International **IOR** Rectifier

HEXFET[®] POWER MOSFET

IRFN140

N-CHANNEL

100 Volt, 0.077Ω HEXFET

HEXFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry achieves very low on-state resistance combined with high transconductance.

HEXFET transistors also feature all of the well-establish advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, and high energy pulse circuits.

The Surface Mount Device (SMD-1) package represents another step in the continual evolution of surface mount technology. The SMD-1 will give designers the extra flexibility they need to increase circuit board density. International Rectifier has engineered the SMD-1 package to meet the specific needs of the power market by increasing the size of the termination pads, thereby enhancing thermal and electrical performance.

Product Summary

Part N	umber	BVDSS	RDS(on)	b	
IRFI	N140	100V	0.077Ω	28A	

Features:

- Avalanche Energy Rating
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Surface Mount
- Light-weight

Parameter		IRFN140	Units	
ID @ VGS = 10V, TC = 25°C	Continuous Drain Current	28		
ID @ VGS = 10V, TC = 100°C Continuous Drain Current		20	A	
IDM	Pulsed Drain Current ①	112	_	
PD @ TC = 25°C	Max. Power Dissipation	125	W	
	Linear Derating Factor	1.0	W/K (5)	
VGS	Gate-to-Source Voltage	±20	V	
EAS	Single Pulse Avalanche Energy 2	250	mJ	
IAR	Avalanche Current ①	28	A	
EAR	Repetitive Avalanche Energy 10	12.5	mJ	
dv/dt	Peak Diode Recovery dv/dt 3	5.5	V/ns	
Тј	Operating Junction	-55 to 150		
TSTG	Storage Temperature Range		°C	
	Package Mounting Surface Temperature	300 (for 5 seconds)	1	
	Weight	2.6 (typical)	g	

Absolute Maximum Ratings

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	100	—	—	V	VGS = 0V, ID = 1.0 mA
$\Delta BV_{DSS}/\Delta T_{J}$	Temperature Coefficient of Breakdown Voltage	_	0.13	—	V/°C	Reference to 25°C, I _D = 1.0 mA
RDS(on)	Static Drain-to-Source	_	_	0.077		VGS = 10V, ID = 20A ④
	On-State Resistance	—	—	0.125	Ω	VGS = 10V, ID = 28A
VGS(th)	Gate Threshold Voltage	2.0	—	4.0	V	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$
g fs	Forward Transconductance	9.1	—	—	S (0)	VDS > 15V, IDS = 20A ④
IDSS	Zero Gate Voltage Drain Current	—	—	25	•	VDS = 0.8 x Max Rating, VGS = 0V
		—	—	250	μA	VDS = 0.8 x Max Rating
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	_	_	100	nA	VGS = 20V
IGSS	Gate-to-Source Leakage Reverse	—	—	-100		VGS = -20V
Qg	Total Gate Charge	30	—	59		VGS =10V, ID = 28A
Qgs	Gate-to-Source Charge	2.4	—	12	nC	VDS = Max. Rating x 0.5
Qgd	Gate-to-Drain ("Miller") Charge	12	—	30.7		see figures 6 and 13
td(on)	Turn-On Delay Time	—	—	21		VDD = 50V, ID = 28A,
tr	Rise Time	—	_	145	ns	$R_G = 9.1\Omega$, $VGS = 10V$
td(off)	Turn-Off Delay Time	—	_	64	115	
tf	FallTime	—	—	105		see figure 10
LD	Internal Drain Inductance	—	2.0	_	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die.
LS	Internal Source Inductance	_	4.1	_		Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.
Ciss	Input Capacitance	—	1600			$V_{GS} = 0V, V_{DS} = 25V$
C _{OSS}	Output Capacitance	—	550	—	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance		120			see figure 5

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter		Min.	Тур.	Max.	Units	Test Conditions
IS	Continuous Source Current (Body Diode)		—	_	28	A	Modified MOSFET symbol showing the
ISM	Pulse Source Current (Body Diode) ①		—	—	112		integral reverse p-n junction rectifier.
VSD	Diode Forward Voltage		_	—	1.5	V	Tj = 25°C, IS = 28A, VGS = 0V ④
trr	Reverse Recovery Time		—	—	400	ns	Tj = 25°C, Iϝ = 28A, di/dt ≤ 100A/μs
QRR	Reverse Recovery Charge		—	—	2.9	μC	V _{DD} ≤ 50V ④
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_{S} + L_{D}$.					

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
RthJC	Junction-to-Case	—	—	1.0		
R _{th} J-PCB	Junction-to-PC Board	_	TBD	_	K/W	Soldered to a copper clad PC board

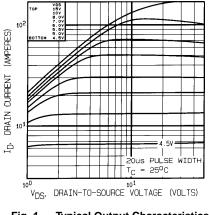


Fig. 1 — Typical Output Characteristics $T_C = 25^{\circ}C$

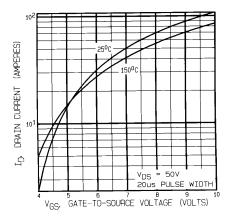


Fig. 3 — Typical Transfer Characteristics

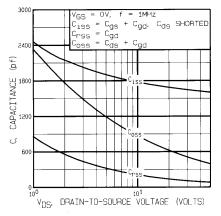


Fig. 5 — Typical Capacitance Vs. Drain-to-Source Voltage

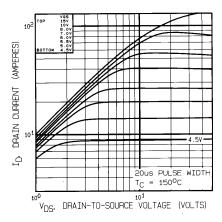


Fig. 2 — Typical Output Characteristics $T_C = 150^{\circ}C$

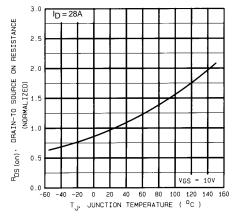


Fig. 4 — Normalized On-Resistance Vs.Temperature

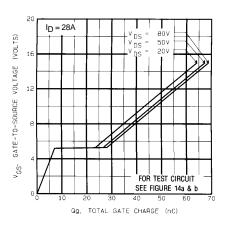
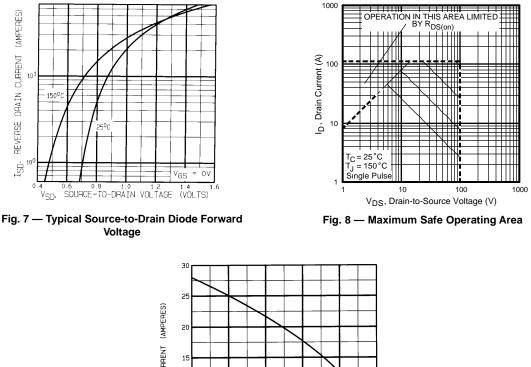



Fig. 6 — Typical Gate Charge Vs. Gate-to-Source Voltage

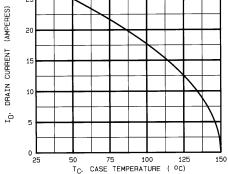


Fig. 9 — Maximum Drain Current Vs. Case Temperature

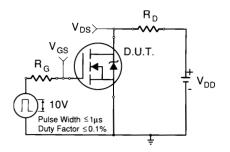


Fig. 10a — Switching Time Test Circuit

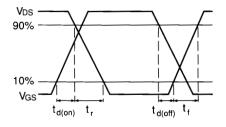


Fig. 10b — Switching Time Waveforms

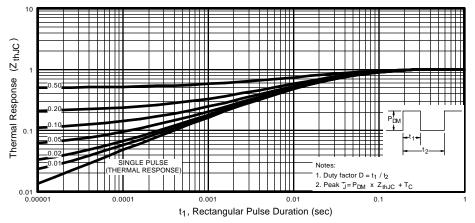


Fig. 11 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

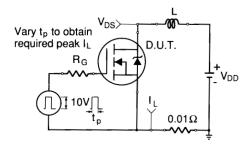


Fig. 12a — Unclamped Inductive Test Circuit

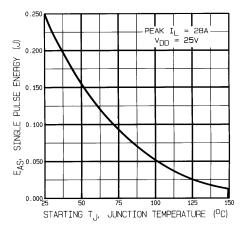


Fig. 12c — Max. Avalanche Energy vs. Current

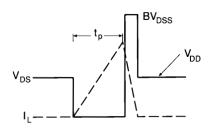


Fig. 12b — Unclamped Inductive Waveforms

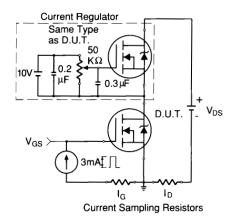


Fig. 13a — Gate Charge Test Circuit

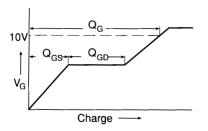
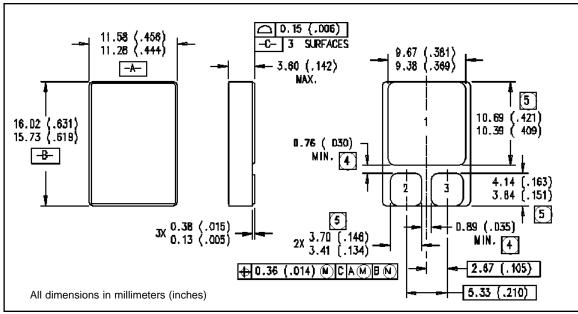



Fig. 13b — Basic Gate Charge Waveform

- Repetitive Rating; Pulse width limited by maximum junction temperature. (see figure 11)

- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%
- 5 K/W = °C/W W/K = W/°C

Case Outline and Dimensions — SMD-1

International **ICR** Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 9/96