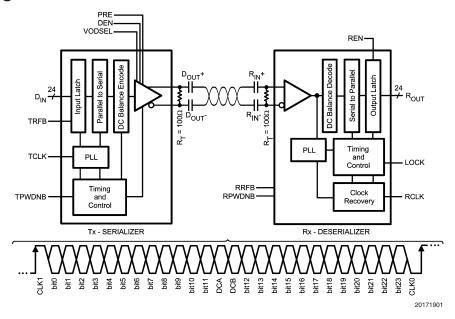
January 2006

DS90C241/DS90C124 5-35MHz DC-Balanced 24-Bit LVDS Serializer and Deserializer

General Description

The DS90C241/124 Chipset translates a 24-bit parallel bus into a fully transparent data/control LVDS serial stream with embedded clock information. This single serial stream simplifies transferring a 24-bit bus over PCB traces and cable by eliminating the skew problems between parallel data and clock paths. It saves system cost by narrowing data paths that in turn reduce PCB layers, cable width, and connector size and pins.

The DS90C241/124 incorporates LVDS signaling on the high-speed I/O. LVDS provides a low power and low noise environment for reliably transferring data over a serial transmission path. By optimizing the serializer output edge rate for the operating frequency range EMI is further reduced.


In addition the device features pre-emphasis to boost signals over longer distances using lossy cables. Internal DC balanced encoding/decoding is used to support AC-Coupled interconnects.

Features

- 5 MHz-35 MHz clock embedded and DC-Balancing 1:24 and 24:1 data transmissions
- User defined pre-emphasis driving ability through external resistor on LVDS outputs and capable to drive up to 10 meters shielded twisted-pair cable

- User selectable clock edge for parallel data on both TX and RX
- Supports AC-coupling interface
- Individual power-down controls for both TX and RX
- Embedded clock CDR (clock and data recovery) on RX and no external source of reference clock needed
- All codes RDL (random data lock) to support hot-pluggable applications
- LOCK output flag to ensure data integrity at RX side
- Balanced T_{SETUP}/T_{HOLD} between RCLK and RDATA on RX side
- PTO (progressive turn-on) LVTTL O/P to minimize the SSO effects
- All LVTTL inputs and control pins have internal pulldown except PRE
- On-chip filters for PLLs on TX and RX
- 48 pin TQFP package for both TX and RX
- Pure CMOS .35 µm process
- Power supply range 3.3V ± 10%
- Temperature range -40°C to +105°C
- 8 kV HBM ESD structure

Block Diagram

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC}) = -0.3V to +4V LVCMOS/LVTTL Input Voltage = -0.3V to (V_{CC} +0.3V)

LVCMOS/LVTTL Output

 $\begin{array}{lll} \mbox{Voltage} & -0.3 \mbox{V to (V}_{\mbox{\scriptsize CC}} + 0.3 \mbox{V}) \\ \mbox{LVDS Receiver Input Voltage} & -0.3 \mbox{V to } 3.9 \mbox{V} \\ \mbox{LVDS Driver Output Voltage} & -0.3 \mbox{V to } 3.9 \mbox{V} \\ \end{array}$

LVDS Output Short Circuit

Duration 10 ms Junction Temperature $+150^{\circ}$ C Storage Temperature -65° C to $+150^{\circ}$ C

Lead Temperature

(Soldering, 4 seconds) +260°C

Maximum Package Power Dissipation Capacity Package

De-rating:

48L TQFP $1/\theta_{JA}$ °CW above +25°C

DS90C241

θ_{JA} 45.8 (4L*); 75.4 (2L*) °C/W

 θ_{JC} 21.0°C/W

DS90C124

 θ_{JA} 45.4 (4L*); 75.0 (2L*)°C/W θ_{JC} 21.1°C/W

*JEDEC

ESD Rating (HBM) >8 kV
ESD Rating (ISO10605) DS90C241 meets ISO 10605

Contact Discharge (D_{OUT+} , D_{OUT-}) to GND $\pm 10 \text{ kV}$ Air Discharge (D_{OUT+} , D_{OUT-}) to GND $\pm 30 \text{ kV}$

Recommended Operating Conditions

	Min	Nom	Max	Units
Supply Voltage (V _{CC})	3.0	3.3	3.6	V
Operating Free Air				
Temperature (T _A)	-40	+25	+105	°C
Clock Rate	5		35	MHz
Supply Noise			±100	mV_{P-P}

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Pin/Freq.	Min	Тур	Max	Units
LVCMO	S/LVTTL DC SPECIFICATION	S					
V _{IH}	High Level Voltage		Tx: DIN[0:23], TCLK,	2.0		V _{CC}	V
V _{IL}	Low Level Input Voltage		DEN, TRFB, DCAOFF,	GND		0.8	V
V _{CL}	Input Clamp Voltage	I _{CL} = -18 mA	DCBOFF, VODSEL		-0.7	-1.2	V
I _{IN}	Input Current	V _{IN} = 0V or 3.6V	Rx: RRFB, REN	-10	±2	+10	μΑ
			Tx: TPWDNB Rx: RPWDNB	-20	±5	+20	μА
V _{OH}	High Level Output Voltage	$I_{OH} = -2 \text{ mA}$	ROUT[0:23], RCLK,	2.3	3.0	V _{CC}	V
V _{OL}	Low Level Output Voltage	I _{OL} = +2 mA	LOCK	GND	0.33	0.5	V
Ios	Output Short Circuit Current	$V_{OUT} = 0V$				-110	mA
l _{oz}	TRI-STATE® Output Current	RPWRDN = 0.8V,	ROUT[0:23], RCLK,	-15	±0.4	+15	μA
		$V_{OUT} = 0V \text{ or } V_{CC}$	LOCK	_13	±0.4	+13	μΑ
LVDS D	C SPECIFICATIONS						
V_{TH}	Differential Threshold High	$V_{CM} = +1.2V$	R _{IN+} , R _{IN-}			+100	mV
	Voltage					1100	
V_{TL}	Differential Threshold Low			-100			mV
	Voltage			100			1111
I _{IN}	Input Current	$V_{IN} = 2.4V,$				±100	μA
		V _{CC} = 3.6V or 0V					μ, (
		$V_{IN} = 0V, V_{CC} = 3.6V \text{ or } 0V$				±100	μΑ

Electrical Characteristics (Continued)

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Pin/Freq.	Min	Тур	Max	Units
LVDS D	C SPECIFICATIONS					•	
V _{OD}	Output Differential Voltage (D _{OUT+})-(D _{OUT-}) (<i>Figure 16</i>)	$R_L = 100\Omega$, w/o pre-emphasis VODSEL = L (VODSEL = H)	D _{OUT+} , D _{OUT-}	250 (500)	400 (800)	600 (1200)	mV
ΔV_{OD}	Output Differential Voltage Unbalance	$R_L = 100\Omega$, w/o pre-emphasis			10	50	mV
V _{os}	Offset Voltage	$R_L = 100\Omega$, w/o pre-emphasis		1.05	1.2	1.25	V
ΔV_{OS}	Offset Voltage Unbalance	$R_L = 100\Omega$, w/o pre-emphasis			10	50	mV
I _{os}	Output Short Circuit Current	DOUT = 0V, DIN = H, TPWRDND = 2.4V		-35	-50	-70	mA
l _{oz}	TRI-STATE Output Current	TPWRDND = 0.8V, DOUT = 0V or V _{DD}		-10	±1	10	μА
SER/DE	S SUPPLY CURRENT (DVDD	*, PVDD* and AVDD* pins) <i>*Digi</i> t	tal, PLL, and Analog VDDs	•			
Ісст	Serializer (Tx) Total Supply Current (includes load current) Serializer (Tx) Total Supply Current (includes load current)	$\begin{aligned} R_L &= 100\Omega \\ \text{Pre-emphasis} &= \text{OFF} \\ \text{Checker-board pattern} \\ \text{VODSEL=L } (\textit{Figure 1}) \\ R_L &= 100\Omega \\ \text{RPRE} &= 6 \text{ k}\Omega \\ \text{Checker-board pattern} \\ \text{VODSEL=L } (\textit{Figure 1}) \\ R_L &= 100\Omega \\ R_{PRE} &= \text{OFF} \\ \text{Random pattern} \\ \text{VODSEL=L} \\ R_L &= 100\Omega \\ R_{PRE} &= 6 \text{ k}\Omega \\ \text{Random pattern} \end{aligned}$	f = 35 MHz f = 35 MHz f = 35 MHz		105 120 65		mA mA
I _{CCTZ}	Serializer (Tx) Supply Current Power-down	VODSEL=L TPWRDNB = 0.8V			200	500	μА
I _{CCR}	Deserializer (Rx) Total Supply Current (includes load current)	C _L = 8 pF Checker-board pattern LVTTL Output <i>(Figure 2)</i>	f = 35 MHz		180		mA
	Deserializer (Rx) Total Supply Current (includes load current)	C _L = 8 pF Random pattern LVTTL Output	f = 35 MHz		110		mA
I _{CCRZ}	Deserializer (Rx) Supply Current Power-down	RPWRDND = 0.8V			500	750	μА

Serializer Timing Requirements for TCLK

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{TCP}	Transmit Clock Period		28.6	Т	200	ns
t _{TCIH}	Transmit Clock High Time		0.4T	0.5T	0.6T	ns
t _{TCIL}	Transmit Clock Low Time		0.4T	0.5T	0.6T	ns
t _{CLKT}	TCLK Input Transition Time			3	6	ns
t _{JIT}	TCLK Input Jitter	(Note 9)			±200	ns

Serializer Switching Characteristics Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{LLHT}	LVDS Low-to-High Transition Time	$R_L = 100\Omega,$ $C_L = 10 \text{ pF to GND}$		0.6		ns
t _{LHLT}	LVDS High-to-Low Transition Time	VODSEL = L (Figure 3)		0.6		ns
t _{DIS}	DIN (0:23) Setup to TCLK	$R_L = 100\Omega$,	5			ns
t _{DIH}	DIN (0:23) Hold from TCLK	$C_L = 10 \text{ pF to GND}$ (Note 8)	5			ns
t _{HZD}	DOUT ± HIGH to TRI-STATE Delay	$R_L = 100\Omega$,		5		ns
t _{LZD}	DOUT ± LOW to TRI-STATE Delay	$C_L = 10 \text{ pF to GND}$		5		ns
t _{zhD}	DOUT ± TRI-STATE to HIGH Delay	(Note 4) (Figure 7)		5		ns
t _{ZLD}	DOUT ± TRI-STATE to LOW Delay			5		ns
t _{PLD}	Serializer PLL Lock Time (Figure 8)	$R_L = 100\Omega$		10		ms
t _{SD}	Serializer Delay (Figure 9)	$R_L = 100\Omega$ VODSEL = L, TRFB = H		3.5T + 2.85		ns
		$R_L = 100\Omega$ VODSEL = L, TRFB = L		3.5T + 2.85		ns

Deserializer Switching CharacteristicsOver recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Pin/Freq.	Min	Тур	Max	Units
t _{RCP}	Receiver out Clock Period (Note 8)	$t_{RCP} = t_{TCP}$	RCLK	28.6		200	ns
t _{RDC}	RCLK Duty Cycle		RCLK	45	50	55	%
t _{CLH}	CMOS/TTL Low-to-High Transition Time	C _L = 8 pF (lumped load)	ROUT [0:23], LOCK, RCLK		2.5	3.5	ns
t _{CHL}	CMOS/TTL High-to-Low Transition Time	(Figure 4)			2.5	3.5	ns
t _{ROS}	ROUT (0:7) Setup Data to RCLK (Group 1) (Figure 11) ROUT [0:7] (29/56)*t _{RCP}					(2/5)* t _{RCP}	ns
t _{ROH}	ROUT (0:7) Hold Data to RCLK (Group 1) (Figure 11)				(27/56)*t _{RCP}	(2/5)* t _{RCP}	ns
t _{ROS}	ROUT (8:15) Setup Data to RCLK (Group 2) (Figure 11)	CLK (Group 2) LOCK 0.5*t _{RCP}			(2/5)* t _{RCP}	ns	
t _{кон}	ROUT (9:15) Hold Data to RCLK (Group 2) (Figure 11)			0.5*t _{RCP}			ns
t _{ROS}	ROUT (16:23) Setup Data to RCLK (Group 3) (Figure 11) ROUT [16:23] (27/56)*t _{RCP}			(2/5)* t _{RCP}	ns		
t _{вон}	ROUT (16:23) Hold Data to RCLK (Group 3) (Figure 11) (29/56)*t _{RCP}			(2/5)* t _{RCP}	ns		
t _{HZR}	HIGH to TRI-STATE Delay (Figure 12) ROUT [0:23], 3				3	10	ns
t _{LZR}	LOW to TRI-STATE Delay		RCLK, LOCK		3	10	ns
t _{zhr}	TRI-STATE to HIGH Delay				3	10	ns
t _{zLR}	TRI-STATE to LOW Delay				3	10	ns

Descrializer Switching Characteristics (Continued)

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Pin/Freq.	Min	Тур	Max	Units
t _{DD}	Deserializer Delay		RCLK		[4+(3/56)]T+		ns
	(Figure 10)		NOLK		5.9		
			5 MHz		817	825	ns
			35 MHz		122	125	ns
t _{DRDL}	Deserializer PLL Lock Time	(Notes 7, 8)	5 MHz		5	12	ms
	from Powerdown		35 MHz		5	10	ms
RxIN_TOL_L	Receiver INput TOLerance Left, (Figure 15)	(Notes 6, 10)	5 MHz-35 MHz			0.25	UI
RxIN_TOL_R	Receiver INput TOLerance Right, (Figure 15)	(Notes 6, 10)	5 MHz-35 MHz			0.25	UI

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.

Note 2: Typical values are given for V_{CC} = 3.3V and T_A = +25°C.

Note 3: Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground except VOD, Δ VOD, VTH and VTL which are differential voltages.

Note 4: When the Serializer output is tri-stated, the Deserializer will lose PLL lock. Resynchronization MUST occur before data transfer.

Note 5: tDRDL is the time required by the deserializer to obtain lock when exiting powerdown mode. tDRDL is specified with an external synchronization pattern.

Note 6: RxIN_TOL is a measure of how much phase noise (jitter) the deserializer can tolerate in the incoming data stream before bit errors occur. It is a measurement in reference with the ideal bit position, please see National's AN-1217 for detail.

Note 7: The Deserializer PLL lock time may vary depending on input data patterns and the number of transitions within the pattern.

Note 8: Guaranteed by Design (GBD) using statistical analysis.

Note 9: Total Interconnect Jitter Budget (t,j) specifies the allowable jitter added by the interconnect assuming both transmitter and receiver are Auto SerDes circuits.

Note 10: UI - Unit Interval, equivalent to one ideal serialized data bit width. The UI scales with frequency.

Note 11: Figures 1, 2, 9, 10, 13 show a falling edge data strobe (TCLK IN/RCLK OUT).

Note 12: Figures 6, 11 show a rising edge data strobe (TCLK IN/RCLK OUT).

AC Timing Diagrams and Test Circuits

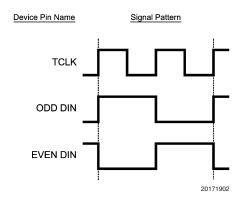


FIGURE 1. Serializer Input Checker-board Pattern

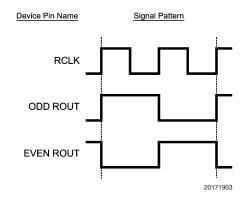


FIGURE 2. Deserializer Output Checker-board Pattern

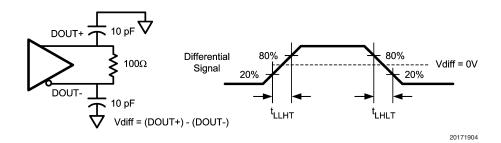


FIGURE 3. Serializer LVDS Output Load and Transition Times

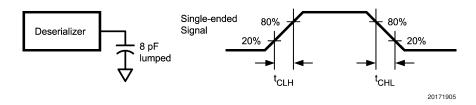


FIGURE 4. Deserializer LVCMOS/LVTTL Output Load and Transition Times

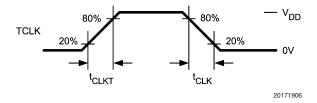


FIGURE 5. Serializer Input Clock Transition Times

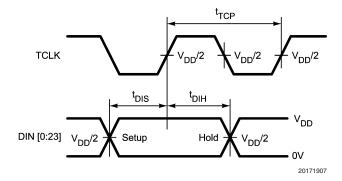


FIGURE 6. Serializer Setup/Hold Times

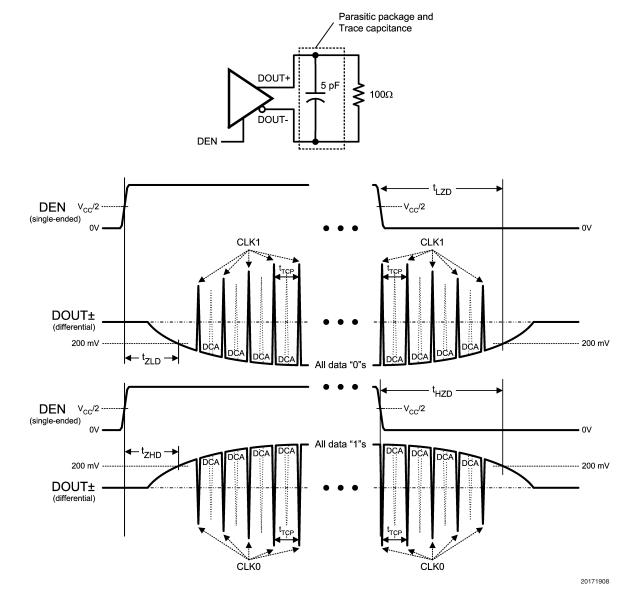


FIGURE 7. Serializer TRI-STATE Test Circuit and Delay

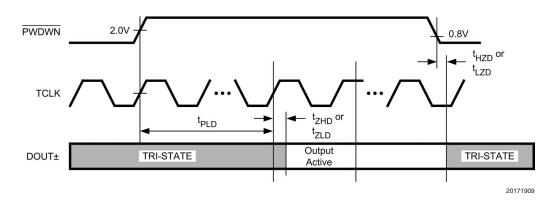


FIGURE 8. Serializer PLL Lock Time, and TPWDNB TRI-STATE Delays

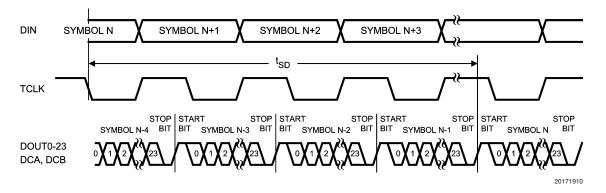


FIGURE 9. Serializer Delay

FIGURE 10. Deserializer Delay

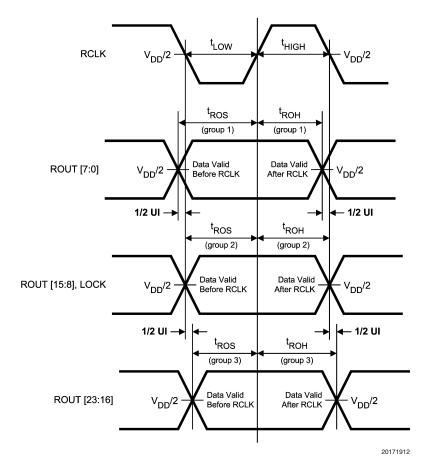
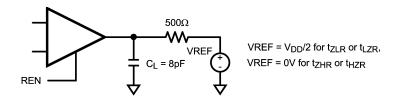
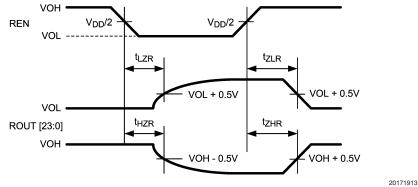




FIGURE 11. Deserializer Setup and Hold Times

Note: C_L includes instrumentation and fixture capacitance within 6 cm of ROUT[23:0]

FIGURE 12. Deserializer TRI-STATE Test Circuit and Timing

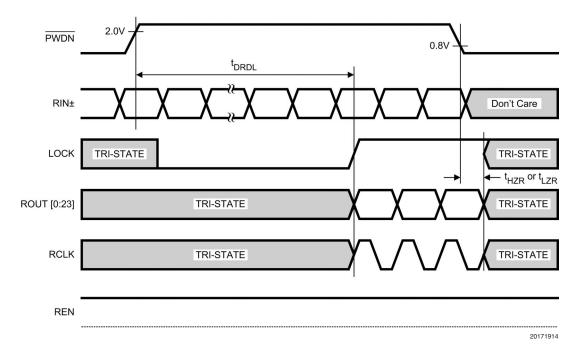


FIGURE 13. Deserializer PLL Lock Times and RPWDNB TRI-STATE Delay

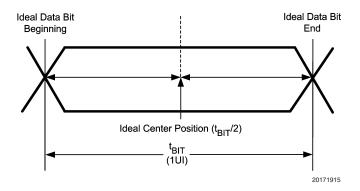


FIGURE 14. Transmitter Output Eye Opening

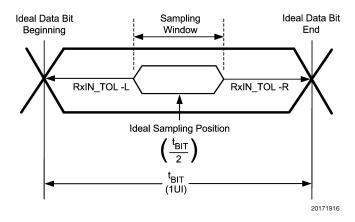
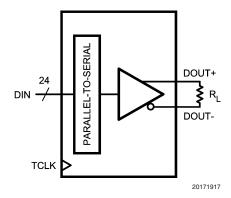
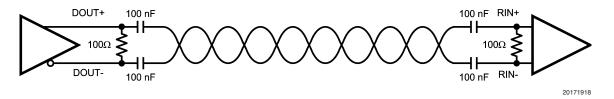
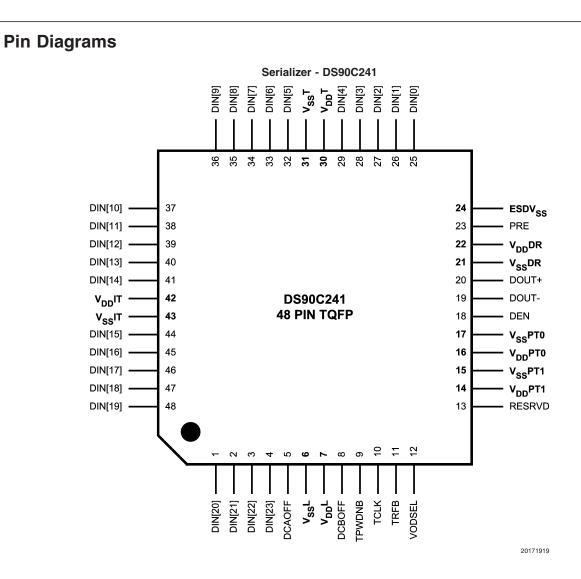



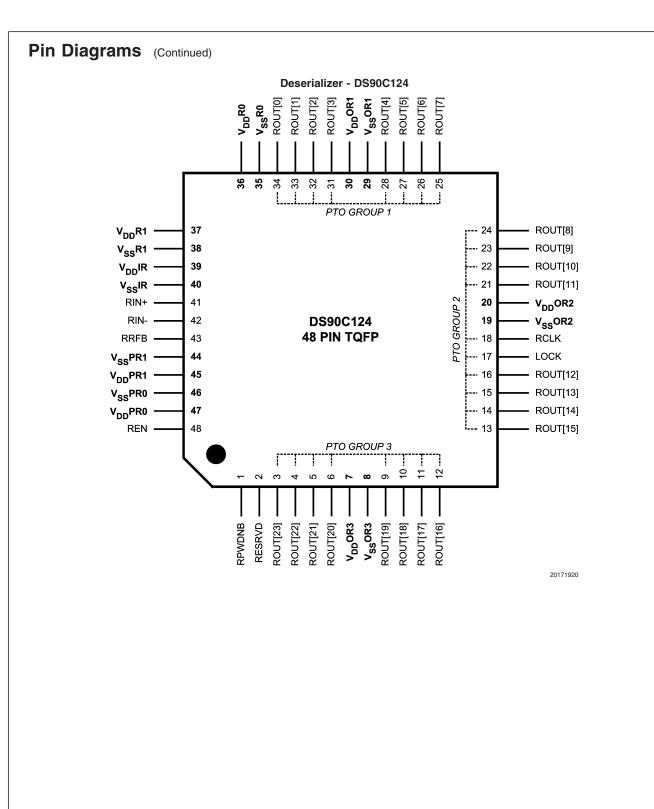
FIGURE 15. Receiver Input Tolerance (RxIN_TOL) and Sampling Window

 $VOD = (D_{OUT+}) - (D_{OUT-})$

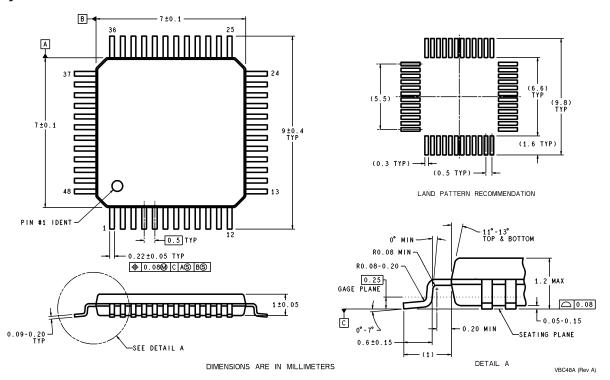
Differential output signal is shown as $(D_{OUT+}) - (D_{OUT-})$, device in Data Transfer mode.

FIGURE 16. Serializer VOD Diagram


FIGURE 17. AC Coupled Application

Pin #	Pin Name	I/O	Description
DS90C	241 SERIALIZE	R PIN DESCR	RIPTIONS
22	VDDDR	VDD	Analog Voltage Supply, LVDS O/P Power
21	VSSDR	GND	Analog Ground, LVDS O/P Ground
16	VDDPT0	VDD	Analog Voltage supply, VCO Power
17	VSSPT0	GND	Analog ground, VCO Ground
14	VDDPT1	VDD	Analog Voltage supply, PLL Power
15	VSSPT1	GND	Analog Ground, PLL Ground
30	VDDT	VDD	Digital Voltage supply, Tx serializer Power
31	VSST	GND	Digital Ground, Tx serializer Ground
7	VDDL	VDD	Digital Voltage supply, Tx Logic Power
6	VSSL	GND	Digital Ground, Tx Logic G round
42	VDDIT	VDD	Digital Voltage supply, Tx Input Power
43	VSSIT	GND	Digital Ground, Tx Input Ground
24	VSSESD	GND	ESD Ground
4-1,	DIN[23:0]	CMOS_I	Transmitter Data INputs
48-44,			
41-32,			
29-25			
10	TCLK	CMOS_I	Transmitter reference CLocK.
			Used to strobe data at the DIN inputs and to drive the transmitter PLL
9	TPWDNB	CMOS_I	Transmitter PoWer DowN Bar (ACTIVE L).
			TPWDNB = L; Disabled, DOUT (+/-) are TRI-STATED stand-by mode, PLL is shutdown
	551	01100	TPWDNB = H; Enabled
18	DEN	CMOS_I	Data ENable (ACTIVE H)
			DEN = L; Disabled, DOUT (+/-) are TRI-STATED, PLL still operational DEN = H; Enabled
13	RESRVD	CMOS_I	RESERVED - tie Low
23	PRE	CMOS_I	PRE-emphasis select pin.
20	' ' '	OWIGO_I	PRE = $(R_{PRE} \ge 3 \text{ k}\Omega)$; $I_{max} = (1.2/R*20)$, $R_{min} = 3 \text{ k}\Omega$
			PRE = H or floating; pre-emphasis off
11	TRFB	CMOS_I	Transmitter Rising/Falling Bar Clock Edge Select (H = rising edge L = falling edge)
12	VODSEL	CMOS_I	VOD level SELect
		_	VODSEL = L; IOD ≈ 3.5 mA, (default). e.g. 3.5 mA*100Ω≈350 mV
			VODSEL = H; IOD \approx 7.0 mA, VOD doubles approximately. e.g. 7 mA*100 Ω \approx 700 mV
5	DCAOFF	CMOS_I	RESERVED — tie Low
8	DCBOFF	CMOS_I	RESERVED — tie Low
20	DOUT+	LVDS_O	Transmitter LVDS true (+) OUTput
19	DOUT-	LVDS_O	Transmitter LVDS inverted (-) OUTput
DS90C	124 DESERIAL	IZER PIN DES	SCRIPTIONS
39	VDDIR	VDD	Analog LVDS Voltage supply, Power
40	VSSIR	GND	Analog LVDS G round
47	VDDPR0	VDD	Analog Voltage supply, PLL Power
46	VSSPR0	GND	Analog Ground, PLL Ground
45	VDDPR1	VDD	Analog Voltage supply, PLL VCO Power
44	VSSPR1	GND	Analog Ground, PLL VCO Ground
37	VDDR1	VDD	Digital Voltage supply, Logic Power
38	VSSR1	GND	Digital Ground, Logic Ground
36	VDDR0	VDD	Digital V oltage supply, Logic Power
35	VSSR0	GND	Digital Ground, Logic Ground
30	VDDOR1	VDD	Digital Voltage supply, LVTTL O/P Power


Pin Descriptions (Continued)

Pin #	Pin Name	I/O	Description
DS90C	124 DESERIALI	ZER PIN DESC	CRIPTIONS
29	VSSOR1	GND	Digital Ground, LVTTL O/P Ground
20	VDDOR2	VDD	Digital Voltage supply, LVTTL O/P Power
19	VSSOR2	GND	Digital Ground, LVTTL O/P Ground
7	VDDOR3	VDD	Digital Voltage supply, LVTTL O/P Power
8	VSSOR3	GND	Digital Ground, LVTTL O/P Ground
41	RIN+	LVDS_I	Receiver LVDS true (+) INput
42	RIN-	LVDS_I	Receiver LVDS inverted (-) INput
2	RESRVD	CMOS_I	RESERVED - tie Low
43	RRFB	CMOS_I	Receiver Rising Falling Bar clock Edge Select RRFB = H; ROUT LVTTL O/P clocked on Rising CLK RRFB = L; ROUT LVTTL O/P clocked on Falling CLK
48	REN	CMOS_I	Receiver ENable, (ACTIVE H) REN = L; Disabled, ROUT[23-0] and RCLK TRI-STATED, PLL still operational REN = H; Enabled
1	RPWDNB	CMOS_I	Receiver PoWer DowN Bar (ACTIVE L) RPWDNB = L; Disabled, ROUT[23-0], RCLK, and LOCK are TRI-STATED in stand-by mode, PLL is shutdown RPWDNB = H; Enabled
17	LOCK	CMOS_O	LOCK indicates the status of the receiver PLL LOCK = L; receiver PLL is unlocked, ROUT[23-0] and RCLK are TRI-STATED LOCK = H; receiver PLL is locked
25-28, 31-34	ROUT[7:0]	CMOS_O	Receiver Outputs – Group 1
13-16, 21-24	ROUT[15:8]	CMOS_O	Receiver Outputs – Group 2
3-6, 9-12	ROUT[23:16]	CMOS_O	Receiver Outputs – Group 3
18	RCLK	CMOS_O	Recovered CLocK. Parallel data rate clock recovered from the embedded clock.

Physical Dimensions inches (millimeters) unless otherwise noted

Dimensions show in millimeters only Order Number DS90C241IVS, DS90C124IVS NS Package Number IVS48

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Tel: 81-3-5639-7560