行编码处理,对 5kHz 以上频段的降噪效果达 10dB。目前已在磁带音响设备中广泛使用。最近,人们又陆续研制出频带更宽和降噪效果更明显的 Dobly-C、dbx、High-COM、

Super-D、DNR 等系统,是电声技术上一颗引人注目的明星。

现代音响设备的降噪电路可分为两大类:

(1) 压缩扩展型(或称互补型)降噪是电路 节目在录音前先经过编码处理,在重放时也要 在指定的降噪电路作用下来恢复信号的本来面目, 同时达到降噪音的目的。降噪系统在重放时要进行解码过程。这种降噪电路复杂,互不兼容。主要用来降低磁带或唱片的本底噪音。如杜比-A、B或C 就属这类电路。

(2) 非互补型动态降噪电路

仅在重放电路中实现降噪。它在电路结构上分为主通道和副通道两部分。主通道是受控通道,由两个带宽可变的低通滤波器组成,接受左、右声道信号。副通道是控制通道,由加法器把左、右两声道信号叠加在一起,然后通过某转折频率的高通滤波器来检取信号中的高频分量,经放大与检波后,去控制主通道里两个可变带宽的低通滤波器,使其转折频率随输入信号的电平大小和频率成分而变化。

当输入信号电平较高时,副通道输出较大的控制电压,这时主通道带宽被压缩,高频以上的成分全部切除,噪声便大大降低。

非互补型动态降噪电路具有电路简单、兼容性好,美国 NS 公司研制的 DNR 降噪系统就属这类电路。