National Semiconductor

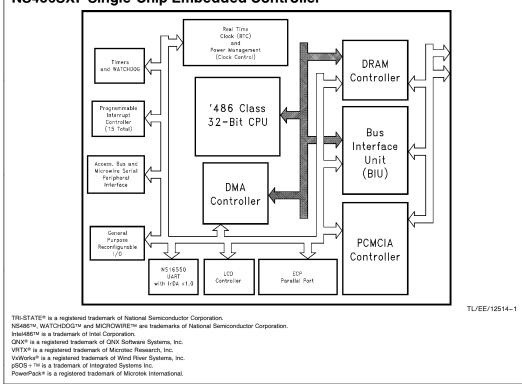
NS486[™]SXF Optimized 32-Bit 486-Class Controller with On-Chip Peripherals for Embedded Systems

General Description

The NS486SXF is a highly integrated embedded system controller incorporating an Intel486™-class 32-bit processor, all of the necessary System Service Elements, and a set of peripheral I/O controllers tailored for embedded control systems. It is ideally suited for a wide variety of applications running in a segmented protect-mode environment.

Key Features

- 100% compatible with VxWorks[®], VRTX[®], QNX[®] Neutrino, pSOS+TM, and other popular real-time executives and operating system kernels
- Intel486 instruction set compatible (protected mode only) with optimized performance
- CPU includes a 1 Kbyte Instruction Cache
- Operation at 25 MHz with 5V supply
- Low cost 160-pin PQFP package
- Industry standard interrupt controller, timers, real time clock, UART with IrDA v1.0 (Infrared Data Association) port


- Intel 82365 compatible PCMCIA interface
- Protected WATCHDOGTM timer
- Optimized DRAM Controller (supports two banks, up to 8 Mbytes each)

ADVANCE INFORMATION

February 1997

- Up to nine versatile, programmable chip selects
- Glueless interface to ISA peripherals
- Arbitration support for auxiliary processor
- Four external DMA channels (max. transfer rate of 25 MByte/sec @ 25 MHz) support many transfer modes
- High performance IEEE 1284 (ECP) Bidirectional Parallel Port
- MICROWIRETM/Access.bus synchronous serial interfaces
- LCD Controller for an up to 4 grey scale supertwist Liquid Crystal Displays up to 480 X 320
- Reconfigurable I/O: Up to 29 I/O pins can be used as general purpose bidirectional I/O lines
- Flexible, programmable, multilevel power saving modes maximize power savings

NS486SXF Single-Chip Embedded Controller

© 1996 National Semiconductor Corporation TL/EE12514

RRD-B30M27/Printed in U. S. A.

http://www.national.com

NS486SXF Optimized 32-Bit 486-Class Controller with On-Chip Peripherals for Embedded Systems

Table of Contents

1.0 SYSTEM OVERVIEW

- 1.1 NS486SXF System Overview
- 1.2 32-bit Processor Core
- 1.3 System Service Elements
 - 1.3.1 DRAM Controller
 - 1.3.2 DMA Controller
 - 1.3.3 Programmable Interval Timer
 - 1.3.4 WATCHDOG Timer
 - 1.3.5 Interrupt Controller
 - 1.5.5 Interrupt Controller
 - 1.3.6 Real Time Clock/Calendar
 - 1.3.7 Power Management Features
- 1.4 NS486SXF System Bus
- 1.5 Other On-board Peripherals
 - 1.5.1 Reconfigurable I/O Lines
 - 1.5.2 IEEE 1284 Bidirectional Port
 - 1.5.3 PCMCIA Interface
 - 1.5.4 MICROWIRE/Access.bus Interface
 - 1.5.5 UART Serial Port
 - 1.5.6 LCD Controller
- 1.6 ICE Support
- 1.7 Other Issues

- 2.0 PIN DESCRIPTION TABLES
- 3.0 DEVICE SPECIFICATIONS
 - 3.1 DC Electrical Specifications 5V \pm 5%
 - 3.1.1 Recommended Operating Conditions
 - 3.1.2 Absolute Maximum Ratings (Notes 2 and 3)
 - 3.1.3 Capacitance: $T_A = 25^{\circ}C$, f = 1 MHz
 - 3.1.4 DC Characteristics
 - 3.2 General AC Specifications
 - 3.2.1 Power Ramp Times
 - 3.2.2 PWRGOOD and Power Rampdown Timing
- 3.3 AC Switching Specifications
 - 3.3.1 DRAM Interface Timing Specification
 - 3.3.2 ISA-like Bus Cycles Timing Specification
 - 3.3.3 Ready Feedback Timing Specifications
 - 3.3.4 OSCX1 AC Specification
 - 3.3.5 Peripheral Timing Specifications
- 3.4 Physical Description

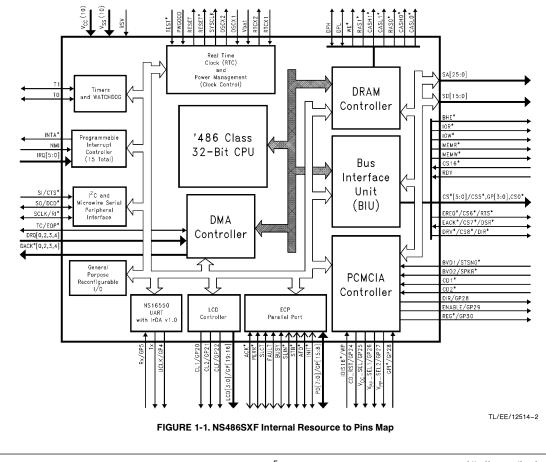
List of Figures

	•
FIGURE 1-1.	NS486SXF Internal Resource to Pins Map
FIGURE 1-2.	NS486SXF Internal Busses
FIGURE 2-1.	NS486SXF Package Pinout Diagram
FIGURE 3-1.	Switching Characteristic Measurement Waveforms
FIGURE 3-2.	More Switching Specifications
FIGURE 3-3.	Power Supply Rise and Fall
FIGURE 3-4.	PWGOOD in relation to V _{DD}
FIGURE 3-5.	DRAM Timing Diagram
FIGURE 3-6.	ISA-like Bus Timing Diagram
FIGURE 3-7.	Ready Feedback Timing Diagram
FIGURE 3-8.	TTL Clock Input Timing Diagram
FIGURE 3-9.	DMA Controller Read Timing Diagram
FIGURE 3-10.	DMA Controller Write Timing Diagram
FIGURE 3-11.	PIC Timing Diagram
FIGURE 3-12.	Memory Read Timing
FIGURE 3-13.	Memory Write Timing Diagram
FIGURE 3-14.	I/O Read Timing
FIGURE 3-15.	I/O Write Timing Diagram
FIGURE 3-16.	Access.bus Timing Diagram
FIGURE 3-17.	UART Baud Rate and Infrared Clocks
FIGURE 3-18.	UART IRQ Timing
FIGURE 3-19.	UART Modem Control Timing
FIGURE 3-20.	LCD Controller Timing Diagram
FIGURE 3-21.	Testmode Timing Diagram
FIGURE 3-22.	Plastic Package Specifications

List of Tables

Bus Interface Unit Pins
DMA Control Pins
DRAM Control Pins
Power Pins
Reset Logic Pins
Auxiliary Processor Interface Pins
Test Pins
Interrupt Control Pins
Real Time Clock Pins
LCD Interface Pins
Oscillator Pins
HP-SIR/UART Pins
PCMCIA pins
IEEE-1284 Port (ECP Mode)
Timer Pins
3-Wire Serial I/O Pins
General Purpose Chip Select Pins
Summary of Reconfigurable I/O Pins
V _{DD} Rise and Fall Times
V _{DD} Rampdown vs PWRGOOD
4 Cycle Page Miss Preliminary Specifications
3 Cycle Miss Preliminary Specifications
No Command Delay ISA-like Bus Specifications
One Programmed Command Delay ISA-like Bus Specifications
Ready Signal Timing Specifications
TTL Clock Input Specification
DMA Controller Specifications
PIC Timing Specifications
Parallel Port Compatibility Mode Handshake Timing Values
Parallel Port IEEE 1284 Mode Handshake Timing Values
PCMCIA Memory Read Timing Specifications
Memory Write Timing
PCMCIA I/O Read Specifications
PCMCIA I/O Write Specifications
Access.Bus Timing Specifications
LCD Controller Timing Specifications

1.0 System Overview


1.1 NS486SXF SYSTEM OVERVIEW

The **NS486SXF** is a highly integrated embedded system controller. It includes an Intel486-class 32-bit processor, all resources required for the System Service Elements of a Real-Time Executive, and a generous set of peripherals. This "system-on-a-chip" is ideal for implementing a wide variety of embedded applications. These include (but are not limited to) fax machines, multifunction peripherals (fax, scanners, printers) mobile companions (both organizer and communicator), television set-top boxes, and telephones (mobile and desktop).

The 32-bit processor core executes all of the Intel486 instructions with a similar number of clocks per instruction. An on-board 1 kbyte instruction cache provides for efficient execution from ROM. Intel486 debug features are supported. The processor has been optimized for operating system kernels such as VRTX, VxWorks, pSOS + and QNX. These environments only need the '486 protected mode operation (no real mode or virtual 8086 support), flat or linear memory addressing (no virtual memory paging), and floating point execution in software only (no co-processor interface).

In fact, the **NS486SXF** includes all of the System Service Elements required by a typical kernel, including an efficient DRAM controller that supports page-mode DRAMs for data cache-like performance; a six-channel DMA controller with two channels supporting data transfers from on-chip peripherals (the IEEE 1284 ECP or Extended Capabilities Port, and the LCD controller), and four channels supporting external devices such as scanners, and print engines; three timer channels (including one configured as a protected WATCH-DOG Timer); two programmable 8259 interrupt controllers provide 15 on-chip interrupt sources; an industry standard real time clock and calendar (RTC) with battery backup; and support for comprehensive power management schemes.

In addition, the **NS486SXF** also incorporates the key I/O peripherals required for implementing a wide variety of embedded applications: an IEEE 1284 Bidirectional Parallel Port that includes both Host and Slave modes, an Intel 82365-compatible PCMCIA controller for one card slot, an industry standard high-performance NS16550-compatible UART with HP-SIR and IrDA v1.0 infrared option, an LCD panel interface with DMA supported refresh for many of the standard resolutions, an 8254 timer, and a general purpose 2- or 3-wire synchronous serial interface for easy interface to low-cost EEPROMs and other serial peripherals. System expansion is supported with nine programmable Chip Select (CS) signals and a generic ISA-type bus interface for external devices and memory.

1.0 System Overview (Continued)

Certain I/O lines not being used by disabled peripherals can be reconfigured for use as general purpose bidirectional I/O lines (up to 29 pins). This gives the designer maximum flexibility in designing various systems using the **NS486SXF** device. It is expected that an **NS486SXF** system will minimally include the **NS486SXF** system controller with on-board processor and I/O devices, boot ROM, and working RAM memory. Many applications will not require any additional I/O support.

Finally, the **NS486SXF** implements a very flexible power management scheme that permits selective control of individual I/O subsystems, with varying levels of power consumption.

NS486SXF provides a cost-effective hardware platform for the design and implementation of a wide range of office automation and communication systems. With its powerful embedded '486-class processor, comprehensive set of onchip peripheral controllers, flexible power management structure and reconfigurable I/O lines, NS486SXF makes possible a variety of end-user systems based on the same hardware. Because of its optimized design and on-board resources, a very cost effective system can be achieved.

1.2 32-BIT PROCESSOR CORE

The NS486SXF processor core is an implementation of the protected mode '486 instruction set architecture, optimized using a RISC-like design philosophy for embedded applications. Using this approach, the most frequently used instructions are optimized, and on an average execute in a lower number of clock cycles than a '486.

The NS486SXF features a three stage pipeline, efficient instruction prefetching mechanism, and single cycle instruction decoding for most instructions. Additionally, a 1 kbyte instruction cache and single cycle DRAM access provide higher memory performance than a larger unified cache implementation.

The NS486SXF processor provides the same programming model and register set as the standard '486 except that real mode, virtual memory, and floating point support have been eliminated. These features have little or no impact in embedded applications and save significant silicon real estate. At reset, unlike the standard '486, the NS486SXF starts up in protected mode instead of real mode. All '486 instructions appropriate to protected mode and our hardware configuration are supported, including debug instructions.

The NS486SXF is initially available to run 25 MHz at 5V. The processor clock is obtained by dividing the crystal frequency by two. For example, a 25 MHz NS486SXF runs with a 50 MHz crystal oscillator as the master clock.

As a result of our innovative design, the NS486SXF achieves performance equivalent to a standard '486 with less circuitry. This translates into reduced power consumption and a lower overall system cost. It also makes the NS486SXF ideal for "green" systems and battery operated systems.

1.3 SYSTEM SERVICE ELEMENTS

The **NS486SXF** controller provides the basic hardware resources required for the O/S-defined System Service Elements. These include a DRAM controller, a DMA controller, programmable interval timer, a protected WATCHDOG timer, a programmable interrupt controller, a real-time clock and calendar, and comprehensive power management features.

1.3.1 DRAM Controller

The **NS486SXF** DRAM controller supports one or two adjustable-sized banks of dynamic RAM using a 16-bit data path. Support is provided for byte parity (if desired), requiring the DRAM banks to be 18 bits wide when parity is enabled. Banks can be up to 8 Mbytes in size. The DRAM controller supports page mode read and write operations and can also support both byte and word accesses. All access control signals for read, write and parity checking are generated as well as an automatic and programmable CASbefore-RAS refresh. If self-refresh DRAMs are used, refresh can be disabled, saving power.

NS486SXF provides flexible support for use of a number of different DRAM configurations, using popular DRAM devices. Access is optimized for fast page mode DRAMs, and they will provide the highest performance with contiguous data. When accessing data bytes or words in the same DRAM page, the data access is in one cycle. This performance provides fast data access times without the overhead of a separate data cache. Page sizes can be 512, 1024, 2048 or 4096 bytes. Flexibility for DRAM timing is provided through programming of the DRAM controller registers: 3 or 4 cycle page miss accesses and extended CAS cycles can be selected.

Memory bank 0 starts at address 0h; memory bank 1 can start at any address in the 128 Mbyte address map that is a multiple of its size.

1.3.2 DMA Controller

The **NS486SXF** Direct Memory Access (DMA) controller is a high speed 16-bit controller that improves system performance by off-loading from the processor the task of managing data transfers to and from memory and external devices. Data transfers are done independently from the processor at a maximum data rate of 2 bytes per 2 clock cycles. (A 25 MHz clock yields a 25 megabyte per second transfer rate.)

There are six independent DMA channels. Requestor and target addresses have a maximum addressable memory range of 64 Mbytes. Three standard transfer modes, single, block and demand, are provided giving the designer a wide range of DMA options. A special transfer type, cascade-master, allows an external master to access the **NS486SXF** ISA-like bus. Normal transfers can be from memory to memory, memory to I/O and I/O to memory. DMA transfers are controlled by DMA control registers in the **NS486SXF** control register I/O map.

1.3.3 Programmable Interval Timer

The **NS486SXF** programmable interval timer is compatible with the Intel 8254 programmable interval timer and contains three identical timers (CH0–CH2). CH0 and CH1 can be used to generate accurate timing delays under software control. CH2 may be configured to provide a WATCHDOG timer function.

1.3.4 WATCHDOG Timer

The **NS486SXF** WATCHDOG timer, CH2, is a protected 16-bit timer that can be used to prevent system "lockups or hangups." It uses a 1 kHz clock generated by the on-chip real-time clock circuit. If the WATCHDOG timer is enabled and times out, a reset or interrupt will be generated allowing graceful recovery from an unexpected system lockup.

1.0 System Overview (Continued)

1.3.5 Interrupt Controller

The **NS486SXF** interrupt controller consists of two cascaded programmable interrupt controllers that are compatible with the Intel 8259A Programmable Interrupt Controller. They provide a total of 15 (out of 16) programmable interrupts. Three interrupts are reserved for a real time clock-tick interrupt, a real time clock interrupt request, and a cascade interrupt channel. The remaining 13 interrupts can be used by internal or external sources. Additional external interrupt controllers can be cascaded as well.

1.3.6 Real Time Clock/Calendar

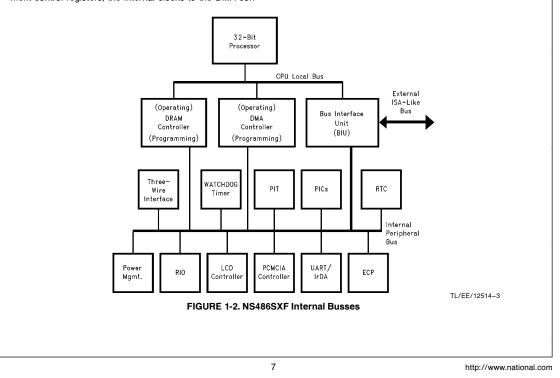
The **NS486SXF** Real Time Clock/Calendar is a low power clock that provides a time-of-day clock and 100-year calendar with alarm features and battery operation. Time is kept in BCD or binary format. It includes 50 bytes of general purpose CMOS RAM and 3 maskable interrupt sources. It is compatible with the DS1287 and MC146818 RTC/Calendar devices, except for the general purpose memory size.

1.3.7 Power Management Features

The **NS486SXF** power management structure includes a number of power saving mechanisms that can be combined to achieve comprehensive power savings under a variety of system conditions. First of all, the core processor power consumption can be controlled by varying the processor/ system clock frequency. The internal CPU clock can be divided by 4, 8, 16, 32 or 64. In addition, in idle mode, the internal processor clock will be disabled. Finally, if an external crystal oscillator circuit is being used, it can be disabled. For maximum power savings, all internal clocks can be disabled (except for the real-time clock oscillator).

The clocks of the on-board peripherals can be individually or globally controlled. By setting bits in the power management control registers, the internal clocks to the DMA controller, the ECP port, the three-wire interface, the timer, the LCD controller, the DRAM controller, the PCMCIA controller and the UART can be disabled.

In addition to these internal clocks, the external SYSCLK can be disabled via a bit in the power management control registers.


Using various combinations of these power saving controls with the **NS486SXF** controller will result in excellent programmable power management for any application.

1.4 NS486SXF SYSTEM BUS

The NS486SXF system bus provides the interface to offchip peripherals and memory. It offers an ISA-compatible interface and is therefore capable of directly interfacing to many ISA peripheral control devices. The interface is accomplished through the Bus Interface Unit (BIU). The BIU generates all of the access signals for both internal and external peripherals and memory. Depending upon whether the access is to internal peripherals, external peripherals or external memory, the BIU generates the timing and control signals to access those resources. The BIU is designed to support a glueless interface to many ISA-type peripherals.

For debug purposes, the **NS486SXF** can be set to generate external bus cycles at the same time as an internal peripheral access takes place. This gives logic analyzers or other debug tools the ability to track and capture internal peripheral accesses.

Access to internal peripherals is accomplished in three CPU T-states (clock cycles). The fastest access to off-chip I/O is also three T-states. When accessing off-chip memory and I/O, wait state generation is accomplished through a combination of **NS486SXF** chip select logic and off-chip peripheral feedback signals.

1.0 System Overview (Continued)

When the CPU is in idle mode, the BIU is designed to mimic the CPU during DMA interchanges between memory and peripherals. By responding to DRQs and generating DACK, and HOLDA signals as required, the BIU eliminates the need to reactivate the CPU during such transfers as screen updates from memory to the LCD controller. This gives the designer added flexibility in conserving power while maintaining basic system functions.

1.5 OTHER ON-BOARD PERIPHERALS

In addition to those peripherals and system control elements needed for System Service Elements, the **NS486SXF** also includes a number of I/O controllers and resources that make implementing a complete embedded system possible with just a single-chip **NS486SXF** controller. These include an IEEE 1284 Extended Capabilities Port, a serial UART port, a LCD controller, a PCMCIA interface and a MICROWIRE or Access.bus synchronous serial bus interface. In addition, unused I/O controllers free up their I/O pins for general purpose use.

1.5.1 Reconfigurable I/O Lines

The **NS486SXF** supports reconfigurable I/O. For example, if the UART, ECP Parallel Port, LCD or PCMCIA functions are not being used, the I/O pins associated with them can be reconfigured as general purpose bidirectional I/O pins. Up to 29 pins can be reconfigured for this purpose. This capability makes the **NS486SXF** extremely versatile and ideal for supporting different end product configurations with a single **NS486SXF** device.

1.5.2 IEEE 1284 Bidirectional Port

The **NS486SXF** parallel port is a multifunction 8-bit parallel port that is compatible with the IEEE 1284 bidirectional parallel port standard. The operation of the parallel port is set by the content of the **NS486SXF** parallel port I/O control registers. The port can operate in one of two modes: a standard parallel port mode (PC compatible), or a full Extended Capabilities Port (ECP) mode. The **NS486SXF** ECP port can support both Host and Slave ECP mode. In slave mode, the **NS486SXF** becomes a versatile microprocessor for parallel I/O peripheral devices.

1.5.3 PCMCIA Interface

The **NS486SXF** PCMCIA interface supports the direct connection of a single PCMCIA 2.0 IC card. Exchange Card Architecture (ExCA release 1.50) compatibility and eXecute In Place (XIP) capability is also provided.

Accessing the PCMCIA interface switches the external bus automatically into the PCMCIA mode and permits Memory Window Mapping and Address Offset to be handled inside the **NS486SXF** device. Power management and "hot" card insertion/removal options can be implemented using external buffering, if required.

1.5.4 MICROWIRE/Access.bus Interface

The **NS486SXF** MICROWIRE/Access.bus interface provides for full support of either the three-wire MICROWIRE or the two-wire Access.bus serial interfaces. MICROWIRE has an alternate clock phasing option that supports the SPI bus protocol as well. These industry standard interfaces permit easy interfacing to a wide range of low-cost specialty memories and I/O devices. These include EEPROMs, SRAMs, timers, clock chips, A/D converters, D/A converters, and peripheral device drivers.

1.5.5 UART Serial Port

The NS486SXF UART provides complete NS16550 (PC standard) serial communications port compatibility including the performance enhancing 16-byte deep FIFO. It performs serial-to-parallel conversion from external devices to the NS486SXF and parallel-to-serial conversion from the NS486SXF to external peripherals. Full modem control can be supported.

A serial IrDA v1.0 and HP-SIR (infrared) mode is also supported, making possible low-cost wireless communications between an **NS486SXF**-based system and other wireless infrared systems.

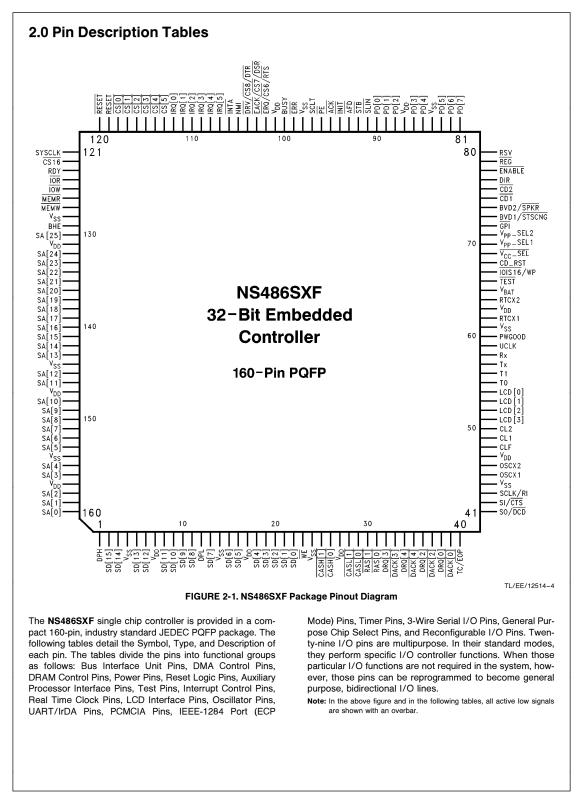
1.5.6 LCD Controller

The **NS486SXF** LCD controller is capable of controlling a variety of monochrome supertwist LCD configurations including 320x240, 320x200 and 480x320 black and white or grayscale graphics LCD modules equipped with self-contained screen drivers. It uses a video frame buffer in system DRAM with either a 1- or 2-bit per pixel grayscale. A 60 Hz to 90 Hz frame refresh rate is supported. Special controls permit the fine tuning of display characteristics to precisely optimize visual display quality.

1.6 ICE SUPPORT

National Semiconductor has worked closely with Microtek International to provide hardware in-circuit emulator support for the **NS486SXF**. The Microtek product (PowerPack® EA-NS486) uses a special bondout version of the **NS486SXF** to deliver a full-featured hardware emulator that is capable of tracing on chip activity, including peripheral interrupt and I/O activity. The emulator runs at full speed, and supports overlay memory and multiple triggers.

1.7 OTHER ISSUES


NS486SXF provides a comprehensive set of on-board peripherals. Also, it is designed to easily interface to external peripherals. In addition to this ISA-like bus which supports ISA-compatible peripherals, the **NS486SXF** provides an interface to an external master with a shared memory space. The external master or auxiliary processor interface allows low cost interfacing to shared external memory belonging to other external masters (including another **NS486SXF** controller).

To program the resources of the **NS486SXF**, a set of internal control registers exists. These registers provide precise control over all internal resources and the setup of external **NS486SXF** control signals. It is the designer's responsibility to ensure the proper initialization of the registers in this I/O map.

In addition, the **NS486SXF** core processor itself requires several descriptor tables and initialization parameters that must be set by user-written start-up software.

The **NS486SXF** is designed from the ground up for optimum price/performance in embedded systems. This makes the **NS486SXF** the logical choice as the base hardware platform for executing an embedded operating system kernel such as those available from Microtec International, Wind River, ISI, QNX, and many others. Any Operating System or Real-Time Executive that will operate in a segmented or flat memory model protect mode environment is a suitable complement to the **NS486SXF**.

Also, there are many third party tool sets that will allow an executable application to be built to run directly on the target hardware without an O/S environment.

			TABLE 2-1. Bus Interface Unit Pins
Symbol	Pins	Туре	Function
SA[25:0]	SA[25:0] 130, 132, 1 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 146, 148, 149, 150, 151, 152, 153, 155, 156, 158, 159, 160		System Address bus. These output-only signals carry the latched address for the current access. DRAM accesses multiplex the row and column addresses for the DRAMs on the SA[12:1] pins. During Interrupt Acknowledge cycles, the internal master interrupt controller's cascade line signals, CAS[2:0], are driven onto SA[25:23], respectively. SA[0] is sampled at the end of reset to determine if the part will run normally or enter ICE TRI-STATE mode.
SD[15:0]	2, 3, 5, 6, 8, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22	1/0	System Data bus: This bi-directional data bus provides the data path for all memory and I/O accesses. During transfers with 8-bit devices, the upper data byte is not used (SD[15:8]).
SBHE	129	0	Byte High Enable. This active-low signal indicates that the high byte (odd address byte) is being transferred. External 16-bit devices should use this signal to help them determine that a data byte is to be transferred on the upper byte of the System Data bus (SD[15:8]). 8-bit devices should ignore this signal. SBHE is sampled at the end of power good reset to determine if the boot ROM is 8- or 16-bit wide.
IOR	124	0	IO R ead command. This active-low signal instructs an I/O device to place data onto the system data bus.
IOW	125	0	IO Write command. This active-low signal indicates to an I/O device that a write operation is in process on the system bus.
MEMR	126	0	MEMory Read command. This active-low signal instructs a memory mapped device to place data onto the system data bus.
MEMW	127	0	MEMory Write command. This active-low signal indicates to a memory mapped device that a writ operation is in process on the system bus.
CS16	122	1/0	Chip Select 16-bit. This active-low feedback signal indicates that the device being accessed is a 16-bit device. This signal should be driven by external devices with an open collector driver. If a chip select is programmed to force 16-bit accesses, this signal will be asserted (low) during the access.
RDY	123	I	ReaDY. An external device may drive this signal inactive low to insert wait states and extend the external bus cycle. This signal should be driven with an open collector or be TRI-STATE driven.

				TABLE 2-2. DMA Control Pins						
Symbol		Pins	Туре	Function						
DRQ[4], DRQ DRQ[2], DRQ	/	34, 32, 36, 38	I	I DMA ReQuest. A DRQn signal requests the internal DMA Controller to transfer data between the Requesting Device and memory.						
DACK[4], DACK[3], DACK[2], DACK[0]	(3), 37, 39 (2), (0)		0	O DMA ACK nowledge: When the CPU has relinquished control of the bus to a requesting DMA channel, the appropriate active-low DACK n signal acknowledges the winning DRQn.						
TC/EOP 40		1/0	Terminal Count/End Of Process: This signal may operate either as a terminal count output or an active-low End of Process input. As TC, an active-high pulse occurs on this signal whe the terminal count for any DMA channel has been reached. As $\overline{\text{EOP}}$, an external device may terminate the DMA transfer by driving this signal active-low.							
				TABLE 2-3. DRAM Control Pins						
Symbol	Pins	Туре		Function						
RAS[1:0]	30, 31	0	respe	Address S trobe. On the falling edge of these active-low signals, Bank 1 and Bank 0 ctively, should latch in the row address off of SA[12:1]. If only one bank of DRAMs are rted, RAS0 will support that bank and RAS1 will be unused.						
CASH[1:0]	25, 26 O Column Address Strobe (High Byte). These active-low signals indicate being made to the high byte of DRAM Bank 1 and DRAM Bank 0 rest		n A ddress S trobe (H igh Byte). These active-low signals indicate when the column access is made to the high byte of DRAM Bank 1 and DRAM Bank 0 respectively. If only one bank of Is are supported, CASH0 will support the high byte of that bank and CASH1 will be unused.							
CASL[1:0]	28, 29	0	being	In A ddress S trobe (Low Byte). These active-low signals indicate when the column access is made to the low byte of DRAM Bank 1 and DRAM Bank 0, respectively. If only one bank of its are supported, $\overrightarrow{CASL0}$ will support the low byte of that bank and $\overrightarrow{CASL1}$ will be unused.						
WE	23	0	Write	Write Enable. Active low signal for writing the data into the DRAM bank.						
DPH, DPL	1, 12	1/0	unuse drive t read t	1 Data Parity. DRAM data parity may be enabled or disabled; if disabled these two pins will be d. Otherwise, for DRAM writes the NS486SXF's DRAM Controller will generate odd parity and he odd parity onto these two pins. For DRAM reads the NS486SXF's DRAM Controller will he values driven on these two pins and check it for odd parity in association with the priate data byte.						

				TABLE 2-4. Power Pins					
Symbol	Pins	Т	уре	Function					
V _{DD}	7, 17, 2 47, 63 87, 101 131, 14 157	, I,	I	+ 5V power to core and I/O.					
V _{SS}	4, 14, 2 44, 61 84, 98 128, 14 154	,		Ground to core and I/O.					
				TABLE 2-5. Reset Logic Pins					
Symbol	Pins	Тур	е	Function					
RESET	119	0		ESET system output driver: This active high signal resets or initializes system peripheral logic durir wer up or during a low line voltage outage.					
RESET	120	0	Inv	verse of RESET for peripherals requiring active low reset.					
PWGOOE	60		wh	Wer GOOD . This active-high (Schmitt Trigger) input will cause a hardware reset to the NS486SX nenever this input goes low. This pin will typically be driven by the power supply and PWGOOD wil main low until the power supply determines that stable and valid voltage levels have been achieve					
				TABLE 2-6. Auxiliary Processor Interface Pins					
Sym	bol	Pins	Тур	Pe Function					
EREQ/CS	56/RTS 102 O		0	This pin has three programmable options controlled by the Modem Signal Control Register (refer to the UART section): 1. External bus REQ uest (active-low) to an auxiliary processor.					
				2. Chip Select 6 (active-low) pin.					
				3. Request To Send. When low, this signal informs the MODEM or data set that the UART is ready to exchange data. The RTS output signal can be set to an active low by programmin bit 2 (RTS) of the MODEM Control Register. A Master Reset operation sets this signal to it inactive (high) state. Loop mode operation holds this signal in its inactive state.					
EACK/CS	37/DSR	103	1/0	 This pin has three possible programmable options controlled by the Modem Signal Control Register (refer to the UART section): 					
			1	1. External bus ACKnowledge (active-low) from an auxiliary processor.					
			0	2. Chip Select 7 (active-low) pin.					
				 Data Set Ready. When low, it indicates that the MODEM or data set is ready to link with th UART. The DSR signal is a MODEM status input whose condition can be tested by the CP reading bit 5 (DSR) of the MODEM Status Register. Bit 5 is the complement of the DSR signal. Bit 1 (DDSR) of the MODEM Status Register indicates whether the DSR input has changed state since the previous reading of the MODEM Status Register. Note: Whenever the DSR bit of the MODEM Status Register changes state, an interrupt is generated if the MODEM Status Interrupt is enabled. 					
DRV/CS8	3/DTR	104	0	This pin has three possible programmable options controlled by the Modem Signal Control Register (refer to the UART section):					
				1. DSP shared memory DRiV e control signal.					
				 Chip Select 8 (active-low) pin. Data Terminal Ready. When low, this signal informs the MODEM or data set that the UAR is ready to establish a communications link. The DTR output signal can be set to an active low by programming bit 0 (DTR) of the MODEM Control Register to a high level. A Master Reset operation sets this signal to its inactive (high) state. Loop mode operation holds this signal in its inactive state. 					

				TABLE 2-7. Test Pins		
Symbol	Pins	Туре		Function		
TEST	66	1/0	Re	eserved for testing and development system support.		
				TABLE 2-8. Interrupt Control Pins		
Symbol	Pin	is T	Гуре	Function		
NMI	10	5	Ι	Non-Maskable Interrupt. This active-high signal will generate a non-maskable interrupt to the CPU when it is active high. Normally this signal is used to indicate a serious system error.		
INTA	10	6	0	INT errupt A cknowledge. During each interrupt acknowledge cycle this signal will strobe low; it should be used by external cascaded interrupt controllers.		
IRQ[5:0]	D] 107, 108, I 109, 110, 111, 112		Ι	Interrupt ReQ uests. These inputs are either rising edge or low-level sensitive interrupt requests depending on the configuration of the internal interrupt controllers. These interrupt requests ma also be programmed to support externally cascaded interrupt controller(s). The IRQ pins are also used to select a particular test in test mode. If the PCMCIA controller is enabled, IRQ[5] become the IREQ signal.		
				TABLE 2-9. Real Time Clock Pins		
Symbol	Pins	Pins Type		Pins Type Function		Function
RTCX1	62	62 I		62 I		eal Time Clock crystal oscillator input: 32 kHz crystal.
RTCX2	64	0	Re	eal Time Clock crystal oscillator output: 32 kHz crystal.		
V _{bat}	65	Ι	Ex	ternal + battery input for real time clock.		
				TABLE 2-10. LCD Interface Pins		
Symbol	Pin	Pins Ty		Function		
LCD[3:0]		·)	Data Output Word to LCD , 1 = White, 0 = Blue/black.		
LCD[3:0] CL2		·		Data Output Word to LCD, 1 = White, 0 = Blue/black. Word CLock to LCD.		
	53, 5	4	>			
CL2	53, 5 50	4))	Word CL ock to LCD.		
CL2 CL1	53, 5 50 49	4 ())	Word CL ock to LCD. Row CL ock to LCD.		
CL2 CL1	53, 5 50 49	4 ()))	Word CLock to LCD. Row CLock to LCD. Frame CLock to LCD.		
CL2 CL1 CLF	53, 5 50 49 48			Word CLock to LCD. Row CLock to LCD. Frame CLock to LCD. TABLE 2-11. Oscillator Pins Function YStem CLocK. This clock output pin will either be driven with a signal half the frequency of the OSCX put clock frequency or the CPU's clock frequency, which is determined in the Power Management		
CL2 CL1 CLF Symbol	53, 5 50 49 48 Pins	4 () () () () () () ()))))))))))))))))))))))))))))))))))))))	Word CLock to LCD. Row CLock to LCD. Frame CLock to LCD. Frame CLock to LCD. YStem CLock. This clock output pin will either be driven with a signal half the frequency of the OSCX put clock frequency or the CPU's clock frequency, which is determined in the Power Management ontrol Register 1. The source selection for this signal is determined by bit 1 of the Power Management		

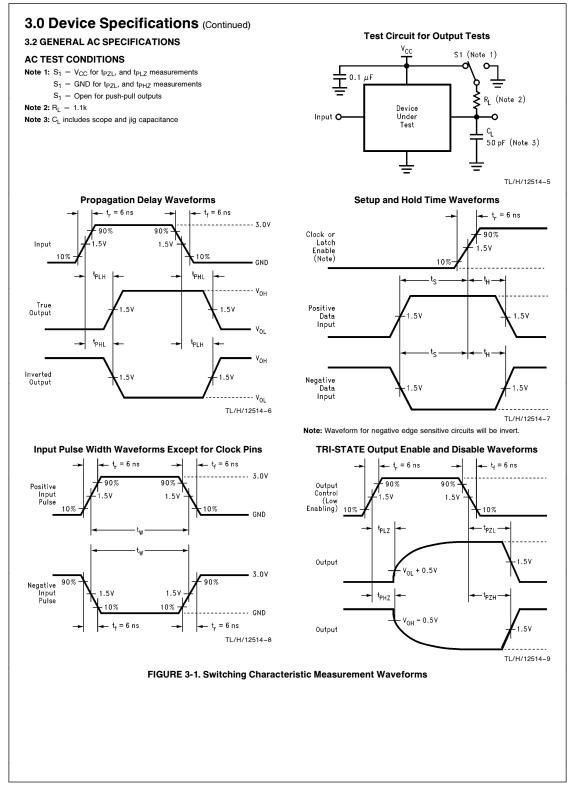
				TABLE 2-12. HP-SIR/UART Pins				
Symbol	Pins	Туре		Function				
Тх	57	0	UART Transmit data. In HP-SIR mode this pin is the UART output encoded for the serial Otherwise it is the transmit output of the 16550 UART.					
Rx	58	Ι		eceive data. In HP-SIR mode this pin is routed through the serial infrared decoder. Otherwise, it ceive input to the 16550.				
UCLK	59	0	Uart CLo Modulat	ccK. Output of programmable rate UART/MODEM clock. Typically used for the Infrared or.				
				TABLE 2-13. PCMCIA Pins				
Symi	ool	Pins	Туре	Function				
CD_RS1	-	68	0	CarD ReSeT. This active high signal resets the PCMCIA card during a soft-reset.				
IOIS16/W	/P	67	I	IO port IS 16 bits/ W rite P rotect: When a PCMCIA card is configured as an IO card, this signal is asserted to indicate the currently addressed IO port is 16 bits wide. When a PCMCIA card is configured as a memory card, an active high signal indicates the card is currently write protected.				
BVD2/SF	2/SPKR 74 I			Battery Voltage Detect bit 2/ SPeaKeR output. When a PCMCIA card is configured as a memory card, this input along with BVD[1] will provide status information about the card's onboard battery condition. When a PCMCIA card is configured as an IO card, this pin will act as the audio output of the card to the system.				
BVD1/ST	SCNG	73	Ι	Battery Voltage Detect bit 1/ STatuS ChaNGe output. When a PCMCIA card is configured as a memory card, this input along with BVD[2] will provide status information about the card's on- board battery state. When a PCMCIA card is configured as an I/O card, the status change signal indicates one or more of the memory status signals (BVD[2:1], WP, RDY or BSY) has changed states.				
V _{CC} —SE	Ē	69	0	PCMCIA $\mathbf{V_{CC}}$ SELect. When this signal is low, the V_{CC} power to the PCMCIA card should be enabled.				
V _{PP} —SE V _{PP} —SE		70, 71	0	PCMCIA V_{PP} SELect 1 and 2. These signals indicate the voltage with which the V_{PP} power to the PCMCIA card should be driven.				
GPI		72	I	G eneral P urpose Input. This signal is a general purpose input signal used with a PCMCIA card to indicate a valid V_{PP} state, a pending card eject/insertion, or as an interrupt source.				
CD2, CD1	ī	76, 75	I	Card Detect. Both signals are low when the PCMCIA card is correctly inserted.				
DIR		77	0	DIRection. Used to control the direction of the data line buffers to the PCMCIA interface.				
ENABLE		78	0	ENABLE PCMCIA. Enables the buffer drivers to the PCMCIA interface. Low true signal.				
REG		79	0	REG. PCMCIA card support.				
Note: If P PCMCIA Ī			hip Selects	1 and 2 become Card Enable 1 and 2. See Table 2-17, "General Purpose Chip Select Pins". Also, IRQ[5] becomes the				

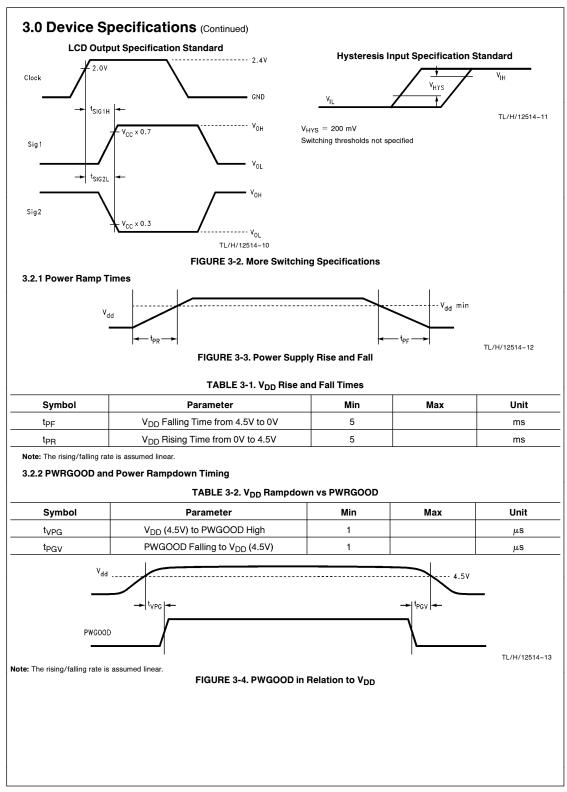
			TABLE 2-14. IEEE-1284 Port (ECP Mode)
Symbol	Pins	Туре	Function
PD[7:0]	81, 82 83, 85 86, 88 89, 90	,	Parallel Data. Bi-directional data pins transfer data and address information to and from the parallel port.
SLIN	91	0/1	SeLect INput: Used in a closed-loop handshake with BUSY to transfer data or address information from the host to the peripheral. Host driven.
STB	92	0/1	data ST ro B e. Driven high by the host while in ECP Mode. Asserted low by host to terminate ECP Mod and return link to Compatibility Mode. Host driven.
ĀFD	93	0/1	Automatic FeeD. The host asserts this line low for flow control in the reverse direction. It is used in a interlocked handshake with ACK. Provides command information in the forward direction. Host driven Active low.
INIT	94	0/1	INIT ialize.When this signal is asserted low to place the data channel in the reverse direction, the peripheral is allowed to drive the data bus. Host driven. Active low.
ACK	95	1/0	ACK nowledge. Used in closed-loop handshake with AFD to transfer data to the host. Peripheral device drive. Active low.
PE	96	1/0	Peripheral Error. Asserted low to acknowledge INIT, reverse request. Peripheral device drive.
SLCT	97	1/0	SeLeCT. Asserted high when selected or indicating an affirmative response for each respective extensibility byte. Peripheral device drive. Active high.
ERR	99		
BUSY	100 I/O		BUSY . This is asserted low by the peripheral for flow control in the forward direction, de-asserted to acknowledge transfer of data or address completion. Peripheral device drive. Active low.
			TABLE 2-15. Timer Pins
Symbol	Pins	Туре	Function
Т0	55	1/0	Programmable T imer pin 0 . This Bidirectional pin may be selected to control one of the following four functions via bits 1-0 of the Timer I/O Control Register:
			1. The GATE input into Timer 0.
			2. The GATE input into Timer 1.
			3. The OUT output from Timer 0.
			4. The CLK input into Timer 1.
	56	I/O	Programmable T imer pin 1 . This Bidirectional pin may be selected to control one of the following four functions via bits 3-2 of the Timer I/O Control Register:
T1			1. The GATE input into Timer 0.
T1			
T1			2. The GATE input into Timer 1.
T1			 2. The GATE input into Timer 1. 3. The OUT output from Timer 1. 4. The CLK input into Timer 0.

			TABLE 2-16. 3-Wire Serial I/O Pins
Symbol	Pins	Туре	Function
SO/DCD	41	1/0	This pin has two possible programmable options controlled by the Modem Signal Control Register (refer to the UART section):
			1. The Serial data Output signal for MICROWIRE.
			2. Data Carrier Detect. When low, this input signal indicates that the data carrier has been detected by the MODEM or data set. The DCD signal is a MODEM status input whose condition can be tested by the CPU reading bit 7 (DCD) of the MODEM Status Register. Bit 7 is the complement of the DCD signal. Bit 3 (DDCD) of the MODEM Status Register indicates whether the DCD input has changed state since the previous reading of the MODEM Status Register. DCD has no effect on the receiver
			Note: Whenever the DCD bit of the MODEM Status Register changes state, an interrupt is generated if the MODEM Status Interrupt is enabled.
SI/CTS	42	1/0	This pin has two possible programmable options controlled by the Modem Signal Control Register (refer to the UART section):
			1. The Serial data Input signal for MICROWIRE or the serial data I/O for Access.bus.
			2. Clear To Send. When low, this input signal indicates that the MODEM or data set is ready to exchange data. The CTS signal is a MODEM status input whose conditions can be tested by the CPU reading bit 4 (CTS) of the MODEM Status Register. Bit 4 is the complement of the CTS signal. Bit 0 (DCTS) of the MODEM Status Register indicates whether the CTS input has changed state since the previous reading of the MODEM Status Register. CTS has no effect on the Transmitter.
			Note: Whenever the CTS bit of the MODEM Status Register changes state, an interrupt is generated if the MODEM Status Interrupt is enabled.
SCLK/RI	43	1/0	This pin has two possible programmable options controlled by the Modem Signal Control Register (refer to the UART section):
		0	1. The Serial CLocK signal for MICROWIRE and Access.bus.
			 Ring Indicator. When low, this input signal indicates that a telephone ringing signal has been received by the MODEM or data set. The RI signal is a MODEM status input whose condition can b tested by the CPU reading bit 6 (RI) of the MODEM Status Register. Bit 6 is the complement of the signal. Bit 2 (TERI) of the MODEM Status Register indicates whether the RI input signal has changed from a low to high state since the previous reading of the MODEM Status Register. Note: Whenever the CTS bit of the MODEM Status Register changes state, an interrupt is generated if the MODEM Status Interr
			is enabled. Note: Whenever the RI bit of the MODEM Status Register changes from a high to a low state, an interrupt is generated if the
			MODEM Status Interrupt is enabled. Mode, a pin must be selected to be the Chip Select Input.

			TA	BLE 2-17. General Purpose Chip Se	elect Pins				
Symbol	Pins	Туре		Fun	ction				
<u>CS[0]</u>	118	0		Select 0: This output is used as the chip-select for the system boot ROM. It defaults to the or 64 kbytes of memory.					
CS[5:1]	113, 114, 115, 116, 117	1/0	Chip Select 1-5. These pins can be programmed to be either memory or I/O mapped chip selects, which are used for glue-less connection to external peripherals. When the PCMCIA Controller is enabled $\overline{CS}[1]$ and $\overline{CS}[2]$ become PCMCIA Card Enable outputs 1 and 2 ($\overline{CE1}$ and $\overline{CE2}$, respectively).						
			TABL	E 2-18. Summary of Reconfigurab	le I/O Pins				
Sym	bol	Pins	Туре	Pin #	Original Function	Power Up State			
REG		1	I/O	79	PCMCIA	TRI-STATE			
ENABL	Ē	1	I/O	78	PCMCIA	1			
DIR	DIR 1		I/O	77	PCMCIA	0			
GPI	1 I/O		I/O	72	PCMCIA	TRI-STATE			
V _{PP} _S	SEL2 1 I/O		1/0	71	PCMCIA	0			
V _{PP} _	SEL1	1	I/O	/O 70 PCMCIA		0			
V _{CC}	SEL	1	I/O	69	PCMCIA	1			
CD_R	ST	1	I/O	68	PCMCIA	TRI-STATE			
CLF		1	I/O	48	LCD	0			
CL2	CL2 1		1 I/O		I/O	50	LCD	0	
CL1	L1 1		1 I/O		1/0	49	LCD	0	
LCD [3	_CD [3:0] 4		I/O	51, 52, 53, 54	LCD	0, 0, 0, 0			
PD [7:0	PD [7:0] 8		1/0	81, 82, 83, 85, 86, 88, 89, 90	ECP	TRI-STATE			
Rx	₹x 1		I/O	58	UART	TRI-STATE			
UCLK		1	I/O	59	UART	Oscillating			
CS [4]		1	I/O	114	CS4	1			
CS [3]		1	I/O	115	CS3	1			
CS [2]		1	I/O	116	CS2	1			
CS [1]		1	1/0	117	CS1	1			

These 29 pins, typically used for various I/O peripheral purposes, as defined in the above tables, can be reconfigured for use as general purpose I/O pins if the normally defined I/O function is not required.


Symbol	Parameter	Conditi	on	Min	Тур	Max	Unite
V _{DD}	Supply Voltage			4.75	5.0	5.25	V
T _A	Operating Temperature			0		+ 70	°C
	ESD Tolerance	C _{ZAP} = 1 R _{ZAP} = 1 (Note 1)		2000			V
.1.2 Absolute	Maximum Ratings (Notes 2 an	d 3)					
Symbol	Parameter		Con	dition	Min	Мах	Units
V _{DD} , V _{DDA}	Supply Voltage				-0.5	7.0	V
VI	Input Voltage				-0.5	V_{DD} + 0.5	v
VO	Output Voltage				-0.5	V_{DD} + 0.5	v
T _{STG}	Storage Temperature				-65	+ 165	°C
TL	Lead Temperature Solder	ing (10 sec.)				+ 260	°C
.1.3 Capacitar	nce: $T_A = 25^{\circ}C$, f = 1 MHz						
Symbol	Parameter	Condit	ion	Min	Тур	Мах	Units
C _{IN}	Input Pin Capacitance				5	7	pF
C _{IN1}	Clock Input Capacitance				8	10	pF
Cia	I/O Pin Capacitance				10	10	-
C _{IO}	1/OT III Oapacitance				10	12	pF
C _O	Output Pin Capacitance				6	8	p⊢ pF
	· · · · · · · · · · · · · · · · · · ·						· ·
	· · · · · · · · · · · · · · · · · · ·						· ·
	· · · · · · · · · · · · · · · · · · ·						· ·
	· · · · · · · · · · · · · · · · · · ·						· ·
	· · · · · · · · · · · · · · · · · · ·						· ·
	· · · · · · · · · · · · · · · · · · ·						· ·
	· · · · · · · · · · · · · · · · · · ·						· ·
	· · · · · · · · · · · · · · · · · · ·						· ·
	· · · · · · · · · · · · · · · · · · ·						· ·
	· · · · · · · · · · · · · · · · · · ·						· ·
	· · · · · · · · · · · · · · · · · · ·						· ·
	· · · · · · · · · · · · · · · · · · ·						· ·
	· · · · · · · · · · · · · · · · · · ·						· ·
	· · · · · · · · · · · · · · · · · · ·						· ·
	· · · · · · · · · · · · · · · · · · ·						· ·
	· · · · · · · · · · · · · · · · · · ·						· ·


Symbol	Parame	ter		Condition	Min		Тур	Мах	Units
VIH	Input High Voltag	е			2.0			V _{DD}	V
V _{IL}	Input Low Voltag	е			-0.5			0.8	V
ICC	V _{DD} Average Su	oply C	bly Current $V_{IL} = 0.5V$ $V_{IH} = 2.4V$ No Load						mA
Note 2: Abso Note 3: Unles	 based on test complying with lute Maximum Ratings are thoses so otherwise specified all voltag TERNAL BUS 	values	beyond whic	h damage to the device may		TS-910 tes	ter.		
Symbol	Parameter			Condition	N	lin	Max	Units	Notes
V _{OH}	Output High Voltage		$I_{OH} = -6 \text{ mA (Nch Quiet-drive) or}$ $I_{OH} = -24 \text{ mA (High-drive) on:}$ $SA12-1, DP1-0, SD15-0$ $I_{OH} = -12 \text{ mA on:}$ $SA0, SA25-13$ $[SA0 - min. 10 \text{ k}\Omega \text{ pullup}]$.4		v	Max Load on SA12-1 is 100 pF, and SD0-15 is 50 pF
V _{OL}	Output Low Voltage		$I_{OL} = 20 \text{ mA on:}$ SA12-1, DP1-0, SD15-0 $I_{OL} = 12 \text{ mA on:}$ SA0, SA25-13, BHE				0.4	v	
3.1.4.2 DM	A CONTROL UNIT								
Symbol	Parameter			Condition	Min	1	Max	Units	Notes
V _{OH}	Output High Volta	je	$I_{OH} = -6 \text{ mA on:}$ TC/\overline{EOP} $I_{OH} = -4 \text{ mA on:}$ $DACK4, DACK3, DACK2,$ $DACK0$		2.4			v	
V _{OL}	Output Low Voltag	e				0.4		V	
3.1.4.3 DR	AM CONTROL UNIT								
Symbol	Parameter		Co	ndition	Min	Max	Units	6	Notes
V _{OH}	Output High Voltage	IOH	= −24 m 50−1, CAS	(Nch Quiet-drive) or A (High-drive) on: H0-1, CASL0-1,	2.4		v	RAS1	oad on -0, <u>CASH</u> 1-0 ASL1-0 is
V _{OL} Output Low Voltage		RAS	$I_{OL} = 20 \text{ mA on:}$ RAS1-0, CASH1-0, CASL1-0, WE			0.4	V	Max I WE is 100 p	
V _{OL}	Output Low Voltage	I _{OL} RAS	= 20 mA o \$1–0, CAS			0.4	v	Max I WE is	oad on

Symbol	Parameter		Condition		Min	Max	Un	it	Notes
V _{OH}	Output High Volt	age	$I_{OH} = -6 \text{ mA on: } \overline{EACK}$ $I_{OH} = -4 \text{ mA on: } \overline{DRV}, \overline{E}$	REQ	2.4		v		
V _{OL}	Output Low Volta	age	$I_{OL} = 6 \text{ mA on: } \overline{\text{EACK}}$ $I_{OL} = 4 \text{ mA on: } \overline{\text{DRV}}, \overline{\text{ERE}}$			0.4	v		
3.1.4.5 HP	-SIR/UART	·		·					
Symbol	Parameter		Condition		Min	Ma	x U	nit	Notes
V _{OH}	Output High Voltag	ge l _O l _O	$_{H} = -100 \ \mu A$ $_{H} = -6 \ mA \ on: Tx, UCLK,$	Rx	V _{CC} - 0.2 2.4	2		v v	
V _{OL}	Output Low Voltag		_L = 100 μA _L = 6 mA on: Tx, UCLK, R	x		0.2		v v	
3.1.4.6 EX	TERNAL BUS CONTR	OL		•				•	
Symbol	Parameter		Condition			Min	Max	Unit	Note
V _{OH}	Output High Voltage	IOR, IOV RESET,	12 mA on: V, MEMR, MEMW, RESET, CS16, BHE min. 10 kΩ pullup]			2.4		v	
V _{OL}	Output Low Voltage		2mA on: V, MEMR, MEMW, RESET, CS16, BHE				0.4	v	
3.1.4.7 05	CILLATOR (CPUX1/C								
		LR)							
Symbol	Parameter	-	Condition		Min	Max	Unit	1	Notes
Symbol V _{OH}	Parameter Output High Voltag	r je	$I_{OH} = -12 \text{ mA on: S}$		Min 2.4		v		Notes
Symbol V _{OH} V _{OL}	Parameter Output High Voltag Output Low Voltag	r ge le				Max 0.4			
Symbol V _{OH}	Parameter Output High Voltag	r ge le	$I_{OH} = -12 \text{ mA on: S}$				v	05	SCX2 is
Symbol V _{OH} V _{OL}	Parameter Output High Voltag Output Low Voltag	r ge le Voltage	$I_{OH} = -12 \text{ mA on: S}$		2.4		v	05	SCX2 is
Symbol V _{OH} V _{OL} V _{IH}	Parameter Output High Voltag Output Low Voltag OSCX1 Input High	r ge le Voltage	$I_{OH} = -12 \text{ mA on: S}$		2.4	0.4	v v	05	SCX2 is
Symbol V _{OH} V _{OL} V _{IH}	Parameter Output High Voltag Output Low Voltag OSCX1 Input High OSCX2 Input Low	r ge le Voltage	$I_{OH} = -12 \text{ mA on: S}$		2.4	0.4	v v	OS	SCX2 is
Symbol V _{OH} V _{IH} V _{IL} 3.1.4.8 LC	Parameter Output High Voltag Output Low Voltag OSCX1 Input High OSCX2 Input Low DINTERFACE	r ge Voltage Voltage	$I_{OH} = -12 \text{ mA on: SY}$ $I_{OL} = 12 \text{ mA on: SYS}$	CLK	2.4 2.4	0.4	V V V	OS the	SCX2 is e output otes
Symbol V _{OH} V _{IL} V _{IL} 3.1.4.8 LC Symbol	Parameter Output High Voltag Output Low Voltag OSCX1 Input High OSCX2 Input Low DINTERFACE Parameter	r ge Voltage Voltage ge I _C ge I _C	$I_{OH} = -12 \text{ mA on: SYS}$ $I_{OL} = 12 \text{ mA on: SYS}$ $Condition$ $H = -2.6 \text{ mA on:}$	DLK	2.4 2.4 n - 0.8	0.4	V V V Unit	OS the	SCX2 is e output otes S Level

M	Parame	eter	Condition	Min	Max	Uni	t	Notes
V _{IH}	RTCX1 Input H	igh Voltage		2.0				RTCX2 is the output
VIL	RTCX1 Input Lo	ow Voltage			0.4	V		
V_{BAT}	Battery Voltage)		2.4		V		Lithium Battery
I _{BAT}	Battery Current		$V_{BAT} = 3.0 V$		3	μΑ		
3.1.4.10 P	PCMCIA (RIO8-15)							
Symbol	Parameter		Condition		Min	Max	Unit	Notes
V _{OH}	Output High Voltage	V_{CC} SE $I_{OH} = -$ DIR, ENA	12 mA on: EL, V _{PP} _SEL1, V _{PP} _SEL2 6 mA on: ABLE, REG, CD_RST, BUS / (RSV is a reserved usage p		2.4		V	Power Switch 1 Card at a 50 pF Loa
V _{OL}	Output Low Voltage	I _{OL} = 6 DIR, ENA GPI, RS\	EL, V _{PP} _SEL, V _{PP} _SEL2 mA on: ABLE, REG, CD_RST, BUS / (RSV is a reserved usage p			0.4	V	
Symbol	Parameter	-	Condition		Min	Мах	Unit	Notes
I _{CH}	High-Level Output (Note 4)		V _{OH} = 2.4V on: PD[7:0], SLIN, STB, AFI PE, INIT, ACK, SLCT ER	-	14		mA	
I _{CL}	Low-Level Output	Current	V _{OL} = 0.4V on: PD[7:0], <u>SLIN, STB, AFI</u> PE, <u>INIT, ACK</u> , SLCT ER	-	14		mA	
resistors sho	ould be used. The ECP I/Os had be used. The ECP I/Os had blate the NS486SXF power-rail	ave over-volta	PCR is 0 for the parallel port, are se ge protection against being backdri I voltages when the chip is powere	ven by higher e	ternal voltages	when the I/	Os are at 1	RI-STATE. The
Symbol			Condition	Min	Ma	x	Unit	Notes
V _{OH}	Output High Vo		$I_{OH} = -6 \text{ mA on: T0, T1}$			~	V	
011	Output Low Vol	-	$I_{OL} = 6 \text{ mA on: T0, T1}$		0.4	1	V	

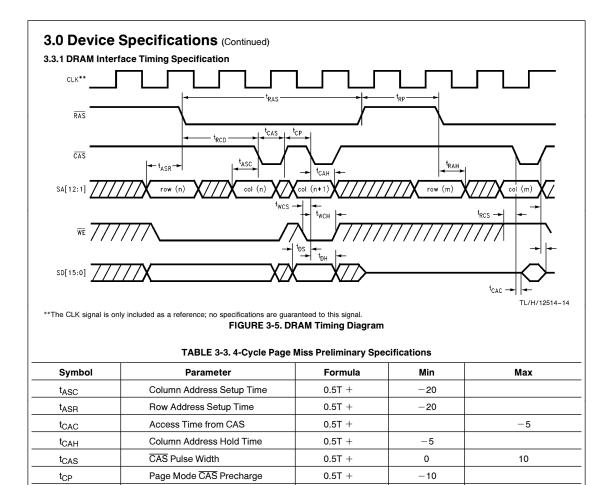
Symbol Parameter Condition Min Max Unit Notest V_{OH} Output High Voltage $I_{OH} = -12 \text{ mA on: }\overline{INTA}$ 2.4 V V V_{OL} Output Low Voltage $I_{OL} = 12 \text{ mA on: }\overline{INTA}$ 0.4 V V 3.1.4.15 3-WIRE I/O (AND ACCESS.BUS) Symbol Parameter Condition Min Max Unit Notest V _{OH} Output High Voltage $I_{OH} = -12 \text{ mA on: }\overline{SO}, SI, SCLK$ 2.4 V V	VOL Output Low Voltage $I_{OL} = 6 \text{ mA on: }\overline{CS}5-0$ 0.4 V 3.1.4.14 INTERUPT CONTROLLER Symbol Parameter Condition Min Max Unit Notes VOH Output High Voltage $I_{OH} = -12 \text{ mA on: }\overline{INTA}$ 2.4 V V VOL Output Low Voltage $I_{OL} = 12 \text{ mA on: }\overline{INTA}$ 0.4 V V 3.1.4.15 3-WIRE I/O (AND ACCESS.BUS) Symbol Parameter Condition Min Max Unit Notes VOH Output High Voltage $I_{OH} = -12 \text{ mA on: }\overline{INTA}$ Min Max Unit Notes Symbol Parameter Condition Min Max Unit Notes VOH Output High Voltage $I_{OH} = -12 \text{ mA on: }SO, SI, SCLK$ 2.4 V V	Symbol	Parameter	Condition	Ν	Min	Мах	Unit	Notes
Summa line Summa line Symbol Parameter Condition Min Max Unit Notes V_{OH} Output High Voltage $I_{OH} = -12 \text{ mA on: INTA}$ 2.4 V V V_{OL} Output Low Voltage $I_{OL} = 12 \text{ mA on: INTA}$ 0.4 V V St.14.15 3-WIRE I/O (AND ACCESS.BUS) Symbol Parameter Condition Min Max Unit Notes V _{OH} Output High Voltage $I_{OH} = -12 \text{ mA on: SO, SI, SCLK}$ 2.4 V V	Symbol Parameter Condition Min Max Unit Notes V _{OH} Output High Voltage $I_{OH} = -12 \text{ mA on: INTA}$ 2.4 V V V _{OL} Output Low Voltage $I_{OL} = 12 \text{ mA on: INTA}$ 0.4 V V 3.1.4.15 3-WIRE I/O (AND ACCESS.BUS) Symbol Parameter Condition Min Max Unit Notes V _{OH} Output High Voltage $I_{OH} = -12 \text{ mA on: SO, SI, SCLK} 2.4 V V $	V _{OH}	Output High Voltage	$I_{OH} = -6 \text{ mA on: } \overline{CS5-0}$	2	2.4		V	
Symbol Parameter Condition Min Max Unit Notest V_{OH} Output High Voltage $I_{OH} = -12 \text{ mA on: }\overline{INTA}$ 2.4 V V V_{OL} Output Low Voltage $I_{OL} = 12 \text{ mA on: }\overline{INTA}$ 0.4 V V 3.1.4.15 3-WIRE I/O (AND ACCESS.BUS) Symbol Parameter Condition Min Max Unit Notest V _{OH} Output High Voltage $I_{OH} = -12 \text{ mA on: }\overline{SO}, SI, SCLK$ 2.4 V V	Symbol Parameter Condition Min Max Unit Notest V_{OH} Output High Voltage $I_{OH} = -12$ mA on: \overline{INTA} 2.4 V V V_{OL} Output Low Voltage $I_{OL} = 12$ mA on: \overline{INTA} 0.4 V V 3.1.4.15 3-WIRE I/O (AND ACCESS.BUS) Symbol Parameter Condition Min Max Unit Notest V _{OH} Output High Voltage $I_{OH} = -12$ mA on: SO, SI, SCLK 2.4 V V	V _{OL}	Output Low Voltage	$I_{OL} = 6 \text{ mA on: } \overline{CS5-0}$			0.4	V	
V _{OH} Output High Voltage $I_{OH} = -12 \text{ mA on: }\overline{INTA}$ 2.4 V V _{OL} Output Low Voltage $I_{OL} = 12 \text{ mA on: }\overline{INTA}$ 0.4 V S.1.4.15 3-WIRE I/O (AND ACCESS.BUS) Symbol Parameter Condition Min Max Unit Note V _{OH} Output High Voltage $I_{OH} = -12 \text{ mA on: }SO, SI, SCLK$ 2.4 V V	V _{OH} Output High Voltage $I_{OH} = -12 \text{ mA on: } \overline{INTA}$ 2.4 V V _{OL} Output Low Voltage $I_{OL} = 12 \text{ mA on: } \overline{INTA}$ 0.4 V 3.1.4.15 3-WIRE I/O (AND ACCESS.BUS) Symbol Parameter Condition Min Max Unit Note V _{OH} Output High Voltage $I_{OH} = -12 \text{ mA on: } SO, SI, SCLK$ 2.4 V V	3.1.4.14 INTI	ERRUPT CONTROLLER						
VOL Output Low Voltage IOL = 12 mA on: INTA 0.4 V 3.1.4.15 3-WIRE I/O (AND ACCESS.BUS) Symbol Parameter Condition Min Max Unit Note VOH Output High Voltage IOH = -12 mA on: SO, SI, SCLK 2.4 V V	VOL Output Low Voltage IOL = 12 mA on: INTA 0.4 V 3.1.4.15 3-WIRE I/O (AND ACCESS.BUS) Symbol Parameter Condition Min Max Unit Note V _{OH} Output High Voltage I _{OH} = -12 mA on: SO, SI, SCLK 2.4 V V	Symbol	Parameter	Condition	Ν	<i>l</i> lin	Max	Unit	Notes
Symbol Parameter Condition Min Max Unit Note V _{OH} Output High Voltage I _{OH} = -12 mA on: SO, SI, SCLK 2.4 V	Symbol Parameter Condition Min Max Unit Note V _{OH} Output High Voltage I _{OH} = -12 mA on: SO, SI, SCLK 2.4 V V	V _{OH}	Output High Voltage	$I_{OH} = -12 \text{ mA on: } \overline{INTA}$	2	2.4		V	
SymbolParameterConditionMinMaxUnitNote V_{OH} Output High Voltage $I_{OH} = -12 \text{ mA on: SO, SI, SCLK}$ 2.4V	SymbolParameterConditionMinMaxUnitNote V_{OH} Output High Voltage $I_{OH} = -12 \text{ mA on: SO, SI, SCLK}$ 2.4V	V _{OL}	Output Low Voltage	$I_{OL} = 12 \text{ mA on: } \overline{INTA}$			0.4	V	
V _{OH} Output High Voltage I _{OH} = -12 mA on: SO, SI, SCLK 2.4 V	V _{OH} Output High Voltage I _{OH} = -12 mA on: SO, SI, SCLK 2.4 V	3.1.4.15 3-W	IRE I/O (AND ACCESS.BU	S)					
		Symbol	Parameter	Condition		Min	Max	Unit	Note
		V _{OH}	Output High Voltage		<	2.4		V	
			Output Low Voltage				0.4	V	

3.0 Device Specifications (Continued)

3.3 AC SWITCHING SPECIFICATIONS

The following pages list some of the preliminary AC Specifications for the NS486SXF. All parameters are listed in alphabetical order according to their Symbol.

The Tables consist of the following:


- Parameter A short description of the specification being documented.
- Symbol A quick reference between the timing diagram and the Table entries.
- Formula An equation, which in addition to the Minimum and Maximum Specifications can be used to determine the actual timing provided at any operating frequency.
- Min. Minimum Specification when added to the value produced by the formula.
- Max. Maximum Specification when added to the value produced by the formula.

How to calculate the actual specification at a given frequency:

In the formula column, one will see many formulae, which contain the variable T. The T represents one period (or one T-state) of the CPU Clock. So if the CPU is running at 25 MHz, T is equivalent to 40 ns; similarly if the CPU is running at 20 MHz, T is equivalent to 50 ns.

EXAMPLE: Calculate the minimum guaranteed Column Address Setup Time

As the frequency varies, so will many of the specifications. One should always calculate the specification based on the CPU's operating frequency.

0.5T +

0.5T +

2.5T +

0.5T +

1.5T +

0.5T +

1.5T +

0.5T +

0.5T +

-5

-20

0

-15

-10

-20

0

-20

-10

-5

-20

Write Data Hold Time

Write Data Setup Time

RAS Pulse Width

Read Data Valid Hold Time

Row Address Hold Time

 $\overline{\text{RAS}}$ to $\overline{\text{CAS}}$ Delay Time

RAS Precharge Time

Read Command Hold Time

Read Command Setup Time

Write Command Hold TIme

Write Command Setup Time

t_{DH}

t_{DS}

tOFF

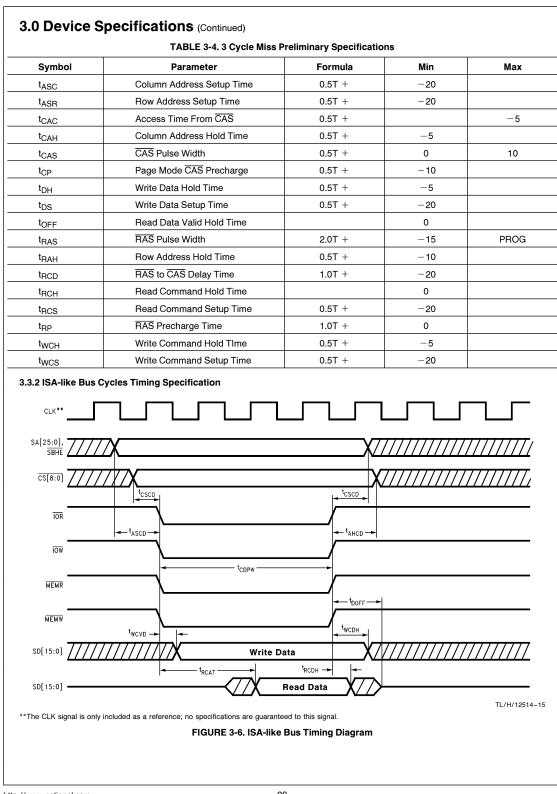
t_{RAS}

t_{RAH}

t_{RCD}

t_{RCH}

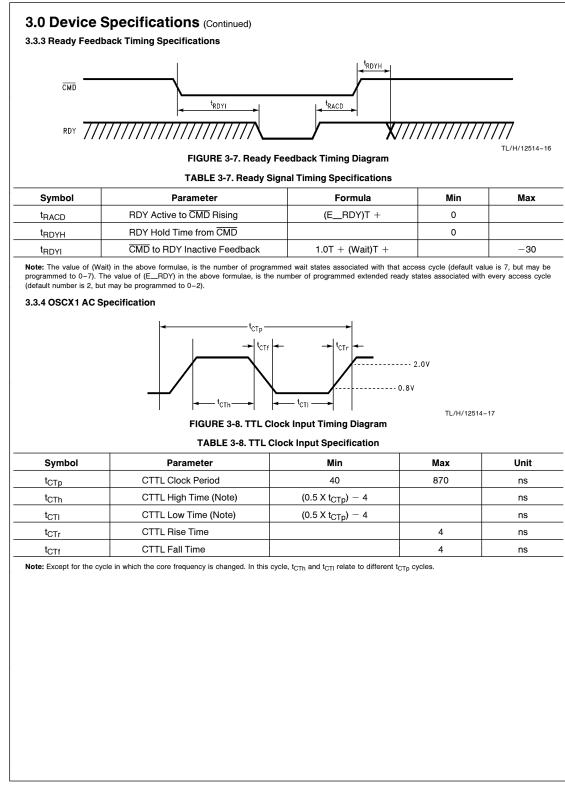
t_{RCS}

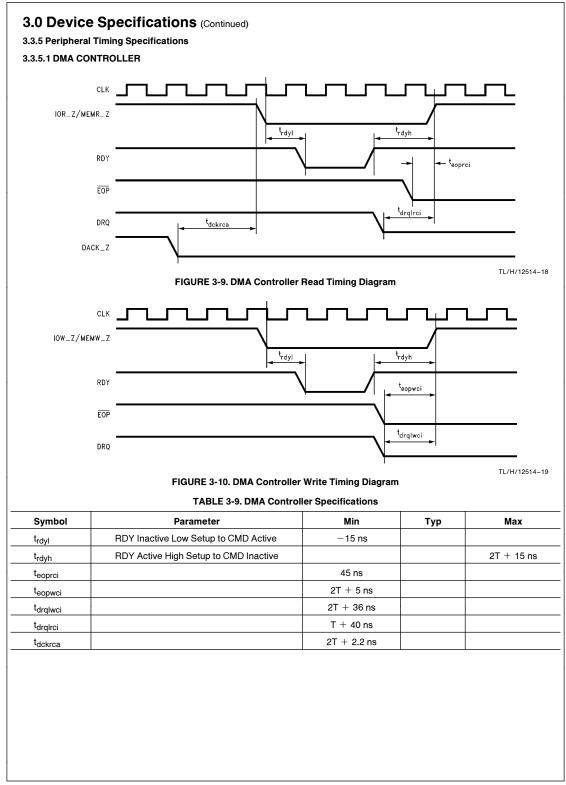

t_{RP}

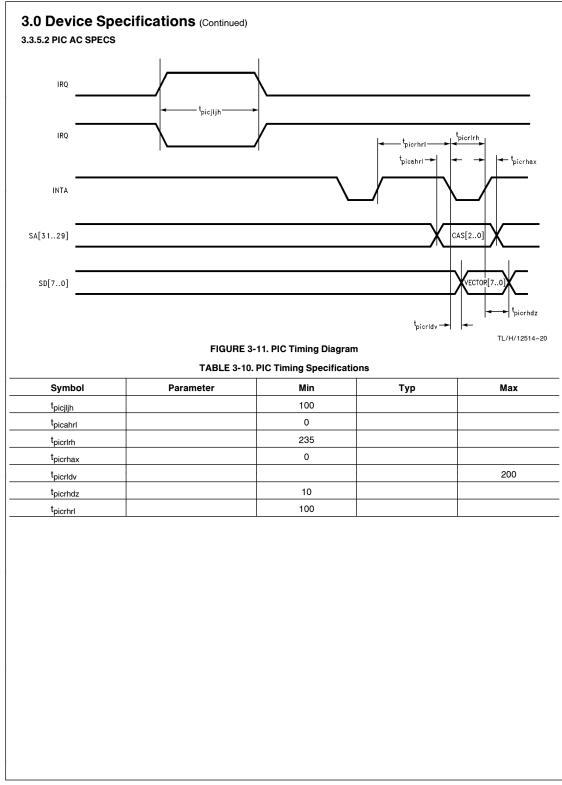
t_{WCH}

t_{WCS}

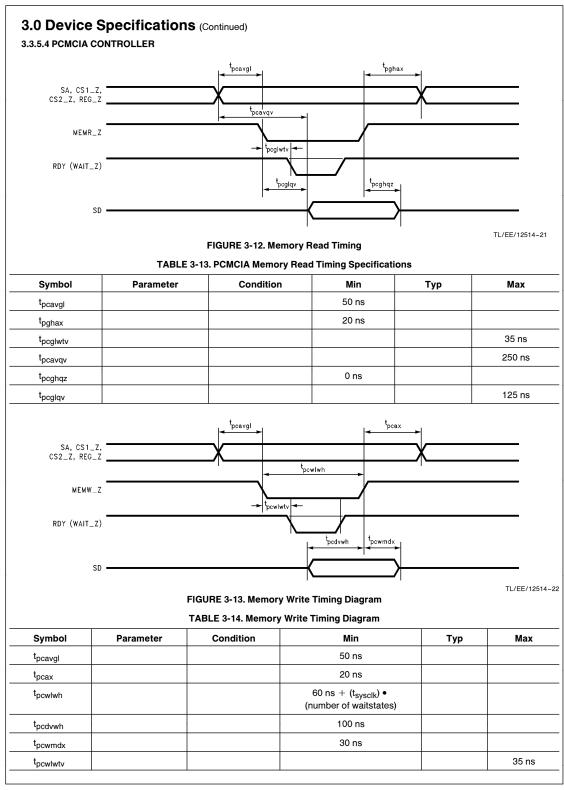
http://www.national.com

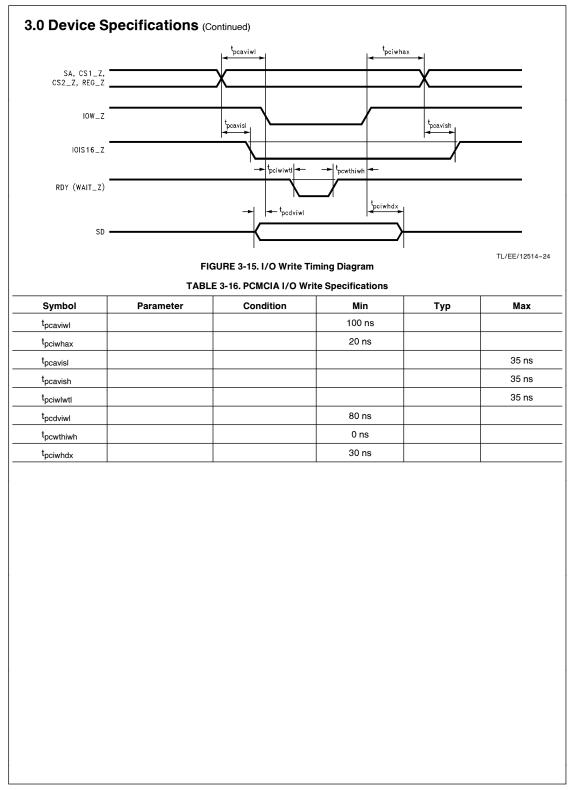

Programmable

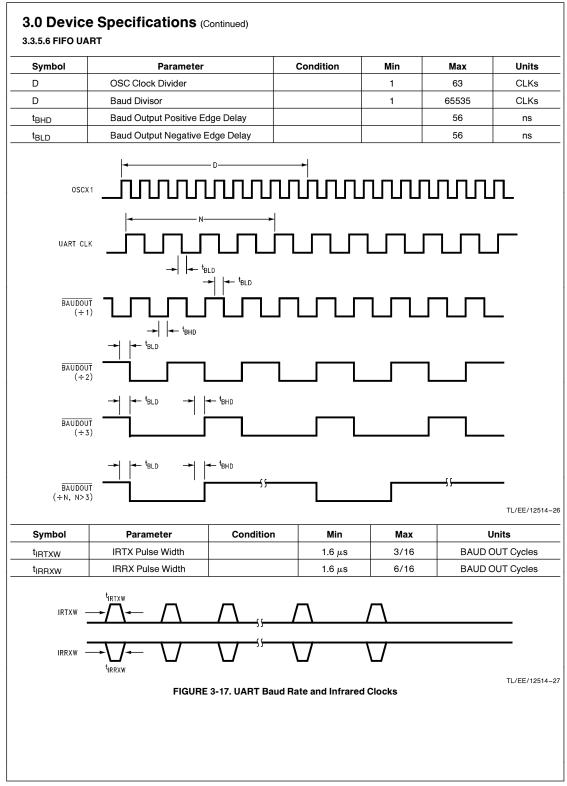


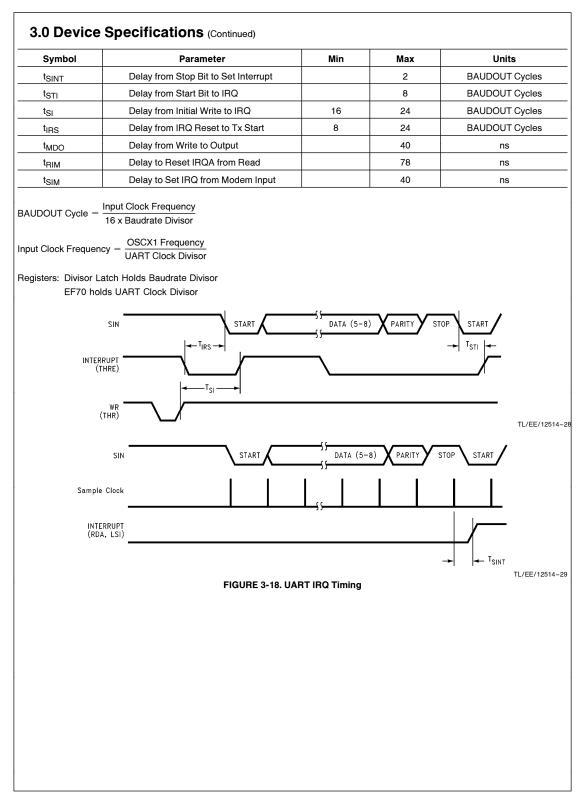

	TABLE 3-5. No Command Dela	ay ISA-like Bus Specification	s	
Symbol	Parameter	Formula	Min	Max
t _{AHCD}	Address Hold Time from CMD	1.0T +	-20	
tASCD	Address Setup Time to CMD	1.0T +	-20	
t _{CDPW}	Command Pulse Width	1.0T + (Wait)T +	-10	
t _{CHCD}	Chip Select Hold Time from CMD	1.0T +	-25	
tCSCD	Chip Select Setup Time to CMD	1.0T +	-40	
t _{DOFF}	Read Data TRI-STATE	1.0T +		-25
t _{RCAT}	Read CMD Data Access Time	1.0T + (Wait)T +		-30
t _{RCDH}	Read CMD Data Hold Time		0	
twcDH	Write CMD Data Hold Time	1.0T +	-25	
t _{WCVD}	Write CMD to Valid Data			5
t _{WCS} ote: The value of (V rogrammed to 0-7).	Write Command Setup Time Vait) in the above formulae, is the number of programme	0.5T +	-20	e is 7, but ma
ote: The value of (V	1	d wait states associated with that acc	ess cycle (default value	e is 7, but ma
ote: The value of (V	Vait) in the above formulae, is the number of programme	d wait states associated with that acc	ess cycle (default value	
ote: The value of (V ogrammed to 0-7).	Vait) in the above formulae, is the number of programmer TABLE 3-6. One Programmed Comma	d wait states associated with that acc and Delay ISA-like Bus Speci	sess cycle (default value	
ote: The value of (V rogrammed to 0-7). Symbol	Vait) in the above formulae, is the number of programmer TABLE 3-6. One Programmed Comma Parameter	d wait states associated with that acc and Delay ISA-like Bus Speci Formula	fications	
ote: The value of (V ogrammed to 0-7). Symbol t _{AHCD}	Vait) in the above formulae, is the number of programmer TABLE 3-6. One Programmed Comma Parameter Address Hold Time from CMD	d wait states associated with that acc and Delay ISA-like Bus Speci Formula 1.0T +	fications Min - 20	
ote: The value of (V cogrammed to 0-7). Symbol tAHCD tASCD	Vait) in the above formulae, is the number of programmed TABLE 3-6. One Programmed Comma Parameter Address Hold Time from CMD Address Setup Time to CMD	d wait states associated with that acc and Delay ISA-like Bus Speci Formula 1.0T + 2.0T +	fications Min -20 -20	
ote: The value of (V ogrammed to 0–7). Symbol tAHCD tASCD tCDPW	Vait) in the above formulae, is the number of programme TABLE 3-6. One Programmed Comma Parameter Address Hold Time from CMD Address Setup TIme to CMD Command Pulse Width	d wait states associated with that acc and Delay ISA-like Bus Speci Formula 1.0T + 2.0T + 1.0T + (Wait)T +	Min -20 -20 -10	
ote: The value of (V ogrammed to 0-7). Symbol tAHCD tASCD tCDPW tCHCD	Vait) in the above formulae, is the number of programmed TABLE 3-6. One Programmed Comma Parameter Address Hold Time from CMD Address Setup TIme to CMD Command Pulse Width Chip Select Hold Time from CMD	d wait states associated with that acc and Delay ISA-like Bus Speci Formula 1.0T + 2.0T + 1.0T + (Wait)T + 1.0T +	Min -20 -20 -20 -20 -20	Max
ote: The value of (V ogrammed to 0-7). Symbol tAHCD tASCD tCDPW tCHCD tCSCD	Vait) in the above formulae, is the number of programmed TABLE 3-6. One Programmed Comma Parameter Address Hold Time from CMD Address Setup TIme to CMD Command Pulse Width Chip Select Hold Time from CMD Chip Select Setup Time to CMD	d wait states associated with that acc and Delay ISA-like Bus Speci Formula 1.0T + 2.0T + 1.0T + (Wait)T + 1.0T + 2.0T + 2.0T +	Min -20 -20 -20 -20 -20	Max
ote: The value of (V cogrammed to 0-7). Symbol tAHCD tASCD tCDPW tCHCD tCSCD tDOFF	Vait) in the above formulae, is the number of programmed TABLE 3-6. One Programmed Comma Parameter Address Hold Time from CMD Address Setup TIme to CMD Command Pulse Width Chip Select Hold Time from CMD Chip Select Setup Time to CMD Read Data TRI-STATE	d wait states associated with that acc and Delay ISA-like Bus Speci Formula 1.0T + 2.0T + 1.0T + (Wait)T + 1.0T + 2.0T + 2.0T + 1.0T +	Min -20 -20 -20 -20 -20	Max 25
ote: The value of (V ogrammed to 0-7). Symbol tAHCD tASCD tCDPW tCHCD tCSCD tDOFF tRCAT	Vait) in the above formulae, is the number of programme TABLE 3-6. One Programmed Comma Parameter Address Hold Time from CMD Address Setup TIme to CMD Command Pulse Width Chip Select Hold Time from CMD Chip Select Setup Time to CMD Read Data TRI-STATE Read CMD Data Access TIme	d wait states associated with that acc and Delay ISA-like Bus Speci Formula 1.0T + 2.0T + 1.0T + (Wait)T + 1.0T + 2.0T + 2.0T + 1.0T +	Min -20 -10 -25 -40	Max 25
ote: The value of (V ogrammed to 0-7). Symbol tAHCD tASCD tCDPW tCHCD tCSCD tDOFF tRCAT tRCDH	Vait) in the above formulae, is the number of programmed TABLE 3-6. One Programmed Comma Parameter Address Hold Time from CMD Address Setup TIme to CMD Command Pulse Width Chip Select Hold Time from CMD Chip Select Setup Time to CMD Read Data TRI-STATE Read CMD Data Access TIme Read CMD Data Hold TIme	d wait states associated with that acc and Delay ISA-like Bus Speci Formula 1.0T + 2.0T + 1.0T + (Wait)T + 1.0T + 2.0T + 1.0T + 1.0T + 1.0T + 1.0T +	Min -20 -20 -20 -20 -10 -25 -40	● is 7, but may Max -25 -30

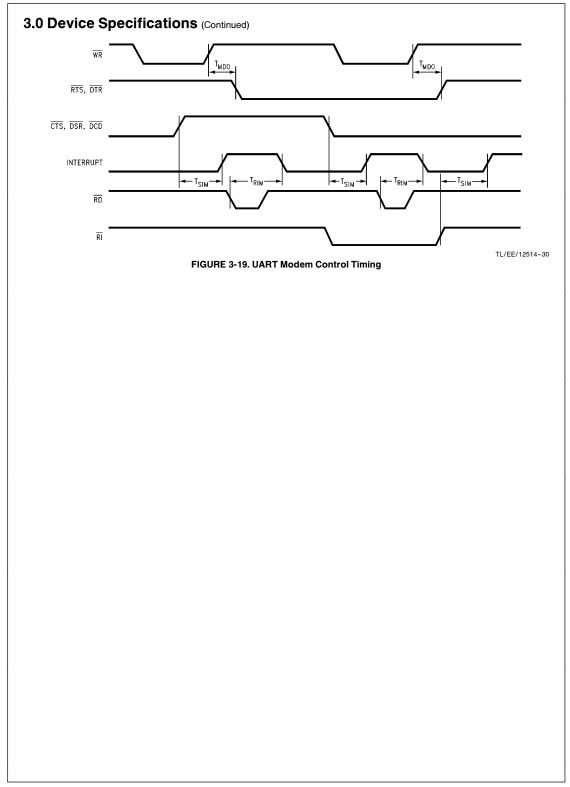
Note 1: The value of (Wait) in the above formulae, is the number of programmed wait states associated with that access cycle (default value is 7, but may be programmed to 0-7).


Note 2: For this case Valid Write Data Sets-up to the leading edge of the Command Strobe.




T _{ready} T _{setup} (host) T _{setup} (peripheral) T _{strobe} (host)	Host Output	From	Measured to	Value (min/max)	Compliance
Γ _{setup} (host) Γ _{setup} (peripheral)		Busy V _{IL}	Strobe V _{OH}	0 min	Compatible Hosts
r _{setup} (peripheral)	Host Output	Data Stable	Strobe V _{OH}	750 ns min	Compatible Hosts
strobe(host)	Peripheral Input	Data Stable	Strobe VIH	500 ns max*	Compatible Periphera
	Host Output	Strobe V _{OL}	Strobe > V _{OL}	750 ns min 500 μs max	Compatible Hosts
strobe (peripheral)	Peripheral Input	Strobe VIL	$\overline{\text{Strobe}} > V_{\text{IL}}$	500 ns max	Compatible Periphera
hold(host)	Host Output	Strobe V _{OH}	Data or AutoFd Change	750 ns min	Compatible Hosts
hold (peripheral)	Peripheral Input	Strobe V _{IL}	Data or AutoFd Change	500 ns max	Compatible Periphera
busy	Peripheral Output	Strobe VIL	Busy V _{OH}	500 ns max	Compliant Peripherals
reply	Peripheral Output	Strobe VIL	Ack V _{OH}	0 min	Compatible Periphera
ack	Peripheral Output	Ack V _{OL}	Ack V _{OL}	500 ns min 10 μs max	Compatible Periphera
-	Peripheral Output	Ack VOH	Busy V _{OH}	0 min**	Compliant Peripheral
nousy					
to-Ack timing variations. Note 2: V_{IL} is the low-leve V_{OL} is the low-leve V_{OH} is the high-lev V_{H} is the high-lev V_{IH} is the high-lev *The maximum value state time.	Host Output ation on the history of Centro vel voltage input vel voltage output vel voltage output vel voltage input ted for peripherals in this tab	ole are referenced to	Strobe V _{OH} lel and PC-Compatible Parallel Inter o the peripheral. For example, the per signal transistions. The zero minimi	ripheral cannot requi	re more than 500 ns data setu
next Note 1: For more informat to-Ack timing variations. Note 2: V_{IL} is the low-leve V_{OL} is the low-leve V_{OH} is the high-lev V_{IH} is the high-lev *The maximum value state time.	Host Output ation on the history of Centro vel voltage input vel voltage output evel voltage output vel voltage input ted for peripherals in this tab	onics Standard Paral ble are referenced to	lel and PC-Compatible Parallel Inter	faces, see annex Ca pripheral cannot requi	and in particular C.6.2 for Busy re more than 500 ns data setu
Note 1: For more informat to-Ack timing variations. Note 2: V _{IL} is the low-leve V _{OL} is the low-leve V _{OH} is the high-lev *The maximum value state time.	Host Output ation on the history of Centro vel voltage input vel voltage output evel voltage output vel voltage input ted for peripherals in this tab	onics Standard Paral ble are referenced to	lel and PC-Compatible Parallel Inter the peripheral. For example, the peripheral for example, the peripheral for example, the peripheral states and the peripheral states and the peripheral states are as a state of the peripheral states are as a s	faces, see annex Ca pripheral cannot requi	and in particular C.6.2 for Busy re more than 500 ns data setu
next Note 1: For more informat to-Ack timing variations. Note 2: V _{IL} is the low-leve V _{OL} is the low-leve V _{OH} is the high-lev V _H is the high-lev V _H is the high-lev *The maximum value state time.	Host Output ation on the history of Centro vel voltage input vel voltage output evel voltage output vel voltage input ted for peripherals in this tab	phics Standard Paral ple are referenced to the phave overlapping Parallel Port IEE Paramete	lel and PC-Compatible Parallel Inter the peripheral. For example, the peripheral for example, the peripheral for example, the peripheral states and the peripheral states and the peripheral states are as a state of the peripheral states are as a s	faces, see annex Ca pripheral cannot requi im value cannot be g "iming Values	re more than 500 ns data setu uaranteed.
Note 1: For more informat to-Ack timing variations. Note 2: V _{IL} is the low-leve V _{OL} is the low-leve V _{OH} is the high-lev V _{IH} is the high-lev *The maximum value state time. **Recognize that compler Symbol	Host Output ation on the history of Centro vel voltage input vel voltage output evel voltage output vel voltage input ted for peripherals in this tab ormentary signal changes ma TABLE 3-12. F	pole are referenced to ble are referenced to bly have overlapping Parallel Port IEE Paramete the Time	lel and PC-Compatible Parallel Inter the peripheral. For example, the peripheral for example, the peripheral for example, the peripheral states and the peripheral states and the peripheral states are as a state of the peripheral states are as a s	faces, see annex Ca pripheral cannot requi im value cannot be g fiming Values Min	re more than 500 ns data setu uaranteed.
Note 1: For more informat to-Ack timing variations. Note 2: V _{IL} is the low-leve V _{OL} is the low-leve V _{OL} is the high-lev V _{IH} is the high-lev *The maximum value state time. **Recognize that compler Symbol T _H	Host Output tion on the history of Centro vel voltage input vel voltage output evel voltage output vel voltage input ted for peripherals in this tab mentary signal changes ma TABLE 3-12. F Host Respons	pole are referenced to notes Standard Paral pole are referenced to parallel Port IEE Paramete paramete se Time nse Time	lel and PC-Compatible Parallel Inter the peripheral. For example, the peripheral for example, the peripheral for example, the peripheral states and the peripheral states and the peripheral states are as a state of the peripheral states are as a s	faces, see annex Ca pripheral cannot requi im value cannot be g Timing Values <u>Min</u> 0	re more than 500 ns data setu uaranteed. 1.0s
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Host Output tion on the history of Centro vel voltage input vel voltage output vel voltage output ted for peripherals in this tab ormentary signal changes ma TABLE 3-12. P Host Respons Infinite Respons Peripheral Res	pole are referenced to notes Standard Paral pole are referenced to parallel Port IEE Paramete paramete se Time nse Time	lel and PC-Compatible Parallel Inter the peripheral. For example, the peripheral for example, the peripheral for example, the peripheral statement of the service of the se	faces, see annex Ca pripheral cannot requi im value cannot be g Timing Values 0 0	re more than 500 ns data setu uaranteed. 1.0s Infinite
next Note 1: For more informat to-Ack timing variations. Note 2: V _{IL} is the low-leve V _{OL} is the low-leve V _{OH} is the high-lev V _H is the high-lev *The maximum value state time. **Recognize that compler Symbol T _H T _∞ T _L	Host Output tion on the history of Centro vel voltage input vel voltage output vel voltage output vel voltage input ted for peripherals in this tab mentary signal changes ma TABLE 3-12. F Host Respons Infinite Respons Peripheral Res	phics Standard Paral phics Standard Paral ple are referenced to the overlapping Parallel Port IEE Paramete Paramete nse Time nse Time sponse Time	lel and PC-Compatible Parallel Inter o the peripheral. For example, the perignal transistions. The zero minimu EE 1284 Mode Handshake T er	faces, see annex Ca pripheral cannot requi im value cannot be g ming Values Min 0 0 0	re more than 500 ns data setu uaranteed. 1.0s Infinite
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Host Output tion on the history of Centro vel voltage input vel voltage output evel voltage output ted for peripherals in this tab mentary signal changes ma TABLE 3-12. F Host Respons Infinite Respons Peripheral Res Peripheral Res Host Recover	phics Standard Paral phics Standard Paral ple are referenced to arallel Port IEE Paramete se Time nse Time sponse Time sponse Time (EC	lel and PC-Compatible Parallel Inter o the peripheral. For example, the peripheral for example, the peripheral for example, the peripheral for transistions. The zero minimum signal transistions. The zero minimum EE 1284 Mode Handshake 1 er	faces, see annex Ca pripheral cannot requi im value cannot be g Timing Values Min 0 0 0 0	re more than 500 ns data setu uaranteed. 1.0s Infinite
Note 1: For more informations. Note 2: V _{IL} is the low-leve V _{OL} is the low-leve V _{OL} is the low-leve V _{OL} is the high-lev V _{OH} is the high-lev *The maximum value state time. **Recognize that compler Symbol T_H T_{∞} T_L T_R T_S	Host Output tion on the history of Centro vel voltage input vel voltage output evel voltage output ted for peripherals in this tab omentary signal changes ma TABLE 3-12. F Host Respons Infinite Respons Peripheral Res Peripheral Res Host Recover Minimum Setu	onics Standard Paral onics Standard Paral onics Standard Paral onics Standard Paral parallel Port IEE Paramete Paramete paramete se Time nse Time sponse Time sponse Time sponse Time (ECP Mo up or Pulse Width	lel and PC-Compatible Parallel Inter o the peripheral. For example, the peripheral for example, the peripheral for example, the peripheral for transistions. The zero minimum signal transistions. The zero minimum EE 1284 Mode Handshake 1 er	faces, see annex Ca pripheral cannot requi im value cannot be g Timing Values 0 0 0 0 0 35 ms	re more than 500 ns data setu uaranteed. 1.0s Infinite
next Note 1: For more informations. Note 2: VIL is the low-leve VoL is the low-leve VoL is the low-leve VoH is the high-leve VH is the high-leve VH is the high-leve *The maximum value state time. **Recognize that compler Symbol TH T $_{\infty}$ TL TR TS TP	Host Output ation on the history of Centro vel voltage input vel voltage output evel voltage output ted for peripherals in this tat mentary signal changes ma TABLE 3-12. F Host Respons Infinite Respon Peripheral Res Peripheral Res Host Recoven Minimum Setu Minimum Data	onics Standard Paral onics Standard Paral onics Standard Paral onics Standard Paral parallel Port IEE Paramete Paramete paramete se Time nse Time sponse Time sponse Time sponse Time (ECP Mo up or Pulse Width	lel and PC-Compatible Parallel Inter o the peripheral. For example, the peripheral for example, the peripheral for example, the peripheral for the service of the service o	ripheral cannot requi m value cannot be g ming Values Min 0 0 0 0 35 ms 0.5 μs	re more than 500 ns data setu uaranteed. 1.0s Infinite
next Note 1: For more informat to-Ack timing variations. Note 2: V _{IL} is the low-leve V _{OL} is the low-leve V _{OH} is the high-lev V _H is the high-lev *The maximum value state time. **Recognize that compler Symbol T _H T _C T _L T _R T _S T _P T _D	Host Output tion on the history of Centro rel voltage input vel voltage output evel voltage output ted for peripherals in this tab mentary signal changes ma TABLE 3-12. F Host Respons Infinite Respons Peripheral Res Peripheral Res Host Recoven Minimum Setu Minimum Data Short Respons	ponics Standard Paral ponics Standard Paral ponics Standard Paral ple are referenced to parallel Port IEE Paramete Paramete paramete se Time nse Time sponse Time sponse Time sponse Time (ECP Mo up or Pulse Width a Setup Time (EC	Iel and PC-Compatible Parallel Inter of the peripheral. For example, the peripheral For example, the peripheral for example, the peripheral transistions. The zero minimute E 1284 Mode Handshake Ter E 1284 Mode Handshake Ter CP Mode Only) de Only) n CP/EPP Modes Only) ode Only)	ripheral cannot requi m value cannot be g ming Values Min 0 0 0 0 35 ms 0.5 μs 0	re more than 500 ns data setu uaranteed. Max 1.0s Infinite 35 ms




SA, CS1_Z, CS2_Z, REG_Z IOR_Z IOIS16_Z RDY (WAIT_Z) SD		tpcavisl tpcavisl tpciglwtl tpciglg	sigligh	t _{poavish}	
IOR_Z IOIS16_Z RDY (WAIT_Z) SD				t _{pcavish}	
IOIS16_Z RDY (WAIT_Z)				t _{poavish}	
RDY (WAIT_Z)			tpcighqx	^v pcavish	
RDY (WAIT_Z)			tpcighqx		
SD —			tpcighqx		
SD —		▲ ^t poiglq	, tpcighqx		
Symbol					
Symbol			i pewinge		TL/EE/125
Symbol		FIGURE 3-14. I/O Re			
	Parameter	BLE 3-15. PCMCIA I/O Re Condition	Min	Тур	Мах
t _{pcavigl}	Falameter	Condition	100 ns	Typ	Wax
tpcighax			20 ns		
tpcigligh			180 ns		
t _{pcavisl}					35 ns
t _{pcavish}					35 ns
tpciglwtl					35 ns
t _{pciglqv}					120 ns
tpcighqx			0 ns		
tpcwthqv					35 ns

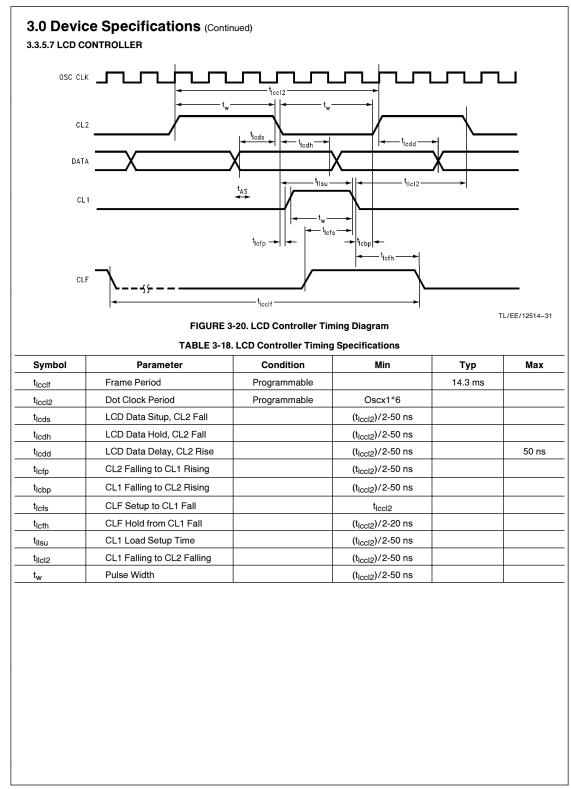
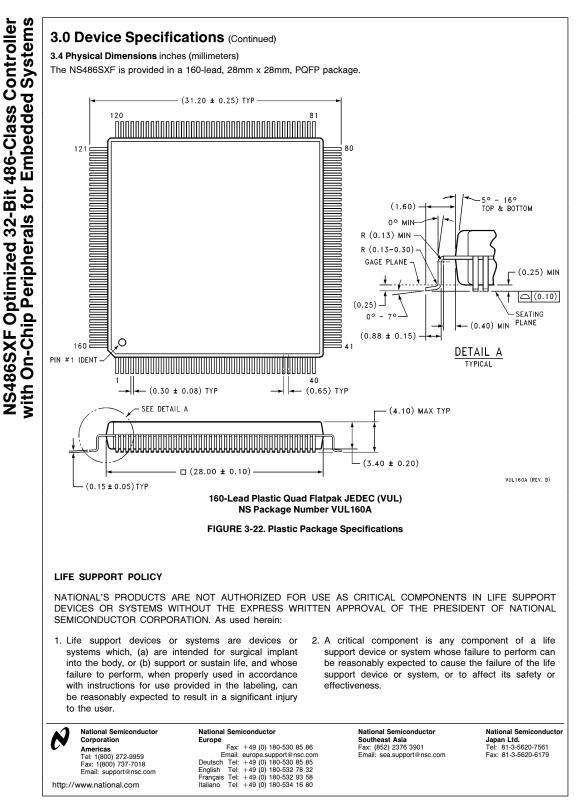



	FIGURE 3-16. Access.bus Timing	t _{low}	TL/EE	/12514–25
Cumbal	TABLE 3-17. Access.Bus Timing Sp		D4i-	Max
Symbol	Parameter SCLK Clock Frequency	Formula	Min	Max 100 kH
f _{sclk} t _{buf}	Bus Free Time between STOP and START Condition		4.7 μs	
t _{low}	Low Period of the SCLK Clock	1	4.7 μs	
t _{high}	High Period of the SCLK Clock		4.0 μs	
t _{dhold}	Data Hold Time		250	
t _{dset}	Data Setup Time		250	
t _{su:sto}	Setup Time for STOP Condition		4.0 μs	
t _{su:sta}	Hold Time for START Condition		4.7 μs	



National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications