
Metamor

PLD Programming Using VHDL

User’s Guide

Version 2.4

Copyright 1992 - 1996, Metamor, Inc. All rights reserved

Table of Contents - Metamor User’s Guide
1 - About This Guide
Notation Conventions .. 1 - 1
Copyright Notice .. 1 - 2

2 - PLD Programming using VHDL
VHDL for PLD Designers ... 2 - 2
Design I/O .. 2 - 3
Combinational Logic .. 2 - 4
Registers and Tri-state .. 2 - 6
State Machines .. 2 - 9
Hierarchy ... 2 - 11
Types ... 2 - 12
Compiling ... 2 - 14
Debugging ... 2 - 16

System level simulation ... 2 - 16
Hierarchy ... 2 - 16
Attribute 'critical' .. 2 - 16
Verbose option .. 2 - 17
Report and assert statements ... 2 - 18

Downstream Tools ... 2 - 19
How to be Happy ... 2 - 20

3 - Introduction to VHDL
VHDL '93 ... 3 - 2
Structure of a VHDL Design Description 3 - 3
Structural VHDL ... 3 - 6
Data Flow VHDL .. 3 - 8
Behavioral VHDL ... 3 - 9
VHDL Types .. 3 - 11
My model simulates, but.... .. 3 - 13

Some other issues .. 3 - 13

4 - Programming Combinational Logic
Combinational Logic .. 4 - 2
Logical Operators .. 4 - 3
Relational Operators .. 4 - 5
Arithmetic Operators .. 4 - 7
Control Statements .. 4 - 9
Table of Contents - Metamor User’s Guide ii

Subprograms and Loops ... 4 - 13
Shift and Rotate Operators .. 4 - 17
Tristates ... 4 - 18

5 - Programming Sequential Logic
Sequential Logic .. 5 - 2

Conditional Specification ... 5 - 3
Wait Statement .. 5 - 4
Guarded Blocks ... 5 - 4

Latches .. 5 - 5
Flip-Flops ... 5 - 6
Gated Clocks and Clock Enable .. 5 - 8
Synchronous Set/Reset ... 5 - 9
Asynchronous Set or Reset ... 5 - 10
Asynchronous Set and Reset .. 5 - 11
Asynchronous Load ... 5 - 12
Register Inference Rules ... 5 - 13

Reset/Preset ... 5 - 13
Clock ... 5 - 13
Clock Enable ... 5 - 13
Inference priority ... 5 - 14

6 - Programming Finite State Machines
Introduction .. 6 - 2
Feedback Mechanisms .. 6 - 3

Feedback on signals ... 6 - 3
Feedback on variables .. 6 - 5

Moore Machine .. 6 - 7
Output registers ... 6 - 9
Input Registers .. 6 - 10

Mealy Machine .. 6 - 11

7 - Some Common Examples in VHDL
Seven-Segment Decoder .. 7 - 2
Craps Game .. 7 - 3
Blackjack ... 7 - 5
Traffic Light Controller ... 7 - 7
A Simple ALU .. 7 - 10
Hello .. 7 - 12
Fifo ... 7 - 16

8 - Synthesis of VHDL Types
Table of Contents - Metamor User’s Guide iii

Introduction .. 8 - 2
Enumerated Types .. 8 - 3

Don't Cares ... 8 - 3
User Defined Encoding ... 8 - 4
Std_logic_ll64 .. 8 - 5
One Hot Encoding ... 8 - 6

Numeric Types .. 8 - 8
Arrays and Records ... 8 - 9

9 - Managing Large Designs
Using Hierarchy ... 9 - 2

Controlling the logic optimize granularity 9 - 2
Hierarchical compile .. 9 - 3
Silicon specific components .. 9 - 4

Blocks .. 9 - 6
Direct Instantiation ... 9 - 7
Components and Configurations ... 9 - 8
Package Declarations and Use Clauses 9 - 10
VHDL Design Libraries .. 9 - 11

Direct association .. 9 - 11
Alias association ... 9 - 12

Metamor VHDL Libraries ... 9 - 13
std.standard .. 9 - 14
ieee.std_logic_1164 .. 9 - 14
ieee.numeric_bit .. 9 - 14
ieee.numeric_std ... 9 - 14
metamor.attributes .. 9 - 15
metamor.array_arith .. 9 - 15
vlbit.pack1076 ... 9 - 15
ieee.std_logic_arith
ieee.std_logic_unsigned .. 9 - 16
xblox.macros ... 9 - 16
lpm.macros200
lpm.macros201 .. 9 - 17

Hierarchical Compilation .. 9 - 18

10 - Logic and Metalogic
Introduction .. 10 - 2
Logic expressions .. 10 - 3
Metalogic expression ... 10 - 3
Metalogic values .. 10 - 7
 iv Table of Contents - Metamor User’s Guide

11 - XBLOX and LPM
Macrocells ... 11 - 2
LPM and XBLOX ... 11 - 4
Macrocell Instantiation ... 11 - 4
Combinatorial Macrocell Inference .. 11 - 5
Sequential Macrocell Inference ... 11 - 6

12 - Synthesis Attributes
Predefined attributes ... 12 - 2
User defined attributes .. 12 - 3
Attribute 'critical' ... 12 - 4
Attribute 'enum_encoding' ... 12 - 5
Attribute part_name ... 12 - 5
Attribute pinnum .. 12 - 6
Attribute property ... 12 - 7
Atribute Xilinx_BUFG ... 12 - 9
Atribute Xilinx_GSR ... 12 - 10
Attribute foreign ... 12 - 11
Attribute array_to_numeric .. 12 - 13
Attribute macrocell ... 12 - 15
Attribute Ungroup .. 12 - 16
Attribute Inhibit_buf .. 12 - 18
Attributes for Downstream Tools ... 12 - 19

13 - Synthesis Coding Issues
Introduction .. 13 - 2
Test for High Impedance ... 13 - 3
Long Signal Paths - Nested ifs .. 13 - 3
Long Signal Paths - loops .. 13 - 5
Simulation Optimized Code ... 13 - 6
Port Mode inout or buffer ... 13 - 8
Using Simulation Libraries ... 13 - 8
Type Conversion Functions ... 13 - 9
Depending on Initial Value ... 13 - 10
Assign to Array Index .. 13 - 12
Don't Care .. 13 - 13
Unintended Latches ... 13 - 14
Unintended Combinational Feedback 13 - 15
Observe the Register Inference Conventions 13 - 16
Table of Contents - Metamor User’s Guide v

A - VHDL Quick Reference
Lexical Elements ...A - 2
Reserved Words ..A - 3
Declarations and Names ...A - 4

Declarations ..A - 4
Names ...A - 4

Sequential Statements ..A - 5
Subprograms ...A - 7
Concurrent Statements ..A - 8
Library Units ..A - 11
Attributes ..A - 12
VHDL constructs ..A - 13
Unsupported Constructs ..A - 15
Ignored Constructs ..A - 15
Constrained Constructs ...A - 16

Constrained statement ..A - 16
Constrained expressions ...A - 16

B - PREP Examples
PREP 1 ..B - 2
PREP 2 ..B - 5
PREP 3 ..B - 7
PREP 4: Using enum_encoding ..B - 10
PREP 4: Using std_logic_1164 ...B - 15
PREP 5 ..B - 21
PREP 6 ..B - 23
PREP 7 ..B - 24
PREP 9 ..B - 25

C - Error Message Index

D - Compile options
All formats: ... D - 1
Cupl only: ... D - 3
Open Abel 2 only: ... D - 4
XNF only (for XactStep 6.0) ... D - 5
EDIF only ... D - 5
 vi Table of Contents - Metamor User’s Guide

E - VHDL Information Resources
VHDL International Users Forum (VIUF) Home PageE - 1
IEEE Documents ...E - 1
Books on VHDL in English ..E - 1
Books on VHDL in French ...E - 4
Books on VHDL in German ...E - 4
Books on VHDL in Japanese ..E - 4

Index - Metamor User’s Guide
Table of Contents - Metamor User’s Guide vii

 viii Table of Contents - Metamor User’s Guide

1 - About This Guide

This guide is intended for the engineer who is familiar with the principles of
hardware design, but has little experience in designing with a language-based
synthesis system. It describes the general concepts of synthesis, the general
organization and usage of VHDL, and provides specific information on how the
Metamor tool is used in this environment. It does not attempt to present the VHDL
language in depth, but does provide an example-based summary of VHDL syntax
that serves as a helpful reference for any user.

Notation Conventions

VHDL is not case-sensitive, so a design description can contain
UPPERCASE or lowercase text. In this guide, examples are all lowercase. VHDL
reserved words in both the text and the examples are bold, for example :

entity counter is
port (clk, reset: in bit; sum: out integer);

end counter ;

bold In examples, bold type indicates a reserved word. In the
example above, entity, is, port, in , out , and end are all
reserved words.

plain-text Regular plain type represents a user-definable identifier
or another VHDL construct. Reserved words cannot be
used as user-defined identifiers. In the example above,
the name "sum" is a user-defined identifier.
1 - About This Guide 1 - 1

Copyright Notice

Metamor software and its documentation are produced by Metamor, Inc..
Metamor software includes software developed by the Department of Electrical
Engineering and Computer Sciences, University of California at Berkeley.
Unauthorized copying, duplication, or other reproduction of the contents is
prohibited without the written consent of Metamor, Inc..

The information in this guide is subject to change without notice and does
not represent a commitment on the part of Metamor. The program described in this
guide is furnished under a license agreement and may not be used or copied
except in accordance with the terms of the agreement.

Metamor is a trademark of Metamor, Inc.

ABEL is a registered trademark of Data I/O Corporation.

MS-DOS, Windows and Windows95
are registered trademarks of Microsoft Corporation.

Copyright 1992 - 1996, Metamor, Inc., all rights reserved.
1 - 2 1 - About This Guide

2 - PLD Programming using VHDL

VHDL for PLD Designers

Design I/O

Combinational Logic

Registers and Tri-state

State Machines

Hierarchy

Compiling

Types

Debugging

Downstream Tools

How to be Happy
2 - PLD Programming using VHDL 2 - 1

VHDL for PLD Designers

VHDL is a large language. It is an impractical task to learn the whole
language before trying to use it. Fortunately, it is not necessary to learn the whole
language in order to use VHDL (the same is true of any computer or even human
language). This section presents a view of VHDL that should be familiar to users
of classic PLD programming languages.

Just as in PLD programming, we can describe the design I/O,
combinational logic, sequential logic, and state machines. Initially we will only
consider signals of type std_logic and std_logic_vector (a 1 dimensional array of
std_logic). These types allow us to do logical operations (and, or...) and relational
operations (equal, greater than,....).

See Also

• for a summary of the syntax of VHDL:

A - VHDL Quick Reference

• for more detail on the contents of this section:

4 - Programming Combinational Logic

5 - Programming Sequential Logic

6 - Programming Finite State Machines

• for some VHDL examples:

7 - Some Common Examples in VHDL
2 - 2 2 - PLD Programming using VHDL

Design I/O

Design I/O is described using a port statement. Ports may have mode IN,
OUT , INOUT or BUFFER. The mode describes the direction of data flow. The
default mode of a port is IN. Values may be assigned to ports of mode OUT and
INOUT or BUFFER, and read from ports mode IN and INOUT or BUFFER. Port
statements occur within an entity. For example :

entity ent1 is

port (a0,a1,b0,b1 : in std_logic; c0, c1 : out std_logic) ;

end ent1;

entity ent2 is

port (a,b : std_logic_vector(0 to 5);
sel : std_logic; c : out std_logic_vector(0 to 5)) ;

end ent2;

INOUT and BUFFER are used to specify routing on ports. An INOUT port
specifies bi-directional dataflow, and a BUFFER port is a unidirectional OUT that
you can read from. INOUT describes a signal path that runs through a pin and back
into the design: "pin feedback" in PLDs or an IO block in some FPGAs. BUFFER
describes a signal path that drives an output buffer to a pin and internal logic:
"register feedback" in PLDs or internal routing in FPGAs. INOUT is required to
specify pin feedback. Register feedback may be specified using BUFFER or using
OUT and an extra signal.

It is also a convention to use another standard, IEEE 1164. To use this
standard, we write the following two lines before each entity (or package) to provide
visibility to the definition of 'std_logic'. This is not required, it's just a convention.

•library ieee;

•use ieee.std_logic_1164.all ;

We will use these I/O definitions in Combinational Logic.
2 - PLD Programming using VHDL 2 - 3

Combinational Logic

Combinational logic may be described using concurrent statements, just
like equations in PLD languages. Concurrent statements occur within an
architecture. Note that an architecture references an entity.

The equations assign values to signals. Ports are examples of signals; all
signals must be declared before they are used. We could describe a two bit adder
using boolean equations :

architecture adder of ent1 is

signal d, e : std_logic;

begin

d <= b0 and a0;

e <= b1 xor a1;

c0 <= (b0 and not a0) or (not b0 and a0);

c1 <= (e and not d) or (not e and d);

end adder;

We can also perform conditional assignment. Here conditional
assignment is used to build a mux:

architecture mux1 of ent2 is

begin

c <= a when sel = '1' else b;

end mux1;

Note that omitting the 'else b' above would specify a latch:

c <= a when sel = '1';

because this would then have the same meaning as:

c <= a when sel = '1' else c;

The meaning is different to some PLD languages, which may assume a
default else to be 'zero', or perhaps 'dont care'. VHDL'93 is also different from
VHDL'87 which required the else to be present.
2 - 4 2 - PLD Programming using VHDL

Generate is a concurrent looping structure. This construct allows another
possible implementation of the mux. This example also illustrates selecting
elements of arrays:

architecture mux2 of ent2 is

begin

for i in 0 to 5 generate

c(i) <= (a(i) and sel) or (b(i) and not sel);

end generate ;

end mux2;

Further detail on combinational logic is described in 4 - Programming
Combinational Logic. Also look at the Seven-Segment Decoder which uses
another concurrent statement: the selected signal assignment.
2 - PLD Programming using VHDL 2 - 5

Registers and Tri-state

VHDL does not contain a register assignment operator; registers are
inferred from usage. Therefore, a D latch could be described :

q <= d when clk = '1';

and a D flip flop :

q <= d when clk = '1' and clk'event

and a D flip flop with asynchronous reset:

q <= '0' when rst = '1' else d when clk = '1' and clk'event

In practice, the clk'event expression is a little cumbersome. We can
improve on this by using the rising_edge () function from std_logic_1164. In the
following example we add output registers to our combinational adder:

library ieee;
use ieee.std_logic_1164.all ;
entity counter is

port (a0,a1,b0,b1,clk : in std_logic; c0, c1 : out std_logic) ;
end counter;

architecture adder_ff of counter is
signal d, e, f, g : std_logic;

begin
 d <= b0 and a0;
 e <= b1 xor a1;
 f <= (b0 and not a0) or (not b0 and a0);
 g <= (e and not d) or (not e and d);

 c0 <= f when rising_edge(clk);
 c1 <= g when rising_edge(clk);
end adder_ff;

A more detailed explanation of register inference occurs in
5 - Programming Sequential Logic.
2 - 6 2 - PLD Programming using VHDL

We can add tristates in much the same way as flip flops, by using a
conditional assignment of 'Z' (here controlled by an input oe) :

architecture adder_ff_tri of counter is

signal d, e, f, g, h, i : std_logic;

begin

d <= b0 and a0;

e <= b1 xor a1;

f <= (b0 and not a0) or (not b0 and a0);

g <= (e and not d) or (not e and d);

h <= f when rising_edge(clk);

i <= g when rising_edge(clk);

c0 <= h when oe = '1' else 'Z';

c1 <= i when oe = '1' else 'Z';

end adder_ff_tri;
2 - PLD Programming using VHDL 2 - 7

We can use procedures to make the intent of the design a little clearer,
such as moving the combinational logic into a procedure. Notice that procedures
contain programming language like 'sequential statements' and that intermediate
values in the example below are held in variables. Notice also that signals are
assigned with "<=", and variables with ":=". Like programming languages, the order
of sequential statements is important.

architecture using_procedure of counter is

signal f, g : std_logic;

procedure add (signal a0,a1,b0,b1 : std_logic;

signal c0,c1 : out std_logic) is

variable x,y : std_logic;

 begin

x := b0 and a0;

y := b1 xor a1;

c0 <= (b0 and not a0) or (not b0 and a0);

c1 <= (y and not x) or (not y and x);

end ;

begin

add (a0, a1, b0, b1, f, g);

c0 <= f when rising_edge(clk);

c1 <= g when rising_edge(clk);

end using_procedure;
2 - 8 2 - PLD Programming using VHDL

State Machines

There is no state transition view in VHDL, however, it does support a
behavioral view. This allows design description in a programming-language-like
way, as was introduced in procedures in Registers and Tri-state. Sequential
statements may also occur in processes. We have already seen a D flip-flop
described using a concurrent statement.

q <= d when rising_edge(clk);

An exactly equivalent statement is :

process (clk)

begin

if rising_edge(clk) then

q <= d;

end if ;

end process ;

The process statement may contain many sequential statements. This
simple behavioral description is very like a state machine description in a classic
PLD language.

library ieee;

use ieee.std_logic_1164.all ;

entity ent5 is

port (clk,reset : in std_logic;
 p : buffer std_logic_vector(1 downto 0));

end ent5 ;
2 - PLD Programming using VHDL 2 - 9

architecture counter1 of ent4 is

begin

process (clk, rst)

begin

if reset = '1' then

p <= "00";

elsif rising _edge(clk) then

case p is

when "00" => p <= "01";

when "01" => p <= "10";

when "10" => p <= "11";

when "11" => p <= "00";

end case;

end if;

end process ;

end counter1 ;

Although we've introduced the process statement as a way to describe
state machines, it more generally allows behavioral modeling of both
combinational and sequential logic.

There are several examples of state machines in 7 - Some Common
Examples in VHDL, these slightly larger examples illustrate the application of
process statements.

It is strongly recommended that you read 5 - Programming Sequential
Logic and 6 - Programming Finite State Machines before attempting to write
process statements; it is important to understand the impact of the wait statement
on signals and variables in the process statement.
2 - 10 2 - PLD Programming using VHDL

Hierarchy

In VHDL each entity and architecture combination defines an element of
hierarchy. Hierarchy may be instantiated using components. Since there is a
default binding between a component and an entity with the same name, a
hierarchical design instantiating Child in Parent looks like:

---Child
library ieee;
use ieee.std_logic_1164.all ;

entity Child is
port (I : std_logic_vector(2 downto 0) ;

O : out std_logic_vector(0 to 2));
end Child;
architecture behavior of Child is
begin
 o <= i;
end ;

---Parent
use ieee.std_logic_1164.all ;
entity Parent is

port (a : std_logic_vector(7 downto 5);
v : out std_logic_vector(1 to 3));

end Parent;
architecture behavior of Parent is
 -- component declaration , bound to Entity Child above

component Child
port (I : std_logic_vector(2 downto 0) ;

O : out std_logic_vector(0 to 2));
end component ;

begin
-- component instantiation
u0 : Child port map (a,v);

end ;

Hierarchy also allows VHDL design partitioning, reuse, and incremental
testing. VHDL synthesis incorporates some additional semantics of hierarchy;
including controling the logic optimize granularity, hierarchical compile, and
instantiating silicon specific components. These are described in Using Hierarchy.
2 - PLD Programming using VHDL 2 - 11

Types

The use of types other than 'std_logic' and 'std_vector_logic' can make
your design much easier to read. It is good programming practice to put all of your
type definitions in a package, and make the package contents visible with a use
clause. For example, counter1 in State Machines could be described:

package type_defs is

subtype very_short is integer range 0 to 3;

end type_defs;

library ieee;

use ieee.std_logic_1164.all ;

use work.type_defs.all ;

entity counter2 is

port (clk, reset : std_logic; p : buffer very_short);

end counter2 ;

architecture using_ints of counter2 is

begin

process (clk,reset)

begin

if reset = '1' then

p <= 0;

elsif rising_edge(clk) then

p <= p + 1;

end if ;

end process ;

end counter2 ;

In this example we used type integer because the "+" operator is defined
for integers, but not for std_logic_vectors, which we have been using up to now.
2 - 12 2 - PLD Programming using VHDL

Sometimes there are other packages written by third parties that you can
use, such as the Synopsys packages included with Metamor. One of these
packages defines a "+" operation between a std_logic_vector and an integer.
Using this package we can rewrite the example:

library ieee;

use ieee.std_logic_1164.all ;

use ieee.std_logic_unsigned.all ;

entity counter2 is

port (clk, reset : std_logic;
 p : buffer std_logic_vector(1 downto 0));

end counter2 ;

architecture using_ of counter2 is

begin

process (clk,reset)

begin

if reset = '1' then

p <= "00";

elsif rising_edge(clk) then

p <= p + 1;

end if ;

end process ;

end counter2 ;

It is a convention that the Synopsys packages be placed in the IEEE
library, however, they are not an IEEE standard. To add these packages to the
IEEE library use the lib alias compile option to specify ieee.vhd and synopsys.vhd.

Further discussion of VHDL types occurs in VHDL Types .
2 - PLD Programming using VHDL 2 - 13

Compiling

Before compiling a design, you should consider the compile granularity. It
is uncommon to compile a large design in one big "Partition". Partitioning a design
into several Partitions of 500 to 5000 output gates each is most common.

A Partition may consist of one or more VHDL entities or architecture pairs
and may be contained in one or more .vhd files. The method for specifying file
names is described in the documentation for the software that calls the Metamor
compiler. Each Partition compiles to one output netlist file. Note that specifying the
logic compile granularity is distinct from specifying the logic optimize granularity.

To compile a Partition we do the following :

a) specify the files(s)

b) specify the top level of this Partition

c) compile VHDL

Several Partitions may be compiled in any order, then linked with a
 netlist linker:

for each Partition {

/* do one Partition */

a) specify files(s)

b) specify the top level of this Partition

c) compile VHDL

}

Link the output files.

We choose a Partition size of 500 to 5000 output gates because :

• Smaller Partitions give faster compiles for design iterations.

• Some downstream tools exhibit performance constraints with large
Partitions.
2 - 14 2 - PLD Programming using VHDL

This partitioning is important to your success. If the design is not your
design and you don’t know how much logic (output gates) it contains, then try some
tests on parts of the design before selecting the partitions. Not partitioning a large
design is probably a bad choice. Note, however, that partitions of 500 gates are
not always required; sometimes a Partition just connects other Partitions and
contains no logic.

There is a special case in partitioning for synthesis. If a VHDL component
instantiation uses ‘generic map', the parent and child must be compiled in the same
Partition. The Parent is the Architecture containing the instantiation, and Child is
the instantiated Entity. Because generic map implies different logic for each
instance, it is possible to have a case where the same Child is compiled in several
different Partitions.
2 - PLD Programming using VHDL 2 - 15

Debugging

A very personal issue -- here are some suggestions for debugging the
specification and implementation of your design.

System level simulation

Simulate your VHDL design before synthesis using a third party VHDL
simulator. This allows you to verify the specification of your design. If you don't
have a VHDL simulator, run Metamor with the compile option optimize set to zero
(to minimize compile time), and simulate the output with your equation or gate level
simulator.

Hierarchy

Partition your design into entity/architecture references as components.
Compile each entity separately. Simulate using a third party equation or netlist
simulator to verify functionality.

Check the size of the logic in this module. Is it about what you expected?

Using hierarchy to represent the modules of your design will result in faster
and better optimization, and may allow you to reuse these design units in future
designs.

Attribute 'critical'

Critical forces a signal to be retained in the output description. This allows
you to trace a VHDL signal using your third party equation or netlist simulator.

The name of the VHDL signal will be maintained -- but may be prefixed
with instance, block labels, or package names, and suffixed with a "_n", if it
represents more than one wire.
2 - 16 2 - PLD Programming using VHDL

Verbose option

This compile option enables printing of additional information about
inferred logic structures. The information is printed on a per process basis,
indicating the inferred structure, type of any control signals, and a name.

flip flop [type] <name> [bit]

latch [type] <name> [bit]

tristate <name> [bit]

critical <name> [bit]

comb fb <name> [bit]

macrocell <name>

This information lists the inferred structure. The name field represents the
name of an inferred logic element. The name will be a local signal or variable name
from within the VHDL source code. The name of the structure in the output file will
be derived within a larger context and may be different. If no user recognizable
name exists, the name field will contain "[anonymous]". The bit field is optional. A
macrocell name will be a predefined Xblox or LPM name.

Note that the design statistics printed at the end of the compile may not be
the same as the sum of the per process inference information. There are three
possible reasons for this:

• Optimization may remove or change inferred structures.

• Additional combinational feedback paths explicitly specified (i.e. not
inferred) between processes.

• Additional instantiated macrocells.
2 - PLD Programming using VHDL 2 - 17

Report and assert statements

The VHDL report statement specifies no logic and is useful for following
the execution of the compiler -- perhaps to see when functions are called or to see
iterations of a loop. For example:

entity loop_stmt is

port (a: std_logic_vector (0 to 3);
 m: out std_logic_vector (0 to 3));

end loop_stmt;

architecture example of loop_stmt is

begin

process (a)

variable b: integer;

begin

b := 1;

while b < 7 loop

report "Loop number = " & integer'image(b);

b := b + 1;

end loop;

end process;

end example;

If an assert statement is used in place of a report statement, the value of
the assert condition must be false in order for a message to be written. In synthesis,
if the value of condition depends upon a signal, it is not possible for the compiler to
evaluate to either true or false. In this case no message is written (i.e. as if true).
This can lead to confusion during debugging. The best plan is not to use signals or
variables in the assert condition. Also note: the execution of the report or assert
statement should not depend on an if or case statement, that in turn depends on
signals or variables. For a more detailed discussion on variables depending on
signals see the discussion of metalogic expressions in 10 - Logic and Metalogic.
2 - 18 2 - PLD Programming using VHDL

Downstream Tools

Third-party tools that take the output from the Metamor compiler are
referred to as downstream tools. Downstream tools sometimes make use of
attributes (also called properties or parameters) within the netlist to direct their
operation. Attribute examples include placement information such as pin number
or logic cell location name. These are added using VHDL attributes or VHDL
generic maps.

The supported features depend on the output format and the way it
supports properties. The output format depends on the OEM environment that calls
the compiler. See Attributes for Downstream Tools.
2 - PLD Programming using VHDL 2 - 19

How to be Happy

It is important to understand that synthesis tools do not design for you.
Synthesis tools do handle design details to enable you to be more productive.

The single most productive thing you can do is to be aware of what, and
how much hardware you are describing using an HDL. This guide attempts to
provide you with the information you will need. With this approach you can expect
to be happy with the results.

Conversely, writing HDL without considering the hardware, and expecting
the synthesis tool to 'do the design' is a recipe for disaster. A common mistake is
to create a design description, validate with a simulator, and assume that a correct
specification must also be a good specification.
2 - 20 2 - PLD Programming using VHDL

3 - Introduction to VHDL

VHDL '93

Structure of a VHDL Design Description

Structural VHDL

Data Flow VHDL

Behavioral VHDL

VHDL Types

My model simulates, but....
3 - Introduction to VHDL 3 - 1

VHDL '93

VHDL is a hardware description language (HDL). It contains the features
of a conventional programming language, a classical PLD programming language,
and a netlist, as well as design management features.

VHDL is a large language and it provides many features. This guide does
not attempt to describe the full language -- rather it introduces enough of the
language to enable useful design.

Metamor supports most of the VHDL language, however, some sections
of the language have meanings that are unclear in the context of logic design -- the
file operations in the package "textio", for example. The exceptions and constraints
on Metamor's VHDL support are listed in Unsupported Constructs, Ignored
Constructs , and Constrained Constructs.

Metamor uses the VHDL'93 version of VHDL. This version is basically a
superset of the previous standard VHDL'87.
3 - 2 3 - Introduction to VHDL

Structure of a VHDL Design Description

The basic organization of a VHDL design description is shown in the
following figure:

A package is an optional statement for shared declarations. An entity
contains declarations of the design I/O, and an architecture contains the
description of the design. A design may contain any number of package, entity and
architecture statements. Most of the examples in this guide use a single entity-
architecture pair. For more information see Managing Large Designs.

Package (optional)

Entity (design I/O)

Architecture (design function)

Signal declaration

Component instantiation statement
Conditional signal assignment statement
Selected signal assignment statement
Generate statement
Process statement

Variable declaration

Signal assignment
Variable assignment
Procedure call
If, case, loop, next, exit ,return
Wait statement

sequential statements

concurrent statements
3 - Introduction to VHDL 3 - 3

An architecture contains concurrent statements. Concurrent statements
(like netlists and classic PLD programming languages) are evaluated
independently of the order in which they appear. Values are passed between
statements by signal s; an assignment to a signal (<=) implies a driver. A signal
can be thought of as a physical wire (or bundle of wires).

The most powerful VHDL constructs occur within sequential statements.
These must be placed inside a particular concurrent statement, the process
statement, or inside a function or procedure.

Sequential statements are very similar to programming language
statements: they are executed in the order they are written (subject to if
statements, return statements, etc.). Values are held in variables and constants .
Signal s are used to pass values in and out of a process , to and from other
concurrent statements (or the same statement).

Several concepts are important to the understanding of VHDL. They
include: the distinction between concurrent statements and sequential statements,
and the understanding that signals pass values between concurrent statements,
and variables pass values between sequential statements.

Later we will discuss sequential logic (logic with memory elements such as
flip-flops). Sequential statements in VHDL refer to statement ordering, not to the
type of logic compiled. Sequential statements may be used to compile both
combinational and sequential logic.

VHDL can be written at three levels of abstraction: structural, data flow,
and behavioral. These three levels can be mixed.

The following subsections: Structural VHDL , Data Flow VHDL ,and
Behavioral VHDL , introduce the structural, data flow, and behavioral design
methods and show VHDL code fragments that are written at each level of
abstraction.
3 - 4 3 - Introduction to VHDL

Variations of the following design are used to illustrate the differences:

entity hello is

port (clock, reset : in boolean; char : out character) ;

end hello;

architecture behavioral of hello is

constant char_sequence : string := "hello world";

signal step : integer range 1 to char_sequence'high := 1;

begin

-- Counter

process (reset,clock)

begin

if reset then

step <= 1;

elsif clock and clock'event then

if step = char_sequence'high then

step <= 1;

else

step <= step + 1;

end if ;

end if ;

end process ;

-- Output Decoder

char <= char_sequence(step);

end behavioral ;

This design compiles to a simple waveform generator with two inputs
(clock and reset) and eight outputs. The output sequences through the ASCII
codes for each of the eleven characters in the string "hello world". The codes
change some logic delay after each rising edge of the clock. When the circuit is
reset, the output is the code for 'h' -- reset is asynchronous.
3 - Introduction to VHDL 3 - 5

Structural VHDL

A structural VHDL design description consists of component instantiation
statements, which are concurrent statements. For example:

u0: inv port map (a_2, b_5);

This is a netlist-level description. As such, you probably do not want to type
many statements at the structural level. Schematic capture has long been known
as an easier way to enter netlists.

Structural VHDL simply describes the interconnection of hierarchy.
Description of the function requires the data flow or behavioral levels. Component
instantiation statements are useful for sections of design that are reused, and for
integrating designs.

The design in the following example has been partitioned into two
instantiated components. Note that the components are declared but not defined
in the example. The components would be defined as entity/architecture as
discussed in 9 - Managing Large Designs.
3 - 6 3 - Introduction to VHDL

entity hello is

port (clock, reset : in boolean; char : out character) ;

end hello;

architecture structural of hello is

constant char_sequence : string := "hello world";

subtype short is integer range 1 to char_sequence'high;

signal step : short;

component counter

port (clock , reset : in boolean; num : out short) ;

end component ;

component decoder

port (num : in short ; res : out character) ;

end component ;

begin

U0 : counter port map (clock,reset,step);

U1 : decoder port map (step,char);

end structural;

This is useful if counter and decoder had been previously created and
compiled into two PALs. The availability of a larger PAL allows us to integrate the
design by instantiating these as components and compiling for the larger device.
3 - Introduction to VHDL 3 - 7

Data Flow VHDL

Another concurrent statement is the signal assignment. For example:

a <= b and c;

m <= in1 when a1 else in2;

Assignments at this level are referred to as data flow descriptions. They
are sometimes referred to as RTL (register-transfer-level) descriptions.

This example could be rewritten as :

entity hello is

port (clock , reset: in boolean; char : out character) ;

end hello;

architecture data_flow of hello is

constant char_sequence : string := "hello world";

signal step0, step1 :integer range 1 to char_sequence'high := 0;

begin

-- Output decoder

char <= char_sequence(step1);

-- Counter logic

step1 <= 1 when step0 = char_sequence'high else step0 + 1;

-- Counter flip flops

step0 <= 1 when reset else

step1 when clock and clock'event;

end data_flow;

In data flow descriptions combinational logic is described with the signal
assignment (<=). There is no register assignment operator; sequential logic is
inferred from incomplete specification (of step0) as in the example above.
3 - 8 3 - Introduction to VHDL

Behavioral VHDL

The most powerful concurrent statement is the process statement. The
process statement contains sequential statements and allows designs to be
described at the behavioral level of abstraction. For example :

process (insig)

variable var1: integer;-- variable declaration

begin

var1:= insig; -- variable assignment

var1:= function_name(var1 + 1); -- function call

end process;

In hardware design we use the process statement in two ways: one for
combinational logic and one for sequential logic. To describe combinational logic
the general form of the process statement is :

process (signal_name, signal_name, signal_name,......)

begin

.....

end process ;

and the general forms for sequential logic :

process (clock_signal)

begin

if clock_signal and clock_signal'event then

....

end if ;

end process ;

For combinational logic there is a list of all process input signals after the
keyword process . For sequential logic there is either: (a) no sensitivity list but there
is a wait statement; or (b) a sensitivity list containing the clock and the statements
are within an if statement.

It is illegal in VHDL for a process to have both a sensitivity list and a wait
statement. To have neither implies no logic. Combinatorial logic is discussed in 4 -
Programming Combinational Logic, sequential logic in 5 - Programming Sequential
Logic.
3 - Introduction to VHDL 3 - 9

Our example could be viewed as two processes: one for the sequential
counter, and one of the combinatorial decoder :

entity hello is

port (clock, reset : in boolean; char : out character) ;

end hello;

architecture behavioral of hello is

constant char_sequence : string := "hello world";

signal step : integer range 1 to char_sequence'high := 1;

begin

counter : process (reset, clock)

begin

if reset then

step <= 1;

elsif clock and clock’event then

if step = char_sequence'high then

step <= 1;

else

step <= step + 1;

end if ;

end if ;

end process ;

decoder :process (step)

begin

char <= char_sequence(step);

end process ;

end behavioral ;
3 - 10 3 - Introduction to VHDL

VHDL Types

VHDL contains the usual programming language data types, such as:

• boolean

• character

• integer

• real

• string

These types have their usual meanings. In addition, VHDL has the types:

• bit

• bit_vector

The type bit can have a value of '0' or '1'. A bit_vector is an array of bits.
(Similarly, a string is an array of characters in VHDL just as it is in Pascal).

Most electrical engineers use the IEEE 1164-standard-logic types in place
of bit and bit_vector.

• std_logic

• std_logic_vector

These are declared in the IEEE library in package std_logic_1164

To make these declarations visible, an entity that uses these types is
prefixed with a library declaration and a use clause:

• library ieee;

• use ieee.std_logic_1164.all ;

For an example see Fifo. For more info see VHDL Design Libraries and
Metamor VHDL Libraries.

Definitions for all of the predefined types can be found in the file std.vhd ,
which contains the package standard.
3 - Introduction to VHDL 3 - 11

The type of a variable , signal , or constant (which are collectively called
objects) determines the operators that are predefined for that object. For hardware
design, the type also determines the number -- and possibly the encoding scheme
used -- for the wires that are implemented for that object.

Type-checking is performed during analysis. Types are used to resolve
overloaded subprograms. Users may define their own types, which may be
scalars, arrays, or records.

VHDL also allows subtypes. This is simply a mechanism to define a subset
of a type. More information on the impact of types and subtypes on synthesis is
contained in 8 - Synthesis of VHDL Types.
3 - 12 3 - Introduction to VHDL

My model simulates, but....

This section is primarily for experienced VHDL simulation users who have
VHDL code that has been developed using a VHDL simulator.

VHDL is a standard, how can there be a problem ? ha ! Many VHDL
models are not suitable for synthesis, such as high level performance models,
environment models for stimulus/response, or system models including software,
hardware, and physical aspects.

Synthesis assumes that the VHDL code describes the logic of a design,
and not some model of the design. This assumption puts additional constraints on
the programmer. Most of the remainder of this guide describes how to program in
VHDL within these constraints.

A design description may be correctly specified in English, but may have
no practical hardware implementation (e.g. H.G.Wells' Time Machine). The same
is true for a design specified in VHDL, which may have no practical implementation.
Just because its written in a Hardware Description Language doesn't mean it
describes realizable hardware!

For example, suppose you have a VHDL simulation model of a PAL, lets
say the model configures itself from a JEDEC file during simulation initialization.
The model actually simulates the programming and logic of the PAL. It describes
more than just the hardware, the model also describes the manufacturing step
when the PAL was programmed. A synthesizable VHDL model would only
describe the component function and not the earlier manufacturing step.

Some other issues

Hardware design adds several additional constraints such as gated clocks.
These are not a constraint in a simulation where values may be written to computer
memory without concern for electrical glitches. Hardware design requires care be
taken in controlling the clocking of memory elements.

A simulation model may also describe the timing characteristics of a
design. These are ignored by the synthesis tool, which considers timing a result of
the hardware realization of the design. A VHDL model that depends on the timing
for correct operation may not synthesize to the expected result.
3 - Introduction to VHDL 3 - 13

A simulation model may use enumerated types to:

• represent the encoding of a group of wires (e.g. load store execute),
perhaps as part of a state machine description

• represent the electrical characteristic on a single wire (e.g. high
impedance, resistive, strong), as well as the state of the simulation
(unknown, uninitialized)

Within VHDL, a synthesis system has no way to distinguish the meaning
in each case. Metamor assumes the encoding representation for enumerated
types unless the encoding is explicitly specified using the attribute
'enum_encoding'.
3 - 14 3 - Introduction to VHDL

4 - Programming Combinational Logic

Combinational Logic

Logical Operators

Relational Operators

Arithmetic Operators

Control Statements

Subprograms and Loops

Shift and Rotate Operators

Tristates
4 - Programming Combinational Logic 4 - 1

Combinational Logic

This section shows the relationship between basic VHDL statements and
combinational logic. The resulting logic is represented by schematics (one possible
representation of the design), provided to illustrate this relationship. The actual
implementation created by Metamor depends upon other VHDL statements in the
design that affect the logic minimization, and on the target technology, which
affects the available gate types.

Most of the operators and statements used to describe combinational logic
are the same as those found in any programming language. Some VHDL operators
are more expensive to compile because they require more gates to implement (like
programming languages where some operators take more cycles to execute). You
need to be aware of these factors. This section describes the relative costs
associated with various operators.

If an operand is a constant , less logic will be generated. If both operands
are constants, the logic can be collapsed during compilation, and the cost of the
operator is zero gates. Using constants (or more generally metalogic expressions)
wherever possible means that the design description will not contain extra
functionality. The result will compile faster and produce a smaller implementation.

Certain operators are generally restricted to use with specific types. See
Logical Operators and Arithmetic Operators for more information.

In VHDL, operators can also be redefined for any type. This is known as
operator overloading, but it is outside the scope of this guide.
4 - 2 4 - Programming Combinational Logic

Logical Operators

VHDL provides the following logical operators:

• and

• or

• nand

• nor

• xor

• xnor

• not

These operators are defined for the types bit, boolean and arrays of bit or
boolean (for example, bit_vector). The compilation of logic is fairly direct from the
language construct, to its implementation in gates, as shown in the following
examples:

entity logical_ops_1 is
port (a, b, c, d: in bit; m: out bit);

end logical_ops_1;

architecture example of logical_ops_1 is
signal e: bit;

begin
m <= (a and b) or e; --concurrent signal assignments
e <= c xor d;

end example;

entity logical_ops_2 is
port (a, b: in bit_vector (0 to 3); m: out bit_vector (0 to 3));

end logical_ops_2

architecture example of logical_ops_2 is
begin

m <= a and b;
end example;
4 - Programming Combinational Logic 4 - 3

a

b

c

d

m

a_0
m_0

m_1

b_0

a_1

b_1

a_2

b_2
m_2

m_3
a_3

b_3

Programming Comb. Logic 4 - 4

 Logical Operator Schematic

 - - the following code corresponds to this schematic
 - - move, resize and close this window as needed

entity logical_ops_1 is
 port (a, b, c, d: in bit; m: out bit);
end logical_ops_1;

architecture example of logical_ops_1 is
 signal e: bit;
begin
 m <= (a and b) or e; --concurrent signal assignments
 e <= c xor d;
end example;

entity logical_ops_2 is
 port (a, b: in bit_vector (0 to 3); m: out bit_vector (0 to 3));
end logical_ops_2

architecture example of logical_ops_2 is
begin
 m <= a and b;
end example;

Relational Operators

VHDL provides the following relational operators:

= Equal to

/= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The equality operators (= and /=) are defined for all types. The ordering
operators (>=, <=, >, <) are defined for numeric types, enumerated types, and
some arrays. The resulting type for all these operators is boolean.

The simple comparisons, equal and not equal, are cheaper to implement
(in terms of gates) than the ordering operators. To illustrate, the first example below
uses an equal operator and the second uses a greater-than-or-equal-to operator.
As you can see from the schematic, the second example uses more than twice as
many gates as the first.

entity relational_ops_1 is
port (a, b: in bit_vector (0 to 3); m: out boolean);

end relational_ops_1;

architecture example of relational_ops_1 is
begin

m <= a = b;
end example;

entity relational_ops_2 is
port (a, b: in integer range 0 to 3; m: out boolean);

end relational_ops_2;

architecture example of relational_ops_2 is
begin

m <= a >= b
end example;
4 - Programming Combinational Logic 4 - 5

a_0

b_0

a_1

b_1

a_2

b_2

a_3

b_3

b_0

a_0

b_1

a_1

b_2

a_2

b_3

a_3
a=b
m

a>=b

m

Programming Comb. Logic 4 - 6

 Relational Operators Schematic

 - - the following code corresponds to this schematic
 - - move, resize and close this window as needed

entity relational_ops_1 is
 port (a, b: in bit_vector (0 to 3); m: out boolean);
end relational_ops_1;

architecture example of relational_ops_1 is
begin
 m <= a = b;
end example;

entity relational_ops_2 is
 port (a, b: in integer range 0 to 3; m: out boolean);
end relational_ops_2;

architecture example of relational_ops_2 is
begin
 m <= a >= b
end example;

Arithmetic Operators

The arithmetic operators in VHDL are defined for numeric types.
These are:

+ Addition

- Subtraction

* Multiplication

/ Division

mod Modulus

rem Remainder

abs Absolute Value

** Exponentiation

While the adding operators (+, -) are fairly expensive in terms of gates,
the multiplying operators (*, /, mod , rem) are very expensive. Metamor does make
special optimizations, however, when the right hand operator is a constant and an
even power of 2.

The absolute (abs) operator is inexpensive to implement. The ** operator
is only supported when its arguments are constants.

The following example illustrates the logic due to an addition operator (and
the use of package and type declaration):

package example_arithmetic is
type small_int is range 0 to 7;

end example_arithmetic;

use work.example_arithmetic.all ;

entity arithmetic is
port (a, b: in small_int; m: out small_int);

end arithmetic;
architecture example of arithmetic is
begin

m <= a + b;
end example;
4 - Programming Combinational Logic 4 - 7

a_0

b_0

a_1

b_1

a_2

b_2
"+"
c_0

c_1

c_2

Programming Comb. Logic 4 - 8

 Arithmetic Operators Schematic

 - - the following code corresponds to this schematic
 - - move, resize and close this window as needed

package example_arithmetic is
 type small_int is range 0 to 7;
end example_arithmetic;

use work.example_arithmetic.all;

entity arithmetic is
 port (a, b: in small_int; m: out small_int);
end arithmetic;
architecture example of arithmetic is
begin
 m <= a + b;
end example;

Control Statements

VHDL provides the following concurrent statements for creating
conditional logic:

• conditional signal assignment

• selected signal assignment

VHDL provides the following sequential statements for creating
conditional logic:

• if

• case

Examples of concurrent control statements are, conditional signal
assignments:

entity control_stmts is
port (a, b, c: boolean; m: out boolean);

end control_stmts;

architecture example of control_stmts is
begin

m <= b when a else c;
end example;

All possible cases must be used for selected signal assignments. You can
be certain of this by using an others case:

entity control_stmts is
port (sel: bit_vector (0 to 1); a,b,c,d : bit; m: out bit);

end control_stmts;

architecture example of control_stmts is
begin

with sel select
m <= cwhen b"00",
m <= dwhen b"01",
m <= awhen b"10",
m <= bwhen others ;

end example;
4 - Programming Combinational Logic 4 - 9

The same functions can be implemented using sequential statements and
occur inside a process statement. The condition in an if statement must evaluate
to true or false (that is, it must be a boolean type).

The following example illustrates the if statement:

entity control_stmts is
port (a, b, c: boolean; m: out boolean);

end control_stmts;

architecture example of control_stmts is
begin

process (a, b, c)
variable n: boolean;

begin
if a then

n := b;
else

n := c;
end if;
m <= n;

end process;
end example;

Using a case statement (or selected signal assignment) will generally
compile faster and produce logic with less propagation delay than using nested if
statements (or a large selected signal assignment). The same is true in any
programming language, but may be more significant in the context of logic
synthesis.

If statements and selected signal assignments are also used to infer
registers. See 5 - Programming Sequential Logic.

VHDL requires that all the possible conditions be represented in the
condition of a case statement. To ensure this, use the others clause at the end of
a case statement to cover any unspecified conditions.
4 - 10 4 - Programming Combinational Logic

The following example illustrates the case statement:

entity control_stmts is
port (sel: bit_vector (0 to 1); a,b,c,d : bit; m: out bit);

end control_stmts;

architecture example of control_stmts is
begin

process (sel,a,b,c,d)
begin

case sel is
when b"00" => m <= c;
when b"01" => m <= d;
when b"10" => m <= a;
when others => m <= b;

end case;
end process;

end example;
4 - Programming Combinational Logic 4 - 11

c

a

b

sel_1

sel_0

a

b

c

d

if

m

case

m

Programming Comb. Logic 4 - 12

 Control Statement Schematic

 - - the following code corresponds to this schematic
 - - move, resize and close this window as needed

entity control_stmts is
 port (sel: bit_vector (0 to 1); a,b,c,d : bit; m: out bit);
end control_stmts;

architecture example of control_stmts is
begin
 process (sel,a,b,c,d)
 begin
 case sel is
 when b"00" => m <= c;
 when b"01" => m <= d;
 when b"10" => m <= a;
 when others => m <= b;
 end case;
 end process;
end example;

Subprograms and Loops

VHDL provides the following constructs for creating replicated logic:

• generate

• loop

• for loop

• while loop

• function

• procedure

Functions and procedures are collectively referred to as subprograms.
Generate is a concurrent loop statement. These constructs are synthesized to
produce logic that is replicated once for each subprogram call, and once for each
iteration of a loop.

If possible, for loop and generate ranges should be expressed as
constants. Otherwise, the logic inside the loop may be replicated for all the possible
values of loop ranges. This can be very expensive in terms of gates.

entity loop_stmt is
port (a: bit_vector (0 to 3); m: out bit_vector (0 to 3));

end loop_stmt;

architecture example of loop_stmt is
begin

process (a)
variable b:bit;

begin
b := '1';
for i in 0 to 3 loop --don't need to declare i

b := a(3-i) and b;
m(i) <= b;

end loop;
end process ;

end example;
4 - Programming Combinational Logic 4 - 13

A loop statement replicates logic, therefore, it must be possible to evaluate
the number of iterations of a loop at compile time. This requirement adds a
constraint for the synthesis of a while loop and an unconstrained loop (but not a
for loop). These loops must be completed by a statement whose execution
depends only upon metalogic expressions. If, for example, a loop completion
depends on a signal (i.e. not a metalogic expression), an infinite loop will result.

Placing a report statement within the loop is a useful technique for
debugging. A message will be reported to the screen at each iteration of the loop.

entity loop_stmt is
port (a: bit_vector (0 to 3); m: out bit_vector (0 to 3));

end loop_stmt;

architecture example of loop_stmt is
begin

process (a)
variable b: integer;

begin
b := 1;
while b < 7 loop

report "Loop number = " & integer'image(b);
b := b + 1;

end loop;
end process ;

end example;

Loop statements may be terminated with an exit statement, and specific
iterations of the loop statement terminated with a next statement. When
simulating, an exit or next may be used to speed up simulation time. For synthesis,
where each loop iteration replicates logic, there is probably no speedup. In
addition, the exit or next may synthesizes logic that gates the following loop logic.
This may result in a carry-chain-like structure with a long propagation delay in the
resulting hardware.
4 - 14 4 - Programming Combinational Logic

A function is always terminated by a return statement, which returns a
value. A return statement may also be used in a procedure , but it never returns a
value.

entity subprograms is
port (a: bit_vector (0 to 2); m: out bit_vector (0 to 2));

end subprograms;

architecture example of subprograms is
function simple (w, x, y: bit) return bit is
begin

return (w and x) or y;
end;

begin
process (a)
begin

m(0) <= simple(a(0), a(1), a(2));
m(1) <= simple(a(2), a(0), a(1));
m(2) <= simple(a(1), a(2), a(0));

end process;
end example
4 - Programming Combinational Logic 4 - 15

a_0

a_1

a_2

a_3

a_0

s

a_1

a_2

a_0

a_1

a_2

a_3

a_0

s

a_1

a_2

a_0

a_1

a_2

a_3

a_0

s

a_1

a_2
m_3

loop

m_2

m_1

m_0

ubprogram

m_2

m_1

m_0

m_3

loop

m_2

m_1

m_0

ubprogram

m_2

m_1

m_0

m_3

loop

m_2

m_1

m_0

ubprogram

m_2

m_1

m_0

Programming Comb. Logic 4 - 16

 Subprograms and Loops Schematic

 - - the following code corresponds to this schematic
 - - move, resize and close this window as needed

entity subprograms is
 port (a: bit_vector (0 to 2); m: out bit_vector (0 to 2));
end subprograms;

architecture example of subprograms is
 function simple (w, x, y: bit) return bit is
 begin
 return (w and x) or y;
 end;
begin
 process (a)
 begin
 m(0) <= simple(a(0), a(1), a(2));
 m(1) <= simple(a(2), a(0), a(1));
 m(2) <= simple(a(1), a(2), a(0));
 end process;
end example

Shift and Rotate Operators

VHDL provides the following shift and rotate operators:

• sll

• srl

• sla

• sra

• rol

• ror

The left operand may be a one dimensional array whose element type is
either BIT or BOOLEAN, and the right operand is of type INTEGER. If the right
operand is a constant (or a metalogic expression), these operations imply no logic.

entity sr_1 is
port (a, b,c: in bit_vector (5 downto 0);

 ctl : integer range 0 to 2**5 -1;
 w,x,y: out bit_vector (5 downto 0);
end sr_1

architecture example of sr_1 is
begin

w <= a sll ctl; -- shift left , fill with '0'
x <= a sra ctl; -- shift right, fill with a'left [a(5)]
y <= a rol ctl; -- rotate left

end example;

Note that a negative right argument means a shift or rotate in the opposite
direction. If the right argument is non constant (not metalogic expression), and has
a subtype which has a range that includes a negative number, a bidirectional shift
or rotate structure will be constructed. This can be very expensive. For example :

function to_natural (arg : bit_vector) return natural;
function to_integer (arg : bit_vector) return integer;

a sll to_natural (bv);
a sll to_integer (bv); ------ EXPENSIVE
4 - Programming Combinational Logic 4 - 17

Tristates

There are two possible methods to describe tristates: either using the 'Z' in
the type std_logic defined in ieee.std_logic_1164, or using an assignment of NULL
to turn off a driver. The first method applies to the type std_logic only, the second
method applies to any type. The first method is the one commonly used.

library ieee;
use ieee.std_logic_1164.all ;

entity tbuf2 is
port (enable : boolean;

a : std_logic_vector(0 to 4);
m : out std_logic_vector(0 to 4));

end tbuf2;

architecture example of tbuf2 is

begin
process (enable, a)

if enable then
m <= a;

else
m <= 'Z';

end if ;
end process ;

end ;

or the equivalent concurrent statement :

architecture example2 of tbuf2 is
begin

m <= a when enable else 'Z';
end ;
4 - 18 4 - Programming Combinational Logic

An internal tristate bus may be described as in the following example. Note
that a constraint of Metamor requires all tristate buffers driving this bus to be in the
same architecture.

architecture example3 of tbuf3 is
begin

m <= a0 when enable0 else 'Z';
m <= a1 when enable1 else 'Z';
m <= a2 when enable2 else 'Z';

end ;

The assignment of null to a signal of kind bus turns off its driver. When
embedded in an if statement, a null assignment is synthesized to a tristate buffer.

package example_bus is
subtype bundle is bit_vector (0 to 4);

end example_bus;

use work.example_bus.all ;

entity tbuf is
port (enable: boolean; a: bundle; m: out bundle bus);

end tbuf;

architecture example of tbuf is
begin

process (enable, a)
begin

if enable then
m <= a;

else
m <= null ;

end if;
end process ;

end example;
4 - Programming Combinational Logic 4 - 19

4 - 20 4 - Programming Combinational Logic

5 - Programming Sequential Logic

Sequential Logic

Latches

Flip-Flops

Gated Clocks and Clock Enable

Synchronous Set/Reset

Asynchronous Set or Reset

Asynchronous Set and Reset

Asynchronous Load

Register Inference Rules
5 - Programming Sequential Logic 5 - 1

Sequential Logic

Programming sequential logic in VHDL is like programming in a
conventional programming language, and unlike programming using a traditional
PLD programming language. There is no register assignment operator, and no
special attributes for specifying clock, reset, etc. In VHDL you program the
behavior of a sequential logic element, such as a latch or flip-flop, as well as the
behavior of more complex sequential machines.

This section shows how to program simple sequential elements such as
latches and flip-flops in VHDL. This is extended to add the behavior of Set and
Reset (synchronous and asynchronous). These techniques are expanded upon in
7 - Some Common Examples in VHDL where we will show examples of more
complex machines.

The behavior of a sequential logic element can be described using a
process statement (or the equivalent procedure call, or concurrent signal
assignment statement). The behavior of a sequential logic element (latch or flip-
flop) is to save a value of a signal over time. This section shows how such behavior
may be programmed.

The techniques shown here may be extended to specify Set and Reset,
both synchronous and asynchronous, as shown in later sections. There are often
several ways to describe a particular behavior, the following examples typically
show two styles each, however, there is no particular 'right' style. The choice of
style is simply that which helps the programmer specify the clearest description of
the particular design.

For example, the designer may choose to copy the procedures for latches
and flip-flops from the following examples, and describe a design in terms of
equations and procedure calls as shown in Registers and Tri-state.

Alternatively the designer may choose to describe a design in a more
behavioral form as show in the examples in 7 - Some Common Examples in VHDL.

There are three major methods to program this register behavior: using
conditional specification , using a wait statement, or using guarded blocks.
Conditional specification is the most common method.
5 - 2 5 - Programming Sequential Logic

Conditional Specification

This relies on the behavior of an IF statement, and assigning in only one
condition:

if clk then

y <= a;

else

-- do nothing

end if;

This describes the behavior of a latch, if the clock is high the output (y) gets
a new value, if not the output retains its previous value. Note that if we had
assigned in both conditions, the behavior would be that of a mux:

if clk then

y <= a;

else

y <= b;

end if;

The key to specification of a latch or flip-flop is incomplete assignment
using the IF statement; there is no particular significance to any signal names used
in the code fragments. Note, however, that incomplete assignment is within the
context of the whole process statement.

We could describe our latch as transparent low:

if clk then

-- do nothing

else

y <= a;

end if;

Or more concisely:

if not clk then

y <= a;

end if;
5 - Programming Sequential Logic 5 - 3

A rising edge Flip-flop is created by making the latch edge sensitive:

if clk and clk'event then

y <= a;

end if;

In all these cases the number of registers or the width of the mux are
determined by the type of the signal "y";

Wait Statement

The second method uses a wait statement:

wait until expression;

This suspends evaluation (over time) until the expression evaluates to
"true". A flip-flip may be programmed:

wait until clk

y <= a;

It is not possible to describe latches using a wait statement.

Guarded Blocks

The guard expression on a block statement can be used to specify a latch.:

lab : block (clk)

begin

q <= guarded d;

end block;

It is not possible to describe flip-flops using guarded blocks.
5 - 4 5 - Programming Sequential Logic

Latches

The following examples describe a level sensitive latch with an and
function connected to its input. In all these cases the signal "y" retains it's current
value unless the clock is true:

-- A Process statement :

process (clk, a, b) -- a list of all signals used in the process

begin

if clk then

y <= a and b;

end if;

end process;

-- A Procedure declaration, creates a latch

-- when used as a concurrent procedure call

procedure my_latch (signal clk, a, b : boolean; signal y : out boolean)

begin

if clk then

y <= a and b;

end if;

end;

-- an example of two such calls:

label_1: my_latch (clock, input1, input2, outputA);

label_2: my_latch (clock, input1, input2, outputB);

-- A concurrent conditional signal assignment,

-- note that "y" is both used and driven

y <= a and b when clk else y;

y <= a and b when clk;
5 - Programming Sequential Logic 5 - 5

Flip-Flops

The following examples describe an edge sensitive flip-flop with an and
function connected to its input. In all these cases the signal "y" retains it's current
value unless the clock is changing :

-- A Process statement :

process (clk) -- a list of all signals that result in propagation delay

begin

if clk and clk'event then -- clock rising

y <= a and b;

end if;

end process;

-- A Process statement containing a wait statement:

process -- No list of all signals used in the process

begin

wait until not clk ; -- clock falling

y <= a and b;

end process;

-- A Procedure declaration, this creates a flip-flop

-- when used as a concurrent procedure call

procedure my_ff (signal clk, a, b : boolean; signal y : out boolean)

begin

if not clk and clk'event then -- clock falling

y <= a and b;

end if;

end;
5 - 6 5 - Programming Sequential Logic

-- A concurrent conditional signal assignment,

-- note that "y" is both used and driven

y <= a and b when clk and clk 'event else y;

y <= a and b when clk and clk 'event ; -- the last else is not required

It is sometimes clearer to write a function to detect a rising edge :

function rising_edge (signal s : bit) return boolean is

begin

return s = '1' and s'event;

end ;

Using this function, a D flip flop can be written as :

q <= d when rising_edge(clk);
5 - Programming Sequential Logic 5 - 7

Gated Clocks and Clock Enable

The examples in this section assume the clock is a simple signal. In
principle, any complex boolean expression could be used to specify clocking.
However, the use of a complex expression implies a gated clock.

As with any kind of hardware design, there is a risk that gated clocks may
cause glitches in the register clock, and hence produce unreliable hardware. You
need to be aware of the constraints of the target hardware and, as a general rule,
use only simple logic in the if expression.

It is possible to specify a gated clock with a statement such as:

if clk1 and ena then

-- register assignments here

end if ;

which implies a logical AND in the clock line.

To specify a clock enable use nested if statements:

if clk1 then

if ena then

-- register assignments here

end if ;

end if ;

This will connect 'ena' to the register clock enable if the clock enable
compile option is used. If the clock enable option is not used then the data path will
be gated with 'ena'. In neither case will 'ena' gate the 'clk1' line.

See also: D - Compile options.
5 - 8 5 - Programming Sequential Logic

Synchronous Set/Reset

To add the behavior of synchronous set or reset we simply add a
conditional assignment of a constant immediately inside the clock specification.

-- Set:

process (clk)

begin

if clk and clk'event then -- clock rising

if set then

y <= true;-- y is type boolean

else

y <= a and b;

end if;

end if;

end process;

-- 29 bits reset , 3 bits set by init

process

begin

wait until clk-- clock rising

if init then

y <= 7; -- y is type integer

else

y <= a + b;

end if;

end process;
5 - Programming Sequential Logic 5 - 9

Asynchronous Set or Reset

To describe the behavior of asynchronous set or reset the initialization is
no longer within the control of the clock. We simply add a conditional assignment
of a constant immediately outside the clock specification.

-- Reset using a concurrent statement statement:

y <= false when reset else a when clk and clk 'event else y;

-- and using the function rising_edge described earlier :

y <= false when reset else a when rising_edge(clk);

-- Reset using sequential statements:

process (clk, reset)

begin

if reset then

q <= false; -- y is type boolean

else

if clk and clk'event then -- clock rising

q <= d;

end if;

end if;

end process;

procedure ff_async_set (signal clk, a, set: boolean;
signal q : out boolean)

begin

if set then

q <= true;

elsif clk and clk'event then -- clock rising

q <= a; -- D input

end if;

end;
5 - 10 5 - Programming Sequential Logic

Asynchronous Set and Reset

To describe the behavior of both asynchronous set and reset we simply
add a second conditional assignment of a constant immediately outside the clock
specification.

-- Reset and Set using a concurrent statement

q <= false when reset else

true when preset else

d when clk and clk 'event;

-- Reset and Set using a sequential statements

process (clk, reset, preset)

begin

if reset then

q <= false; -- q is type boolean

elsif preset then

q <= true

else

if clk and clk'event then -- clock rising

q <= d;

end if;

end if;

end process;
5 - Programming Sequential Logic 5 - 11

Asynchronous Load

To describe the behavior of asynchronous load, replace the constant used
for set or reset with a signal or an expression. Asynchronous load is actually
implemented using both flip flop asynchronous preset and flip flop asynchronous
reset.

-- Load using a concurrent statement

q <= load_data when load_ctl = '1' else d when rising_edge(clk);

-- Load using a sequential statements

process (clk, load_ctl,load_data)

begin

if load_ctl = '1' then

q <= load_data;

elsif rising_edge(clk) then

q <= d;

end if;

end process;
5 - 12 5 - Programming Sequential Logic

Register Inference Rules

Storage elements are inferred by the use of the if statement. Register
control signals are specified with the expression in an if statement, the control
signal function is specified by the assignments (or lack of assignments) in the
branches of the if statement.

if if expression then

then branch

else

else branch

end if ;

Multiple nested if statements are combined to specify multiple register
control signals. The execution of the first if statement may not be conditional on any
other statements, unless the condition is a metalogic expression.

The scope of register inference is a single concurrent statement.

Reset/Preset

One branch of the if statement assigns a constant (metalogic expression)
to the register. The other branch assigns input to the register.

Clock

One branch of the if statement assigns to the register, the other branch
does not assign to the register (or assigns the register output). A register is inferred
because its value is incompletely specified.

Clock Enable

One branch of the if statement assigns to the register input in the clock
expression, the other branch does not assign to the register. Must occur
immediately within the clock if statement.
5 - Programming Sequential Logic 5 - 13

Inference priority

Control signals are inferred with the following priority, listed with the
highest priority first (not all combinations are supported) :

• Asynchronous reset / preset

• Clock

• Clock Enable

• Synchronous reset
5 - 14 5 - Programming Sequential Logic

6 - Programming Finite State Machines

Introduction

Feedback Mechanisms

Moore Machine

Mealy Machine
6 - Programming Finite State Machines 6 - 1

Introduction

Finite state machines (FSMs) can be classified as Moore or Mealy
machines. In a Moore machine, the output is a function of the current state only;
thus can change only on a clock edge. Whereas a Mealy machine output is a
function of the current state and current inputs, and may change when any input
changes.

This section shows the relationship between these machines and VHDL
code. Each example illustrates a single machine. This is not a constraint, just a
simplification. If there were multiple machines, they could have different clocks. In
this case, synchronization would be the responsibility of the designer.

You can find additional examples in 7 - Some Common Examples in
VHDL.
6 - 2 6 - Programming Finite State Machines

Feedback Mechanisms

There are two ways to create feedback -- using signals and using
variables. With the addition of feedback you can build state machines. This will be
discussed later in this section.

It is possible to describe both combinational and sequential (registered)
feedback systems. When using combinational feedback to create asynchronous
state machines it is often helpful, but not required, to mark the feedback signal with
the Metamor user attribute 'critical' (as discussed in 2 - PLD Programming using
VHDL).

Feedback on signals

architecture example of some_entity is

signal b: bit;

function rising_edge (signal s : bit) return boolean is

begin

return s = '1' and s'event;

end ;

begin

process (clk, reset)

begin

if reset = '1' then

c <= '0';

elsif rising_edge(clk)

c <= b;

end if ;

end process ;

process (a, c)-- a combinational process

begin

b <= a and c;

end process;

end example;
6 - Programming Finite State Machines 6 - 3

exam

6 - 4
A more concise version of the same feedback is shown in the following
ple:

use work.my_functions.all; -- package containing
-- user function rising_edge

architecture example of some_entity is

begin

process (clk,reset)

begin

if reset = '1' then

c <= '0';

elsif rising_edge(clk)

c <= a and c;

end if ;

end process;

end example;

c
a

clk

reset
6 - Programming Finite State Machines

ctivate. If
ng,
 are used
fore they

wait
Feedback on variables

Variables exist within a process, and processes suspend and rea
a variable passes a value from the end of a process back to the beginni
feedback is implied. In other words, feedback is created when variables
(placed on the right hand side of an expression, in an if statement, etc.) be
are assigned (placed on the left hand side of an expression).

Feedback paths must contain registers, so you need to insert a
statement.

c

clk

reset
6 - Programming Finite State Machines 6 - 5

process

variable v: bit;

begin

wait until clk = '1';

if reset = '1' then

v <= '0';

else

v := not v; --v is used before it is assigned

c <= v;

end if ;

end process;

A flip-flop is inserted in the feedback path because of the wait statement.
This also specifies registered output on signal a.

If a variable is declared inside a function or procedure, the variable exists
only within the scope of the subprogram. Since a wait statement can only be
placed within a process statement (a Metamor constraint), variables inside
subprograms never persist over time and never specify registers.
6 - 6 6 - Programming Finite State Machines

Moore Machine

In the following architecture, F1 and F2 are combinational logic functions.
A simple implementation maps each block to a VHDL process.

entity system is
port (clock: boolean; a: some_type;.d: out some_type);

end system;

architecture moore1 of system is
signal b, c: some_type;

begin

process (a, c)

begin

b <= F1(a, c);

end process;

process (c)

begin

d <= F2(c);

end process;

process

begin

wait until clock;

 c <= b;

end process;
end moore1;

A

B C D

clock

F1 F2Register
6 - Programming Finite State Machines 6 - 7

A more compact description of this architecture could be written as follows:

architecture moore2 of system is

signal c: some_type;

begin

process (c)-- combinational logic

begin

d <= F2(c);

end process;

process -- sequential logic

begin

wait until clock;

c <= F1(a, c);

end process;

end moore2;

In fact, a Moore Machine can often be specified in one process.
6 - 8 6 - Programming Finite State Machines

Output registers

If the system timing requires no logic between the registers and the output
(the shortest output propagation delay is desired), the following architecture could
be used:

architecture moore3 of system is

begin

process

begin

wait until clock;

d <= F(a,d)

end process;

end moore3;

A D

clock

Output
RegisterF
6 - Programming Finite State Machines 6 - 9

Input Registers

If the system timing requires no logic between the registers and the input
(if a short setup time is desired), the following architecture could be used:

architecture moore4 of system is

signal a1, d1 : some_type;

begin

process

begin

wait until clock;

a1 <= a;

d1 <= d;

end process;

process (a1, d1)

begin

d <= F(a1,d1)

end process;

end moore4;

A

D

clock

Input
Register

F

Input
Register
6 - 10 6 - Programming Finite State Machines

Mealy Machine

A Mealy Machine always requires two processes, since its timing is a
function of both the clock and data inputs.

architecture mealy of system is

signal c: some_type;

begin

process (a, c)-- combinational logic

begin

d <= F2(a, c);

end process;

process -- sequential logic

begin

wait until clock;

c <= F1(a, c);

end process;

end mealy;

A

B

C

D
F1 F2Register

clock
6 - Programming Finite State Machines 6 - 11

6 - 12 6 - Programming Finite State Machines

7 - Some Common Examples in VHDL

Seven-Segment Decoder

Craps Game

Blackjack

Traffic Light Controller

A Simple ALU

Hello

Fifo
7 - Some Common Examples in VHDL 7 - 1

Seven-Segment Decoder

package seven is

subtype segments is bit_vector (0 to 6);

type bcd is range 0 to 9;

end seven;

use work.seven.all ;

entity decoder is

port (input: bcd; drive: out segments);

end decoder;

architecture simple of decoder is -- segment
--encoding:

begin -- 0

with input select -- ---

drive <= b"1111110" when 0,-- 5 | | 1

 b"0110000" when 1,-- --- <- 6

 b"1101101" when 2,-- 4 | | 2

 b"1111001" when 3,-- ---

 b"0110011" when 4,-- 3

 b"1011011" when 5,

 b"1011111" when 6,

 b"1110000" when 7,

 b"1111111" when 8,

 b"1111011" when 9,

 b"0000000" when others ;-- just in case

end simple;
7 - 2 7 - Some Common Examples in VHDL

Craps Game

package gamble is

type dice is range 0 to 12;

end gamble;

use work.gamble.all ;

entity craps is

port (roll, new_game: boolean; number: dice; win,
 loss: out boolean);

end craps;

architecture no_cheating of craps is

begin

process (roll, new_game,number)

variable first_roll: boolean;

variable point: dice;

constant snake_eyes: dice := 2;

begin

if newgame then -- async reset

first_roll := true;

win <= false;

loss <= false;

point := 0;

elsif roll and roll'event then -- clock

if first_roll then

first_roll := false;

if number = 7 or number = 11 then

win <= true;

elsif number = snake_eyes then

loss <= true;

else

point := number;

end if;
7 - Some Common Examples in VHDL 7 - 3

else

if number = 7 or number = 11 then

loss <= true;

elsif number = point then

win <= true; -- else roll again

end if;

end if;

end if;

end process;

end no_cheating;

This is an example of a state machine with asynchronous reset
("new_game") clocked by the input "roll". Output signals "win" and "loss" are
registered and reset, state bit "first_roll" is registered and set, and the 4 state bits
for "point" are reset. The input number is used on the rising edge of "roll".
7 - 4 7 - Some Common Examples in VHDL

Blackjack

entity blackjack is

port (new_card,clk , new_game: boolean;

card : integer range 2 to 11 ;

say_card,say_hold,say_bust : out boolean) ;

end blackjack;

architecture no_cheating of blackjack is

type play is (hit_me,got_im,test16,test21,hold,bust);

signal action : play ;

begin

state_machine : process

variable total : integer range 0 to 31;

variable ace : boolean;

begin

wait until clk;

if new_game then

action <= hit_me.

total := 0;

ace := false;

else

case action is

when hit_me =>

if new_card then

total := total + card;

ace := (card = 11) or ace;

action :<= got_im;

end if ;

when got_im =>

if not new_card then

action :<= test16;

end if;
7 - Some Common Examples in VHDL 7 - 5

when test16 =>

if total > 16 then

action :<= test21;

else

action :<= hit_me;

end if;

when test21 =>

if total < 21 then

action :<= hold;

elsif ace then

total := total - 10;

action :<= test16;

else

action :<= bust;

end if;

when others => null ;

end case ;

end process ;

-- decode outputs

say_card <= action = hit_me;

say_bust <= action = bust;

say_hold <= action = hold;

end ;
7 - 6 7 - Some Common Examples in VHDL

Traffic Light Controller

entity tlc is

port (clk, reset, farm_traffic: boolean;

farmroad_green_on,

farmroad_yellow_on,

farmroad_red_on,

highway_green_on,

highway_yellow_on,

highway_red_on: out boolean);

end tlc;

architecture a_classic of tlc is

type states is (highway_green, highway_yellow,
farmroad_green,
farmroad_yellow);

type time is range 0 to 100;

signal short_timer, long_timer: time;

signal tlc_state: states;

signal set_timer, short_timeout, long_timeout: boolean;

procedure timer (signal set, clk, set_timer : boolean;

signal timer : inout time;

constant load : time;

signal timeout : out boolean) is

begin

if set or set_timer then -- gated reset !!
timer <= load;

timeout <= false;

elsif timer = 0 then

timout <= true;

else

timer <= timer - 1;

end if;

end ;
7 - Some Common Examples in VHDL 7 - 7

begin

timer (reset, clk, set_timer, short_timer, 30, short_timeout);

timer (reset, clk, set_timer, long_timer, 100, long_timeout);

process (clk)

begin

if clk'event and clk then

if reset then

tlc_state <= highway_green;

set_timer <= false;

else

set_timer <= false;

case tlc_state is

when highway_green =>

if farm_traffic and long_timeout then

tlc_state <= highway_yellow;

set_timer <= true;

end if;

when highway_yellow =>

if short_timeout then

tlc_state <= farmroad_green;

set_timer <= true;

end if;

when farmroad_green =>

if not farm_traffic or long_timeout then

tlc_state <= farmroad_yellow;

set_timer <= true;

end if;
7 - 8 7 - Some Common Examples in VHDL

when farmroad_yellow =>

if short_timeout then

tlc_state <= highway_green;

set_timer <= true;

end if;

end case ;

end if ;

end if ;

end process ;

-- Decode states and drive lights.

farmroad_green_on <= tlc_state = farmroad_green;

farmroad_yellow_on <= tlc_state = farmroad_yellow;

farmroad_red_on <= tlc_state = highway_green or

tlc_state = highway_yellow;

highway_green_on <= tlc_state = highway_green;

highway_yellow_on <= tlc_state = highway_yellow;

highway_red_on <= tlc_state = farmroad_green or

tlc_state = farmroad_yellow;

end a_classic;
7 - Some Common Examples in VHDL 7 - 9

A Simple ALU

package alu_types is

type ops is (add, nop, load, loadc, op_and, op_or, shl, shr);

subtype data_path is bit_vector (0 to 7);

end alu_types;

use work .alu_types.all;

entity alu is

port (a: buffer data_path; instr: ops;
 clk: boolean; b: data_path);

end alu;

architecture simple of alu is

begin

process

function "+" (a, b: bit_vector) return bit_vector is

variable sum: bit_vector (0 to a'high);

variable c: bit:= '0';

begin

for i in 0 to a'high loop

sum(i) := a(i) xor b(i) xor c;

c := (a(i) and c) or (b (i) and c) or (a(i) and b(i));

end loop;

return sum;

end;

function shiftl(a: bit_vector) return bit_vector is

variable shifted: bit_vector (0 to a'high);

begin

-- Shift_left and shift_right are coded differently
-- only for the sake of example.
for i in 0 to a'high -1 loop

shifted(i + 1) := a(i);
end loop;
return shifted;

end ;
7 - 10 7 - Some Common Examples in VHDL

function shiftr(a: bit_vector) return bit_vector is

constant highbit: integer := a'high ;

variable shifted: bit_vector (0 to highbit);

begin

-- Shift_left and shift_right are coded differently

-- only for the sake of example.

shifted(0 to highbit - 1) := a(1 to highbit);

return shifted;

end;

begin

wait until clk;

case instr is

when add => a <= a + b; -- Uses "+" function.

when nop => null ; -- A null statement,

when op_and =>a <= a and b;

when op_or => a <= a or b;

when shl => a <= shiftl(a);

when shr => a <= shiftr(a);

when load => a <= b;

when loadc => a <= not b;

end case;

end process;

end simple;
7 - Some Common Examples in VHDL 7 - 11

Hello

This first design compiles to a simple waveform generator with one input
(the clock) and eight outputs. The output sequences through the ASCII codes for
each of the eleven characters in the string "hello world." The codes change some
logic delay after each rising edge of the clock. When the circuit is reset, the output
is the code for 'h'. The design has four flip-flops that make up the counter.

entity hello is

port (clock, reset: in boolean; char: out character);

end hello;

architecture simple of hello is

constant char_sequence:string := "hello world";

signal step:integer range 1 to char_sequence'high;

begin

counter : process

begin

wait until clock;

if reset then

step <= 1;

else

if step = char_sequence'high then

step <= 1;

else

step <= step +1;

end if ;

end if ;

end process;

decoder : char <= char_sequence(step);

end simple;
7 - 12 7 - Some Common Examples in VHDL

This example is a variant of the previous design; in this case the outputs
are registered as well. The state is maintained in the counter so there are 11 flip-
flops. Note how the counter "step" is initialized (set / reset) by the signal "reset", but
the wraparound for the counter (step = char_sequence'high) will be loaded using
the data input.

entity hello is

port (clock, reset: in boolean; char: out character);

end hello;

architecture second of hello is

begin

process

constant char_sequence:string := "hello world";

variable step:integer range 1 to char_sequence'high;

begin

wait until clock;

if reset then

step := 1;

elsif step = char_sequence'high then

step := 1;

else

step := step +1;

end if ;

char <= char_sequence(step);

end process;

end second;
7 - Some Common Examples in VHDL 7 - 13

This final implementation is not optimal as it specifies two more flip-flops
that are not really required (it is, however, what the code specifies). The third
architecture no longer uses a counter, but uses the output as current state. The
situation is complicated by the repeated characters, therefore, we use a variable to
keep track of these. This design has 9 flip-flops.

entity hello is

port (clock , reset: in boolean; char : out character) ;

end hello;

architecture third of hello is

begin

 process

type rpt_char is (first, second, third, fourth);

variable rpt : rpt_char;

begin

wait until clock;

case char is

when 'h' => char <= 'e';

when 'e'=> char <= 'l';

when 'l' => if rpt = first then

char <= 'l';

rpt := second;

elsif rpt = second then

char <= 'o';

rpt := third;

else

char <= 'd';

rpt := first;

end if ;
7 - 14 7 - Some Common Examples in VHDL

when 'o' => if rpt = third then

char <= ' ';

rpt := fourth;

else

char <= 'r';

rpt := first;

end if ;

when ' ' => char <= 'w';

when 'w' => char <= 'o';

when 'r' => char <= 'l';

when others => char <= 'h';

end case;

if reset then -- yet another way to implement reset

char <= 'h';

end if;

end process ;

end third ;
7 - Some Common Examples in VHDL 7 - 15

Fifo

-- A Parameterized Fifo

-- uses 'one hot' std_logic_vector counters

-- shows techniques for more efficient implementation

-- based on designers knowledge that counters are one hot.

library ieee;

use ieee.std_logic_1164.all ;

entity fifo4 is

- change size of fifo by changing vales of generics

generic (FifoDepth : integer := 16;

FifoWidth : integer := 5);

port (D : std_logic_vector(FifoWidth - 1 downto 0);

Rst : std_logic;

Oe : std_logic;

Ldclk : std_logic;

Unclk : std_logic;

Empty : buffer std_logic; -- these outputs are fed back

Full : buffer std_logic; -- to flip-flop clock enable

Full_2 : out std_logic;

Empty_2: out std_logic;

Q : out std_logic_vector(FifoWidth - 1 downto 0));

end fifo4;

architecture dataflow of fifo4 is

-- types

subtype data_path is std_logic_vector(0 to FifoWidth -1);

subtype fifo_ptr is std_logic_vector(1 to FifoDepth);

type fifo_type is array (fifo_ptr'range) of data_path;

-- constant

constant tristate : data_path := (others => 'Z');

constant dont_care : data_path := (others => '-');
7 - 16 7 - Some Common Examples in VHDL

-- signals

signal Fifo : fifo_type;

signal ReadPtr, WritePtr : fifo_ptr;

signal Qint : data_path;

-- rotate, no logic when 'r' is a constant

function "ro l"(l: std_logic_vector; r: integer) return
std_logic_vector is

begin

return To_StdLogicVector(To_bitvector(l) rol r);

end ;

-- the ring counter, fast but register greedy, it is 'one hot'

-- uses std_logic_vector "rol" above

procedure ring_counter (signal rst , clk, clkena : std_logic;

signal count : inout std_logic_vector) is

constant one_hot : fifo_ptr := (1 => '1' , others => '0');

begin

if Rst = '0' then

count <= one_hot;

elsif rising_edge(clk) then

if clkena = '1' then

count <= count rol 1;

end if;

end if ;

end ;

-- the ring counters are coded 'one hot',

-- so we write a faster compare,

-- because the predefined "/=" doesnt know

-- std_logic_vector is one hot

-- in this case the (l'length /= r'length) test

-- is never true in the fifo example
7 - Some Common Examples in VHDL 7 - 17

function "/="(l,r: std_logic_vector) return std_logic is

-- normalize the ranges because
-- loop below assumes the same range

alias ll: std_logic_vector (l'length downto 1) is l ;

alias lr: std_logic_vector (r'length downto 1) is r ;

begin

if l'length /= r'length then

return '1';

end if ;

for i in ll'reverse_range loop

-- if same hot bit then args are equal, so /= returns zero

if (ll(i) AND lr(i)) = '1' then

return '0';

end if ;

end loop ;

return '1';

end ;

begin

-- FifoDepth flip-flops with clock enable,
-- low bit preset, rest are reset

read_ring_counter:

ring_counter (Rst, Unclk, Empty, ReadPtr);

-- FifoDepth flip-flops with clock enable,

-- low bit preset, rest are reset

write_ring_counter:

ring_counter (Rst, Ldclk, Full, WritePtr);
7 - 18 7 - Some Common Examples in VHDL

read_fifo:

process (ReadPtr, Fifo)

begin

Qint <= dont_care; -- because use of ReadPtr is one hot

for i in ReadPtr'range loop

if ReadPtr(i) = '1' then

 Qint <= Fifo(i);

end if;

end loop ;

end process read_fifo;

-- (FifoWidth * FifoDepth) flip-flops with clock enable

write_fifo:

process (Ldclk)

begin

if rising_edge(Ldclk) then

if Full = '1' then

for i in WritePtr'range loop

if WritePtr(i) = '1' then

Fifo(i) <= D;

end if ;

end loop ;

end if ;

end if ;

end process write_fifo;
7 - Some Common Examples in VHDL 7 - 19

-- FifoWidth tristate buffers

Q <= Qint when Oe = '1' else tristate;

-- active low control signals ,

-- the "/=" and "rol" are the overloaded functions defined above

Full <= ReadPtr/= WritePtr rol 1;

Full_2 <= ReadPtr/= WritePtr rol 3;

Empty<= ReadPtr/= WritePtr;

Empty_2 <= ReadPtr rol 2 /= WritePtr;

end dataflow;
7 - 20 7 - Some Common Examples in VHDL

8 - Synthesis of VHDL Types

Introduction

Enumerated Types

Numeric Types

Arrays and Records
8 - Synthesis of VHDL Types 8 - 1

Introduction

In VHDL, types are used for type-checking and overload resolution. For
logic design, each type declaration also defines the encoding and number of wires
to be produced. For subtypes, checking and overloading use the base type of the
subtype.

Each subtype declaration defines a subset of its type and can specify the
number or wires, and possibly the encoding scheme.

During compilation by Metamor, ports with types that compile to multiple
wires are renamed by appending "_n", where n is an incremented integer starting
from zero.
8 - 2 8 - Synthesis of VHDL Types

Enumerated Types

As a default, enumerated types use binary encoding. Elements are
assigned numeric values from left to right, and the value of the leftmost element is
zero.

The number of wires will be the smallest possible n, where:

number of elements <= 2**n

• The type bit is synthesized to one wire.

• The type character is synthesized to eight wires.

Don't Cares

Unused encodings are implicitly compiled as "don't care" conditions; these
allow Metamor to perform additional logic optimizations. Subtypes use the element
encodings of their base, and types define additional "don't care" conditions. Dont
care may be explicitly specified using 'enum_encoding' as described in the next
section. See also: Std_logic_ll64.

For example:

The declaration: Is synthesized as:

type direction is (left, right, up, down); Two wires.

type cpu_op is (execute, load, store); Two wires;
the encoding of
11 is a "don't care."

subtype mem_op is cpu_op Two wires;
range load to store; the encodings of

00 and 11 are "don't cares."

In the example below, logic will be generated with inputs 11 and 00 as
"dont care" conditions for evaluating output_var .

variable operation: mem_op;
...
case operation is

load => output_var :=...;
store => output_var :=...;

end case;
8 - Synthesis of VHDL Types 8 - 3

User Defined Encoding

Users may redefine the encoding of an enumerated type using the
attribute 'enum_encoding'. For example, cpu_op might be redefined with one hot
encoding:

attribute enum_encoding of enum_t : type is "001 010 100";

-- or ... : type is "one hot";

-- or ... : type is "1-hot";

or kept as two bits with a different encoding:

attribute enum_encoding of enum_t : type is "01 10 11";

The definition of the encoding may contain a string consisting of '0' '1' 'Z'
'M' or '-', delimited by whitespace. The encoding of each enumerated element must
have the same number of characters. Each encoding should be unique. The
encoding 'Z' represents a high impedance, the encoding '-' represents a dont care,
and the encoding 'M' represents a metalogic value.

Users must be aware that the enum_encoding attribute allows the user to
redefine the semantics of an enumerated type. In certain cases this may results in
synthesis creating logic that does not have the same behavior as the original VHDL
source! In general, this is not a big problem; it is, however, a pitfall to be aware of,
as explained below.

Enumerated types in programming languages are defined as having
unique and ascending values. In order to maintain behavior the enum_encoding
specified by the user should be unique and ascending. Non-unique encoding
should be avoided. For non-ascending encoding, the user must overload the
ordering operators < <= > >= for the re-encoded type of each ordering operator
used.

An example of the use of enum_encoding is the PREP 4: Using
enum_encoding implementation.
8 - 4 8 - Synthesis of VHDL Types

Std_logic_ll64

The library 'ieee' contains the package 'std_logic_1164'; this in turn
declares an enumerated type 'std_ulogic':

type std_ulogic is ('U', -- Uninitialized

'X', -- Forcing Unknown

'0', -- Forcing 0

'1', -- Forcing 1

'Z', -- High Impedance

'W', -- Weak Unknown

'L', -- Weak 0

'H', -- Weak 1

'-' -- Don't care

);

This type and its derivatives 'std_logic' and 'std_logic_vector' are often
used in VHDL simulation. This allows the user to maintain information about the
simulation model itself as well as describe the design. The values 'U' 'X' 'W'
and ‘-’ are referred to as metalogical values because they represent the state of a
model rather than the logic of a design.

An object of type std_logic is encoded as one wire because the library
IEEE (supplied with Metamor) contains the encoding definition:

attribute enum_encoding of std_ulogic : type is "M M 0 1 Z M 0 1 -";

The attribute defines the semantics for each element:

'0' 'L' Logic value 0
'1' 'H' Logic value 1
'Z' Logic value tristate
'U' 'X' 'W' Metalogic value
'-' Don’t care value

The 'U' 'X' 'W' and '-' values have the same synthesis semantics -- except
as arguments to the IEEE Standard 1076.3 function STD_MATCH. The semantics
are defined in 1076.3 and allow dont care logic optimization if evaluation results in
assigning a metalogic value or dont care value.
8 - Synthesis of VHDL Types 8 - 5

These semantics are designed for compatibility with simulation; if an 'X'
propagates in simulation, there may be dont care optimization. Note that some
operations don’t propagate unknowns:

• "=" with one metalogic argument is always false

• "/=" with one metalogic argument is always true

• an ordering operator with a metalogic argument is illegal

• a case choice containing metalogic is always ignored

The function ieee.numeric_std.std_match provides wildcard matching for
the dont care value.

An example of the use of std_logic is in PREP 4: Using std_logic_1164 .

One Hot Encoding

User defined encoding may be used to specify one hot encoding. For
instance, in Prep 4 the enumerated type 'state_type' could be redefined as one hot
simply by changing the enum_encoding attribute. There are two possible forms:

type state_type is (st0,st1,st2,st3,st4,st5,st6,st7,st8,
 st9,st10,st11,st12,st13,st14,st15);

-- either
attribute enum_encoding of state_type : type is "one hot";
-- or
attribute enum_encoding of state_type : type is

"0000000000000001 " & -- st0
"0000000000000010 " & --st1
"0000000000000100 " &
"0000000000001000 " &
"0000000000010000 " &
"0000000000100000 " &
"0000000001000000 " &
"0000000010000000 " &
"0000000100000000 " &
"0000001000000000 " &
"0000010000000000 " &
"0000100000000000 " &
"0001000000000000 " &
"0010000000000000 " &
"0100000000000000 " &
"1000000000000000"; -- st15
8 - 6 8 - Synthesis of VHDL Types

The encoding is specified in ascending order so the ordering operators (
"<" "<=" ">" ">=") function as expected, and so writing additional functions to define
these operations is not needed. Dont care conditions are handled automatically
and transparently to the user.

An alternative method to describe one hot encoding is to use arrays of
'std_logic' (or even 'bit'). This method may be slower to compile and require
additional explicit dont care specification. The recommended style is to use
enumerated types and enum_encoding.
8 - Synthesis of VHDL Types 8 - 7

Numeric Types

Numeric types consist of integer, floating point, and physical types. Two
encoding schemes are used by Metamor for numeric types:

• Numeric types and subtypes that contain a negative number in their
range definition are encoded as 2's complement numbers.

• Numeric types and subtypes that contain only positive numbers are
encoded as binary numbers.

The number of wires that are synthesized depends on the value in its
subtype declaration that has the largest magnitude. The smallest magnitude is
assumed to be zero for numeric types.

Floating point numbers are constrained to have the same set of possible
values as integers -- even though they can be represented using floating point
format with a positive exponent.

Numeric types and subtypes are synthesized as follows:

The declaration: Is synthesized as:

type int0 is range 0 to 100 A binary encoding having 7 bits.

type int1 is range 10 to 100 A binary encoding having 7 bits

type int2 is range -1 to 100 A 2's complement encoding having 8 bits
(including sign).

subtype int3 is int2 range 0 to7 A binary encoding having 3 bits.

Warning: Take great care when using signed scalar numbers. These are
encoded as twos-complement, which is a fixed width encoding.

This can be a problem when mixing objects that have different signed
subtypes -- each will have different widths and result in unexpected behavior. This
is not a problem during simulation since these objects are always encoded as a
fixed , 32 bit, width.

It is probably safest to use unsigned scalar types. Another option is to use
an array of bits to explicitly specify the width; this is the approach taken by the
Synopsys and IEEE 1076.3 synthesis package.
8 - 8 8 - Synthesis of VHDL Types

If the type of the object to which the result is assigned has more bits than
either of the operands, the result of the numeric operations is automatically sign
extended or zero extended. Sequential encoded types are zero extended, and
two's compliment numbers are sign extended.

If the type of the object to which the result is assigned has fewer bits than
either of the operands, the result of the numeric operations is truncated.

If a numeric operation has a result that is larger than either of the
operands, the new size is evaluated before the above rules are applied.

For example, a "+" generates a carry that will be truncated , used , or sign
(or zero) extended, according to the type of the object to which the result is
assigned.

type short is integer 0 to 255;

subtype shorter is short range 0 to 31;

subtype shortest is short range 0 to 15;

signal op1,op2,res1 : shortest;

signal res2 : shorter;

signal res3 : short

begin

res1 <= op1 + op2; -- truncate carry

res2 <= op1 + op2; -- use carry

res3 <= op1 + op2; -- use carry and zero extend

Note that if shorter had been declared as:

subtype shorter is short range 0 to 16;

The encoding of integers rounded up to the nearest power of two would
have the same result.

Arrays and Records

Composite types (arrays and records) are treated as collections of their
elements. Subtypes of composite types are treated as collections of the elements
of the subtype only.
8 - Synthesis of VHDL Types 8 - 9

8 - 10 8 - Synthesis of VHDL Types

9 - Managing Large Designs

Using Hierarchy

Blocks

Direct Instantiation

Components and Configurations

Package Declarations and Use Clauses

VHDL Design Libraries

Metamor VHDL Libraries

Hierarchical Compilation
9 - Managing Large Designs 9 - 1

Using Hierarchy

Many of the VHDL design descriptions in this guide consist of a single
entity (the design I/O) and its architecture (the design functionality). This view is
sufficient for many users, but as your designs get larger you will also want to
consider the issues of partitioning and design management.

This section introduces some additional VHDL constructs for partitioning
and sharing code modules. These are block , component, package, and library
statements. Of these, only component has special meaning in the context of
synthesis, so you can refer to any of the standard VHDL texts for detailed
descriptions.

The VHDL entity can have multiple architectures. A particular entity/
architecture pair (referred to as a design entity) can also be referenced from
another architecture as a VHDL component . Instantiating components within
another design provides a mechanism for integrating partitioned designs or for
using other designs in the current design.You can manage the relationship
between a component declaration and various design entities by using
configuration specifications. Because of default configurations, such
specifications are not required.

During Metamor synthesis, a component is also used to tell the logic
optimizer about the hierarchy of your design. Using components in a large design
will result in a design that optimizes faster and produces more efficient results. This
is because using components adds the designer’s knowledge of the hierarchy of a
design to the description, this in turn is used by the compiler to specify the domain
of the logic optimizer. Hierarchy is also useful in the debugging of large designs, in
reusing design units. For VHDL synthesis there are some additional semantics of
hierarchy. It is used to specify logicoptimize granularity, hierarchical compiles, and
silicon specific components.

Controlling the logic optimize granularity

The domain of the Metamor logic optimizer is an architecture, which is the
amount of logic the optimizer will optimize at one time. Using hierarchy to reflect
the structure of your design will allow efficient use of the optimizer.

Specifying an architecture containing a large amount of logic may take a
long time to optimize. Optimizing many small architectures can be quick but may
not give satisfactory results if the optimizer doesn’t see enough of the design at one
time.
9 - 2 9 - Managing Large Designs

There is no right answer, but keep in mind:

• An architecture should typically contain logic that synthesizes between
500 and 5000 gates.

• There is no lower bound, an architecture could simply specify
connectivity and imply no gates.

• You can cause a Child to be optimized as part of each of its Parents
by applying the synthesis attribute "ungroup" to the component
declaration.

Hierarchical compile

It is not necessary (and possibly not even a good idea)to compile a whole
design in one pass. Large designs are commonly compiled in multiple partitions
and the resulting netlists linked together. Since you can compile more than one
entity/architecture in one pass, compile granularity is distinct from optimize
granularity. Compile methodology is discussed in Compiling.

From the point of view of the VHDL code, you don’t have to do anything
special for hierarchical compile (although there are some constraints imposed by
netlist semantics Hierarchical compile). Simply compile the parent without the
Child :

---Parent

library ieee;

use ieee.std_logic_1164.all ;

entity Parent is

port (a : std_logic_vector(7 downto 5);

 v : ou t std_logic_vector(1 to 3));

end Parent;

architecture behavior of Parent is

-- component declaration , unbound

component Child

port (I : std_logic_vector(2 downto 0) ;

O : out std_logic_vector(0 to 2));

end component ;
begin

-- component instantiation
u0 : Child port map (a,v);

end ;
9 - Managing Large Designs 9 - 3

This results in a netlist containing an instance of Child but no definition of
Child. The Child entity is then compiled and the resulting netlist linked by a
downstream tool. In practice many cases are possible, a Parent may have a
Child_1 defined and compiled at this time, and Child_2 compiled at a different time.

Silicon specific components

It is also possible that the Child is never defined to the synthesis tool, but
defined by a downstream tool. You can use this to specify primitives in the target
hardware. The primitives could be as simple as I/O buffers, or clock buffers. They
might also be a pre-defined component such as a special counter, or an XBLOX
or LPM macrocell. For simulation using third party tools prior to simulation you may
need simulation models of such components. These models should not be visible
to the synthesis compiler.

---Parent

library ieee;

use ieee.std_logic_1164.all ;

entity Parent is

port (a : std_logic_vector(7 downto 5);

v : out std_logic_vector(1 to 3));

end Parent;

architecture behavior of Parent is

-- component declaration , unbound

component IN_BUF_3

port (I : std_logic_vector(2 downto 0) ;

O : out std_logic_vector(0 to 2));

end component;

component OUT_BUF_3

port (I : std_logic_vector(2 downto 0) ;

O : out std_logic_vector(0 to 2));

end component ;

signal x : std_logic_vector(2 downto 0);

--you may need to add this attribute , see the text below.

attribute macrocell : Boolean;

attribute macrocell of IN_BUF_3, OUT_BUF_3 : component is true;
9 - 4 9 - Managing Large Designs

begin

-- component instantiations

u0 : IN_BUF_3 port map (a,x);

u2 : OUT_BUF_3 port map (x,v);

end ;

If the ports of your component have a type corresponding to multiple bits,
you should add the macrocell attribute as shown. Adding the attribute is not
required if the component has only single bit ports (such as those with type
std_logic). The macrocell attribute changes the naming conventions for expanding
component bus names.
9 - Managing Large Designs 9 - 5

Blocks

Designs can be partitioned using block statements or component
statements. These constructs have the same meaning as blocks and components
in schematic capture.

Block statements can be used to partition concurrent statements, as in the
following example:

architecture partitioned of some_design is

begin

a_block: block

begin

-- concurrent statements here

end block ;

another: block

begin

-- concurrent statements here

end block;

end partitioned;
9 - 6 9 - Managing Large Designs

Direct Instantiation

Each element of the design hierarchy (each entity architecture
combination) may be directly instantiated within another. For example :

-- The design leaf

entity child is

port (a, b: bit; c out bit);

end child;

architecture stupid of child is

begin

c <= a and b;

end stupid;

-- The design root

entity parent is

port (a, b: bit; c: out bit);

end parent

architecture family of parent is

signal w, r: bit;

begin

huey: entity child port map (a, b, w);--direct instantiations

luey: entity child port map (a, w, r);

duey: entity child port map (a, r, c);

end family;

A more powerful method of instantiation using components is described in
the following section.
9 - Managing Large Designs 9 - 7

Components and Configurations

VHDL allows any number of entity-architecture pairs, which are referred to
as design entities. These design entities can be referenced from another
architecture as components. The mapping of design entities is managed using a
configuration specification, which associates particular component instances with
a specified design entity.

The first example contains three component instantiations:

-- The component definition

entity goose is

port (a, b: bit; c out bit);

end goose;

architecture snow_goose of goose is

begin

c <= a and b;

end snow_goose;

-- The design definition

entity flock is

port (a, b: bit; c: out bit);

end flock;

architecture three_geese of flock is

signal w, r: bit;

component goose--component declaration

port (a, b: bit; c: out bit);

end component ;

begin

one: goose port map (a, b, w);--component instantiations

two: goose port map (a, w, r);

three: goose port map (a, r, c);

end three_geese;
9 - 8 9 - Managing Large Designs

In this example, the architecture three_geese contains a declaration of a
component goose and three instantiations of that component, but no definition of
the component's configuration. By default, VHDL uses an entity of the same name
as the component (in this case goose), which is defined at the beginning of the
design.

You can override the default component definition by using a configuration
specification. For example, a configuration specification could have been used to
describe another architecture of entity flock, as follows:

architecture three_birds of flock is

signal w, r: bit;

component bird--component declaration

port (a, b: bit; c: out bit);

end component ;

for all : bird use work.goose;--configuration specification

begin

one: bird port map (a, b, w);--component instantiations

two: bird port map (a, w, r);

three: bird port map (a, r, c);

end three_birds;

In a configuration specification, instantiation labels (in this example, "one,"
"two," and "three") can be used instead of the reserved word all to indicate that the
configuration applies to particular instances of the specified component.
Configurations have many other capabilities that are described in the standard
VHDL texts.

If a design contains multiple design entities, you need to specify which one
is used as the root (top level) of the design. Metamor's default is the last entity
analyzed. You can override this default by using the elaborate compile option.
9 - Managing Large Designs 9 - 9

Package Declarations and Use Clauses

The package declaration can be used to declare common types and
subprograms. For example:

package example_package is

type shared_enum is (first, second, third, last);

end example_package;

In order for the contents of a package to be visible from inside an entity or
an architecture, you need to place a use clause before the entity declaration. For
example:

use work.example_package.all ;

entity design_io is

...

end design_io;

Placing a use clause before an entity causes the contents of the specified
package to be visible to that entity and its architecture(s), but nowhere else.

The work library is the default name of the current library. For now, just
treat it as template and always include it in the use clause.

Since the VHDL visibility rules ignore file boundaries, the package might
be in one file, the use clause and entity declaration in another, and the architecture
in a third file. VHDL requires that these units have already been analyzed when
they are referenced in the code, therefore the order in which the files are specified
to the compiler is important. It is not required that design units be placed in different
files.

To define common subprograms, a package body is used. For information
on this construct, and other applications of the use clause, refer to the standard
VHDL texts.
9 - 10 9 - Managing Large Designs

VHDL Design Libraries

In VHDL, a design library is defined as "an implementation-dependent
storage facility for previously analyzed design units" (LRM, Section 11.2). The
library "work" is a special case, as it is an alias for the current library.

In Metamor, a library is simply an external VHDL file or files, so files
specified directly to the compiler are in the library "work". Files specified through a
vhdl library statement (by direct association or alias association) are contained in
the "work" library Some files stored in the Metamor directory are also saved as pre-
analyzed binary ".mm0" files,

Libraries are made visible within the source code by the library statement.
To make the library units within the library visible outside the library, it is necessary
to add use statements:

library stuff;

use stuff.all ;-- Makes visible all design units in stuff.

use useless.all ;-- Makes all declarations in the design unit

named useless visible.

or enter the following statement for each design unit:

use stuff.useless.all ;

There are two mechanisms for associating VHDL libraries with source
files. The first assumes a library statement directly specifies a file name, the
second uses a compile option to associate one or more files with a library name.
Power users will probably want to use the second mechanism. The first mechanism
provides a simple default support for libraries.

Direct association

A library is defined as a file of the same name.The library statement above
will cause Metamor to read a file named "stuff.vhd". The compiler searches for the
file in the current directory, then in the Metamor directory. An eight-character limit
is imposed on library names by some versions of the DOS operating system.
9 - Managing Large Designs 9 - 11

Alias association

A library is defined as a list of files by a compile option. The library alias
compile option allows a library to be defined as containing a list of files in the order
thay are to be analyzed. See D - Compile options.

Common uses are to add files such as the Synopsys library to the library
IEEE:

IEEE <path>\ieee.vhd <path>\synopsys.vhd

or to place a package shared between separtely compiled design units in
the library WORK:

WORK my_pack.vhd

There are three special cases. Aliases of the library "std" are ignored. Also
the file metamor.vhd must be in a library named "metamor" ; and the file ieee.vhd
must be in a library named "ieee." It is not good practice to list unused files because
large libraries may use significant amounts of memory.
9 - 12 9 - Managing Large Designs

Metamor VHDL Libraries

The library files supplied with Metamor contain the following packages :

STD.VHD IEEE 1076 package 'standard'

IEEE.VHD IEEE 1164 package 'std_logic_1164'

NUM_BIT.MM0 IEEE 1076.3 package 'numeric_bit'

NUM_STD.MM0 IEEE 1076.3 package 'numeric_std'

METAMOR.VHD Metamor specific package 'attributes'
Metamor specific package 'array_arith'

VLBIT.VHD Viewlogic package 'pack1076'

SYNOPSYS.VHD Synopsys package 'std_logic_arith'
Synopsys package 'std_logic_unsigned'
Synopsys package 'std_logic_signed'

XBLOX.VHD package 'macros'

LPM.VHD package 'macros200'
package 'macros201'

Documentation for these packages is included within the VHDL source
files, short descriptions follow. The XBLOX and LPM libraries may only be used in
association with XBLOX or LPM compilers.
9 - Managing Large Designs 9 - 13

std.standard

The VHDL 1076 package, declares bit, bit_vector, boolean, etc.

ieee.std_logic_1164

The IEEE standard 1164 package, declares std_logic, std_logic_vector,
rising_edge(), etc.

ieee.numeric_bit

This package is part of the IEEE 1076.3 Draft Standard VHDL Synthesis
Package. The package is supplied in binary compiled form. The source code is
available from the IEEE as part of the Standard.

This package defines numeric types and arithmetic functions for use with
synthesis tools. Two numeric types are defined:

UNSIGNED: represents an UNSIGNED number in vector form

SIGNED: represents a SIGNED number in vector form

The base element type is type BIT. The leftmost bit is treated as the most
significant bit. Signed vectors are represented in two's complement form. This
package contains overloaded arithmetic operators on the SIGNED and
UNSIGNED types. The package also contains useful type conversions functions,
clock detection functions, and other utility functions.

This package is in the binary file num_bit.mm0. To use this package the
library alias for IEEE should be set to num_bit.vhd. (IEEE <path>\num_bit.vhd)

See VHDL Design Libraries for information on alias association.

ieee.numeric_std

This package is part of IEEE 1076.3 Draft Standard VHDL Synthesis
Package. The package is supplied in binary compiled form. The source code is
available from the IEEE as part of the Standard.
9 - 14 9 - Managing Large Designs

This package defines numeric types and arithmetic functions for use with
synthesis tools. Two numeric types are defined:

UNSIGNED: represents an UNSIGNED number in vector form

SIGNED: represents a SIGNED number in vector form

The base element type is type STD_LOGIC. The leftmost bit is treated as
the most significant bit. Signed vectors are represented in two's complement form.
This package contains overloaded arithmetic operators on the SIGNED and
UNSIGNED types. The package also contains useful type conversions functions.

This package is in the binary file num_std.mm0, the package depends
upon IEEE.STD_LOGIC_1164. To use this package the library alias for IEEE
should be set to include ieee.vhd and num_std.vhd. (IEEE <path>\ieee.vhd
<path>\num_std.vhd)

See VHDL Design Libraries for information on alias association.

metamor.attributes

Declarations of the metamor specific synthesis attributes.

metamor.array_arith

This package contains subprograms that allow arithmetic operations on
arrays for optimizing third party synthesis packages. These functions are intended
to be hidden from the end user within other functions contained in a third party
package. There would be two implementations of the package body, one optimized
for synthesis (uses these functions), and the other optimized for simulation.

The documentation with the file describes the list of assumptions and
example usage. More examples of the use of these functions can be found in
vlbit.vhd and synopsys.vhd

vlbit.pack1076

This package contains type and subprogram declarations for Viewlogic's
built-in type conversion and bus resolution functions. The package has been
optimized for use with the Metamor compiler. Vlbit based designs may (or may not)
require some modification; this is described below.
9 - Managing Large Designs 9 - 15

Vlbit designs may make use of register inference conventions that are
different from those used by Metamor. The case to look for is preset/reset, which
is specified in a wait statement along with the clock. Using Metamor, this will result
in a gated clock, which is probably not what you want. You should replace the wait
statement with the if-then style of register inference.

You should validate using simulation and also check to see that the
number of registers used and their type (flip-flop/latch, preset/reset, sync/async)
are what you expected. When run in verbose mode, the compiler reports register
types, and number of instances.

ieee.std_logic_arith
ieee.std_logic_unsigned

These packages are versions of the Synopsys packages that have been
optimized for use with the Metamor compiler. When importing designs you should
validate using simulation and also check the number of registers used and their
type (flip-flop/latch, preset/reset, sync/async) to ensure they are what you
expected. When run in verbose mode the compiler reports register types, and
number of instances.

These packages are in the file synopsys.vhd (although they are not an
IEEE standard). To use these packages the library alias for IEEE should be set to
include ieee.vhd and synopsys.vhd.

See VHDL Design Libraries for information on alias association.

xblox.macros

This package contains component declarations for Xblox macrocells, for
use with the Xblox compiler. These components may be instantiated in your design
in the usual way. For example:

 u1 : compare port map (d1,d2, a_ne_b => x);

The package is based on ieee.std_logic_1164.std_logic. If you wish to use
datatypes other than std_logic, then create your own package by copying from this
one. There are no hidden magic words, except that the port and generic names
must match the Xblox specification. All components that are Xblox macrocells must
have the Metamor synthesis attribute 'macrocell' set to 'true'.
9 - 16 9 - Managing Large Designs

lpm.macros200
lpm.macros201

This package contains component declarations for Lpm macrocells, for
use with an LPM compiler. These components may be instantiated in your design
in the usual way. For example:

 u1 : lpm_compare generic map (4,"unsigned")

port map (d1,d2, aeb => x);

The package is based on ieee.std_logic_1164.std_logic. If you wish to use
datatypes other than std_logic, then create your own package by copying from this
one. There are no hidden magic words, except that the port and generic names
must match the LPM specification. All components that are LPM macrocells must
have the Metamor synthesis attribute 'macrocell' set to 'true'.

LPM requires instance specific Properties. These are specified by using
VHDL generics. The component declarations include these generic declarations.
Instance specific values are specified with a generic map. Some examples are :

signal d1 : std_logic_vector(3 downto 0)

signal d2 : std_logic_vector(0 to 3)

signal d3,d4 : std_logic_vector(7 downto 6)

....

u1 : lpm_compare generic map (4) --default is "signed"

port map (d1,d2, aeb => x);

u2 : lpm_compare generic map (2,"unsigned")

port map (d3,d4, y1, y2); -- agb not used

u3 : lpm_compare generic map
 (representation =>"unsigned", width => 2)

port map (d3,d4, z); -- alb is used
9 - Managing Large Designs 9 - 17

Hierarchical Compilation

The whole design need not be recompiled when only a single architecture
changes. Metamor supports this feature through hierarchical compilation. The
granularity of hierarchical compilation is the component .

This feature requires that the user maintain and link the resulting elements
of the hierarchy (components) external to Metamor. The user is also responsible
for checking the root and leaf interfaces for consistentcy. This feature is only
available with output formats that support hierarchy.

If a component has no entity visible when the design root is compiled, no
entity is bound to that component. This results in a hierarchy instantiation in the
output file with no definition for that leaf of the hierarchy. The leaf entity that was
not visible during the first compilation is generated by a second compilation using
Metamor. .

Because the binding between root and leaf is external to the VHDL
compiler (the user links these together) certain VHDL features are not available at
the hierarchical compilation boundary. The user is responsible to ensure that
component and entity port definitions match exactly. Some things to watch out for
include:

• Leaf entity and component names must be the same.

• Leaf entity and component port names and subtypes must be the
same.

• Leaf instance may not have a 'generic map'.

• Leaf may not have a port that has a type that is unconstrained.

• Ports that have an array type must have matching directions in the
entity and component declaration.

• Leaf component declaration may not contain a port map (the
component instantiation may still contain a port map)

• Root and leaf must not reference a signal declared outside of their
scope (e.g. a signal declared in a package).

• Configurations are not supported at (or across !!) the hierarchical
compilation boundary.
9 - 18 9 - Managing Large Designs

10 - Logic and Metalogic

Introduction

Logic expressions

Metalogic expression

Metalogic values
10 - Logic and Metalogic 10 - 1

Introduction

An HDL design description consists of code to serve three distinct
functions.

Logic expressions -logic in the hardware implementation. The value of a
logic expression changes over time. In VHDL terms its value depends upon a
signal.

Metalogic expressions -logic about (not in) the hardware
implementation. The value of a metalogic expression does not change over time.
In VHDL terms its value must not depend upon a signal.

Metalogic values - logic value extensions for tools such as simulators or
synthesis tools. Metalogic values describe the state of the design model.

Metalogic expressions are important in synthesis as they imply no
hardware. This allows them to compile faster, and generally produces more
efficient synthesis results. In addition, some constraints on VHDL for synthesis
depend upon certain expressions being metalogic expressions (i.e., they must not
vary over time).

Metalogic values are tool specific values (specific to simulators or
synthesis tools) added to the design description. An understanding of the required
values may be important when porting VHDL code from say a simulator to a
synthesis tool(in addition to the additional constraints of EE design !).

In a classic PLD programming language, design description consists of
logic expressions, constant metalogic expressions, and perhaps 'X' (mapped to 0
or dont care) as a metalogic value.

This section is not for beginners !
10 - 2 10 - Logic and Metalogic

Logic expressions

Logic expressions are familiar to hardware engineers, any classic PLD
programming language consists of logic expressions. In VHDL examples of logic
expressions might be :

(a and b) or c

d + e

If a,b,c,d, and e are signals

Metalogic expression

An example of a simple metalogic expression is one using constants. In
VHDL examples might be:

('0' and '1') or '1'

 e + f

If e and f are constants, generics, generates, loop iterators or, in VHDL
speak, are static, then the expression is a static expression (see LRM) and also
metalogical. Metalogic expressions may also contain variables. More on this later
in this section.

A more useful example of a metalogic expression might be the loop
expression :

for i in 4 to 9 loop

left(i) <= right(i+2);

end loop ;

The expression i+2 implies no logic. It is a metalogic expression, used
(and the loop statement) to specify information about the design, which does not
appear in the implementation. The result is more concise, and the relationship
between the arrays left and right is more clear. Of course, five distinct assignments
would produce the same result.
10 - Logic and Metalogic 10 - 3

An expression containing a variable will be metalogical if the variable's
value depends only on a metalogic expression. Metalogical Variables are very
powerful, but it is only possible to tell if they are metalogical from the context, as
shown in the following example.

An expression is said to be a metalogic expression if it is a static
expression, a metalogic expression may in addition contain variables whose
values depend only upon metalogic expressions.

A larger example of metalogic might be the following function, which
converts a bit vector to an integer. We will see that the logic generated may be
different at each function call, depending upon the argument passed at each call.

constant too_long_msg : STRING :
= "Array too long to be integer.";

constant too_short_msg : STRING :
= "Null array passed to subprogram.";

function to_integer (arg : BIT_VECTOR) return INTEGER is

variable result : INTEGER := 0;

variable w : INTEGER := 1;

begin

-- Report null range

assert arg'length > 0 report too_short_msg severity NOTE;

-- Assert array size limit.

assert arg'length < 32 report too_long__msg;
10 - 4 10 - Logic and Metalogic

-- Calculate bit_vector value.

for i in arg'reverse_range loop

if arg (i) = '1' then

result := result + w;

end if;

-- test before multiplying w by 2, to avoid overflow

if i /= arg'left then

w := w + w;

end if ;

end loop ;

return result;

end to_integer;

Reviewing this function we can see that the variable 'w' depends only on
the initial value (w: integer := 1;) and the current value of 'w' (w := w + w). We can
say that 'w' is always a metalogical variable and the assignments to 'w' imply no
logic.

The variable 'result' depends on the initial value of 'result' (metalogic), the
value of 'w' (metalogic), and 'arg', which depends on the argument the function is
called with. If the function is called with a metalogic parameter, say :

to_integer("010101");

then arg is a constant, and hence metalogic. It also follows that 'result' is
metalogic. The function implies no logic, just pull up and pull down. However, if the
function were called with a logical parameter, arg would not be metalogic, so
hardware is implied. For example:

to_integer(some_signal);

In this case the algorithm implemented is such that the hardware is simply
wires. (hint: a binary representation of 'w' is always a single 1 and many 0s).
10 - Logic and Metalogic 10 - 5

Variables declared in subprograms allow metalogic expressions. The
same is true of variables declared in a process. However, variables in a process
usually depend on the sensitivity list of a wait statement (statement and list may be
explicit or implied). Therefore, they are usually not metalogical. In simulation
terms, variables in a process persist over time. Variables in a subprogram are
created when the subprogram is called and destroyed when it returns (like the
difference between static variables and automatic variables in C).
10 - 6 10 - Logic and Metalogic

Metalogic values

Metalogic values are extensions we add to the design description. They
provide additional information for tools to allow the tools to produce better results.
Two examples are unknowns (X) for simulation and dont care (-) for logic
optimization. We add these metalogic values as alternatives to logic values (0,1)
within the tools. These metalogic values may have different meanings to different
tools.

Unknowns allows us to detect design description errors during simulation.
Errors such as unconnected inputs or connected outputs (try writing boolean
equations for these !) clearly do not describe logic. Unknowns due to uninitialized
registers (but not unknowns injected due to timing errors) also highlight boolean
logic errors. As long as a simulation propagates such metalogic we know that the
design description does not represent logic.

Dont care works around one of the limitations of a boolean representation,
allowing logic minimizers and technology mappers to produce more compact
description. A high level language provides a more elegant solution, in which the
user never has to consider dont cares. This alternative is to describe the design
using multi-valued enumerated types in place of arrays of booleans. Compare
'state_type' in the two versions of the PREP 4 design: PREP 4: Using
enum_encoding and PREP 4: Using std_logic_1164. The two descriptions produce
equally efficient results.

An understanding of metalogic values is significant because the output of
a synthesis tool is boolean logic (0,1); therefore, the metalogic values are removed
(and possibly used) during synthesis. This is significant if the operation of a design
depends upon metalogic values. A design that depends on some signal having a
value X has two possible implementations: the signal is either 0 or 1 (but never X).

Within VHDL, the only common use of metalogic values is some of the
elements of the enumerated type std_ulogic :

std_ulogic : type is ('U','X','0','1','Z','W','L','H','-');

The IEEE standard 1076.3 specifies that four of these values (‘U’ ‘X’ ‘W’
‘-’) are metalogic values, with specific semantics. However, to a simulator they are
just elements of an enumerated types. For synthesis we make use of the attribute
'enum_encoding' to describe which elements describe logic values and which
describe metalogic values (see Std_logic_ll64). Metamor follows the standard and
considers '0' , '1', 'Z'. ‘L’ and ‘H’ as logic values and the remainder as metalogic
values. The metalogic values may be used within Metamor's logic minimization.
10 - Logic and Metalogic 10 - 7

When using std_logic, the metalogic values 'U' 'X' 'W' and ‘-’ have one
meaning to a simulation tool and another (dont care) to a synthesis tool. Within
Metamor, metalogic values are not simply thrown away, but are treated in
expressions as dont cares as specified by enum_encoding. Signals do not
propagate metalogic values, only '0' '1' and possibly 'Z'.

The use of metalogical values is one possible difference between a
simulation model and a hardware design. For example, with one metalogic
argument, an equality operation will always return false in synthesis, but in
simulation the result will depend upon the current value of the other argument.
Unknown handling may be used for simulation and ignored for synthesis:

assert not isome_signal = ‘X’ report "unknown, bad news" severity error;

The function 'is_x' from 'ieee.std_logic_1164' may be used as a run time
synthesis or simulation flag. This function will always return false within synthesis,
and its result depends upon the current value during simulation.

if is_x('W') then

assert false report "simulation code" severity note;

else

assert false report "synthesis code" severity note;

end if;

WARNING:

Such tricks may impair your validation methodology !
10 - 8 10 - Logic and Metalogic

11 - XBLOX and LPM

Macrocells

LPM and XBLOX

Macrocell Instantiation

Combinatorial Macrocell Inference

Sequential Macrocell Inference
11 - XBLOX and LPM 11 - 1

Macrocells

Macrocells are components whose behavior is defined outside of VHDL by
some other (downstream) tool. Examples of macrocells include Xilinx XBLOX
macros, LPM macros, or a target hardware specific macrocell such as a micro
controller. The Metamor compiler handles macrocells in a manner similar to
Hierarchical Compilation described in 9 - Managing Large Designs.

To declare a macrocell simply add the attribute Macrocell (value true) to
the component declaration.

component compare--component declaration

port (a, b: bit_vector(4 downto 0); c: out bit);

end component ;

attribute macrocell of compare :
 component is true;-- attribute macrocell

Usage is exactly like Hierarchical Compilation with one exception; there is
no requirement that the component match an entity because no such entity exists
(the behavior of a macrocell is defined by some other tool). You may instantiate this
macrocell as you would any other component. For example:

U1: compare port map (a, w, r);

The compiler will issue a run time message:

component : u1 : Macrocell "compare"

This is not an error, simply a note that this component’s behavior is not
defined in VHDL , it will be defined by the macrocell compiler.

If the formal port declarations are unconstrained, or generics are used, the
macrocell becomes a parameterized macrocell. Parameterized macrocells are
only supported for the LPM, XBLOX and Open Abel 2 output formats. This is
described in the following section.

The compiler reports instantiated parameterized macrocells :

component : u1 : Parameterized Macrocell "compare"
11 - 2 11 - XBLOX and LPM

In addition macrocells may be automatically inferred by the compiler.
Whether inferred or instantiated, macrocells usually give better synthesis results in
terms of both area and delay; compilation is usually faster too.

The verbose command line option will enable the compiler to print the
names of inferred macrocells. See D - Compile options.
11 - XBLOX and LPM 11 - 3

LPM and XBLOX

The LPM and XBLOX specifications allow extended macrocell support. :

• Macrocells may be parameterized. This means that each instance of
a particular macrocell may describe different amounts of logic.

• Libraries of component declarations are provided (see section VHDL
Design Libraries)

• Macrocell are inferred. This means that the compiler automatically
recognizes some VHDL statements and expressions as the equivalent
macrocell.

See also: D - Compile options

Macrocell Instantiation

For example, the Compare macrocell from the Xblox library is declared
with unconstrained ports and a style parameter:

component compare

generic (style : string := "");

port (a, b: std_logic_vector;

a_eq_b, a_ne_b, a_lt_b, a_gt_b, a_le_b, a_ge_b :
out std_logic);

end component ;

attribute macrocell of compare : component is true;

The macrocell may be instantiated with input ports whose size varies with
each instantiation. The parameter style may be specified or left as the XBLOX
default. And, in the usual VHDL manner, we may use named association to pick
from the out ports. For example:

U1: compareport map (a_byte, b_byte, a_eq_b => eql);

U2: compareport map (a_byte, b_byte, a_eq_b => eql ,
a_ge_b => bigger);

U3: comparegeneric map ("RIPPLE")
port map (a_word, b_word, a_le_b =>lss);
11 - 4 11 - XBLOX and LPM

Combinatorial Macrocell Inference

Inference occurs transparently to the user when the output format supports
parameterized macrocells. Inference maps VHDL relational and arithmetic
operators to format specific macrocells. For example, the multiply operation below
will results in a multiply macrocell in the LPM format, and a set of adder macrocells
in the XBLOX format.

p <= a * b;

The relational operations map to the Compare macrocell. The following
two concurrent statements are equivalent :

neq <= a_nibble /= b_nibble;

U1: compare port map (a_nibble, b_nibble, a_ne_b => neq);

Macrocell inference only occurs if both operands are VHDL signals (or
more formally are not metalogic expressions). So for example, adding two VHDL
constants will not produce an adder macrocell.
11 - XBLOX and LPM 11 - 5

Sequential Macrocell Inference

If a process contains both inferred flip flops (see 5 - Programming
Sequential Logic) and an inferred combinational macrocell, the compiler can infer
a sequential macrocell. An example is a counter with reset described using a
concurrent statement.

count <= 0 when reset = '1' else count +1 when
rising_edge(clock);

Sequential macrocells often have a synchronous load control, which may
be specified using an if statement. Load inference has the lowest priority of all
register control inference. For example, an accumulator with load:

process (RST,CLK)

begin

if RST then -- Reset

Q <= 0;

else

if (CLK and CLK'event) then

if load then

Q <= P;

else

Q <= P + Q;

end if ;

end if ;

end if ;

end process ;

end behavior;
11 - 6 11 - XBLOX and LPM

The characteristic of load having a lower priority than clock enable for
instance, is a characteristic of the target macrocell and is simply reflected in the
VHDL macrocell inference engine. Sometimes your design may specify different
behavior - but you still want to take advantage of macrocell inference. Suppose
your design specified a counter with an enable and a load that has a higher priority
than clock enable. You could do the following :

process (RST,CLK)

begin

if RST then -- Async Reset

Q <= 0;

else

if CLK and CLK'event then

if LD or CE then -- load dominates clock enable,
-- so OR clkena pin

if LD then -- sync load

Q <= D;

else

Q <= Q + 1;

end if;

end if ;

end if ;

end if ;

end process ;
11 - XBLOX and LPM 11 - 7

11 - 8 11 - XBLOX and LPM

12 - Synthesis Attributes

Predefined attributes

User defined attributes

Attribute 'critical'l

Attribute 'enum_encoding'

 Attribute part_name

Attribute pinnum

Attribute property

Atribute Xilinx_BUFG

Atribute Xilinx_GSR

Attribute foreign

Attribute array_to_numeric

Attribute macrocell

Attribute Ungroup

Attribute Inhibit_buf

Attributes for Downstream Tools
12 - Synthesis Attributes 12 - 1

Predefined attributes

One feature of VHDL that may not be familiar to programmers is attributes.
VHDL has many predefined attributes which allow access to information about
types, arrays, and signals. A list of the supported attributes and their definitions is
contained in A - VHDL Quick Reference. Some examples are :

integer'high -- has a value of 2147483647

integer'low -- has a value of -2147483647

If we declare a subtype of type integer

subtype shorter is integer range 0 to 100;

shorter'high -- has a value of 100

shorter'low -- has a value of 0

and

shorter'base'high -- has a value of 2147483647

when used with an array the 'high attribute has a value of the array index:

type my_array is array (0 to 99) of boolean;

variable info : my_array;

info'high -- has a has a value of 99

There is a set of attributes which give access to information about signal
waveforms. Most signal attributes are for simulation, and have no meaning in the
context of synthesis. However one, 'event, is useful. It may be used on signals to
specify edge sensitivity. It is usually used in combination with a value test to specify
a rising or falling edge.

signal clock : boolean;

not clock and clock'event -- specifies a falling edge.
12 - 2 12 - Synthesis Attributes

User defined attributes

VHDL allows the user to define their own attributes. Metamor uses this
capability to define attributes for synthesis. The declaration of these attributes may
be found in the system library 'metamor'. To use these attributes, either make them
visible (use metamor.attributes.all), or copy to your VHDL source description. The
value of these attributes must be locally static.

package attributes is

-- User defined place and route information passed to

-- output file

attribute pinnum : string;

attribute part_name : string;

attribute property : string;

-- User defined encoding of enumerated types

attribute enum_encoding : string;

-- User specified critical nodes

attribute critical : boolean;

-- User specified macrocells

attribute macrocell : boolean;

end attributes;
12 - Synthesis Attributes 12 - 3

Attribute 'critical'

This introduces nodes into the design, but does so from the VHDL source.
The attribute critical allows the user to specify signals in the VHDL description
whose timing is critical. An assignment to such a specified signal may imply a node
in the output logic description. Critical is also used to put factoring under control of
the user.

attribute critical of a,b,c : signal is true; --a,b,c are nodes

In general, Metamor will create a logic minimized design description in
which there may be no one to one mapping between objects in the VHDL source
description and combinational nodes in the output logic description.

Sometimes this 'minimum logic' description (where logic nodes are
collapsed as controlled by the optimizer) is not optimal for the propagation delay or
layout of the resulting logic. In this event, the user may control the logic
minimization by means of the attribute 'critical', which is applied to a signal in the
VHDL source description.

This may be of use when the delay of the resulting logic can benefit from
the designers knowledge of the structure or circuit (electrical/timing) characteristics
of the implementation and not simply depend on being logically minimal. Critical
constrains both the logic optimizer and the factoring function as specified by the
user. It is also used to specify signals that will have net attributes for downstream
tools.

For example, look at the top level of the of PREP 4: Using std_logic_1164
implementation. Critical is used here to separate the output encoder of one
instance from the input decoder of the next; the result is a faster design. Critical is
used in this case because neither the inputs or outputs of the components are
registered. The state machine inputs are also encoded in such a way that they
(just) fit within 16 product terms. In the multiple instance case, manual specification
of the critical nodes in the combined output/input logic using the critical attribute
produces better results than automatic synthesis.

The relationship between the name of a VHDL signal specified as critical,
and its equivalent node may be complex. For example, a one bit signal may result
in no node if its use is redundant, or many nodes if hierarchy is used. The name of
the VHDL signal may be maintained unless this would lead to a conflict. It may be
prefixed with instance or block labels, or package names, and suffixed with a
number if it represents more than one wire, or have a machine generated name.
12 - 4 12 - Synthesis Attributes

Attribute 'enum_encoding'

You may need to specify different machine encoding for different hardware
technologies. For example, one hot encoding may be preferred for an FPGA but
not for a CPLD. For further information see User Defined Encoding and One Hot
Encoding . Also see Don't Cares for more on enum_encoding.

Attribute part_name

Metamor allows designers to pass place and route information to fitters, or
netlists. This information has no meaning to Metamor, it is simply passed from
VHDL to the output file.

The part_name attribute is used to specify the target device, it may be
applied to the top level entity. The attribute is declared in the Metamor library as :

attribute part_name : string;

The value may be specified as follows:

library metamor;

use metamor.attributes.all

entity special_attributes is

port(c : bit_vector (3 to 5);

d : bit_vector (27 downto 25);

e : out boolean) ;

--usage of part_name

attribute part_name of special_attributes : entity is "22v10";

end special_attributes;

The device compile option will override the value of the part_name
attribute.
12 - Synthesis Attributes 12 - 5

Attribute pinnum

Metamor allows designers to pass place and route information to fitters, or
netlists. This information has no meaning to Metamor, it is simply passed from
VHDL to the output file.

The pinnum attribute is used to specify the pinout in the target device, and
may be applied to ports in the top level entity. The attribute is declared in the
Metamor library as :

attribute pinnum : string;

Its value is a string containing a comma (',') delimited list of pad names or
pin numbers. These values are assigned to the elements of the port in a left to right
order. For example :

library metamor;

use metamor.attributes.all

entity special_attributes is

port (a , b : in integer range 0 to 7;

c : bit_vector (3 to 5);

d : bit_vector (27 downto 25);

e : out boolean) ;

-- usage of pinnum

attribute pinnum of a : signal is "4,5,6,7"; -- extra pin ignored

-- bit 0 of gets "6"

attribute pinnum of b : signal is "8,9"; -- missing pin number

-- b(0) not assigned

attribute pinnum of c : signal is "a3,b4,a1"; -- ascending order

-- c(0) get "a3"

attribute pinnum of d : signal is "w1,W2,w99"; -- descending order

-- c(27) gets "w1"

attribute pinnum of e : signal is "2"; -- single bit

end special_attributes;
12 - 6 12 - Synthesis Attributes

Attribute property

Metamor allows designers to pass place and route information to fitters, or
netlists. This information has no meaning to Metamor, it is simply passed from
VHDL to the output file.

The property attribute is used to pass an arbitary string to the output file. If
applied to an entity the value is included at the head of the output file, if applied to
a port the value is included as a property of the port in the output file. The attribute
is declared in the Metamor library as :

attribute property : string;

The value is passed directly to the output file; therefore, you will need to
know the legal syntax for that file. The second example shows how using VHDL
functions can make this task less error prone.

library metamor;

use metamor.attributes.all

entity special_attributes is

port (c : bit_vector (3 to 5);

d : bit_vector (27 downto 25);

e : out boolean) ;

-- usage of property on an entity

attribute property of special_attributes : entity is

"lca some text" & CR &

"lca more text" & CR &

"lca yet more text" & CR &

"amdmach Mach Specific STuff";

-- usage of property on a port

attribute property of e : signal is "Fast";

end special_attributes;
12 - Synthesis Attributes 12 - 7

Strings are passed to the output file exactly as specified in the VHDL
source, and case is maintained. A characteristic of VHDL is that a new line
character is not legal within a string; therefore, to create several lines we
concatenate strings and a new line using "xxx" & CR & "yyy" as shown in the
example above. This can get a little cluttered unless you declare functions for
commonly used string values. For example:

package xilinx is
function timespec(name,from, too,delay : string) return string;

end ;

package body xilinx is
-- returns an XNF timespec symbol

function timespec(name,from,too,delay : string) return string is
begin

return "SYM, XXX" & name &
 ", TIMESPEC, LIBVER=2.0.0, " & name &

"=from:" & from & ":to:" & too & "=" & delay & CR &
"END" & CR;

end ;
end ;

library ieee,metamor;
use ieee.std_logic_1164.all ;
use metamor.attributes.all ;
use work.xilinx.all ;
entity MORE_ATTRIBUTES is

port (d,c,ce,r,tri : in std_logic;
q,p : out std_logic;
w : out std_logic_vector(2 downto 0));

attribute property of MORE_ATTRIBUTES : entity is
timespec("TS1","FFS","FFS","30ns") &
timespec("TS2","PADS","LATCHES","35ns") &
timespec("TS3","FFS","RAMS","25ns");

attribute property of q,w : signal is "FAST";
-- 4 pins are "FAST"

end ;
12 - 8 12 - Synthesis Attributes

Atribute Xilinx_BUFG

This attribute is ignored if the compiler output format is not XNF. If the
output format is XNF and input and output buffers are being inserted, this attribute
causes IBUFs to be replaced by BUFGs. If buffers are not being inserted, the user
may simply instantiate a BUFG.

The attribute must be declared as :

attribute Xilinx_BUFG : boolean;

For example

library IEEE;

use IEEE.STD_LOGIC_1164.all ;

entity prep7 is

generic (width : natural := 15);

port (CLK, RST,LD,CE : in std_logic;

D : in std_logic_vector(width downto 0);

Q : buffer std_logic_vector(width downto 0));

-- declare Xilinx layout attribute

attribute Xilinx_BUFG : boolean;

-- mark ports CE and LD as using BUFG
-- (CLK will get BUFG by default)

attribute Xilinx_BUFG of CE, LD : signal is true;

end prep7;
12 - Synthesis Attributes 12 - 9

Atribute Xilinx_GSR

This attribute is ignored if the compiler output format is not XNF. If the
output format is XNF, this attribute is used to mark a net that uses the global set
or reset resource. It has the same behavior as a STARTUP symbol.

The attribute must be declared as :

attribute Xilinx_GSR : boolean;

For example:
library IEEE;
use IEEE.STD_LOGIC_1164.all ;

entity prep7 is
generic (width : natural := 15);
port (CLK, RST,LD,CE : in std_logic;

D : in std_logic_vector(width downto 0);
Q : buffer std_logic_vector(width downto 0));

-- declare Xilinx layout attribute
attribute Xilinx_GSR : boolean;

-- mark port RST as using GSR routing resource
-- use this OR use startup symbol below
attribute Xilinx_BUFG of RST : signal is true;

end prep7;

architecture behavior of prep7 is
-- Xilinx 4k startup
component STARTUP

port (gsr,gts,clk : in std_logic := '0';
q2,q3,q1q4,donein : out std_logic);

end component;
begin

-- Instantaiate startup OR use Xilinx_GSR as above
U1 : STARTUP port map (gsr => rst);

end ;

If design units are separately compiled and linked with XNFMERGE and
one unit contains a startup symbol, the units that do not contain the startup symbol
should use the Xilinx_GSR attribute.
12 - 10 12 - Synthesis Attributes

Attribute foreign

VHDL has an external language interface to allow users to specify
modules in some non-VHDL form; the implementation is VHDL tool specific. The
foreign attribute supports external HDLs. This mechanism is only supported using
those output formats that support hierarchy and linking.

This attribute may be applied to an architecture. Its value specifies the
name of the external module. For example :

entity abel_code is

port (a,b : bit_vector(0 to 7) ; sum : out bit_vector(0 to 8)) ;

end abel_code;

architecture simple of abel_code is

attribute foreign of simple : architecture is "adder";

begin

end simple ;
12 - Synthesis Attributes 12 - 11

These statements in the architecture are ignored, and a call to the foreign
language module 'adder' is generated when the entity abel_code is instantiated in
a VHDL design. The inputs and outputs of adder must match the port declarations
in VHDL. There are two constraints: the VHDL ports must have locally static types,
and VHDL generics are not passed to the external module.

For example, the adder might be described in Abel :

MODULE adder

a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7 pin;

b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7 pin;

sum_0, sum_1, sum_2, sum_3, sum_4, sum_5, sum_6, sum_7, sum_8 pin;

a = [a_7..a_0];

b = [b_7..b_0];

sum = [sum_8..sum_0];

EQUATIONS

sum = a + b;

END;

A side effect of the foreign attribute is that the foreign module might be
defined in VHDL. An easier way to do this is provided by the hierarchical
compilation feature described in 9 - Managing Large Designs.
12 - 12 12 - Synthesis Attributes

Attribute array_to_numeric

Some type conversion functions can be very slow to compile during VHDL
synthesis. This attribute accelerates compilation in one specific and common case:
converting arrays to numbers. An example is converting bit_vector to integer as
shown in 10 - Logic and Metalogic. This particular conversion specifies no logic but
is slow to compile. This aspect is also discussed in some detail in 10 - Logic and
Metalogic.

Metamor provides an attribute, 'array_to_numeric', to short circuit the
compilation of such functions as follows:

function to_integer (arg : BIT_VECTOR) return INTEGER is

variable result : natural := 0;

variable w : natural := 1;

attribute array_to_numeric of to_integer : function is true;

begin

-- Calculate bit_vector value.

for i in arg'reverse_range loop

if arg (i) = '1' then

result := result + w;

end if;

-- test before multiplying w by 2, to avoid overflow

if i /= arg'left then

w := w + w;

end if ;

end loop ;

return result;

end to_integer;

The attribute may only be applied to functions with a array formal
parameter returning a numeric type when the parameter and the return value have
the same synthesis encoding. See 8 - Synthesis of VHDL Types for a discussion
of encoding. For the array argument, 'left is assumed to be the most significant bit.
12 - Synthesis Attributes 12 - 13

The array argument is treated as signed or unsigned depending on the
subtype of the function return value. If the subtype of the return value ('natural' , the
subtype of the variable 'result' in the example above) is signed (integer is signed),
the array argument is sign extended. If the subtype is unsigned (natural is
unsigned), the argument is zero extended.

When this attribute is true, the formal parameter is returned by the function
with the subtype of the returned object. Since this function short circuits the
semantics of VHDL it should be used with caution.
12 - 14 12 - Synthesis Attributes

Attribute macrocell

When a component instance has no entity bound to it the macrocell
attribute is used to specify a different naming convention for the component’s multi-
bit formal ports. Examples of multi-bit types are integer and std_logic_vector.
Examples of single bit types are bit and std_logic. The macrocell attribute is
required for parameterized macrocells such as XBLOX and LPM.

The modified naming convention is "NameNumber" with no other
character so that in the port names of IN_BUF_3 and OUT_BUF_3 will be
I0,I1,I2,O0,O1,I2.This is for compatibility with certain downstream tools.

library ieee;
use ieee.std_logic_1164.all ;
entity Parent is

port (a : std_logic_vector(7 downto 5);
v : out std_logic_vector(1 to 3));

end Parent;
architecture behavior of Parent is

-- component declaration , unbound
component IN_BUF_3

port (I : std_logic_vector(2 downto 0) ;
O : out std_logic_vector(0 to 2));

end component ;
component OUT_BUF_3

port (I : std_logic_vector(2 downto 0) ;
O : out std_logic_vector(0 to 2));

end component ;
signal x : std_logic_vector(2 downto 0);
attribute macrocell : Boolean;
attribute macrocell of IN_BUF_3, OUT_BUF_3 : component is true;

begin
 -- component instantiation
u0 : IN_BUF_3 port map (a,x);
u2 : OUT_BUF_3 port map (x,v);

end ;

Note that if the component formal ports have an unconstrained type (such
as XBLOX or LPM instances) the macrocell attribute must be used.
12 - Synthesis Attributes 12 - 15

Attribute Ungroup

The ungroup attribute removes hierarchy from the design and also
overrides the default logic optimize behavior. By default, the logic optimizer works
on the logic within a single architecture. The logic is separately optimized for any
component instantiated within the architecture maintaining the hierarchy.

By removing the Child from the hierarchy, Ungroup causes a Child
component to be optimized as part of its Parent. If a Child component has an
ungroup attribute with a value true, its architecture is optimized as part of its Parent
architecture. Multiple instances of a component with an ungroup attribute cause
the logic for each instance to be added to the parent prior to optimization.

In the following trivial example, if ungroup is true the result is a wire, if
ungroup is not present (or false) the implementation is an AND with its inputs
connected.

---Child

library ieee;

use ieee.std_logic_1164.all;

entity Child is

port (A, B : std_logic;

C : out std_logic);

end Child;

architecture behavior of Child is

begin

C <= A and B;

end ;

---Parent

use ieee.std_logic_1164.all ;

entity Parent is

port (X : std_logic;

Y : out std_logic);

end Parent;

architecture behavior of Parent is

-- component declaration , bound to Entity Child above
12 - 16 12 - Synthesis Attributes

component Child

port (A, B : std_logic;

C : out std_logic);

end component ;

-- UNGROUP TRUE, child is optimized as part of Parent

attribute ungroup : Boolean;

attribute ungroup of Child : component is true;

begin

-- component instantiation

u0 : Child port map (X, X, Y);

end ;

The ungroup attribute might be used when compiling a design made up of
components specifying a small amount of logic (such as TTL components).
Unbridled use of the ungroup attribute can result in attempts to optimize large
Parent blocks of logic, which may take a significant time.
12 - Synthesis Attributes 12 - 17

Attribute Inhibit_buf

For the XNF and EDIF output formats you may set a compile option that
automatically inserts input and output buffers for the target device. Sometimes you
may wish to override this buffer insertion on a per-pin basis. This may be done by
attaching the inhibit_buf to the top level port (as in the example insertion of a clock
buffer shown below, or with any silicon specific IO structure).

library ieee;

use ieee.std_logic_1164.all ;

entity Parent is

port (clk : std_logic;

a : std_logic_vector(7 downto 5);

v : out std_logic_vector(3 downto 1));

-- inhibit automatic input buffer on signal clk

-- because of clock buffer instantiation

attribute inhibit_buf : Boolean;

attribute inhibit_buf of clk : signal is true;

end Parent;

architecture behavior of Parent is

-- vendor specific clock buffer

component CLKBUF

port (I : std_logic; O : out std_logic);

end component ;

signal clk_buf : std_logic;

begin

-- 3 flip flops

v <= a when rising_edge(clk_buf);

-- instantiate clock buffer

u0 : CLKBUF port map (clk,clk_buf);

end ;
12 - 18 12 - Synthesis Attributes

Attributes for Downstream Tools

The Metamor compiler makes use of user defined attributes to pass
information to downstream tools. The Metamor compiler also recognizes some
attributes such as "critical" or "ungroup" to control its own operation. These are not
passed to downstream tools. This section discusses the rules for passing attributes
to downstream tools and shows some specific examples.

The use of attributes is complicated by the diverse usage by downstream
tools; also by the distinction between port, instance, and net which does not exist
in RTL or behavioral VHDL code but usually exist in the output netlist; and also by
any hierarchy flattening that may occur.

To pass attributes to downstream tools you will need to know the netlist
format, and the attributes plus their netlist location recognized by the downstream
tool. Please refer to the downstream tool documentation for its legal attribute
names, values and locations.

In the VHDL source, attributes may be passed as:

• the attribute as a name/value pair, this passes the pair to the netlist

• the value of the attribute "property", this passes only the value to the
netlist

• the value of the attribute "pinnum", this passes pin numbers to the
netlist

• the value of the attribute "part_name", this passes the specific device
to the netlist.

Attributes passed as name/value pairs should be a type of string, integer,
boolean, or a vector. These are representations usually expected by downstream
tools. The following tables show how these VHDL attributes (attached to specific
VHDL objects) are propagated to EDIF, XNF, OpenAbel 2, CUPL, and DSL, as well
as the objects to which they are attached. Note, your version of the compiler may
only support some of these netlist formats.
12 - Synthesis Attributes 12 - 19

EDIF part_name pinnum property name/value

Entity, top
level

cell interface
(1)

cell interface

Port, top
level

port (1) port

Entity,
lower level

cell interface

Port, lower
level

port

Signal,
inferring
flip-flop,
latch, or
tristate

instance

Signal with
attribute
‘critical’ true

net

Component instance

Component
instance
label

instance
12 - 20 12 - Synthesis Attributes

XNF part_name pinnum property name/
value(4)

Entity, top
level

PART file(5)

Port, top
level (2)

EXT EXT, or SIG EXT, or SIG

Entity,
lower level
(3)

Port, lower
level (3)

Signal,
inferring
flip-flop,
latch, or
tristate

SYM SYM

Signal with
attribute
‘critical’ true

SIG SIG

Component
(unbound)
(3)

SYM SYM

Component
(unbound)
instance
label (3)

SYM SYM
12 - Synthesis Attributes 12 - 21

Note (1) Some downstream tools do not support this.

Note (2) EXT if inserting IO buffers else SIG.

Note (3) Hierarchy removed by flattening during compile.

Note (4) If then attribute type is boolean then only attribute name
is written (if value is true).

Note (5) Unassociated with any netlist object.

Open Abel 2 part_name pinnum property name/value

Entity, top level DEVICE PROPERTY

Port, top level PINS PINS

CUPL part_name pinnum property name/value

Entity, top
level

DEVICE file (5)

Port, top
level

PIN PIN

DSL part_name pinnum property name/value

Entity, top
level

file (5)

Port, top
level
12 - 22 12 - Synthesis Attributes

Attributes attached to a signal may be attached to an instance, a net or a
port in the netlist according to the priority, highest to lowest, listed below. (The
attributes may also be ignored.)

• If the signal is a port then attribute is attached to a netlist port.

• If the signal infers a flip-flop, latch, or tristate then attribute is attached
to a netlist instance

• If the signal has a synthesis attribute "critical" then attribute is attached
to a netlist net.

• Other cases are ignored.

In order to place an attribute on a net the synthesis attribute, "critical", must
be attached to a VHDL signal. The same attribute is ignored when attached to ports
or registers. You may need to create temporary signals in your VHDL source to
distinguish attribute placement if there is a conflict between net, port, and instance.
For example, an out port that infers a flip-flop may require a slew attribute on the
netlist port and a location attribute on the netlist instance of the flip-flop. These are
distinct in the netlist but may be represented by the same signal in the VHDL
source. In this case an extra signal must be added to the VHDL to support attribute
passing.

Some examples follow.

For explicit instances, attach the VHDL attribute to the instance label as
shown below:

architecture x of y is

-- Placement hints

attribute CHIP_PIN_LC of u0 : label is "LAB2";

attribute CHIP_PIN_LC of u2 : label is "LAB7";

begin

u0 : buffer port map (a,b);

u1 : buffer port map (x,y);

....
12 - Synthesis Attributes 12 - 23

You may also use generics to pass instance parameters. This approach is
useful if the child component won't be synthesized, but will have a simulation model
that needs to see the attribute value.

architecture x of y is

component ROM

generic (filename : string)

port (A : std_logic_vector(7 downto 0) ;

D : out std_logic_vector(4 downto 0));

end component ;

begin

uo : ROM generic map ("init.prg") port map (address, data);

....

Adding attributes to netlist instances of inferred flip-flops, latches, or
tristates is done using VHDL attributes attached to the signal.

architecture x of y is

signal q : std_logic_vector(3 downto 0);

-- Register placement hint,

-- all 4 flip-flops get REGTYPE=IOC

attribute REGTYPE of q : signal is "IOC" ;

begin

q <= d when rising_edge(clk);

....

You may attribute nets , but only if the Metamor compiler is allowed to
retain the signals in the output netlist with the Metamor Critical attribute.

architecture x of y is

signal c : std_logic;

--allow Metamor to keep the logic

attribute Critical of c : signal is true;

-- using attribute property

attribute property of c : signal is "X";

-- adds the value to the net (XNF only)
12 - 24 12 - Synthesis Attributes

-- using name/value , assume W is attribute type integer

attribute W of c : signal is 100;

-- assume SC is declared as boolean.

attribute SC of c : signal is true;

begin

c <= a or b;

d <= c or d;

....

Netlist ports may be attributed in the same way:

entity x is

port (a,b : std_logic;

d : out std_logic);

end x;

architecture x of y is

signal c : std_logic;

-- using attribute property

attribute property of a : signal is "NODELAY"; -- adds the value to the port

-- using name/value , assume TMN is attribute type string

attribute TMN of b : signal is "name_list";

-- assume FAST is declared as boolean.

attribute FAST of d : signal is true;

begin

c <= a or b;

d <= c or d;

....
12 - Synthesis Attributes 12 - 25

12 - 26 12 - Synthesis Attributes

13 - Synthesis Coding Issues

Introduction

Test for High Impedance

Long Signal Paths - Nested ifs

Long Signal Paths - loops

Simulation Optimized Code

Port Mode inout or buffer

Using Simulation Libraries

Type Conversion Functions

Depending on Initial Value

Assign to Array Index

Don't Care

Unintended Latches

Unintended Combinational Feedback

Observe the Register Inference Conventions
13 - Synthesis Coding Issues 13 - 1

Introduction

A common misconception is that a synthesis compiler 'synthesizes VHDL'
, this is incorrect. The tool synthesizes your design expressed in VHDL.

Understanding the hardware that you are specifying is the simplest rule for
success. This is particularly important for critical timing. Conversely the easiest
way to fail is write a model of your design and then wonder why the synthesis tool
didn't 'do the design' for you.

What does synthesize mean in this context? It means to 'transform a logic
design specification into an implementation' -- nothing you couldn't do yourself. A
synthesis tool simply handles the details of this transformation for you.

This section contains examples of user coding problems. They are all real
user issues, some may be obvious, others are not.

See Also

How to be Happy
13 - 2 13 - Synthesis Coding Issues

Test for High Impedance

The following example means 'if sig is floating' -- quite a reasonable test to
perform in a simulation model. However, a synthesis tool has to transform this into
a hardware element that matches this behavior.

if sig = 'Z' then -- sig is std_logic

-- do something

end if ;

The code specifies a logic cell that looks at the drive of its fanin then
outputs true if not driven, and false if driven true or false. Such a cell does not exist
in most programmable silicon. IEEE 1076.3 specifies that this comparison should
always be false, so the statements inside the if are not executed, and no logic is
generated.

Long Signal Paths - Nested ifs

Multiple nested if or elsif clauses can specify long signal paths.

if sig = "000" then

 -- first branch

elsif sig = "001" then

 -- second branch

elsif sig = "010" then

 -- third branch

elsif sig = "011" then

 -- fourth branch

elsif sig = "100" then

 -- fifth branch

else

 -- last branch

end if ;
13 - Synthesis Coding Issues 13 - 3

This code is an inefficient way to describe logic -- a case statement would
be much better. A good example is the test for the fourth branch, which depends
on three previous tests and describes a long signal path, with the resulting logic
delay.

case sig is

when "000" => -- first branch

when "001" => -- second branch

when "010" => -- third branch

when "011" => -- fourth branch

when "100" => -- fifth branch

when others => -- last branch

end case ;

In practice, if the branches contain very little logic, or there are few
branches, then there may be little difference. However, the case statement
generally results in a better implementation.
13 - 4 13 - Synthesis Coding Issues

Long Signal Paths - loops

Loops are very powerful, but each iteration of a loop replicates logic. A
variable that is assigned in one iteration of a loop and used in the next iteration
results in a long signal path. This signal path may not be obvious.An example
where a long signal path is the expected behavior might be a carry chain (the
variable c below):

function "+" (a,b:bit_vector) return bit_vector is -- assumes a,b descending

 variable sum : bit_vector (a'length downto 0);

 variable c:bit := '0';

begin

for i in a'reverse_range loop

 sum(i) := a(i) xor b(i) xor c;

 c := (a(i) and c) or (b(i) and c) or (a(i) and b(i));

 end loop ;

 sum(a'length) := c;

 return sum;

end ;

An example where this is not the expected behavior may be hidden in your
code

Some of the predefined VHDL operations also imply long signal paths, see
4 - Programming Combinational Logic.
13 - Synthesis Coding Issues 13 - 5

Simulation Optimized Code

It is likely that code written for optimal simulation speed will not be an
optimal description of the logic.

In the following example it is assumed that only one control input will be
active at a time. The description is efficient for simulation, but a poor logic
description because the independence of the control signals is not described within
the VHDL code.

out1 <= '0';

out2 <= '0';

out3 <= '0';

if in1 = '1' then

out1 <= '1';

elsif in2 = '1' then

out2 <= '1';

elsif in3 = '1' then

out3 <= '1';

end if ;
13 - 6 13 - Synthesis Coding Issues

The independence of the control signals need to be contained within the
design description. The result may be slightly slower simulation, but a smaller logic
implementation after synthesis.

out1 <= '0';

out2 <= '0';

out3 <= '0';

if in1 = '1' then

out1 <= '1';

end if ;

if in2 = '1' then

out2 <= '1';

end if ;

if in3 = '1' then

out3 <= '1';

end if ;

Note that the issue is not a long signal path, but an unclear specification of
the design. The best optimizer in the world can't turn an inefficient algorithm into an
efficient one. And an algorithm that is efficient from one viewpoint may not be
efficient from another.
13 - Synthesis Coding Issues 13 - 7

Port Mode inout or buffer

Simply an issue of overspecification... Inout specifies bi-directional
dataflow, buffer like out specifies unidirectional dataflow. There are very few
occasions in hardware design when bi-directional data flow on a single wire is
actually what you want. Use inout when you want to specify a signal path that is
actually routed through a pin, such as a Xilinx IOB or a PLD pin feedback resource.

Users often use inout when they have a logical output they wish to read
from, in this case use mode buffer . This results in a signal path internal to the
target device It is not a good idea to use inout on lower levels of hierarchy when
separately compiling each design unit. Doing so may be a problem for third party
linkers. If the design units are compiled at the same time, the implementation will
be two wires, one for data flow in each direction.

Using Simulation Libraries

Compiling simulation models with a synthesis tool is generally understood
to be an impractical way to do hardware design. Such models, even if the
synthesizer will accept them, may be correct designs, but are rarely good designs.

The same applies to libraries of functions written for simulation. They may
be acceptable to the synthesis tool, but are unlikely to produce good synthesis
results. It is critically important that libraries be tuned for synthesis. This is typically
done by keeping the same package interface and modifying the package body.
Metamor supplies some tuned packages; study these before attempting your own
port.
13 - 8 13 - Synthesis Coding Issues

Type Conversion Functions

Usually type conversion functions specify no logic, although this is not
always the case. Most logic free functions compile fairly quickly. There is,
however, one common exception: a function that performs an array to integer
conversion. For example :

function to_integer (constant arg : bit_vector) return natural is

alias xarg : bit_vector(arg'length -1 downto 0) is arg;
-- normalize direction

variable result : natural := 0;

variable w : natural := 1;

begin

for i in xarg'reverse_range loop

if xarg (i) = '1' then

result := result + w;

end if ;

if (i /= xarg'left) then

w := w + w;

end if ;

end loop ;

return result;

end to_integer;

This function will be slow to compile if arg'length is greater than 16 to 24
bits (depending on your computer speed/memory). This is the case because one
of the "+" operators results in an adder being built for each iteration of the loop
(even though the function describes no logic). These adders are removed on data
flow analysis.

One solution to this problem is the array_to_numeric attribute documented
in 12 - Synthesis Attributes.

Further discussion on why this function is slow to compile may be found in
10 - Logic and Metalogic.
13 - Synthesis Coding Issues 13 - 9

Depending on Initial Value

The initial value of a signal or variable is the value specified in the object's
declaration (if not specified there is a default initial value). The initial value of such
an object is its value when created. Signals and variables declared in processes
are created at 'time zero'. Variables declared in subprograms are created when
the subprogram is called.

The value at time zero has no clear meaning in the context of synthesis,
therefore, the initial value of signals and process variables must be used with care.
This issue does not arise with the initial value of variables declared in
subprograms.

You should not depend on the initial value of signals or process variables
if they are not completely specified in the process in which they are used. In this
case, the compiler will ignore the time zero condition and use the driven value --
effectively ignoring the single transition from the time zero state. If such signals or
variables are not assigned, you may reliably use their initial value. Obviously,
signals assigned in another process will never depend upon the initial value. For
example :

signal res1 : bit := '0';

begin

process (tmpval,INIT)

begin

if (tmpval = 2**6 -1) then

res1 <= '1';

elsif (INIT ='1') then

res1 <= '1';

end if ;

end process ;

In this case 'res1' is never assigned low -- the code will be synthesized as
a pull-up. However during simulation at time zero, 'res1' starts at '0', makes one
transition to '1' and stays there. If this is really the intent, the solution is to use a flip-
flip.
13 - 10 13 - Synthesis Coding Issues

This design probably depends upon a wire floating low at power up, and
probably has no realizable implementation. A solution might be :

process (tmpval,INIT)

begin

if (tmpval = 2**6 -1) then

res1 <= '1';

elsif (INIT ='1') then

res1 <= '1';

else

res1 <= '0'; -- drive it low *****

end if ;

end process ;
13 - Synthesis Coding Issues 13 - 11

Assign to Array Index

For an assignment such as:

a(b) <= c;

If b is not a constant, then some care should be taken with this expression.
This is because the statement means element 'b' of 'a' gets the value of 'c'; AND
all the other elements of 'a' get their previous value (i.e. are unchanged). In
hardware this implies storage of data. If this assignment is not clocked,
combinational feedback paths will be created.

A typical usage might be :

a(b) <= c when rising_edge(clk);

If the assignment is clocked as in the example above (and the clock enable
compile option is on), the element select logic will drive the flip-flop clock enable
control for an efficient implementation. However, an explicit clock enable will
override the implicit clock enable. In the following example ‘clk_ena’ will be
connected to the clock enable control and the select logic will be included in the
data path.

if rising_edge(clk) then

if clk_ena = '1' then

a(b) <= c;

end if ;

end if ;
13 - 12 13 - Synthesis Coding Issues

Don't Care

The semantics of the '-' element of std_logic_1164 are not the same as the
semantics of Don't Care in some PLD programming languages. The '-' in 1164 is a
unique element of the nine value type std_logic, and not a wildcard.

For example, if

a <= "00010"

b <= a = "00---"

then b is never true !

If you wish to ignore comparison on some bits, then be explicit:

b <= a(4 downto 3) = "00";

will produce the desired result.
13 - Synthesis Coding Issues 13 - 13

Unintended Latches

Latches are inferred using incomplete specification in an if statement. The
following example specifies a latch gated by 'address_strobe', which may not be
the intent.

process (address, address_strobe)

begin

if address_strobe = '1' then

decode_signal <= address = "101010";

end if ;

end process ;

This says, when address_strobe is '0', then decode_signal holds its
previous value, resulting in the latch implementation. In this case the intent is
probably to ignore decode_signal when address_strobe is '0'. However, you need
to be explicit.

if address_strobe = '1' then

ecode_signal <= address = "101010";

else

decode_signal <= false;

end if ;

You can use the verbose compile option, which will log the name and line
number of all inferred elements including (unintended) latches.
13 - 14 13 - Synthesis Coding Issues

Unintended Combinational Feedback

It is possible to specify unintended combinational feedback paths by using
variables (declared in a process) before they are assigned, or by incomplete
specification.

In the following example (from the Fifo example), if the ReadPtr(i) is never
equal to '1', Qint keeps its previous value. It may be a characteristic of the design
that one bit of ReadPtr is always '1', but nothing says this is so. Qint is incompletely
specified and a feedback path exists, which includes Qint when ReadPtr is all
zeros.

process (ReadPtr, Fifo)

begin

for i in ReadPtr'range loop

if ReadPtr(i) = '1' then

Qint <= Fifo(i);

end if ;

end loop ;

end process ;

We code for this case by making certain Qint is always assigned. In which
case its value is defaulted to all zeros, and the unintended feedback path is
removed.

process (ReadPtr, Fifo)

begin

Qint <= (others => '0'); -- because of possible comb feedback

for i in ReadPtr'range loop

if ReadPtr(i) = '1' then

Qint <= Fifo(i);

end if ;

end loop ;

end process ;

You can use the verbose compile option. It will log the name and line
number of all inferred elements, including (unintended) combinational feedback.
13 - Synthesis Coding Issues 13 - 15

Observe the Register Inference Conventions

Synthesis tools infer storage devices (such as latches and flip flops) from
incomplete assignment of variables or signals. Other examples in this section show
unintended latches. To the other extreme it is possible to specify storage elements
that the synthesis tool won't recognize.

For example:

process (clk1,clk2)

begin

if rising_edge(clk1) then

if rising_edge(clk2) then

q <= d;

 end if ;

end if ;

end process ;

This probably describes a flip-flop that loads when its two clocks change
at the same instant. It will function during simulation (because of the discrete nature
of simulation time) but no hardware element has this behavior, and the compiler
will report an error.

It is also possible to specify code that has implementable behavior, which
one synthesis tool recognizes and another doesn’t. For portable code, keep to the
register inference conventions.
13 - 16 13 - Synthesis Coding Issues

A - VHDL Quick Reference

This section contains quick reference information for VHDL syntax
presented in an example-based style. It consists of a partial listing of VHDL
constructs, focusing on those that are frequently used for hardware design. For
complete information, refer to the IEEE Standard VHDL Language Reference
Manual.

Lexical Elements

Reserved Words

Declarations and Names

Sequential Statements

Subprograms

Concurrent Statements

Library Units

Attributes

VHDL constructs

Unsupported Constructs

Ignored Constructs

Constrained Constructs
A - VHDL Quick Reference A - 1

Lexical Elements

• comments from -- to end of line

• characters 'a' 'Z' ':'

• strings "hi there"

• bit strings b"0101"o"05"x"5"

• integers 123_4562E22#0101#

• identifiers , a letter followed by letters, numbers, or underbar :
hellohello7h_e_l_l_o

• extended identifiers , any characters delimited by backslash
A - 2 A - VHDL Quick Reference

Reserved Words

The following words are reserved in standard VHDL (regardless of case)
and cannot serve as user-defined identifiers:

abs out unaffected

access generate units

after generic package until

alias group port use

all guarded posponed

and procedure variable

architecture if process

array impure pure wait

assert in when

attribute inertial range while

inout record with

begin is register

block reject xnor

body label rem xor

buffer library report

bus linkage return

literal rol

case loop ror

component

configuration map select

constant mod severity

shared

disconnect nand signal

downto new sla

next sll

else nor sra

elsif not srl

end null subtype

entity

exit of then

on to

file open transport

for or type

function others
A - VHDL Quick Reference A - 3

Declarations and Names

The following code fragments illustrate the syntax of VHDL statements :

Declarations

-- OBJECTS

constant alpha : character := 'a';

variable total : integer ;

variable sum : integer := 0;

signal data_bus : bit_vector (0 to 7);

-- TYPES

type opcodes is (load,store,execute,crash);

type small_int is range 0 to 100;

type big_bus is array (0 to 31) of bit;

type glob is record

first : integer;

second : big_bus;

other_one : character;

end record ;

-- SUBTYPES

subtype shorter is integer range 0 to 7;

subtype smaller_int is small_int range 0 to 7;

Names

-- Array element

big_bus(0)

-- Record element

record_name.element
A - 4 A - VHDL Quick Reference

Sequential Statements

The following code fragments illustrate the syntax of VHDL statements :

--IF STATEMENT

if increment and not decrement then

count := count +1;

elsif not increment and decrement then

count := count -1;

elsif increment and decrement then

count := 0;

else

count := count;

end if ;

--CASE STATEMENT

case day is

when Saturday to Sunday =>

work := false;

work_out := false;

when Monday | Wednesday | Friday =>

work := true;

work_out := true;

when others =>

work := true;

work_out := false;

end case ;
A - VHDL Quick Reference A - 5

-- LOOP,NEXT,EXIT STATEMENTS

L1 : for i in 0 to 9 loop

L2 : for j in opcodes loop

for k in 4 downto 2 loop -- loop label is optional

if k = i next L2; -- go to next L2 loop

end loop ;

exit L1 when j = crash; -- exit loop L1

end loop ;

end loop ;

-- WAIT STATEMENT

wait until clk;

-- VARIABLE ASSIGNMENT STATEMENT

var1 := a or b or c;

-- SIGNAL ASSIGNMENT STATEMENT

sig1 <= a or b or c;
A - 6 A - VHDL Quick Reference

Subprograms

The following code fragments illustrate the syntax of VHDL statements :

-- FUNCTION DECLARATION

-- parameters are mode in

-- return statements must return a value

function is_zero (n : integer) return boolean is

-- type, variable,constant,subprogram declarations

begin

-- sequential statements

if n = 0 then

return true;

else

return false;

end if;

end;

-- PROCEDURE DECLARATION

-- parameters may have mode in , out or inout

procedure count (incr : boolean; big : out bit;

 num : inout integer) is

-- type, variable,constant,subprogram declarations

begin

-- sequential statements

if incr then

num := num +1;

end if;

if num > 101 then

big := '1';

else

big := '0';

end if;

end;
A - VHDL Quick Reference A - 7

Concurrent Statements

The following code fragments illustrate the syntax of VHDL statements :

-- BLOCK STATEMENT

label5 : -- label is required

block

-- type, signal,constant,subprogram declarations

begin

-- concurrent statements

end block;

-- PROCESS STATEMENT , sequential first form

label3 : -- label is optional

process

-- type, variable,constant,subprogram declarations

begin

wait until clock1;

-- sequential statements

end process;

-- PROCESS STATEMENT , sequential second form

process (clk) -- ALL signals that cause the

-- output to change

-- type, variable,constant,subprogram declarations

begin

if clk then

-- sequential statements

local <= en1 and en2;

-- sequential statements

end if ;

end process;
A - 8 A - VHDL Quick Reference

-- PROCESS STATEMENT , combinational

process (en1, en2, reset) -- ALL signals used in

 -- process

-- type, variable,constant,subprogram declarations

begin

-- sequential statements

local <= en1 and en2 and not reset;

-- sequential statements

end process;

-- GENERATE STATEMENT

label4 : -- label required

for i in 0 to 9 generate

-- declarations

begin -- begin is optional if no declarations

-- concurrent statements

label : if i /= 0 generate

 -- concurrent statements

sig(i) <= sig(i-1);

end generate ;

end generate ;

-- COMPONENT INSTANTIATION

-- label is required

-- positional association

U1 : decode port map (instr, rd, wr);

-- named association

U2 : decode port map (r=> rd, op => instr, w=> wr);

-- DIRECT INSTANTIATION

-- label is required

-- positional association

U1 : entity decode port map (instr, rd, wr);

-- named association

U2 : entity decode port map (r=> rd, op => instr, w=> wr);
A - VHDL Quick Reference A - 9

-- CONDITIONAL SIGNAL ASSIGNMENT

total <= x + y;

sum <= total + 1 when increment else total -1;

-- SELECTED SIGNAL ASSIGNMENT

with reg_select select

enable <= "0001" when "00",

"0010" when "01",

"0100" when "10",

"1000" when "11";
A - 10 A - VHDL Quick Reference

Library Units

The following code fragments illustrate the syntax of VHDL statements :

-- PACKAGE DECLARATION

package globals is
-- type,constant, signal ,subprogram declarations

end globals;

-- PACKAGE BODY DECLARATION

package body globals is
-- subprogram definitions

end globals;

-- ENTITY DECLARATION

entity decoder is
port (op : opcodes; r,w : out bit);

end decoder;

-- ARCHITECTURE DECLARATION

architecture first_cut of decoder is
-- type, signal,constant,subprogram declarations

begin
-- concurrent statements

end first_cut;

-- CONFIGURATION DECLARATION

configuration example of decoder is
-- configuration

end example;

-- LIBRARY CLAUSE

-- makes library , but not its contents visible

library utils;

-- USE CLAUSE

use utils.all ;

use utils.utils_pkg.all ;
A - VHDL Quick Reference A - 11

Attributes

-- ATTRIBUTES DEFINED FOR TYPES

T'base the base type of T
T'left left bound of T
T'right right bound of T
T'high high bound of T
T'low low bound of T
T'pos(N) position number of N in T
T'val(N) value in T of position N
T'succ(N) T'val(T'pos(N) +1)
T'pred(N) T'val(T'pos(n) -1)
T'leftof(N) T'pred(N) if T is ascending

T'succ(N) if T is descending
T'rightof(N) T'succ(N) if T is ascending

T'pred(N) if T id descending
T'image(N) string representing value of N
T'value(N) value of string N

-- ATTRIBUTES DEFINED FOR ARRAYS

A'left(N) left bound of Nth index of A
A'right(N) right bound of Nth index of A
A'high(N) high bound of Nth index of A
A'low(N) low bound of Nth index of A
A'range(N) range of Nth index of A
A'reverse_range(N) reverse range of Nth index of A
A'length(N) number of values in Nth index of A
A'ascending true if array range ascending

-- ATTRIBUTES DEFINED FOR SIGNALS

-- see Constrained Constructs

S'event true if an event has just occurred on S

S'stable true if an event has not just occurred on S

S'last_value last value of S

-- STRING ATTRIBUTES

E'simple_name string "E"

E'path_name hierarch y path string

E'instance_name hierarch y and binding string
A - 12 A - VHDL Quick Reference

VHDL constructs

The following is a partial list of VHDL constructs. Some constructs are
constrained in their usage. For a list of these and unsupported constructs see the
following section. (This list format is based on the VHDL 1076 LRM chapters.)

Design Entities and Configurations Expressions
Entity Declarations Operators

Generics Logical operators

Ports Relational Operators

Architectures Adding operators

Configuration Declarations Multiplying operators

 Miscellaneous operators

Subprograms and Packages Operands

Subprogram declarations Literals

Subprogram bodies Aggregates

Subprogram overloading Function calls

Signatures Qualified expressions

Operator overloading Type conversions

 Package declarations

Package bodies Sequential statements
Wait statement

Types Assertion statement

Scalar types Signal assignment statement

Enumerated types Variable assignment statement

Integer types Procedure call statement

Composite types If statement

Array types Case statement

Record types Loop statement

Next statement

Exit statement

Return statement

Null statement
A - VHDL Quick Reference A - 13

Declarations Concurrent Statements
Type declarations Block statement

Subtype declarations Process statement

Objects Concurrent Procedure call statement

Constant declarations Concurrent Assertion statement

Signal declarations Concurrent Signal assignment statement

Variable declarations Conditional signal assignment

Interface declarations Selected signal assignment

Alias declarations Component instantiation statement

Attribute declarations Generate statement

Component declarations

Group declarations

Visibility
Use clauses

Specifications
Attribute specifications All Lexical Elements
Configuration specifications

 Predefined Language Environment

Names Predefined attributes (but not signal attributes except
'event)

Simple names Package STANDARD

Selected names

Indexed names

Slice names

Attribute names
A - 14 A - VHDL Quick Reference

Unsupported Constructs

The following constructs are not supported, their use will result in a
Constraint message.

• Access types

• File types

• Signal attributes (except 'event , 'stable,and'last_value)

• Textio package

• Impure functions

• Shared variables

Ignored Constructs

The following constructs are ignored. They may be used in VHDL
simulation, but Metamor will not generate any logic.

• Disconnect specifications

• Resolution functions

• Signal kind register

• Waveforms, except the first element value
A - VHDL Quick Reference A - 15

Constrained Constructs

The following constructs are constrained in their usage. Constrained
constructs fall into two classes,
statements constrained in where they may be used, and
constrained expressions. The use of a constrained construct will result in a
Constraint message.

Constrained statement

• A wait statement may only be first statement in a process.

• Signal attributes 'event , 'stable, and 'last_value are valid only in where
they specify a clock edge.

• Subprograms calls cannot be recursive.

• Formal part of a named association may not be a function call.

• A process sensitivity list must contain all signals that the process is
sensitive to.

Constrained expressions

Certain expressions must be metalogic expressions, which simply means
the value of the expression must not depend upon a signal (the value of the
expression will not vary over time). See also 10 - Logic and Metalogic.

• Operands of ** must be metalogic expressions.

• Assertion statement condition, severity, and message must be
metalogic expressions, if the message is to be reported.

• Type and subtype constraint declarations must be metalogic
expressions.

• Floating point and physical types are constrained to the same set of
values as the equivalent integer type.

• While loop and unconstrained loop execution completion must depend
only on metalogic expressions.
A - 16 A - VHDL Quick Reference

B - PREP Examples

PREP 1

PREP 2

PREP 3

PREP 4: Using enum_encoding

PREP 4: Using std_logic_1164

PREP 5

PREP 6

PREP 7

PREP 9

B - PREP Examples B - 1

PREP 1

 package typedef is

subtype byte is bit_vector (7 downto 0);

 end ;

 use work.typedef.all ;

 entity data_path is

port (clk,rst,s_l : boolean;

s0, s1 : bit;

d0, d1 ,d2, d3 : byte;

q : out byte);

 end data_path;

 architecture instance of data_path is

signal reg,shft : byte;

 begin

process (clk,rst)

begin

if rst then -- async reset

reg <= x"00";

shft <= x"00";

elsif clk and clk'event then -- clock shft and reg

case s0 & s1 is -- mux

when b"00" => reg <= d0;

when b"10" => reg <= d1;

when b"01" => reg <= d2;

when b"11" => reg <= d3;
end case ;

B - 2 B - PREP Examples

if s_l then -- conditional shift

shft <= shft rol 1;

else

shft <= reg;

end if ;

end if ;

end process ;

q <= shft;

end ;

use work.typedef.all ;

entity prep1 is

port (CLK,RST,S_L : boolean;

S0, S1 : bit;

ID : bit_vector(23 downto 0);

IPD : byte;

Q : out byte);

end prep1;

architecture top_level of prep1 is

component data_path

port (clk,rst,s_l : boolean;

s0, s1 : bit;

d0, d1 ,d2, d3 : byte;

q : out byte);

end component ;
B - PREP Examples B - 3

begin

first : data_path port map (CLK,RST,S_L,

S0,S1,

IPD,

ID(7 downto 0),

ID(15 downto 8),

ID(23 downto 16),

Q);

end ;
B - 4 B - PREP Examples

PREP 2

 package typedef is

subtype byte is integer range 0 to 2**8 -1; -- 8 bit

end ;

use work.typedef.all ;

entity prep2 is

port (CLK,RST,SEL,LDCOMP,LDPRE : boolean;

DATAa , DATAb : byte;

DATAc : out byte);

end prep2;

architecture behavior of prep2 is

procedure reg (signal clk,rst,ld : boolean; signal d : byte;
signal q : out byte) is

begin

if rst then

q <= 0;

elsif clk and clk'event then

if ld then

q <= d;

end if ;

end if ;

end ;

B - PREP Examples B - 5

procedure counter (signal clk,rst,ld : boolean; signal d : byte;
signal q : inout byte) is

begin

if rst then

q <= 0;

elsif clk and clk'event then

if ld then

q <= d;

else

q <= q + 1;

end if ;

end if ;

end ;

signal bus1,bus2,bus3,bus4 : byte;

signal load : boolean;

begin

reg(CLK, RST, LDPRE, DATAb, bus1);-- upper register

reg(CLK, RST, LDCOMP, DATAb, bus2); -- lower register

counter(CLK, RST, load, bus3, bus4);-- counter register

bus3 <= bus1 when sel else DATAa; -- mux

load <= bus2 = bus4; -- compare

DATAc <= bus4;

end behavior;
B - 6 B - PREP Examples

PREP 3

 package typedef is

subtype byte is bit_vector (7 downto 0);

end ;

use work.typedef.all ;

entity state_machine is

port (clk,rst : boolean;

inn : byte;

outt : out byte);

end state_machine;

architecture behavior of state_machine is

begin

process (clk,rst)

 type state_type is (start,sa,sb,sc,sd,se,sf,sg);

 variable current_state : state_type;

begin

if rst then

current_state := start;

outt <= x"00";

else

if clk and clk'event then

case current_state is
B - PREP Examples B - 7

when start =>

if inn = x"3c" then

current_state := sa;

outt <= x"82";

else

outt <= x"00";

end if ;

when sa =>

if inn = x"2a" then

current_state := sc;

outt <= x"40";

elsif inn = x"1f" then

current_state := sb;

outt <= x"20";

else

outt <= x"04";

end if ;

when sb =>

if inn = x"aa" then

current_state := se;

outt <= x"11";

else

current_state := sf;

outt <= x"30";

end if ;

when sc =>

current_state := sd;

outt <= x"08";

when sd =>

current_state := sg;

outt <= x"80";

when se =>

current_state := start;

outt <= x"40";
B - 8 B - PREP Examples

when sf =>

current_state := sg;

outt <= x"02";

when sg =>

current_state := start;

outt <= x"01";

end case ;

end if ; -- clocked logic

end if ; -- reset logic

end process ;

end behavior;

entity prep3 is

port (CLK,RST : boolean;

INN : byte;

OUTT : out byte);

end prep3;

architecture top_level of prep3 is

component state_machine

port (clk,rst : boolean;

inn : byte;

outt : out byte);

end component ;

begin

one : state_machine port map (CLK,RST,INN, OUTT);

end ;
B - PREP Examples B - 9

PREP 4: Using enum_encoding

library metamor;

use metamor.attributes.all ;

package encode1 is

type state_type is (st0,st1,st2,st3,st4,st5,st6,st7,st8,
st9,st10,st11,st12,st13,st14,st15);

 attribute enum_encoding of state_type : type is

"00101 00000 10000 00100 10100 " &

"01100 01000 10101 10001 11000 " &

"10011 00011 00001 01101 01001 11001";

type byte is (o0,o1,o2,o3,o4,o5,o6,o7,o8,o9,
o10,o11,o12,o13,o14,o15);

attribute enum_encoding of byte : type is

"00000000 00000110 00011000 01100000 1------0 -1----0- " &

"00011111 00111111 01111111 11111111 -1-1-1-1 1-1-1-1- " &

"11111101 11110111 11011111 01111111";

end ;

use work.encode1.all ;

entity prep4 is

port (clk,rst : boolean;

i : bit_vector(7 downto 0);

o : out byte);

end prep4;
B - 10 B - PREP Examples

architecture instance of prep4 is

signal machine : state_type;

begin

process (clk,rst)

begin

if rst then

machine <= st0;

elsif clk and clk'event then

case machine is

when st0 =>

 case I is

when x"00" => machine <= st0;

when x"01" to x"03" => machine <= st1;

when x"04" to x"1f" => machine <= st2;

when x"20" to x"3f" => machine <= st3;

when others => machine <= st4;

end case ;

 when st1 =>

if I(1 downto 0) = b"11" then

machine <= st0;

else

machine <= st3;

end if ;

when st2 =>

machine <= st3;

when st3 =>

machine <= st5;

when st4 =>

if (I(0) or I(2) or I(4)) = '1' then

machine <= st5;

else

machine <= st6;

end if ;
B - PREP Examples B - 11

when st5 =>

if (I(0) = '0') then

machine <= st5;

else

machine <= st7;

end if ;

when st6 =>

case I(7 downto 6) is

when b"00" => machine <= st6;

when b"01" => machine <= st8;

when b"10" => machine <= st9;

when b"11" => machine <= st1;

end case ;

when st7 =>

case I(7 downto 6) is

when b"00" => machine <= st3;

when b"11" => machine <= st4;

when others => machine <= st7;

end case ;

when st8 =>

if (I(4) xor I(5)) = '1' then

machine <= st11;

elsif I(7) = '1' then

machine <= st1;

end if ;

when st9 =>

if I(0) = '1' then

machine <= st11;

end if ;

when st10 =>

machine <= st1;
B - 12 B - PREP Examples

when st11 =>

if i = x"40" then

machine <= st15;

else

machine <= st8;

end if ;

when st12 =>

if i = x"ff" then

machine <= st0;

else

machine <= st12;

end if ;

when st13 =>

if (I(5) xor I(3) xor I(1)) = '1' then

machine <= st12;

else

machine <= st14;

end if ;

when st14 =>

case I is

when x"00" => machine <= st14;

when x"01" to x"3f" => machine <= st12;

when others => machine <= st10;

end case ;

when st15 =>

if (I(7) = '1') then

case I(1 downto 0) is

when b"00" => machine <= st14;
when b"01" => machine <= st10;
when b"10" => machine <= st13;
when b"11" => machine <= st0;
end case ;

end if ;
end case ;

end if ;
end process ;
B - PREP Examples B - 13

with machine select

O <= o0 when st0,

o1 when st1,

o2 when st2,

o3 when st3,

o4 when st4,

o5 when st5,

o6 when st6,

o7 when st7,

o8 when st8,

o9 when st9,

o10 when st10,

o11 when st11,

o12 when st12,

o13 when st13,

o14 when st14,

o15 when st15;

end ;

B - 14 B - PREP Examples

PREP 4: Using std_logic_1164

library ieee;

use ieee.std_logic_1164.all ;

package encode2 is

subtype byte is std_logic_vector (7 downto 0);

subtype state_type is std_logic_vector (4 downto 0);

constant st0 : state_type := "00101";

constant st1 : state_type := "00000";

constant st2 : state_type := "10000";

constant st3 : state_type := "00100";

constant st4 : state_type := "10100";

constant st5 : state_type := "01100";

constant st6 : state_type := "01000";

constant st7 : state_type := "10101";

constant st8 : state_type := "10001";

constant st9 : state_type := "11000";

constant st10 : state_type := "10011";

constant st11 : state_type := "00011";

constant st12 : state_type := "00001";

constant st13 : state_type := "01101";

constant st14 : state_type := "01001";

constant st15 : state_type := "11001";

constant dont_care : state_type := "-----";

end ;

library ieee;

use ieee.std_logic_1164.all ;

use work.encode2.all ;

entity state_machineis

port (clk,rst : boolean;
i : byte;
o : out byte);

end state_machine;
B - PREP Examples B - 15

architecture instance of state_machine is

signal machine : state_type;

begin

process (clk,rst)

begin

if rst then

machine <= st0;

elsif clk and clk'event then

case machine is

when st0 =>

case I is

when "00000000" => machine <= st0;

when "00000001" to "00000011" => machine <= st1;

when "00000100" to "00011111" => machine <= st2;

when "01000000" to "00111111" => machine <= st3;

when others => machine <= st4;

end case ;

when st1 =>

if I(1 downto 0) = "11" then

machine <= st0;

else

machine <= st3;

end if ;

when st2 =>

machine <= st3;

when st3 =>

machine <= st5;

when st4 =>

if (I(0) or I(2) or I(4)) = '1' then

machine <= st5;

else

machine <= st6;

end if ;
B - 16 B - PREP Examples

when st5 =>

if (I(0) = '0') then

machine <= st5;

else

machine <= st7;

end if ;

when st6 =>

case I(7 downto 6) is

when "00" => machine <= st6;

when "01" => machine <= st8;

when "10" => machine <= st9;

when "11" => machine <= st1;

end case ;

when st7 =>

case I(7 downto 6) is

when "00" => machine <= st3;

when "11" => machine <= st4;

when others => machine <= st7;

end case ;

when st8 =>

if (I(4) xor I(5)) = '1' then

machine <= st11;

elsif I(7) = '1' then

machine <= st1;

end if ;

when st9 =>

if I(0) = '1' then

machine <= st11;

end if ;

when st10 =>

machine <= st1;
B - PREP Examples B - 17

when st11 =>

if i = "01000000" then

machine <= st15;

else

machine <= st8;

end if ;

when st12 =>

if i = "11111111" then

machine <= st0;

else

machine <= st12;

end if ;

when st13 =>

if (I(5) xor I(3) xor I(1)) = '1' then

machine <= st12;

else

machine <= st14;

end if ;

when st14 =>

case I is

when "00000000" => machine <= st14;

when "00000001" to "00111111" => machine <= st12;

when others => machine <= st10;

end case ;

when st15 =>
if (I(7) = '1') then

case I(1 downto 0) is
when "00" => machine <= st14;
when "01" => machine <= st10;
when "10" => machine <= st13;
when "11" => machine <= st0;
end case ;

end if ;
when others => machine <= dont_care;
end case ;

end if ;
end process ;
B - 18 B - PREP Examples

with machine select

O <= "00000000" when st0,

"00000110" when st1,

"00011000" when st2,

"01100000" when st3,

"1------0" when st4,

"-1----0-" when st5,

"00011111" when st6,

"00111111" when st7,

"01111111" when st8,

"11111111" when st9,

"-1-1-1-1" when st10,

"1-1-1-1-" when st11,

"11111101" when st12,

"11110111" when st13,

"11011111" when st14,

"01111111" when st15,

"--------" when others ;

end ;

library metamor;

use metamor.attributes.all;

use work.encode2.all ;

entity prep4 is

port (clk,rst : boolean;

i : byte;

o : out byte);

end prep4;
B - PREP Examples B - 19

architecture top_level of prep4 is

component state_machine

port (clk,rst : boolean;

i : byte;

o : out byte);

end component;

signal q1,q2,q3 : byte;

attribute critical of q1,q2,q3 : signal is true; --q1,q2,q3 are nodes

begin

u1 : statemachine port map (clk,rst,i,q1);

u2 : statemachine port map (clk,rst,q1,q2);

u3 : statemachine port map (clk,rst,q2,q3);

u4 : statemachine port map (clk,rst,q3,o);

end ;
B - 20 B - PREP Examples

PREP 5

entity arith is

port (CLK,MAC,RST: boolean; A,B: integer range 0 to 15;
Q: in buffer integer range 0 to 255);

end arith;

architecture behavior of arith is

signal P: integer range 0 to 255;

begin

P <= A * B; -- Product of A and B

process (RST,CLK)

begin

if (RST) then -- Reset

 Q <= 0;

else

if (CLK and CLK'event) then -- Clock (edge
triggered)

if (MAC) then

Q <= P + Q;

else

Q <= P;

end if ;

end if ;

end if ;

end process ;

end behavior;
B - PREP Examples B - 21

entity prep5_4 is

port (CLK,MAC,RST: boolean; A,B: integer range 0 to 15;
Q: in buffer integer range 0 to 255);

end prep5_4;

architecture structure of prep5_4 is

signal QXinteger range 0 to 255; -- Q out put from #1

signal QYinteger range 0 to 255; -- Q out put from #2

signal QZinteger range 0 to 255; -- Q out put from #3

signal QX_Low,QX_High: integer range 0 to 15;
-- A,B inputs to #2

signal QY_Low,QY_High: integer range 0 to 15;
-- A,B inputs to #3

signal QZ_Low,QZ_High: integer range 0 to 15; -- A,B to #4

component arith

port (CLK,MAC,RST: boolean; A,B: integer range 0 to 15;
Q: in out integer range 0 to 255);

end component ;

begin

one: arith port map (CLK,MAC,RST, A , B ,QX);
-- Instance #1

QX_Low <= QX rem 16; -- slice low nibble

QX_High <= QX / 16; -- slice high nibble

two: arith port map (CLK,MAC,RST,QX_Low,QX_High,QY);
-- Instance #2

QY_Low <= QY rem 16; -- slice low nibble

QY_High <= QY / 16; -- slice high nibble

three: arith port map (CLK,MAC,RST,QY_Low,QY_High,QZ);
-- Instance #3

QZ_Low <= QZ rem 16; -- slice low nibble

QZ_High <= QZ / 16; -- slice high nibble

four: arith port map (CLK,MAC,RST,QZ_Low,QZ_High, Q);
-- Instance #4

end structure;
B - 22 B - PREP Examples

PREP 6

entity prep6 is

port (CLK,RST: boolean; D: in integer range 0 to 65535;
Q: buffer integer range 0 to 65535);

end prep6;

architecture behavior of prep6 is

begin

process (RST,CLK)

begin

if (RST) then -- Reset

Q <= 0;

else

if (CLK and CLK'event) then
-- Clock (edge triggered)

Q <= Q + D; -- Add D to accumulator Q

end if ;

end if ;

end process ;

end behavior;
B - PREP Examples B - 23

PREP 7

entity prep7 is

port (CLK,RST,LD,CE: boolean; D: integer range 0 to 65535;
Q: buffer integer range 0 to 65535);

end prep7;

architecture behavior of prep7 is

begin

process (RST,CLK)

begin

if RST then -- Async Reset

 Q <= 0;

else

if CLK and CLK'event then
-- Clock (edge triggered)

if LD or CE then
 -- load dominates clock enable, OR clkena pin

if LD then -- sync load

Q <= D;

else

Q <= Q + 1;

end if;

end if ;

end if ;

end if ;

end process ;

end behavior;
B - 24 B - PREP Examples

PREP 9

package typedef is

subtype byte is bit_vector(7 downto 0);

end ;

use work.typedef. all ;

entity prep9 is

port (clk,rst,as,ce : boolean; al,ah : byte;
be : out boolean; q : out byte);

end prep9;

architecture only_level of prep9 is

procedure decoder(signal clk,rst,as : boolean;

signal al,ah : byte;

signal be : out boolean;

signal q : out byte) is

begin

if rst then

q <= x"00";

be <= false;

elsif clk and clk'event then

if as then
be <= false;
case ah & al is
when x"f000" to x"ffff" => q <= x"80";
when x"efff" downto x"e800" => q <= x"40";
when x"e7ff" downto x"e400" => q <= x"20";
when x"e3ff" downto x"e300" => q <= x"10";
when x"e2ff" downto x"e2c0" => q <= x"08";
when x"e2bf" downto x"e2b0" => q <= x"04";
when x"e2af" downto x"e2ac" => q <= x"02";
when x"e2ab" => q <= x"01";
when others => q <= x"00";

be <= true;
end case ;
B - PREP Examples B - 25

else

q <= x"00";

be <= false;

end if ;

end if ;

end ;

signal q1,q2 : byte;

begin

one : decoder(clk,rst,as,al,ah,be,q);

-- two : decoder(clk,rst,ld,ce,q1,q2);

-- q <= q2;

end ;
B - 26 B - PREP Examples

C - Error Message Index

 Words in italics will be substituted in the actual error message. The
information in this section is intended to help you determine the cause of a problem
in your VHDL source file. Each error message produced by the compiler is listed,
along with more detailed explanations and suggested workarounds and tips. Note
that the workarounds listed are only suggestions; it is not possible for the language
compiler to know your intention for using a particular set of VHDL language
statements.

To view an error message, select a number below:

001 # 002 # 003 # 004 # 005 # 006 # 007

008 # 009 # 010 # 011 # 012 # 013 # 014

015 # 016 # 017 # 018 # 019 # 020 # 021

022 # 023 # 024 # 025 # 025 # 027 # 028

029 # 030 # 031 # 032 # 033 # 034 # 035

036 # 082 # 083 # 084 # 085 # 086 # 087

088 # 089 # 100 # 101 # 102 # 103 # 104

105 # 106 # 107 # 108 # 109 # 110 # 111

112 # 113 # 114 # 115 # 116 # 117 # 119

120 # 121 # 123 # 124 # 125 # 126 # 127

128 # 129 # 130 # 131 # 132 # 133 # 134

135 # 136 # 137 # 138 # 139 # 140 # 141
C - Error Message Index C - 1

142 # 143 # 144 # 145 # 146 # 147 # 148

149 # 150 # 151 # 152 # 153 # 154 # 155

157 # 158 # 159 # 160 # 161 # 162 # 163

164 # 165 # 166 # 167 # 168 # 169 # 170

171 # 172 # 173 # 174 # 175 # 176 # 177

178 # 179 # 180 # 181 # 182 # 183 # 184

185 # 186 # 187 # 188 # 189 # 190 # 191

192 # 193 # 194 # 195 # 196 # 197 # 198

200 # 201 # 202 # 203 # 204 # 205 # 206

207 # 208 # 209 # 210 # 211 # 212 # 213

214 # 215 # 216 # 217 # 218 # 219 # 220

221 # 222 # 223 # 224 # 225 # 226 # 227

228 # 229 # 230 # 231 # 232 # 233 # 234

235 # 236 # 237 # 238 # 239 # 240 # 241

242 # 243 # 244 # 245 # 246 # 247 # 248

249 # 250 # 251 # 252 # 253 # 254 # 255

256 # 257 # 258 # 259 # 260 # 261 # 262

263 # 264 # 265 # 266 # 267 # 268 # 269

270 # 271 # 272 # 273 # 274 # 275 # 276
C - 2 C - Error Message Index

277 # 278 # 279 # 280 # 281 # 282 # 283

284 # 285 # 286 # 287 # 288 # 289 # 290

291 # 292 # 293 # 294 # 295 # 296 # 297

400 # 401 # 402 # 403 # 404 # 405 # 406

408 # 420 # 421 # 422 # 430 # 431 # 432

434 # 435 # 436 # 437 # 438 # 440 # 441

442 # 450 # 451 # 452 # 453 # 454 # 460

470 # 480 # 500 # 501 # 502 # 503 # 504

505 # 506 # 507 # 508 # 509 # 510 # 511

512 # 513 # 514 # 515 # 516 # 517 # 518

519 # 520 # 521 # 524 # 525 # 526 # 527

528 # 529 # 530 # 531 # 600 # 601 # 602

603 # 604 # 605 # 606 # 607 # 608 # 609
C - Error Message Index C - 3

001

Unexpected end of file.

The compiler has encountered the end of the source file before reaching
the end of the current library unit (entity, architecture, configuration, package or
package body).

Check to make sure that you have not omitted one or more end statements
from the source file. Also check to ensure that the disk file is not corrupt or
truncated.

002

Syntax error near 'operator'.

The compiler has encountered an unexpected sequence of characters or
language tokens. The error is associated with the indicated VHDL operator.

Check to make sure you are using the operator properly. Also check to
make sure there is no other syntax error on the same line, or on previous lines, that
might cause the error.

Check carefully to make sure that you have placed semicolons in their
proper locations on previous lines.

C - 4 C - Error Message Index

003

Syntax error near 'name'.

The compiler has encountered an unexpected sequence of language
elements. The error is associated with the indicated identifier name.

Check to make sure you are using the identifier properly. Also check to
make sure there is no other syntax error on the same line, or on previous lines, that
might cause the error.

Check carefully to make sure that you have placed semicolons in their
proper locations on previous lines.

004

Based literal format is incorrect.

The compiler has encountered a based literal (a literal that has been
specified as having a base between 2 and 16) that does not have a valid format.

Check the syntax of the literal to make sure it conforms to the requirements
of the specified number base.

C - Error Message Index C - 5

005

Unexpected non-graphic character found.

The compiler has encountered a character that is not a part of the defined
VHDL character set.

Check to make sure that the text editor used to create the source file has
not placed illegal characters (such as word processor control codes) into your
source file.

006

An identifier may not begin with the special character 'character'.

The compiler has encountered an identifier or other VHDL name that
begins with a non-alphabetic character. Identifiers in VHDL must begin with an
upper or lower case letter. Identifiers may not begin with numbers, underscores, or
other special characters. Check to make sure the identifier conforms to the VHDL
requirements for identifier names.

Also check to make sure you have not misplaced an operator or other
special character.

007

Unable to open file 'name'.

The compiler has encountered an error when attempting to open the
indicated file.

Check to ensure that the indicated filename is correctly spelled, and exists
in the current directory or the directory indicated in the file path.

C - 6 C - Error Message Index

008

A 'name' must not contain a new line character.

The compiler has encountered a newline character in a quoted string or an
extended name. Strings and extended identifiers in VHDL must not contain newline
characters.

Check to make sure that you have placed a terminating quote character on
the end of the string, or terminating backslash on an extended name. For
readability in your editor you may prefer shorter strings, in this case use the
concatenation operator (&) to break the string into multiple parts on multiple lines.

009

A 'name' must not contain a CR character.

The compiler has encountered a carriage return character in a quoted
string or extended identifier. Strings and extended identifiers in VHDL must not
contain CR characters.

Check to make sure that you have placed a terminating quote character on
the end of the string. If the string is too long to enter on one line, use the
concatenation operator (&) to break the string into multiple parts on multiple lines.
If you require that a carriage return character be embedded in the string, use the
syntax: 'string1' & CR & 'string 2' to concatenate two substrings with a carriage
return character.

C - Error Message Index C - 7

010

A 'name' must not contain a non-graphic character.

The compiler has encountered an illegal character in a quoted string or
extended identifier.

Check to make sure that the string or extended identifier indicated contains
only valid VHDL characters. If the string or extended identifier appears to include
only valid characters, check to make sure your text editor or word processor has
not inserted illegal non-graphic characters.

011

A bit string must not contain a new line character.

The compiler has encountered a newline character in a bit string. Binary
bit strings must consist only of the characters '0', '1' and '_'. Octal bit strings must
consist only of the characters '0' to '7' and '_'. Hexadecimal bit strings must consist
only of the characters '0' to 'f' and '_'.

Check to make sure that you have placed a terminating quote character on
the end of the bit string.

C - 8 C - Error Message Index

012

Bit string delimiters do not match.

The compiler has encountered an unexpected character at the end of a bit
string.

Check to make sure that you have used the same character delimiter at
the beginning and end of the bit string. If you have used the replacement character
'%' in the bit string, make sure that the same replacement character is used as both
the first and second delimiter.

013

Illegal binary value 'character' in bit string.

The compiler has encountered an unexpected character while reading a
bit string. The compiler has encountered an invalid binary format bit string. Binary
bit strings must include only the characters '0' through '1', and the special character
'_'.

Check to make sure that the bit string is in a valid binary number format,
or change the base specification to reflect the format used.

014

A Bit string must not have '_' as its first element.

The compiler has encountered an illegal use of the special character '_' in
a bit string. The '_' character may not be used as the first or last character in a bit
string.

Check to make sure that the bit string does not begin with a '_' character.

C - Error Message Index C - 9

015

A bit string must not contain consecutive under bars '__'.

The compiler has encountered an illegal use of the special character '_' in
a bit string. The '_' character can only be used to provide separation between
numeric characters in a bit string, and must be entered as a single character.

Check to make sure that the bit string does not include extraneous '_'
characters.

016

A bit string must not have '_' as its last element.

The compiler has encountered an illegal use of the special character '_' in
a bit string. The '_' character can only be used to provide separation between
numeric characters in a bit string. The '_' character may not be used as the first or
last character in a bit string. Check to make sure that the bit string does not end
with an extraneous '_' character.

017

Illegal octal value 'character' in bit string.

The compiler has encountered an invalid octal format bit string. Octal bit
strings must include only the characters '0' through '7' and the special character '_'.

Check to make sure that the bit string is in a valid octal number format, or
change the base specification to reflect the format used.

C - 10 C - Error Message Index

018

Illegal hex value 'character' in bit string.

The compiler has encountered an invalid hexadecimal format bit string.
Hexadecimal bit strings must include only the characters '0' through '9', 'A' through
'F', 'a' through 'f,' and the special character '_'.

Check to make sure that the bit string is in a valid hexadecimal number
format, or change the base specification to reflect the format used.

019

Based literal contains illegal character 'character'.

The compiler has encountered an invalid based numeric literal. Numeric
literals entered in non-decimal format must include only the characters appropriate
for the base specification. (e.g. '0' through '7' and the special character '_' for an if
the base specifier is 8).

Check to make sure that the based numeric literal is in a valid numeric
format that matches the base specification.

020

Literal Base must not be greater than 16.

The compiler has encountered an invalid based numeric literal. The literal
base specification must be in the range of 2 to 16. Check to make sure that the
literal has a valid base specification.

C - Error Message Index C - 11

021

Literal Base must not be less than 2.

The compiler has encountered an invalid based numeric literal. The literal
base specification must be in the range of 2 to 16.

Check to make sure that the literal has a valid base specification.

022

Illegal literal format, missing 'E'.

The compiler has encountered a floating point literal that is incorrectly
specified.

Check to make sure that the floating point literal is specified correctly.
(Note, however, that floating point numbers are only supported as integers during
synthesis. The fractional part of a floating point number will be truncated.)

023

A number must not contain '_character'.

The compiler has encountered in invalid sequence of characters in a
numeric literal. Numeric literals may include '_' (underscore) characters to improve
readability, but must not include other, non-numeric characters. (Values entered in
hexadecimal format may also include the characters 'A' through 'F' or 'a' through
'f'.)

Check to make sure that there are no invalid characters used in the
numeric literal, and that the '_' character is used properly.

C - 12 C - Error Message Index

024

A number must not have 'character' as its last character.

The compiler has encountered in invalid character at the end of a numeric
literal.

Check to make sure that there are no missing or additional delimiters (such
as white space or newline) at the end of the number.

025

An identifier may not contain consecutive under bars '__'.

The compiler has encountered an invalid sequence of characters in a
numeric literal. Numeric literals may include '_' (underscore) characters to improve
readability, but must not include other, non-numeric characters. In addition, the '_'
character must not be used consecutively.

Check to make sure that there are no invalid characters used in the
numeric literal, and check to make sure there are no extraneous consecutive '_'
characters in the numeric literal.

C - Error Message Index C - 13

026

An identifier may not contain a 'character'.

The compiler has encountered an invalid character in an identifier.
Identifiers may consist of letters, digits, and '_' (underscore) characters but must
not include other special or non-graphic characters.

Check to make sure that there are no invalid characters used in the
identifier. Also consider using the extended identifier syntax; an extended identifier
may contain any graphic character. Extended identifiers have a backslash (\) as
their first and last character. Also note that extended identifiers are case sensitive.

027

An identifier may not have '_' as its last character.

The compiler has encountered in invalid sequence of characters in an
identifier. Identifiers may include '_' (underscore) characters to improve readability,
but the '_' character must not be used as the first or last character in the identifier.

Check to make sure that the '_' character is not used as the last character
in the identifier.

C - 14 C - Error Message Index

028

A character literal must not contain a non-graphic character.

The compiler has encountered a quoted character that is not a graphic
character.

Check to make sure that the text editor you have used to create the source
file has not placed illegal characters (such as word processor control codes) into
your source file.

029

'mm': unknown command option 'name'.

The compiler software has been invoked with an unknown command
option.

Check the compiler documentation for information about compiler options
and option formats.

030

Unable to create a temporary file.

The compiler has encountered a system error while attempting to write a
file to the disk.

Check to make sure that you have sufficient space on the disk. Also check
to make sure the disk drive is not write protected or a read- only device. If you have
a networked system, check to ensure that you have adequate network privileges.

C - Error Message Index C - 15

031

Unable to open a temporary file.

The compiler has encountered a system error while attempting to open an
existing temporary file.

Check to make sure the disk drive or network directory is available. If you
have a networked system, check to make sure that you have adequate network
privileges.

032

Unable to write to a temporary file.

The compiler has encountered a system error while attempting to write a
file to the disk.

Check to make sure that you have sufficient space on the disk. Also check
to make sure the disk drive is not write protected or a read-only device. If you have
a networked system, check to ensure that you have adequate network privileges.

C - 16 C - Error Message Index

033

Out of memory.

The compiler has encountered a system error while attempting to allocate
memory.

Synthesis software can require large amounts of memory, depending on
the size of the design. Check your design to ensure that you have not described a
circuit that is impractical to synthesize (such as one that includes very large array
or integer ranges, or describes complex mathematical functions).

Also check to ensure that your system has adequate physical memory,
and that there is enough free memory to run the synthesis software. (Select the
Help About menu item from the Windows Program Manager -- or Help About
Windows 95 in any Windows 95 folder window -- to determine the amount of free
memory available.)

If your design is very large, you should consider partitioning it into multiple,
smaller design modules and synthesize those modules independently.

034

Disk is full.

The compiler has encountered a system error when attempting to write a
file to the disk.

Check to make sure that you have adequate disk space.

C - Error Message Index C - 17

035

Software security protection check failed.

The compiler was unable to find the software security device.

Check to make sure that the software security device is connected
properly before running the software.

036

Design too large for Demonstration version.

The compiler is operating in demonstration mode. In this mode, you are
restricted in the size of design that can be processed.

Check to make sure that the number of semicolons in your design is within
the restriction imposed by the demonstration version. If you are not intending to run
the software in demonstration mode, check to ensure that the software security
device is properly attached.

082

Unable find package 'standard' in the file 'std.vhd'.

The compiler has encountered a problem in the standard library file,
std.vhd.

Check to make sure the std.vhd file has not become corrupted. If
necessary, re-install the std.vhd file from the installation disk.

C - 18 C - Error Message Index

083

Entity 'name' does not exist in the design.

The compiler was unable to find the indicated entity in the specified input
source files.

Check to make sure that you have specified the top-level entity correctly.
Check also to make sure you have specified all necessary source files on the
command line, and that the desired top-level entity exists.

084

Architecture 'name' does not exist in the design.

The compiler was unable to find the indicated architecture in the specified
input source files.

Check to make sure that you have specified the top-level architecture
correctly.

Also check to make sure you have specified all necessary source files on
the command line, and that the desired top-level architecture exists.

C - Error Message Index C - 19

085

Input file and output file have the same name.

The compiler has determined that the input and output file names you have
specified are the same.

Check to make sure that you have specified the correct file names for input
and output files, and check to make sure you have specified the correct file name
extensions.

086

Incorrect version of library STD.

The compiler has encountered a problem in the standard library file,
std.vhd. The version of the file is not correct.

Check to make sure the std.vhd file has not become corrupted. If
necessary, re-install the std.vhd file from the installation disk.

Also check to make sure you do not have an old version of std.vhd
somewhere on your path, or in your project directory.

C - 20 C - Error Message Index

087

Incorrect version of library METAMOR.

The compiler has encountered a problem in the standard library file,
metamor.vhd. The version of the file is not correct.

Check to make sure the metamor.vhd file has not become corrupted. If
necessary, re-install the metamor.vhd file from the installation disk.

Also check to make sure you do not have an old version of metamor.vhd
somewhere on your path, or in your project directory.

088

Install error, file name is missing.

The compiler has encountered a missing file, this file is part of the product
and must be present.

If the directory containing the file is on a networked drive, check that the
drive is shared. Once you verify that the file is missing, re-install the product.

089

Install error, file name is incorrect version.

The compiler has encountered a file that is part of the product but is from
another version of the product. This file is incompatible and must be replaced.

Re-install the product.

C - Error Message Index C - 21

100

A description 'name' is used in an expression as a primary, expected a signal, a
variable, or a constant.

The compiler has encountered a primary expression element that is not a
legal as part of an expression. An object of class signal, variable or constant was
required. These objects include signals, variables, constants, generics,
enumerated type elements, functions, and attribute values.

Check to make sure that you have correctly specified the expression.

Also check to make sure the indicated name has been declared, and is not
hidden by another declaration.

101

'name' has not been declared as a 'description'.

The compiler has encountered a component instantiation that does not
reference a known component, entity or configuration.

Check to make sure that you have provided a component declaration for
the indicated component.

If the component declaration exists in a package, make sure you have
provided the necessary use statement to make the contents of that package
visible. If this is a direct instantiation, check that the keywords entity or
configuration are not missing.

C - 22 C - Error Message Index

102

Mode conflict associating actual 'name' with formal 'name'.

The compiler has determined that the mode (direction) of the actual
parameter indicated is not compatible with the mode of the formal parameter.

For example, you cannot connect an actual that is itself an out port, to a
formal that is an inout port.

Check to make sure that the mode specified in the component declaration
is compatible with the mode of the actual parameter.

Check to make sure the mode on the component declaration is the same
as the mode on its entity port declaration.

Also check to make sure you have associated the actual parameters to
formal parameters as expected. A mode conflict is actually an electrical rules
check, and usually indicates a design error. It is often possible to work around this
error using a temporary signal as the actual.

103

No actual is specified for generic 'name''.

The compiler has encountered an incomplete generic mapping. The actual
generic value is missing in the generic map.

Check to make sure that all required generic parameters have been
specified, or add a default value to the declaration of this generic.

C - Error Message Index C - 23

104

Port 'name' has mode IN, is unconnected and has no explicit default value.

The compiler has determined that the indicated port of an entity has been
left unspecified or specified as open. Input ports that do not have default values
must be connected.

Check to make sure that all necessary input ports have been specified with
actual parameters, or add default values to those ports that will be left
unconnected.

105

Port 'name' has mode description has a type that is unconstrained and may not be
unconnected.

The compiler has encountered a port mapping that is invalid, due to the
use of a formal port that has an unconstrained array type. All ports that have
unconstrained types must be connected.

Check to make sure that you have described the intended port mapping,
and have not inadvertently omitted one or more ports from the port map or
specified this port as open.

C - 24 C - Error Message Index

106

Block specification must be an Architecture, Block label, or Generate label.

The compiler has encountered a configuration that references an invalid
design unit type or other unknown label.

Check to make sure that the block specification in the configuration
specifies a valid architecture, block label or generate label.

107

'name' is not an Entity.

The compiler expected an entity name in a direct instantiation of an entity
or in a configuration statement, but has instead encountered an identifier that is not
a known entity name, or that has been declared as some other type of design unit
or object.

Check to make sure that you have entered the name of the entity correctly.

Also check to make sure you have not used the same name to identify a
local signal or other object, and that the entity is made visible with a use statement
or with a selected name such as work.entity.

C - Error Message Index C - 25

108

'name' is not a Type or Subtype.

The compiler expected a type or subtype name, but has instead
encountered an identifier that is not a type or subtype.

Check to make sure the type or subtype has been entered properly.

Also check to make sure the type or subtype has been declared correctly,
and is visible in the current region of the design. If the type or subtype declaration
was made within a package, make sure you have provided the appropriate use
statement to make that declaration visible.

109

A Return statement in a procedure must not return an expression.

The compiler has encountered a return statement within a procedure that
includes a return value. Return values are not allowed in procedures.

Check to make sure that a procedure is what you really intended to create.
If you need to return values from a procedure, you will need to use procedure
parameters of mode out or inout, or replace the procedure with a function.

C - 26 C - Error Message Index

110

A Return statement in a function must return an expression.

The compiler has encountered a return statement within a function that
does not specify a return value. Functions must be provided with return values at
all possible exit points.

Check to make sure that all return statements within the function have valid
return values.

111

Operator function has too few parameters.

The compiler has encountered a operator function (overloaded operator)
that does not have the required number of parameters for the specified operator.

Check to make sure that the number of function parameters matches the
requirements of the specified operator.

112

Operator function has too many parameters.

The compiler has encountered an operator function (overloaded operator)
that does not have the required number of parameters for the specified operator.

Check to make sure that the number of function parameters matches the
requirements of the specified operator.

C - Error Message Index C - 27

113

Cannot type convert a NULL, an aggregate, or a string literal.

The compiler has encountered a type conversion that is invalid. Explicit
type conversions are only allowed between closely related types, such as between
arrays with the same dimensions. Explicit type conversions are not allowed for a
null, aggregate or string literals.

Check to make sure that the explicit type conversion is being used for
closely related types, or use a type conversion function.

114

'name' has no Architecture named 'name'.

The compiler was unable to find the specified architecture name.

Check to make sure that the correct architecture name has been used.

Also check to ensure that the specified architecture exists in the design
source files.

115

'name' is already declared as a description.

The compiler has encountered a duplicate declaration for the indicated
identifier name.

Check to make sure that you are specifying the correct identifier name and
that the name is unique in this declarative region, remove one of the duplicate
declarations.

C - 28 C - Error Message Index

116

Name at end of description does not match description name.

The compiler has encountered a mismatched name at the end of a design
unit, subprogram or other end terminated section of the design.

Check to make sure that you have used the correct name at the end of the
section.

Also check to make sure that you have not omitted one or more end
statements.

117

Block configuration must be an Architecture.

The compiler has encountered an invalid binding of a block with an
architecture in a configuration statement or declaration.

Check to make sure that the name specified in the block configuration is
an architecture, and that the architecture specified exists in the design.

119

Unable to determine the range of a non-scalar type.

The compiler has encountered a problem when attempting to determine
the range of a non-scalar (composite) data type such as a record that has no range.

Check to make sure that a range is actually needed, or rewrite the design
so that a scalar data type is used.

C - Error Message Index C - 29

120

Illegal subtype constraint.

The compiler has encountered a subtype declaration or usage that is
illegal, due to an incorrect constraint specification. The constraint (such as a range
specifier) must match the requirements of the base type.

Check to make sure that the subtype and base type are compatible with
the constraint specified.

121

'name' is not an array.

The compiler expected an array object or literal.

Check to make sure that the object or literal you are specifying is an array
type.

123

Attempt to select element of an object whose type is not a record.

The compiler has encountered an invalid use of a record field specifier.
The object referenced in the statement is not a record type.

Check to make sure that the object you are specifying is a record type of
object. If you did not intend to specify a record field, check to make sure you have
not inadvertently used a '.' operator or other record-related syntax.

C - 30 C - Error Message Index

124

'name' does not conform to declaration in package.

The compiler has encountered in invalid declaration in a package body.
The declaration for the indicated name must match the declaration in the
corresponding package.

Check to make sure that you have specified the declaration properly in the
package body. If the declaration is for a subprogram, check to make sure the
parameters are correctly specified and have matching class, mode, type and
names.

Also check to make sure the specified identifier has been properly
declared (as a prototype) in the package.

125

'name' is not a Physical Unit.

The compiler has encountered an apparent use of a physical type literal
that does not specify a valid physical type unit.

Check to make sure that the physical type definition includes the physical
unit you have specified. If you did not intend to specify a physical type literal, check
to make sure you have not inadvertently omitted an operator or other language
element from the statement.

C - Error Message Index C - 31

126

description 'name' may not be a prefix for .ALL.

The compiler has encountered a .all specification (such as in a use
statement) that is not valid. The .all keyword may only be prefixed with a package,
library, entity or architecture.

Check to make sure that you have specified a valid package, library, entity
or architecture name in the statement.

127

Physical unit prefix must be a number.

The compiler has encountered an apparent use of a physical type literal
that does not specify a valid physical type prefix value. Physical type prefix values
must be numbers.

Check to make sure that the physical type definition includes a valid
numeric prefix. If you did not intend to specify a physical type literal, check to make
sure you have not inadvertently omitted an operator or other language element
from the statement.

C - 32 C - Error Message Index

128

Range is not within the range of the base type.

The compiler has encountered an invalid specification of a range. Range
specifications must specify ranges of values that are within the range of the
specified base type.

Check to make sure that the correct base type has been referenced, and
check to make sure that the range specified falls within the range of the base type.

129

Illegal NULL in expression, NULL must be in a simple assignment.

The compiler has encountered an illegal use of null. When used as a value,
null may only be used in the right hand side of a simple assignment, and may not
appear within an expression.

Check to make sure that null was really intended in the expression. You
may be able to simplify the expression to a simple assignment by using a selected
assignment or similar statement.

130

Others must be the last choice in a selected signal assignment.

The compiler has encountered an illegal use of the choice others. Others
is only allowed as the last choice in a series of choices.

Check to make sure that the others choice is at the end of the series of
choices.

C - Error Message Index C - 33

131

Others must be the last choice in a case statement.

The compiler has encountered an illegal use of the choice others. Others
is only allowed as the last choice in a case statement.

Check to make sure that the others choice is at the end of the case
statement.

132

Others must be the only choice in a selected alternative.

The compiler has encountered an illegal use of the choice others, it may
not be or'd with another choice (for example, a case of the following form is illegal:
when '000' | others =>).

Check to make sure that the others choice is the only choice in the
selected alternative. You can probably remove the or'd choice.

133

Others must be the only choice in a case alternative.

The compiler has encountered an illegal use of the choice others, it may
not be or'd with another choice (for example, a case of the following form is illegal:
when '000' | others =>).

Check to make sure that the others choice is the only choice in the
selected alternative. You can probably remove the or'd choice.

C - 34 C - Error Message Index

134

The label at end of the description does not match description label.

The compiler has encountered an end statement that references a
concurrent statement label other than expected.

Check to make sure that you have terminated the concurrent statement
with the correct label.

135

An Exit statement must be within a loop statement.

The compiler has encountered an incorrect use of the exit statement. Exit
is used to terminate execution of a loop, and must be used within a loop.

Check to make sure that the exit statement is being used within a loop.

Also check to make sure you have not inadvertently terminated the loop
prior to the exit statement with a misplaced end statement.

C - Error Message Index C - 35

136

An Exit statement specifies a label that is not a Loop label.

The compiler has encountered an exit statement that specifies an invalid
loop label.

Check to make sure that the optional loop label has been correctly
specified.

Check to make sure the loop (or loops) in which the exit statement is being
used are correctly labeled.

137

A Next statement specifies a label that is not a Loop label.

The compiler has encountered a next statement that specifies an invalid
loop label.

Check to make sure that the optional loop label has been correctly
specified.

Check to make sure the loop (or loops) in which the next statement is being
used are correctly labeled.

C - 36 C - Error Message Index

138

A Return statement must be within a Function or Procedure.

The compiler has encountered a return statement that is not within a
function or procedure (subprogram). Return statements are used to exit from a
subprogram, and must not be used outside of a subprogram.

Check to make sure that the return statement is being properly used within
a function or procedure.

139

A passive process may not contain a signal assignment.

The compiler has encountered a process that is passive (such as one
entered in the entity declaration) and has one or more signal assignments.

Check to make sure the process has been entered in the desired location
of the source file. If the process is not intended to be passive, it must be located
within an architecture declaration.

C - Error Message Index C - 37

140

Process has a sensitivity list and a wait statement.

The compiler has encountered a wait statement being used in a process
that includes a sensitivity list. A process may not include both a wait statement and
a sensitivity list.

Check the design requirements to determine if a sensitivity list is required.
If you are creating a design intended for synthesis, you should consider using the
sensitivity list in conjunction with appropriate conditional logic to define the
behavior of the circuit. Remove either the sensitivity list or the wait statement to
correct the problem.

141

Illegal NULL in concurrent signal assignment.

The compiler has encountered an illegal assignment to null in a concurrent
signal assignment. VHDL does not allow assignments of null in concurrent signal
assignments.

Check to make sure that you really need to assign the signal to null. If you
are attempting to describe an output enable, you should use the std_logic data type
and assign the signal a value of 'Z', rather than null. If you require an assignment
of null, modify the design so that the assignment is performed within a process or
subprogram.

C - 38 C - Error Message Index

142

Missing block guard expression or signal 'guard'.

The compiler has encountered an invalid or incomplete specification of a
guarded assignment. A guarded assignment requires either a guarded block or
implicit or explicit signal guard.

Check to make sure that a guard expression or the implicit signal guard
has been specified for the guarded block. If guard is not an implicit signal, check to
make sure it has been properly declared as a Boolean type.

143

'guard' is not a signal.

The compiler has encountered an invalid use of the signal guard. Guard is
not an implicit signal in this context, and is not declared as a Boolean-type signal.

Check to make sure that you have not specified the wrong signal name.

Also check to make sure you have correctly declared the explicit guard
signal.

C - Error Message Index C - 39

144

Signal 'guard' is not type 'boolean'.

The compiler has encountered an invalid use of the special signal guard.
The condition expression of the guarded block does not evaluate to a Boolean
result, or guard has been declared as a non-Boolean type.

Check to make sure that the condition expression evaluates to a Boolean
result. If guard is explicitly declared and used in a guarded signal assignment, it
must be declared as a Boolean.

145

Target of un-guarded assignment is guarded.

The compiler has encountered an inconsistent use of a guarded
assignment. The target of an assignment is guarded, but the guarded keyword has
not been specified.

Check to make sure that you have specified the guarded keyword for all
assignments to guarded signals.

C - 40 C - Error Message Index

146

'name' is not a Procedure.

The compiler expected to encounter a procedure name, but the name
specified is not a procedure.

Check to make sure that you have correctly entered the procedure name
with the correct number of arguments, each of the correct type.

Also check to make sure there is no other local declaration that hides the
procedure declaration, and that the procedure declaration is visible in the current
region of the design.

147

Positional association must not follow named association.

The compiler has encountered an incorrect use of a port mapping or
subprogram arguments. When positional association is used in combination with
named association, the positional associations must be specified prior to any
named associations.

Check to make sure that the ports have been specified in the correct order.

Also check to make sure you have not inadvertently omitted one or more
named associations.

C - Error Message Index C - 41

148

Attribute 'name has not been declared.

The compiler has encountered an attribute name that has not been
declared.

Check to make sure that the attribute has been properly declared. If the
attribute declaration is in a package, make sure the package has been properly
loaded from the library, and make sure the package contents have been made
visible with a use statement.

149

Attribute not defined for this object.

The compiler has encountered an attribute use that is not defined for the
object the attribute is being applied to.

Check to make sure that the attribute has been defined for the type of the
object. Use a type conversion, if necessary, to convert the object to the correct data
type, or use an attribute that has been declared for the data type.

150

Prefix for attribute 'base must be a type or subtype.

The compiler has encountered an invalid use of the predefined attribute
'base. The 'base attribute is used to find the base type for a subtype, and so must
only be applied to a type or subtype.

Check to make sure that the type specified is a subtype.

C - 42 C - Error Message Index

151

Attribute 'attribute must not have a parameter.

The compiler has encountered an invalid use of a predefined attribute. The
indicated attribute does not have a parameter.

Check to make sure that you are using the correct attribute. If necessary,
add the appropriate attribute parameter.

152

Attribute 'base must be the prefix of another attribute.

The compiler has encountered an incorrect use of the predefined 'base
attribute.

'Base must be used in conjunction with another attribute, such as 'left,
'right, 'high, or 'low.

Check to make sure that you are using the attribute correctly.

153

Attribute 'attribute may not have a parameter if the prefix is a scalar type.

The compiler has encountered a predefined attribute being used
incorrectly with a parameter. The indicated attribute may not include an attribute
parameter when used with scalar types.

Check to make sure that the attribute is being used correctly.

C - Error Message Index C - 43

154

Prefix of attribute 'attribute must be a discrete type.

The compiler has encountered a predefined attribute being used
incorrectly. The indicated attribute requires a prefix that is a discrete type (an
enumeration type or integer).

Check to make sure that the attribute is being used correctly, and that the
prefix is an enumeration type or integer.

155

Attribute 'attribute must have a parameter.

The compiler has encountered an invalid use of a predefined attribute. The
indicated attribute requires a parameter.

Check to make sure that you are using the correct attribute. Add an
attribute parameter if necessary.

157

Signal attribute prefix is not a signal.

The compiler has encountered a predefined attribute being used
incorrectly. The indicated attribute requires a prefix that is a signal identifier.

Check to make sure that the attribute is being used correctly, and that the
prefix is a signal identifier.

Note that most signal attributes are not supported for synthesis.

C - 44 C - Error Message Index

158

In an aggregate, positional associations must occur before named associations.

The compiler has encountered an incorrect use of an aggregate. When
positional association is used in combination with named association, the
positional associations must be specified prior to any named associations.

Check to make sure that the elements of the aggregate have been
specified in the correct order. Also check to make sure you have not inadvertently
omitted one or more named associations.

159

Choice Others must only occur once in an aggregate.

The compiler has encountered more than one use of the others choice in
an aggregate. Others may only be used once to define the default assignment in a
aggregate.

Check to make sure that you have only provided one others choice in the
aggregate.

160

Choice Others must be last element of an aggregate.

The compiler has encountered an invalid use of the others choice in an
aggregate. Others may only be used once to define the default assignment in a
aggregate, and must be the last element in the aggregate.

Check to make sure that you have only provided one others choice in the
aggregate, and that it is the last choice.

C - Error Message Index C - 45

161

Choice Others must be the only choice in an aggregate element association.

The compiler has encountered an illegal use of the choice others, it may
not be or'd with another choice (for example, a case of the following form is illegal:
when 7 | others =>).

Check to make sure that the others choice is the only choice in the
selected alternative. You can probably remove the or'd choice.

162

Unable to action library file 'name'.

The compiler was unable to perform an action (read or write) on the
specified library file.

For read, check to make sure the library file exists, and is located in the
current working directory, in the library directory, or is correctly specified in the list
of files in a library alias.

For write of a compiled library file, check to make sure you have write
privileges in the specified directory.

C - 46 C - Error Message Index

163

'name' is a description and not a description.

The compiler has encountered an unexpected use of the indicated
identifier.

Check to make sure that the identifier has been entered correctly, and is
the expected type of object, design unit, loop, block, or subprogram.

164

'name' is not a user defined attribute.

The compiler has encountered an invalid use of the indicated identifier.
The name used is not declared as a user defined attribute.

Check to make sure that that the attribute name has been correctly
entered. If an attribute was not intended, check to make sure the ' (single quote)
character has not been incorrectly used.

165

Subtype has more dimensions than base type.

The compiler has encountered an invalid specification of a subtype. Array
subtype declarations must specify ranges of values that are within the range of the
specified base type, and must have the same number of array dimensions.

Check to make sure that the correct base type has been referenced, and
check to make sure that the dimensions of the subtype are compatible with the
range of the base type.

C - Error Message Index C - 47

166

Subtype index is incompatible with base type index.

The compiler has encountered an invalid specification of a subtype. An
array subtype index must specify a value that is within the range of the specified
base type.

Check to make sure that the correct base type has been referenced, and
check to make sure that the index of the subtype is compatible with the range of
the base type.

167

Base type of subtype must not be a record.

The compiler has encountered an invalid specification of a subtype. The
base type of a subtype may not be a record.

Check to make sure that the correct base type has been referenced, and
check to make sure that the base type is not a record type.

168

Base type for index constraint must be an array.

The compiler has encountered an invalid specification of an index
constraint. An array index constraint may only be used when the base type is an
array.

Check to make sure that the correct base type has been referenced.

C - 48 C - Error Message Index

169

Base type of subtype must be an unconstrained array.

The compiler has encountered an invalid specification of an unconstrained
array subtype. The base type of a subtype must be an unconstrained array.

Check to make sure that the correct base type has been referenced, or
constrain the array subtype with a valid range.

170

'name' was declared outside of the function in which it is used.

The compiler has encountered an object being referenced within a
function, but that object was not declared within the function.

Check to make sure that you are referencing an object that is local to the
function, or has been passed into the function via the parameter list.

171

A function may not contain a wait statement.

The compiler has encountered a wait statement within a function.
Functions may not include wait statements.

Note that wait statements are legal within procedures, but are not
supported for synthesis.

C - Error Message Index C - 49

172

A function must be completed by a return statement.

The compiler has encountered a function that does not contain a return
statement. Functions must have at least one return statement with a return value .

Check to make sure that a return statement is the last statement of the
function, and that the return statement is not dependent on an if statement or other
conditional expression.

173

The subtype indication given in the full declaration of 'name' must conform to that
given in the deferred constant declaration.

The compiler has encountered a full constant declaration that is
incompatible with the associated deferred constant declaration. The subtype
indications specified for the deferred and full constant declarations are
incompatible.

Check to make sure that the same subtype indications of the deferred and
full constant declaration are compatible.

174

Range of a physical type must be an integer.

The compiler has encountered a physical type declaration that includes
non-integer units.

Check to make sure that the physical type declaration includes a valid
base unit, and that subsequent units are defined using an integer multiplier.

C - 50 C - Error Message Index

175

Subprogram declaration 'name', does not have a corresponding body.

The compiler was unable to find a function or procedure body
corresponding to the subprogram declaration indicated.

Check to make sure that you have provided a function or procedure body
for the subprogram. If the subprogram has been declared within a package, make
sure that a corresponding package body has been provided that includes the
function or procedure body.

Also check to make sure the declarations in the package and package
body match.

176

Deferred constant declaration 'name', is not declared in a package body.

The compiler was unable to find a full constant declaration corresponding
to the deferred constant declaration indicated.

Check to make sure that you have provided a full constant declaration for
the indicated deferred constant.

Check to make sure that a corresponding package body has been
provided for the package containing the deferred constant declaration.

C - Error Message Index C - 51

177

Return statement must be within a Function or Procedure.

The compiler has encountered a return statement that is not within a
function or procedure body.

Check to make sure that you are using the return statement correctly to
exit from a subprogram.

Also check to ensure that you have not incorrectly placed one or more end
statements that would cause the subprogram to be prematurely terminated.

178

Next statement must be within a Loop statement.

The compiler has encountered a next statement that is not within a function
or procedure body.

Check to make sure that you are using the next statement correctly in the
subprogram.

Also check to ensure that you have not incorrectly placed one or more end
statements that would cause the subprogram to be prematurely terminated.

C - 52 C - Error Message Index

179

Reserved word UNAFFECTED may only appear as a waveform in a concurrent
signal assignment.

The compiler has encountered an invalid use of the indicated keyword.
The unaffected keyword is only allowed in waveforms that are part of a concurrent
signal assignment. (Note also that only the first item in a waveform is supported in
synthesis.)

Check the proper use of the unaffected keyword and modify the design.

180

Attempt to assign to a port with mode IN.

The compiler has encountered an invalid use of a port with mode in. It is
not legal to assign values to ports that have been declared as mode in.

Check to make sure that you are assigning to the correct port in your
design. If you need to assign a value to the port, use mode inout or out.

181

Attempt to assign to a port with mode LINKAGE.

The compiler has encountered an invalid use of a port with mode linkage.
It is not legal to assign values to ports that have been declared as mode linkage.

Check to make sure that you are assigning to the correct port in your
design. If you need to assign a value to the port, use mode inout or out.

C - Error Message Index C - 53

182

Attempt to assign to implicit signal 'guard'.

The compiler has encountered an invalid use of the implicit signal guard.
This signal is created as a result of a guard expression, and may not have a value
assigned to it.

Check to make sure that you have not specified the wrong identifier name
in the assignment. If you are attempting to modify the guard expression
dynamically, you will need to rewrite the design so there are multiple guarded
blocks specified with the required guard expressions.

183

Attempt to assign to an alias of a port with mode IN.

The compiler has encountered an invalid use of a port with mode in. It is
not legal to assign values to ports, or to aliases of ports, that have been declared
as mode in.

Check to make sure that you are assigning to the correct port in your
design. If you need to assign a value to the port, use mode inout or out.

C - 54 C - Error Message Index

184

Attempt to assign to an alias of a port with mode LINKAGE.

The compiler has encountered an invalid use of a port with mode linkage.
It is not legal to assign values to ports, or to aliases of ports, that have been
declared as mode linkage.

Check to make sure that you are assigning to the correct port in your
design. If you need to assign a value to the port, use mode inout or out.

185

A description cannot be the target of a Signal assignment statement.

The compiler has encountered an invalid use of a signal assignment (<=).
The target of a signal assignment must be a signal or port.

Check to make sure that the left side of the assignment is a signal or port.
If you are assigning to a variable, use the variable assignment operator := .

Note, however, that variable assignments occur immediately within the
process and signal assignments are executed at the end of a process. Such a
substitution may change the behavior of your design.

C - Error Message Index C - 55

186

A description cannot be the target of a Variable assignment statement.

The compiler has encountered an invalid use of a variable assignment (:=).
The target of a variable assignment must be a variable.

Check to make sure that the left side of the assignment is a variable. If you
are assigning to a signal or port, use the signal assignment operator <= .

Note, however, that variable assignments occur immediately within the
process and signal assignments are executed at the end of a process. Such a
substitution may change the behavior of your design.

187

Expected a static expression, description 'name' is illegal here.

The compiler has encountered an expression that is invalid in the current
context. A static expression (one that can be evaluated at compile time, and does
not depend on a signal or variable) is expected.

Check to make sure the expression is static.

C - 56 C - Error Message Index

188

Signal 'name' is not readable as it has mode OUT.

The compiler has encountered an invalid use of a port with mode out. It is
not legal to read values of ports, or aliases of ports, that have been declared as
mode out.

Check to make sure that you are specifying the correct port in your design.
If you need to read the value of a port, use mode buffer. You could also consider
mode inout; this, however, specifies bi-directional data flow and is often
overspecification.

189

'name' is not a static signal name.

The compiler has encountered an object or expression that is invalid in the
current context. A static expression (one that can be evaluated at compile time, and
does not depend on a signal or variable) is expected.

Check to make sure that the object or expression is static.

190

Enumerated type contains duplicate element 'name'.

The compiler has encountered two or more identical enumerated values in
an enumerated type declaration.

Check to make sure that you have not incorrectly typed in the enumerated
values for the type. Remove or rename the duplicate entries.

C - Error Message Index C - 57

191

Array type is not constrained.

The compiler has encountered an unsupported use of an unconstrained
array type.

Check to make sure that all array types in your design are provided with
valid array bounds (ranges).

192

Function parameter must be mode IN.

The compiler has encountered an incorrect use of a function parameter.

All formal parameters of a function must be of mode in (which is the default
mode) and may not be assigned values within the function. If you require that one
or more parameters of your subprogram be of mode out or inout, then you will need
to use a procedure, rather than a function.

193

Package Body with no Package of same name.

The compiler has encountered a package body that does not correspond
to any package in the design.

Check to make sure that a package has been provided corresponding to
the package body, and that the package and package body names are consistent
and in the same library.

C - 58 C - Error Message Index

194

Unable to determine type of array index.

The compiler has encountered an array index that is of an unknown type.

Check to make sure that the expression used for the array index results in
a integer or other valid index value. Introducing an intermediate signal or variable
can help to resolve data type ambiguities.

195

Array must have an index constraint.

The compiler has encountered an array without an index constraint, in a
context where unconstrained arrays are not allowed.

Check to make sure that the array is provided with an index constraint.

196

Prefix of a selected name cannot be a slice name.

The compiler has encountered an invalid selected name. The prefix of a
selected name must be a library, package, block, subprogram or record name.

Check to make sure that you have correctly specified the selected name.
If a selected name was intended, check to make sure the prefix of the selected
name is a valid selection name.

C - Error Message Index C - 59

197

Formal 'name' in port map does not exist in port declaration.

The compiler has encountered a named association within a component
instantiation that does not match the port declaration for the specified component
or lower-level entity.

Check to make sure that the named association has been correctly
entered.

Also check the component declaration to ensure that the lower- level entity
has been properly declared.

198

Only the last entry in a group template declaration can include a <>.

The compiler has encountered an invalid specification of a group template
declaration. When used in a group template declaration, only the last entry of the
group can be a box (<>).

Check to make sure that you have specified a legal group template
declaration, and modify the entries accordingly.

C - 60 C - Error Message Index

200

Value of when expression is outside range of values of selected expression.

The compiler has encountered a when expression that does not match the
possible values specified in the selected expression.

Check to make sure that the when expressions specified in the selected
assignment are non-overlapping, and fall into the range of possible values for the
selection.

201

Value of when expression is outside range of values of case expression.

The compiler has encountered a when expression that does not match the
possible values specified in the case condition expression.

Check to make sure that the when expressions specified in the case
condition expression are non-overlapping, and fall into the range of possible values
for the case statement.

202

Operands have types that are incompatible with the operator 'operator'.

The compiler has encountered an expression that is not legal due to
incompatibilities between the operand types and the operator used.

Check to make sure that the operand types have the required operations
defined for them. If the operand types do not support the operator you are using,
you can use a type conversion function to convert the operands to the required
types, or write your own overloaded operator.

C - Error Message Index C - 61

203

'name' has not been declared.

The compiler has encountered an identifier that has not been declared, or
has been declared but is not visible here.

Check to make sure that the indicated identifier has been declared, and is
visible where it is being referenced. If the identifier has been declared within a
package, make sure the declaration has been made visible with a use statement.

Also check to make sure the name has not been hidden by another
declaration.

204

Operands of 'name' have incompatible types.

The compiler has encountered an expression that is not legal due to
incompatibilities between the operand types and the operator being used.

Check to make sure that the operand types have the required operations
defined for them. If the operand types do not support the operator you are using,
you can use a type conversion function to convert the operands to the required
types.

C - 62 C - Error Message Index

205

Parameter associated with formal 'name' must be a Variable.

The compiler has encountered a subprogram parameter that must be a
variable, but has not been declared as a variable. The actual and formal
parameters of the subprogram do not match.

Check to make sure the subprogram actual parameters have been
properly entered, and that they match the subprogram formal parameters.

206

Parameter associated with formal 'name' must be a Signal.

The compiler has encountered a subprogram parameter that must be a
signal, but has not been declared as a signal. The actual and formal parameters of
the subprogram do not match.

Check to make sure the subprogram actual parameters have been
properly entered, and that they match the subprogram formal parameters.

207

Formal parameter 'name' and its actual parameter have incompatible types.

The compiler has encountered an actual parameter to a subprogram that
is not legal due to incompatibilities between the actual parameter type and the
formal parameter type.

Check to make sure that the actual and formal parameters have
compatible types. If the types are different, you may be able to use a type
conversion function to convert the operands to the required types.

C - Error Message Index C - 63

208

Block guard expression must be type boolean.

The compiler has encountered an invalid block guard expression in a block
statement. An implicit guard signal is boolean type.

Check to make sure that the guard expression has a boolean type.

209

Range of an integer type declaration must be some integer type.

The compiler has encountered an invalid range specification in an integer
type declaration. The range must specify a valid integer range.

Check to make sure that the range has been correctly specified. Make sure
the range is specified using integer values.

210

Unable to determine type of attribute prefix.

The compiler has encountered an ambiguous prefix of an attribute. The
type of the object prefix of the attribute is unknown.

Check to make sure that the attribute is being used in the intended way.
You may be able to simplify the description and remove the type ambiguity by
introducing an intermediate signal or variable of the correct type.

C - 64 C - Error Message Index

211

Prefix of attribute 'attribute must not be a record.

The compiler has encountered an invalid use of the indicated attribute.

Check to make sure that the attribute prefix is of the intended type, and that
the correct attribute is being used.

212

Parameter of an array attribute must be a universal integer.

The compiler has encountered an incorrect use of an array attribute.

Check to make sure that the array attribute parameter is a universal integer
value.

213

Operand has a type that is incompatible with the operator 'operator'.

The compiler has encountered an expression that is not legal due to
incompatibilities between the operand types and the operator being used.

Check to make sure that the operand types have the required operations
defined for them. If the operand types do not support the operator you are using,
you can use a type conversion function to convert the operands to the required
types.

C - Error Message Index C - 65

214

Exponent is negative, left operand must be a floating point type.

The compiler has encountered an invalid use of an exponent. When the
exponent of an expression is negative, the operand must be a floating point object
or literal.

Check to make sure that the left operand is a floating type value, or use a
type conversion to convert the value to floating point.

215

No parameter associated with formal parameter 'name'.

The compiler has encountered an incorrect use of a procedure or function.
One or more of the required actual parameters are missing.

Check to make sure that you have specified all required parameters to the
procedure or function.

216

There are more actual parameters than formal parameters.

The compiler has encountered an incorrect use of a procedure or function.
Too many actual parameters have been specified.

Check to make sure that you have specified the correct number and type
of required parameters when invoking the procedure or function.

C - 66 C - Error Message Index

217

Expected a Procedure and not a Function.

The compiler has encountered a function being used when a procedure
was expected. Procedures must be used when no return value is expected.

Check to make sure that the subprogram you have invoked is declared as
a procedure, or use the subprogram in such a way that the return value is used.

218

Expected a Function and not a Procedure.

The compiler has encountered a procedure being used when a return
value was required. Procedures do not have return values.

Check to make sure that the subprogram is written as a function, rather
than a procedure, or modify the use of the subprogram so that a return value is not
required.

219

Function returns an incompatible type.

The compiler has encountered an incompatible use of a function. The
types required in the expression and the type declared for the function do not
match.

Check to make sure that the types are compatible. Use a type conversion
function if necessary to convert the returned function value to the appropriate type.

C - Error Message Index C - 67

220

No procedure definition matches 'name'.

The compiler has encountered a call to a procedure that does not exist, or
that is not visible in the current region of the design.

Check to make sure that the procedure has been declared properly, and
that the declaration is visible. If the procedure was declared in a package, you must
include a use statement prior to the current design unit to make the declaration
visible.

Procedures may be overloaded; check that the number and type of the
actual arguments match one of the formal declarations of the procedure.

221

No function definition matches 'name'.

The compiler has encountered a call to a function that does not exist, or
that is not visible in the current region of the design.

Check to make sure that the function has been declared properly, and that
the declaration is visible. If the function was declared in a package, you must
include a use statement prior to the current design unit to make the declaration
visible. Functions may be overloaded, check that the number and type of the actual
arguments match one of the formal declarations of the function.

C - 68 C - Error Message Index

222

No actual associated with formal 'name'.

The compiler has encountered an incorrect use of a procedure or function.
One or more of the required actual parameters are missing.

Check to make sure that you have specified all required parameters to the
procedure or function.

223

More than one association specified for formal parameter 'name'.

The compiler has encountered an incorrect use of a procedure or function.
One or more of the formal parameters has been incorrectly referenced in a named
association, or there is more than one actual parameters associated.

Check to make sure that you have specified all required parameters to the
procedure or function.

224

The aggregate has an incompatible type in this context.

The compiler has encountered an illegal use of an aggregate. One or more
aggregate elements are not of the correct type.

Check to make sure that the aggregate is of the correct format for the
intended usage. The type of an aggregate is determined from the context, check
that the type of the aggregate is clear in this context.

C - Error Message Index C - 69

225

The string has an incompatible type in this context.

The compiler has encountered an illegal use of a string literal. An element
of the string is not of the correct type.

Check to make sure that the string is of the correct format for the intended
usage, and that the type of the elements of the string can be distinguished in this
context. The type of a string is determined from the context, check that the type of
the string is clear in this context.

226

The bit string has an incompatible type in this context.

The compiler has encountered an illegal use of a bit string literal. An
element of the bit string is not of the correct type.

Check to make sure that the string is of the correct format for the intended
usage as a bit string, and that the type of the elements of the string can be
distinguished in this context. The type of a bit string is determined from the context,
check that the type of the bit string is clear in this context.

227

The direction of the slice is not the same as the direction of the prefix.

The compiler has encountered an index range that does not match the
direction of the array prefix.

Check to make sure that the declaration of the array matches (in terms of
direction, either to or downto) the range specified in the array slice.

C - 70 C - Error Message Index

228

Unable to resolve overloaded procedure 'name'.

The compiler has encountered a procedure that has two or more possible
declarations, but is unable to determine which procedure declaration is intended
due to ambiguous parameter types.

Check to make sure that the parameter types are clearly specified.
Introducing intermediate variables or signals can help to resolve ambiguous types.

Also check that the overloaded procedure declarations do not have
arguments with the same type profile. Overloaded procedures are resolved based
on the type of the arguments.

229

Unable to determine type of attribute parameter.

The compiler has encountered an attribute parameter that is of an
ambiguous type.

Check to make sure that the type of the attribute parameter is clearly
distinguished.

230

Prefix of attribute 'attribute must be a scalar type.

The compiler has encountered an illegal use of an attribute. The indicated
attribute is only allowed for scalar (integer, real, physical or enumerated) types.

Check to make sure that the attribute is being applied to a scalar type.

C - Error Message Index C - 71

231

Prefix of attribute 'attribute must be an array.

The compiler has encountered an illegal use of an attribute. The indicated
attribute is only allowed for array data types.

Check to make sure that the attribute is being applied to an array data type.

232

Attribute parameter value exceeds dimensionallity of array.

The compiler has encountered an illegal use of a parameterized attribute.
The value of the attribute parameter must fall within the range of the prefix array.

Check to make sure the attribute parameter matches the corresponding
array type declaration.

233

An If statement condition expression must be type boolean.

The compiler has encountered a condition expression in an if statement.
The condition expression used in an if statement must evaluate to a Boolean (True
or False) value.

Check to make sure that the expression will evaluate to a Boolean value.
If you are testing a binary value (such as a bit type signal), you should use the
relational operator '=' to create a Boolean result.

C - 72 C - Error Message Index

234

Wait until expression must be type boolean.

The compiler has encountered an invalid until expression in a wait
statement. The expression used in a wait until statement must evaluate to a
Boolean (True or False) value.

Check to make sure that the expression will evaluate to a Boolean value.
If you are testing a binary value (such as a bit type signal), you should use the
relational operator '=' to create a Boolean result.

235

Select expression must be an integer type, enumerated type, or an array.

The compiler has encountered an invalid use of a select expression. The
select expression must be an integer, enumerated type or array.

Check to make sure that you have specified a valid select expression, and
that the expression evaluates to an integer, enumerated type or array.

236

Case expression must be an integer, enumerated type, or an array.

The compiler has encountered an invalid use of a case expression. The
case expression must be an integer, enumerated type or array.

Check to make sure that you have specified a valid case expression, and
that the expression evaluates to an integer, enumerated type or array.

C - Error Message Index C - 73

237

Select expression must not be a multi dimensional array.

The compiler has encountered an invalid use of a select expression. The
select expression must be an integer, enumerated type or single-dimension array.

Check to make sure that you have specified a valid select expression, and
that the expression evaluates to an integer, enumerated type or single-dimension
array.

238

Case expression must not be a multi-dimensional array.

The compiler has encountered an invalid use of a case expression. The
case expression must be an integer, enumerated type or single-dimension array.

Check to make sure that you have specified a valid case expression, and
that the expression evaluates to an integer, enumerated type or single-dimension
array.

239

Unable to determine type of With expression from context.

The compiler has encountered a with expression with an unknown type.

Check to make sure that the with expression has been clearly specified. If
necessary, introduce one or more intermediate signals to clearly distinguish the
types of the expression elements.

C - 74 C - Error Message Index

240

Unable to determine type of Case expression from context.

The compiler has encountered a case expression with an unknown type.

Check to make sure that the case expression has been clearly specified.
If necessary, introduce one or more intermediate signals to clearly distinguish the
types of the expression elements.

241

The type of a With expression must be locally static.

The compiler has encountered a with expression that has a type that is not
locally static.

Check to make sure that the type of the with expression is locally static.

242

The type of a Case expression must be locally static.

The compiler has encountered a case expression that has a type that is
not locally static.

Check to make sure that the type of the case expression is locally static.

C - Error Message Index C - 75

243

Loop range must be an integer type or an enumerated type.

The compiler has encountered an invalid range in a loop statement. Loops
ranges must be integer or enumerated types.

Check to make sure that you have correctly specified the loop range.

244

Assert condition must be type 'boolean'.

The compiler has encountered an invalid condition in a assert statement.
The condition of an assert statement must evaluate to a Boolean type.

Check to make sure that you have correctly specified the assert statement.
If the assert expression is an object name, check to make sure the object has been
declared as type Boolean. If necessary, use the '=' comparison operator to create
a Boolean expression.

245

Assert severity must be type 'severity_level'.

The compiler has encountered an invalid use of the assert severity
statement. The severity value must be specified using the type severity_level
(note, warning, error, failure).

Check to make sure that you have correctly specified the value of the
assert severity.

C - 76 C - Error Message Index

246

Assert report must be type 'string'.

The compiler has encountered an invalid use of the assert report
statement. The report keyword must be followed by a valid string.

Check to make sure that you have correctly specified the assert report
string.

247

Shift or rotate right operand must be type 'integer'.

The compiler has encountered an invalid use of the shift or rotate operator.
Only integer values are allowed as the shift distance (right operand).

Check to make sure that you have correctly specified the shift operation.
Check also to make sure the right operand evaluates to an integer type.

248

Unable to resolve overloaded function 'name'.

The compiler has encountered an overloaded function that cannot be
resolved due to ambiguous parameter types or other conditions.

Check to make sure that the parameters of the function are clearly
distinguished in terms of their types.

Also check that the overloaded function declarations do not have
arguments with the same type profile. Overloaded functions are resolved based on
the type of the arguments.

C - Error Message Index C - 77

249

Others is illegal here because aggregate is associated with an unconstrained ar-
ray.

The compiler has encountered an illegal use of the others choice. The
aggregate being specified includes an unconstrained array.

Check to make sure that an unconstrained array was actually intended.

250

Record aggregate contains too many elements.

The compiler has encountered a record aggregate that is invalid, due to
too many elements being specified.

Check to make sure that the declaration of the record matches its use in
the record aggregate.

251

Others must represent at least one element.

The compiler has encountered an others clause that does not represent
any possible elements.

Check to make sure that the others clause is actually needed.

C - 78 C - Error Message Index

252

Others represents choices of record elements of different types.

The compiler has encountered an invalid use of an others clause. The
record elements specified by the others clause do not match.

Check to make sure that the others clause is being used correctly.

253

Record aggregate contains unknown named association.

The compiler has encountered a record aggregate that includes a named
association that is not valid.

Check to make sure that the named associations have been properly
entered, and all names used in the association are valid.

254

Operands of 'operator' have incompatible lengths.

The compiler has encountered an invalid expression using the indicated
operator. The operands of the expression do not match.

Check to make sure that the correct operands have been specified, and
that they have the type and length required.

C - Error Message Index C - 79

255

Array index is out of range of array.

The compiler has encountered an array index that is invalid. The index is
outside the range of the array declaration.

Check to make sure that the declaration of the array matches the use of
the array.

256

Duplicate association in array aggregate, it is a duplicate of association on line
number

The compiler has encountered an array aggregate association that has
already been specified.

Check to make sure that the array association has been correctly entered.
Check the duplication association indicated for more information.

257

Duplicate choice in selected signal assignment, it is a duplicate of choice on line
number.

The compiler has encountered a choice in a selected signal assignment
that has already been specified.

Check to make sure that the choice has been correctly entered.

C - 80 C - Error Message Index

258

Duplicate choice in case statement, it is a duplicate of choice on line number.

The compiler has encountered a choice in a selected signal assignment
that has already been specified.

Check to make sure that the choice has been correctly entered.

259

Choice Others is required when selected signal assignment expression is a univer-
sal integer.

The compiler has encountered an incomplete selected signal assignment.
The use of a universal integer has resulted in an others choice being required.

Check to make sure that an others choice has been provided, or do not use
a universal integer.

260

Choice Others is required when case statement expression is a universal integer.

The compiler has encountered a case statement that does not include a
required others choice due to the use of a universal integer.

Check to make sure that a universal integer is really what you intend in the
case expression. Add an others choice to the case statement to cover the
unspecified conditions.

C - Error Message Index C - 81

261

Missing choice in selected signal assignment.

The compiler has encountered a selected signal assignment that does not
include all possible choices. Selected signal assignments must include all possible
choices.

Check to make sure that you have included all possible choices in the
selected signal assignment, or add the others choice to define a default choice.

262

Missing choice in case statement.

The compiler has encountered an incompletely specified case statement.
Case statements must cover all possible input choices, or include the others choice
to provide a default choice.

Check to make sure that all possible choices are included in the case
statement, or add an others choice.

263

The value of the choice is outside the range of array elements.

The compiler has encountered a choice in a case statement that does not
fall in the range of possible values specified in the selection expression.

Check to make sure that the selection expression and choices in the case
statement are compatible.

C - 82 C - Error Message Index

264

Elements of an array aggregate must be either all positional or all named.

The compiler has encountered an array aggregate that is composed of
both positional association and named association for its elements. Aggregates
that use named association for any of their elements must use named association
for all elements.

Check to make sure that you have not inadvertently omitted the named
association for one or more elements of the aggregate.

265

Too few elements in array aggregate.

The compiler has encountered an array aggregate that does not match the
usage. The number of elements in the array aggregate is incorrect.

Check to make sure that source and destination array aggregates match,
in terms of the number and types of their elements.

266

Too few elements in string.

The compiler has encountered a string that is not valid in the current
context.

Check the format of the string, and check to ensure that it matches the
intended usage.

C - Error Message Index C - 83

267

Too few elements in bit string.

The compiler has encountered a bit string that does not match (in terms of
size) the objects used in an expression or assignment.

Check to make sure that the bit string contains the correct number of bit
characters. If you have entered the bit string using an alternate (non-binary) format,
check to ensure that the bit string represents the expected number of bits when
analyzed.

268

Too many elements in array aggregate.

The compiler has encountered an array aggregate that does not match the
usage. The number of elements in the array aggregate is incorrect.

Check to make sure that source and destination array aggregates match,
in terms of the number and types of their elements.

C - 84 C - Error Message Index

269

Too many elements in string.

The compiler has encountered a quoted string that illegal for the current
expression or assignment.

Check to make sure that the string is of the correct format for the intended
usage.

Also check to ensure that you have not omitted the terminating quote
character.

270

Too many elements in bit string.

The compiler has encountered a bit string that does not match (in terms of
size) the objects used in an expression or assignment.

Check to make sure that the bit string contains the correct number of bit
characters. If you have entered the bit string using an alternate (non-binary) format,
check to ensure that the bit string represents the expected number of bits when
analyzed.

C - Error Message Index C - 85

271

Value assigned to target is outside range of values in target subtype.

The compiler has encountered in invalid assignment to an object. The
value on the right-hand side is outside of the possible values allowed for the left-
hand side. The possible values are defined by the subtype of the left-hand side as
specified in its declaration.

Check to make sure that the target of the assignment is a type compatible
with the assigned value.

Check the declaration of the subtype to ensure that it specifies the required
range.

272

Too many elements in record aggregate.

The compiler has encountered an invalid aggregate. The record aggregate
specified has too many elements for the record type.

Check to make sure that the record type declaration is compatible with the
aggregate you have specified.

C - 86 C - Error Message Index

273

The actual signal associated with a signal parameter must be denoted by a static
signal name.

The compiler has encountered an invalid actual argument to a subprogram
or component. Parameters of kind signal must be specified with static signal
names, rather then expressions.

Check to make sure that the actual parameter is compatible with a
parameter of kind signal, or modify the subprogram so that it does not require
parameter kind signal.

274

Aggregate type must be array or record.

The compiler has encountered in invalid aggregate specification. The
result of the aggregate must be an array or record type.

Check to make sure that the aggregate has been properly specified.

275

Parameter of attribute 'succ equals prefix'base'high.

The compiler has encountered an invalid use of the 'succ attribute. The
parameter of the 'succ attribute does not have a successor.

Check to make sure that the declaration of the base type is compatible with
the use of the 'succ attribute parameter.

C - Error Message Index C - 87

276

Parameter of attribute 'pred equals prefix'base'low.

The compiler has encountered an invalid use of the 'pred attribute. The
parameter of the 'pred attribute does not have a predecessor.

Check to make sure that the declaration of the base type is compatible with
the use of the 'pred attribute parameter.

277

Parameter of attribute 'leftof equals prefix'base'left.

The compiler has encountered an invalid use of the 'leftof attribute. The
parameter of the 'leftof attribute does not have a predecessor.

Check to make sure that the declaration of the base type is compatible with
the use of the 'leftof attribute parameter.

278

Parameter of attribute 'rightof equals prefix'base'right.

The compiler has encountered an invalid use of the 'rightof attribute. The
parameter of the 'rightof attribute does not have a successor.

Check to make sure that the declaration of the base type is compatible with
the use of the 'rightof attribute parameter.

C - 88 C - Error Message Index

279

Parameter of attribute 'val is too large.

The compiler has encountered an attribute value that is too large.

Check to make sure that the attribute parameter is a valid integer value.

280

Parameter of attribute 'val is too small.

The compiler has encountered an attribute value that is too small.

Check to make sure that the attribute parameter is a valid integer value.

281

Subtype range is not within the range of the base type.

The compiler has encountered an invalid specification of a subtype.
Subtype declarations must specify ranges of values that are within the range of the
specified base type.

Check to make sure that the correct base type has been referenced, and
check to make sure that the range of the subtype falls within the range of the base
type.

C - Error Message Index C - 89

282

Too many choices in case statement.

The compiler has encountered an invalid case statement. There are too
many choices provided for the possible values of the case condition expression.

Check to make sure that you have not specified case choices that overlap,
and that you have not duplicated the same choice in two different case choices.

283

Select expression is an array which must be of a character type.

The compiler has encountered an invalid array specification in a selection
expression. The expected selection expression must be a character array.

Check to make sure that the selection expression is a valid array type.

284

Case expression is an array that must be of a character type.

The compiler has encountered an invalid array specification in a case
expression. The expected case expression must be a character array.

Check to make sure that the selection expression is a valid array type.

C - 90 C - Error Message Index

285

Unable to determine type of array.

The compiler has encountered an array specification that cannot be
resolved to a known type.

Check to make sure that the array type is clearly distinguished.

286

Attempt to index non-array.

The compiler has encountered an index operation on an object that is not
an array type. Only array types may be indexed.

Check to make sure that the object being indexed is declared as an array.
Use a type conversion function to convert the object to a valid array type if
necessary.

287

Array index has an incompatible type.

The compiler has encountered an invalid array index. An array index must
be either an integer, enumerated or physical type.

Check to make sure that the array index has been correctly specified.

Also check the declaration of the array index object to ensure it is an
integer, enumerated or physical type.

C - Error Message Index C - 91

288

Array index must be a scalar type.

The compiler has encountered an invalid array index. An array index must
be either an integer, enumerated or physical type.

Check to make sure that the array index has been correctly specified.

Also check the declaration of the array index object to ensure it is an
integer, enumerated or physical type.

289

A Next statement condition expression must be type boolean.

The compiler has encountered an invalid condition expression in the next
statement of a loop. The conditions expression used in a next statement must
evaluate to a Boolean (True or False) value.

Check to make sure that the expression will evaluate to a Boolean value.
If you are testing a binary value (such as a bit type signal), you should use the
relational operator '=' to create a Boolean result.

C - 92 C - Error Message Index

290

An Exit statement condition expression must be type boolean.

The compiler has encountered an invalid condition expression in the exit
statement of a loop. The conditions expression used in an exit statement must
evaluate to a Boolean (True or False) value.

Check to make sure that the expression will evaluate to a Boolean value.
If you are testing a binary value (such as a bit type signal), you should use the
relational operator '=' to create a Boolean result.

291

A while loop condition expression must be type boolean.

The compiler has encountered an invalid condition expression in a while
loop. The conditions expression used in a while loop must evaluate to a Boolean
(True or False) value.

Check to make sure that the expression will evaluate to a Boolean value.
If you are testing a binary value (such as a bit type signal), you should use the
relational operator '=' to create a Boolean result.

C - Error Message Index C - 93

292

Unable to resolve the types of the operands of 'name'.

The compiler has encountered an ambiguous expression in which the
argument types could not be resolved.

Check to make sure that the argument types are clearly distinguished.
Introduce intermediate signals or variables if necessary to clearly distinguish the
types of literal values.

293

Too few elements in Group.

The compiler has encountered a group declaration that does not match the
size of the group template declaration.

Check to make sure that the group declaration and group template
declaration are compatible.

294

Too many elements in Group.

The compiler has encountered a group declaration that does not match the
size of the group template declaration.

Check to make sure that the group declaration and group template
declaration are compatible.

C - 94 C - Error Message Index

295

The prefix of a signature must be a subprogram or enumeration literal.

The compiler has encountered a signature prefix that is invalid. A signature
prefix must be either a subprogram (function or procedure) name or an
enumeration literal.

Check to make sure that the signature prefix is a valid function or
procedure name, or is an enumeration literal.

296

The signature does not match the 'description'.

The compiler has encountered a subprogram signature that does not
match the specified subprogram.

Check to make sure that the type specified in the signature matches the
return value of the specified function or procedure.

297

A signature is required here because the 'description' is overloaded.

The compiler has encountered an ambiguous use of an overloaded
operator. The context of the operation does not provide enough information to
distinguish between two or more possible operator functions.

Check to make sure that the data types used for the operands are clear
and unambiguous. Add a signature if necessary to clearly identify the operator
function. Introducing intermediate signals or variables can often solve problems
with ambiguous types and operations.

C - Error Message Index C - 95

400

Signal 'name' has multiple drivers.

The compiler has encountered a signal that is being driven in more than
one process.

Check to make sure that the signal is not assigned in more than one
process.

Note that it is legal VHDL to have a signal with multiple drivers if the signals
type is a resolved type (i.e. has a resolution function) such as 'std_logic' (but not
'std_ulogic'). It is a synthesis constraint, however, that resolution functions are
ignored so that no type is a resolved type. In this case you must recode your design
so that it does not depend upon the resolution function.

401

No Block label matches configuration label 'name'.

The compiler has encountered an invalid configuration. The indicated
block label cannot be found.

Check to make sure that the block label has been correctly entered in the
configuration.

C - 96 C - Error Message Index

402

No component matches Configuration for 'name'.

The compiler has been unable to find the indicated component in the
current design. The configuration statement or declaration is invalid.

Check to make sure that the component name has been correctly specified
in the configuration.

Check also to make sure that the component has been properly
referenced in the design, and that the design unit in which the component has been
referenced is included in the current compile.

403

Generate range is unconstrained.

The compiler has encountered a generate range that is invalid. Generate
ranges must not be unconstrained.

Check to make sure that the generate range specified is correct, and is
properly constrained.

404

Component has more than one binding.

The compiler has encountered a problem in the specified binding of a
component. Two or more component configurations are in conflict.

Check to make sure that duplicate component bindings are not specified.

C - Error Message Index C - 97

405

Next or Exit is not inside loop with matching label.

The compiler has encountered an invalid next or exit statement. The loop
label specified in the next or exit statement is not valid.

Check to make sure that the loop label specifies a valid loop, and that the
next or exit statement is inside the specified loop.

Also check to make sure you have not inadvertently terminated the loop
with a misplaced end loop statement.

406

The array index is illegal for a null array.

The compiler has encountered an array index for a null array. Null arrays
do not have any members, and therefore cannot be indexed.

Check to make sure that the array has been declared as intended, and that
the index is valid.

408

Design contains no entity.

The compiler was unable to find a valid entity in the input design files.

Check to make sure that you have correctly specified the input source files,
and that one or more valid entities exist in the design.

C - 98 C - Error Message Index

420

Result of 'operator' exceeds maximum possible value.

The compiler has encountered an operation that will produce an overflow
result.

Check to make sure that the operator and operands have been correctly
specified.

Also check the range of the data type being used.

421

Result of 'operator' exceeds minimum possible value.

The compiler has encountered an operation that will produce an underflow
result.

Check to make sure that the operator and operands have been correctly
specified. Also check the range of the data type being used.

422

Divide by zero.

The compiler has encountered an operation that will produce an undefined
result. A divisor specified in the expression is zero.

Check to make sure that the operator and operands have been correctly
specified.

Check to ensure that the divisor is non-zero.

C - Error Message Index C - 99

430

description 'name' was not declared as static.

The compiler has encountered a non-static expression in a context where
only a static expression is valid.

Check to make sure that the expression specified is a static expression.

431

Unconstrained range in CASE statement choice.

The compiler has encountered an invalid choice in a case statement. The
range specified must be constrained.

Check to make sure that the case statement has been correctly specified,
and that all choices specify constrained expressions.

432

Selected prefix is not a record.

The compiler has encountered an invalid used of a record attribute. The
prefix is not a record type.

Check to make sure that you are specifying a valid record type of object in
the attribute specification. If you did not intend to use a record attribute, check to
make sure you are specifying the correct attribute.

C - 100 C - Error Message Index

434

Description 'name' value is non-constant.

The compiler has encountered a constant declaration that is does not
specify a constant value.

Check to make sure that the constant value is correctly specified, or use a
signal declaration if a non-constant value is required.

435

Generic value illegal for its type.

The compiler has encountered an invalid use of a generic. The value of
generic must be within the range of the subtype of the generic.

Check to make sure that you have correctly specified the generic value.

Also check to make sure the generic has been correctly specified in the
lower-level design unit.

C - Error Message Index C - 101

436

Constant value illegal for its type.

The compiler has encountered a constant (scalar) value that is not legal for
the type used. This error is most likely the result of specifying a numeric value that
is outside the valid range of numeric types.

Note that the value of a constant must be within the range of the subtype
of the constant.

Check to make sure that the constant has been entered in the format
required for the type.

Also check to ensure that you have specified a value that is in the legal
range for the type.

437

Expected signal, variable, or constant but not a description.

The compiler has encountered a named item (such as a design unit name,
subprogram name, type or block name) when a signal, variable or constant name
was required.

Check to ensure that you have used the correct object name.

Also check to make sure that you have not inadvertently used the same
name for a block, loop or process label as you have used for a signal, variable or
constant.

C - 102 C - Error Message Index

438

Loop range is unconstrained.

The compiler has encountered a loop with an unconstrained range in the
iteration specifier. Unconstrained loops are not supported.

Check to make sure that the iteration range has been properly specified.

440

Subprogram call actual parameter is an unconstrained array.

The compiler has encountered in invalid use of a function or procedure.
The parameters specified for functions or procedures must be either a signal,
variable, or constant, or an expression that results in a value of the appropriate
type. Subprogram parameters that are arrays must be constrained.

Check to make sure that the function or procedure is being used properly,
and check to ensure that all parameters specified when using the subprogram are
valid.

C - Error Message Index C - 103

441

Actual parameter associated with OUT formal parameter 'name' is an expression.

The compiler has encountered an invalid use of a procedure. Parameters
specified as type 'out' in a procedure must be either a signal, variable, or constant.
Expressions are not allowed as actual parameters when the procedure parameter
is of mode 'out'.

Check to make sure that the procedure is being used properly, and check
to ensure that all parameters specified when using the subprogram are valid. If the
parameter indicated is intended to be a procedure input, then change the
parameter's mode from 'out' to 'in'.

442

Function 'name' has no return statement.

The indicated function has not been provided with a return statement. All
functions must be provided with a value prior to exiting. This value must be
specified using a return statement.

Check to make sure that the function is provided with a return statement,
and that there is no possibility of the return statement to be skipped as a result of
a conditional expression.

C - 104 C - Error Message Index

450

Expected a static expression here.

The compiler has encountered a non-static expression when a static value
or expression was required. A static expression is an expression whose value
cannot be determined at the time of compilation.

Check to make sure that the expression used is static.

451

Named association missing from record aggregate.

The compiler is unable to determine the correct mapping of record
elements in an aggregate due to the lack of a named association.

Check to make sure that each item in the record aggregate is provided with
a named association, or use positional association and do not omit any record
elements.

452

Named association missing from array aggregate.

The compiler is unable to determine the correct mapping of array elements
in an aggregate due to the lack of a named association.

Check to make sure that each item in the array aggregate is provided with
a named association, or use positional association and do not omit any array
elements.

C - Error Message Index C - 105

453

Record aggregate has missing element(s).

The compiler is unable to determine the correct mapping of record
elements in an aggregate due to the lack of one or more record elements being
specified.

Check to make sure that each item in the record aggregate is provided, or
use named association to specify the aggregate.

454

Description 'name' has a type that is an unconstrained array.

The compiler has encountered an unconstrained array being used where
an unconstrained array is not allowed.

Check to make sure that you have properly specified the array, and
provided a constraint range if necessary.

460

Combinational Feedback using variable 'name'.

The compiler has determined that the indicated variable will require
combinational feedback to produce the specified behavior. Combinational
feedback is specified whenever a variable's value is read prior to its having been
set in a process or subprogram.

Check to make sure that you have used the variable correctly. If you did
not intend to generate a combinational feedback loop, be sure you have assigned
a value to the variable before attempting to use it in an expression.

C - 106 C - Error Message Index

470

Constraint: Unexpected use of 'Z' or NULL, unable to infer a tristate.

The compiler has encountered a use of the 'Z' or null value that appears to
be for describing an output enable, but enable logic following the conventions of
the Metamor synthesis compiler has not been specified.

Check to make sure that an enable expression has been specified using a
conditional signal assignment or an if statement. Also check that an if statement
describing a tristate is a simple if statement, and not embedded within another if
statement or a case statement.

480

Constraint: The name library does not contain a description.

The compiler has encountered the use of a logic element that does not
exist in the named gate library (not VHDL library), and is unable to re-synthesize to
some logic element that does exist in the library. The logic element description will
be some form of flip-flop, latch, or tristate. The element does not exist in the target
gate library because it has no realization in the target silicon. A common example
of a structure that may cause this error is a flip-flop with both set and reset.

Change the VHDL source code desription so it does not describe this logic
element.

C - Error Message Index C - 107

500

Constraint: A Wait statement may only be the first statement in a Process.

The compiler has encountered a wait statement used in an unsupported
manner. Wait statements are only supported as the first statement in a process.

Check to make sure that the wait statement is the first statement in the
process. If you are attempting to describe registered behavior with an
asynchronous reset, you should use a sensitivity list and an if-then statement to
described the reset and clock logic.

501

Constraint: Process contains more than one Wait statement.

The compiler has encountered more than one wait statement being used
in a process. Only one wait statement may be used in a process, and that wait
statement must be the first statement in the process.

Check to make sure that the wait statement is the first statement in the
process, and do not attempt to use more than one wait statement in any one
process. If you are trying to describe a system with multiple clocks, you will have
to use multiple processes.

C - 108 C - Error Message Index

502

Constraint: Formal part may not be a function call.

The compiler has encountered an unsupported named association in a
subprogram or component instantiation. The compiler does not allow the formal
parts of subprograms and component instantiations to be function calls.

Check to make sure that the formal part of the subprogram or component
is not a function call.

503

Constraint: Signal attribute 'attribute is not supported.

The compiler has encountered the use of an unsupported attribute. This
attribute has no meaning for synthesis and must not be used.

Check to make sure that the correct attribute is being used, or remove the
attribute.

C - Error Message Index C - 109

504

Constraint: WAIT statement in a procedure is not allowed.

The compiler has encountered a WAIT statement used within a procedure.
WAIT statements may only be used within processes, and may only be used as the
first statement in a process.

If you are attempting to describe registered logic in a procedure, use the if-
then synthesis convention for describing flip-flop logic.

Also check to ensure that you are not inadvertently attempting to
synthesize a test bench.

505

Constraint: Expected a static expression, description 'name' is not allowed here.

The compiler has encountered the unsupported use of a non-static
expression. Non-static expressions are those that depend on the value of a signal
or port, and cannot be evaluated during compilation.

Check to make sure that the expression is static, and does not depend on
the value of a signal or port.

C - 110 C - Error Message Index

506

Constraint: Expected a static expression, Constant 'name' is not static.

The compiler has encountered the unsupported use of a non-static
expression. Non-static expressions are those that depend on the value of a signal
or port, and cannot be evaluated during compilation.

Check to make sure that the expression is static, and does not depend on
the value of a signal or port.

507

Constraint: '**' is supported only for constant operands.

The compiler has encountered an unsupported use of the '**'
(exponentiation) operator. Only constant exponent values are allowed.

Check to make sure that the exponent value specified is a constant value.

508

Constraint: Assign to array element must have constant array index.

The compiler has encountered the unsupported use of a non-constant
array index in an assignment to a multi-dimensional array.

The compiler requires that the array target of an assignment be referenced
using only constant index values if you are trying to index more that one dimension
of the array.

Check to make sure that the index argument used in the target of the
assignment is a constant value.

C - Error Message Index C - 111

509

Constraint: Array slice must have constant range.

The compiler has encountered a non-constant range specification in an
array slice.

The compiler required that array slices be specified using constant range
values.

Check to make sure that the array slice is specified using a constant range.
You can use a loop or generate statement to specify non-constant array slices if
necessary.

510

Constraint: Recursive Component instantiation.

The compiler has encountered a recursive instantiation of a component.
There is no practical synthesis equivalent to recursive component or subprogram
specifications.

Check to make sure that you have not inadvertently created recursion in
your design by specifying the wrong component or subprogram name.

C - 112 C - Error Message Index

511

Constraint: Recursive Subprogram call.

The compiler has encountered a recursive reference to a subprogram.
There is no practical synthesis equivalent to recursive subprogram specifications.

Check to make sure that you have not inadvertently created recursion in
your design by specifying the wrong subprogram name.

512

Constraint: Literal value exceeds maximum positive value.

The compiler has encountered a numeric value that is larger than the
maximum allowed.

Check to make sure that you have correctly specified the numeric literal
value.

513

Constraint: Literal value exceeds minimum negative value.

The compiler has encountered a negative numeric value that is smaller
than the maximum allowed.

Check to make sure that you have correctly specified the numeric literal
value.

C - Error Message Index C - 113

514

Constraint: Literal fractional part truncated.

The compiler has encountered a floating point literal value that includes a
fractional part. Floating point numbers are only supported as integer values in
synthesis, and any fractional part is truncated.

Check to make sure a floating point value was actually intended.

515

Constraint: Attribute 'event is not supported here.

The compiler has encountered an unsupported use of the 'event attribute.
'Event is only supported in wait statements (entered as the first statement of a
process), or in if-then conditional expressions in processes or subprograms to
specify edge-triggered (flip-flop) behavior.

Check to make sure that you have followed the documented synthesis
conventions for specifying registered logic.

516

Constraint: Attribute 'stable is not supported here.

The compiler has encountered an unsupported use of attribute 'stable in
the design. 'stable is not recommended for synthesizable designs, and is only
supported in wait statements.

Check to make sure that you have specified the correct attribute. Use the
'event attribute to describe edge-triggered flip-flop logic.

C - 114 C - Error Message Index

517

Constraint: Access types are not supported.

The compiler has encountered an unsupported use of an access type.
Access types are not supported in synthesis.

Rewrite your design so that access types are not required.

518

Constraint: File types are not supported.

The compiler has encountered an unsupported use of the type file. File
types are not supported in synthesis.

Check to ensure that you are not inadvertently compiling a test bench,
rather than a synthesizable design description.

Rewrite your design so that file types are not required.

519

Constraint: File Declaration is not supported.

The compiler has encountered an unsupported use of a file type. File types
are not supported in synthesis.

Check to ensure that you are not inadvertently compiling a test bench,
rather than a synthesizable design description.

Rewrite your design so that file types are not required.

C - Error Message Index C - 115

520

Constraint: Allocator New is not supported.

The compiler has encountered an unsupported use of the memory
allocation feature, new. New is not supported in synthesis.

Check to ensure that you are not inadvertently compiling a test bench,
rather than a synthesizable design description.

Rewrite your design so that new is not required.

521

Constraint: Waveform truncated.

The compiler has encountered a waveform specification that includes
more than one entry. Waveforms are not supported for synthesis unless they
consist of only a single entry.

Re-specify the design so a waveform is not required, or simply ignore the
error message.

524

Constraint: Attribute 'attribute parameter is non-constant.

The compiler has encountered an attribute that is only supported when
applied to constant values.

Check to make sure that the target of the attribute parameter is a constant
value.
C - 116 C - Error Message Index

 # 525

Constraint: Signal 'name' must be in the Process sensitivity list, or it is an input to
a flip-flop that was not inferred because the flip-flop is incorrectly specified.

The compiler has determined that the indicated signal is an asynchronous
input to the current process, and must therefore be included in the process
sensitivity list. An asynchronous input is one that directly causes a change in the
process output and need to be in the sensitivity list. An input that is the data input
to a flip-flop is synchronous and need not be in the sensitivity list.

Check to make sure that the indicated signal was intended to be an
asynchronous input to the process. If the signal is a data input to a flip-flop in this
process then it is not asynchronous and the error is in the specification of the flip-
flop.

If the signal was intended as an asynchronous input, add that signal name
to the sensitivity list. If the signal was not intended to an asynchronous input, check
to ensure that all flip-flops in the process referencing the indicated signal as an
input have been properly and completely specified.

Take special care to ensure that unwanted latches have not been
inadvertently specified.

526

Constraint: Flip-flop 'name' has missing preset or reset.

The compiler has determined that the behavior of the indicated registered
signal is ambiguous without a reset or preset being provided. This error occurs
when the missing preset or reset would result in a flip-flop with a gated clock, when
the other flip-flops inferred in the process do not have gated clocks.

Check to make sure that the indicated signal is either provided with preset
or reset logic, or has been described in such a way that its behavior is
unambiguous for all possible input conditions.

C - Error Message Index C - 117

527

Constraint: Shared Variable Declarations not supported.

The compiler has encountered an unsupported use of shared variables.
Shared variables are not support in synthesis.

Rewrite your design so that shared variables are not required.

528

Constraint: An operator symbol (description) is not supported here.

The compiler has encountered an unsupported use of an operator in the
context of an alias.

Rewrite the design section so the operator is not required, or do not use
an alias in this context.

529

Constraint: Design contains no top level Output, Buffer, or Inout ports.

The compiler has encountered a design that has no top-level output ports.

Check to make sure you are not inadvertently compiling a test bench. Also
check to make sure you have correctly specified the mode of all entity ports.

C - 118 C - Error Message Index

530

Constraint: Hierarchy name must not contain a white space.

The compiler has encountered an unsupported hierarchical name.
Hierarchical names may not include white space characters.

Check to make sure that the hierarchical name has been correctly entered.

531

Constraint: Tristate buffer 'name' drives a logic gate, it must drive a port.

The compiler has encountered an unsupported use of tristate logic. The
output of a tristate buffer is a logic gate, the buffer must drive a port.

Rewrite the design section so that the tristate buffer drives an output of the
design. If you wish to make use of the internal tristate busses available in some
fpgas to build, for example, a small mux, consider instantiating a macrocell.

Note that if the compiler is unable to provide a 'name' related to the original
source description, no 'name' will be reported. In this case you should use the file
name and line number from the message to track down the error. The verbose
option may also help as it will report the inference of tristate buffers on a per-
process basis.

C - Error Message Index C - 119

600

Enum_encoding string may only contain '0' '1' 'Z' '-' 'M' or ' '.

The compiler has encountered an invalid character in the enum_encoding
attribute string. The only characters valid in an enum_encoding attribute string are
'1', '0', 'Z', 'M', '-' and the space character, or the special strings 'one hot' or '1-hot'.

Check to make sure that the enum_encoding attribute string has been
correctly specified.

601

Each encoding in Enum_encoding must have the same number of characters.

The compiler has encountered an enum_encoding attribute that does not
specify the same number of characters (bits) for each enumeration value.

Check to make sure that you have specified all enumeration values with
an equal number of characters.

Note that the only characters valid in an enum_encoding attribute string
are '1', '0', 'Z', '-', and the space character.

602

Enum_encoding may only be applied to an enumerated type.

The compiler has encountered an enum_encoding attribute that
references a non-enumerated type.

Check to make sure that the enum_encoding attribute is being applied to
the correct type.

C - 120 C - Error Message Index

603

Enum_encoding must follow the enumerated type declaration.

The compiler has encountered an enum_encoding attribute that is out of
place. An enum_encoding attribute must be preceded by a valid type declaration.

Check to make sure that the referenced enumerated type has been
properly declared.

604

Too few encodings specified in Enum_encoding.

The compiler has encountered an enum_encoding attribute specification
that does include the correct number of encodings.

Check to make sure there is one attribute encoding specification provided
for each symbolic value defined in the type declaration.

Also check to ensure you have separated the enumerated encoding
values with spaces. If you have used more than one line in the source file to specify
the enum_encoding string, make sure you have concatenated the strings properly
using the '&' operator, and have included spaces to delimit each encoding.

C - Error Message Index C - 121

605

Too many encodings specified in Enum_encoding.

The compiler has encountered an enum_encoding attribute specification
that does not include the correct number of encodings.

Check to make sure there is one attribute encoding specification specified
for each symbolic valued defined in the declaration for the enumerated type.

Also check to ensure you have separated the enumerated encoding
values with spaces. If you have used more than one line in the source file to specify
the enum_encoding string, make sure you have concatenated the strings properly
using the '&' operator, and have included spaces to delimit each encoding.

606

Enum_encoding may not be applied to a subtype of an enumerated type.

The compiler has encountered an invalid use of the enum_encoding
attribute. The enum_encoding attribute may only be applied to an enumerated
type, and may not be applied to a subtype.

Check to make sure the attribute is being applied to an enumerated type.

C - 122 C - Error Message Index

607

User attribute Critical may only be applied to a Signal.

The compiler has encountered an invalid use of the special attribute
critical. The critical attribute is used to preserve signals during synthesis, and may
only be applied to a signal.

Check to make sure that the critical attribute has been applied to a signal.

608

'name' has a type which is not locally static, a design unit with 'foreign attribute
must have ports with locally static types.

The compiler has encountered an unsupported use of the 'foreign attribute.
'Foreign is used to reference external modules, and must be used in conjunction
with ports that reference locally static types.

Check to make sure that the indicated port name represents a locally static
type of object.

609

A design unit with 'foreign attribute may only have ports with mode IN or OUT.

The compiler has encountered an unsupported mode for an external
module port. All ports of external modules specified using 'foreign must be of mode
in or out.

Check to make sure the external module has been referenced using only
ports of mode in or out.
C - Error Message Index C - 123

C - 124 C - Error Message Index

C - Error Message Index C - 125

C - 126 C - Error Message Index

D - Compile options

Compile options are specified from within the OEM environment in which
the Metamor compiler is found. Please refer to documentation of that tool set first.
The following mechanisms exists only to bypass the OEM environment, and should
not be considered by the end user for normal use. The availability of output formats
referenced here depends upon the OEM version of the compiler you are using.

Compile options may also be set from a file named 'metamor.arg' in the
current working directory. This allows the user to set the command line arguments
directly. Any settings made by the OEM environment will be overridden by settings
in the file 'metamor.arg'.

In metamor.arg, for example, you could set the library alias for the IEEE
library using (your file path may vary):

-l IEEE

C:\metamor\vhdl_lib\ieee.vhd

C:\metamor\vhdl_lib\synopsys.vhd

In addition, the path to the directory containing the Metamor library files
may be overridden by setting this path as the value of the environment variable
METAMOR_LIB.

The file metamor.arg may contain any of the following options delimited by
white-space or newline. Some options apply only to specific output formats. It helps
to set -x to 0 when debugging metamor.arg.

All formats:

Analyze

-a

Specifies that only analysis be performed. Analysis is VHDL syntax
checking, type checking, and static usage checking.
D - Compile options D - 1

Log File

-g <file_name>

Writes a copy of the window to a file.

Elaborate

-e <entity>

-e <entity(architecture)>

-e <configuration>

Specifies the root (top) of the design to be elaborated. Default is the last
configuration, or the last architecture of the last entity to be analyzed.

Device

-d name

Overrides part_name attribute.

Verbose

-v

Specifies verbose mode, which causes debug information about register
and macrocell inference to be displayed.

Quiet

-q

Quiet -- turn off progress messages.

Library Alias

-l <libname> <file_list>

Specifies an alias for a VHDL library, overrides the default mapping of
VHDL library name to file name, this allows multiple files to be associated with a
single VHDL library. Files must be specified in the order they are analyzed.
D - 2 D - Compile options

Exit strategy

-x #

Window exit strategy 0 , 1, 2.

0 : never close the window at the end of a compile

1 : close the window if there were no compile errors

2 : always close the window at the end of a compile

Optimize level

-z #

Optimize level 0 thru 5.

A value of 0 means no optimization effort, a larger value indicates
increased optimization effort.

Cupl only:

Clock Enable

-c

Enables the inference of register clock enable. Allows synthesis of a clock
enable structure from certain VHDL coding conventions. Does not change the
behavior of the design, but allows the compiler to take advantage of a clock enable
if it exists in the target hardware.

Reset

-r

Forces all registers with preset to use reset. Transforms registers with
asynchronous preset into registers with asynchronous reset. The design behavior
remains unchanged. Resisters with both preset and reset are not transformed.
D - Compile options D - 3

-p #

Sets maximum PLA product terms --
set to zero for FPGAs.

-s #

Sets maximum number of PLA inputs.

Open Abel 2 only:

Clock Enable

-c

Enables the inference of register clock enable. Allows synthesis of a clock
enable structure from certain VHDL coding conventions. Does not change the
behavior of the design, but allows the compiler to take advantage of a clock enable
if it exists in target hardware.

Reset

-r

Force all registers with preset to use reset. Transforms registers with
asynchronous preset into registers with asynchronous reset. The design behavior
remains unchanged. Resisters with both preset and reset are not transformed.

-I

Force output inverters on registers.

-b

Force no output inverters on registers.

-p #

Max product terms.

-f xblox

Enable inference of XBLOX macrocells.
D - 4 D - Compile options

-f lpm

Enable inference of LPM macrocells.

XNF only (for XactStep 6.0)

-h

Hierarchy, no IBUF or OBUF insertion.

-u #

Automatic BUFG limit, set to zero for no BUFG.

-p #

Xilinx family 2k,3k,4k,4ke,5k,7k,9k.

-f xblox

Enable inference of XBLOX macrocells.

EDIF only

-h

Hierarchy, no automatic input or output buffer insertion.

-f Actel

Write a netlist for Actel Designer 3.0.

-f Altera

Write a netlist for Altera MaxPlusII version 6.01.

-f Lattice

Write a netlist for Lattice PDS+ version 3.0.
D - Compile options D - 5

D - 6 D - Compile options

E - VHDL Information Resources

VHDL International Users Forum (VIUF) Home Page

http://www.vhdl.org/

IEEE Documents

"IEEE Standard VHDL Language Reference Manual,"
IEEE Std 1076-1993, IEEE Standards, Order Code SH 16840,
ISBN 1-55937-376-8, 1994

"IEEE Standard Multivalue Logic System
for VHDL Model Interoperability (std_logic_1164),"
IEEE Std 1164-1993, 1993

Books on VHDL in English

VHDL
Doug Perry, 390 pages, 2nd editiond ISBN0-07-049434-7
MacGraw-Hill, Inc.

The VHDL Handbook
David Coelho (Vantage Analysis Systems),
ISBN 0-7923-90310-8 Kluwer Academic Publishers, 1989

The VHDL Cookbook
Peter J. Ashenden, University of Adelaide, South Australia.
ftp://ftp.cs.adelaide.edu.au/pub/VHDL-Cookbook (Mac,PC,PS)
ftp://bears.ece.ucsb.edu pub/VHDL
ftp://du9ds4.fb9dv.uni-duisburg.de/pub/cad

Chip Level Modelling in VHDL
J. Armstrong Prentice Hall, 1988, pp. 148

An Introduction to VHDL: Hardware Description and Design
Lipsett, Schaeffer, Ussery Kluwer Academic Publishers, 1989,
320 pp, ISBN 0-7923-9030-x
E - VHDL Information Resources E - 1

Applications of VHDL to Circuit Design
edited by Randolph Harr and Alec Stanculescu Kluwer
Academic Publishers, 1991, 256 pp, ISBN 0-7923-9153-5

ASIC System Design with VHDL: A Paradigm,
S. Leung, M.A. Shanblatt, Kluwer
Academic Publishers, 1989, 240 pp, ISBN 0-7923-9032-6

Introduction to HDL-Based Design Using VHDL
Steve Carlson, Synopsys, Inc., 700 East Middlefield
Road, Mountain View, CA 94043 (415)962-5000

Hardware Design and Simulation in VAL/VHDL
Larry M. Augustin, David C. Luckham, Benoit A. Gennart,
Yo Huh and Alec G. Stanculescu Kluwer
Academic Publishers, 1991, 352 pp, ISBN 0-7923-9087-3

Performance and Fault Modeling with VHDL
edited by Joel M. Schoen Prentice Hall,
406pp ISBN 0-13-658816

A VHDL Primer, Revised Edition
J. Bhasker, Prentice Hall,
ISBN 0-13-181447-8 (based on VHDL-93)

VHDL Designer's Reference
Jean Michel Berge, Alain Fonkua, Serge Maginot, Jacques
Roulliard, Kluwer academic publishers, ISBN 0-7923-1756-4

A Guide to VHDL
Stanley Mazor, Patricia Langstraat, Kluwer academic publishers,
ISBN 0-7923-9255-8

VHDL for Simulation, Synthesis and Formal Proofs of Hardware
Jean Mermet, Kluwer academic publishers, ISBN 0-7923-9253-1

VHDL: Analysis and Modelling of Digital Systems
Zainalabedin Navabi, ISBN 0-07-046472-3, Mc Graw Hill,

VHDL Programming with Advanced Topics
Louis Baker, John Wiley & Sons, New York, 1993
E - 2 E - VHDL Information Resources

Structured Logic Design With VHDL
J.R. Armstrong and F. Gail Gray,
Prentice Hall, ISBN 0-13-855206-1

Digital System Design using VHDL
Chin-Hwa Lee,
CorralTek P.O. 2616, Salinas, CA 93902 (408)484-1726

Analysis and Design of Digital Systems with VHDL
A. Dewey, Addison-Wesley, 1992

Circuit Synthesis with VHDL
R Airiau, JM Berge, V Olive, Kluwer Academic Publishers, 1994,
ISBN 0-7923-9429-1

VHDL '92;
The New Features of the VHDL Hardware Description Language
Berge, Fonkoua, Maginot and Rouillard, Kluwer
Academic Publishers ISBN:0-7923-9356-2,

The Designer's Guide to VHDL
Peter Ashenden, approx 500 pages,
Morgan Kaufman Publishers, ISBN 1-55860-270-4

A Designer's Guide to VHDL Synthesis
Ott, Kluwer Academic Publishers, ISBN 0-7923-9472-0

A Guide to VHDL Syntax
J. Bhasker, Prentice Hall, ISBN 0-13-324351-6, pp 268

VHDL Techniques, Experiments, and Caveats
J. Pick, McGraw-Hill, ISBN 0-07-049906-3

VHDL Coding Styles and Methodologies, an In-depth Tutorial
Ben Cohen, Kluwer Academic Publishers, 1995, 365 pp, Disk
included, ISBN 0-7923-9598-0

VHDL for Logic Synthesis
Andrew Rushton, McGraw-Hill, 1995, ISBN: 0-07-709092-6

Introduction to VHDL
D Hunter, T Johnson, Chapman & Hall, 246x189mm, 496 pages
E - VHDL Information Resources E - 3

VHDL Modeling for Digital Design Synthesis
Yu-Chin Hsu, 376p, Kluwer
Academic Publishers, ISBN 0-7923-9597-2

Digital Design & Synthesis with VHDL
Ross, 03/1994 Automata Publishing Company, Cloth Text,
ISBN 0-9627488-3-8 300p

VHDL Buyer's Guide
Steve Wolfe and Fouad Kiamilev, Trade Paper
ISBN 0-934869-14-6 30p,
11/1992 Cad Cam Publishing, Incorporated

Books on VHDL in French

VHDL du langage a la modelisation
R. Airiau, J.M. Berge, V. Olive and J. Rouillard, Presses
Polytechniques et Universitaires Romandes, Lausanne 1990

Books on VHDL in German

Schaltungsdesign mit VHDL
Gunther Lehmann, Bernhard Wunder, Manfred Selz, 317 Seiten,
mit Diskette, Franzis-Verlag, ISBN 3-7723-6163-3, Poing, 1994,

Abstrakte Modellierung digitaler Schaltungen
(VHDL vom funktionalen Modell bis zur Gatterebene)
K. ten Hagen, Springer, ISBN 3-540-59143-5, August 1995

Books on VHDL in Japanese

Transation of: A VHDL Primer
Jayaram Bhasker,
CQ Publishing,ISBN4-7898-3286-4 C3055 P3200E
E - 4 E - VHDL Information Resources

Index - Metamor User’s Guide
A

A'high(N) A - 12
access types A - 15
and 4 - 3
architecture 3 - 3
ARCHITECTURE DECLARATION A -

11
arithmetic operators

+, -, *, /, mod, rem, abs, ** 4 - 7
array index 13 - 12
arrays

converting 12 - 13
assertion statement A - 16
asynchronous 5 - 2
asynchronous load 5 - 12
asynchronous set and reset 5 - 11
asynchronous set or reset 5 - 10
atribute

Xilinx_BUFG 12 - 9
attribute

array_to_numeric 12 - 13
critical 12 - 4
enum_encoding 12 - 5
foreign 12 - 11
inhibit_buf 12 - 18
macrocell 12 - 15
part_name 12 - 5
pinnum 12 - 6
property 12 - 7
ungroup 12 - 16

attribute ’critical’ 2 - 16
attributes A - 12

A’ascending A - 12
A’high(N) A - 12
A’left(N) A - 12
A’length(N) A - 12
A’low(N) A - 12
A’range(N) A - 12

A’reverse_range(N) A - 12
A’right(N) A - 12
T’base A - 12
T’high A - 12
T’image(N) A - 12
T’left A - 12
T’leftof(N) A - 12
T’low A - 12
T’pos(N) A - 12
T’pred(N) A - 12
T’right A - 12
T’rightof(N) A - 12
T’succ(N) A - 12
T’val(N) A - 12
T’value(N) A - 12

B

behavioral VHDL 3 - 9
bi-directional 13 - 8
binary numbers 8 - 8
bit 3 - 11
bit_vector 3 - 11
block 9 - 2
BLOCK STATEMENT A - 8
blocks 9 - 6
Books on VHDL E - 1
boolean 3 - 11
buffer 13 - 8
buffers

input 12 - 9
output 12 - 9

C

carry chain 13 - 5
case 4 - 9
case choice 8 - 6
Index - Metamor User’s Guide 1

CASE STATEMENT A - 5
case statement 13 - 4
character 3 - 11
clock 5 - 13
clock edge A - 16
clock enable 5 - 8, 5 - 13
combinational logic 4 - 2
compiling 2 - 14
component 9 - 2
COMPONENT INSTANTIATION A - 9
component instantiation 3 - 6
components 9 - 8
concurrent statements 2 - 4, 3 - 4
conditional assignment 2 - 4
CONDITIONAL SIGNAL

ASSIGNMENT A - 10
conditional signal assignment 4 - 9
conditional specification 5 - 3
CONFIGURATION DECLARATION A

- 11
configuration specification 9 - 9
configurations 9 - 8, 9 - 9
constant 4 - 2
constants 3 - 4
constrained expressions A - 16
constrained statements A - 16
converting arrays 12 - 13

D

data flow VHDL 3 - 8
dataflow 13 - 8
debugging 2 - 16
declarations A - 4
design I/O 2 - 3
design partitioning 2 - 11
designs

correct 13 - 8
good 13 - 8

DIRECT INSTANTIATION A - 9
direct instantiation 9 - 7
disconnect specifications A - 15
domain of the logic optimizer 9 - 2

don’t care 8 - 5, 13 - 13
downstream tools 12 - 19

E

elaborate compile option 9 - 9
encoding 8 - 2, 8 - 3

M, Z and - 8 - 4
non-ascending 8 - 4
non-unique 8 - 4

entity 3 - 3
ENTITY DECLARATION A - 11
enum_encoding 3 - 14, 8 - 4, 8 - 5, 8 -

6, 10 - 7
enumerated type 8 - 4
enumerated types 3 - 14, 8 - 3
equality operators 4 - 5
Error Messages C - 1
event 2 - 6, 12 - 2, A - 16
examples in VHDL 7 - 1
exit 4 - 14
EXIT STATEMENT A - 6

F

falling edge 12 - 2
file boundaries 9 - 10
file list 9 - 12
file types A - 15
finite state machines 6 - 1
fixed width encoding 8 - 8
flip flop 2 - 6

with asynchronous reset 2 - 6
flip-flop 2 - 9, 5 - 2, 5 - 3, 5 - 6
floating point 8 - 8, A - 16
for loop 4 - 13
function 3 - 4, 4 - 13
FUNCTION DECLARATION A - 7
2 Index - Metamor User’s Guide

G

gated clock 5 - 8
generate 2 - 5, 4 - 13
GENERATE STATEMENT A - 9
guarded blocks 5 - 4

H

hierarchical compilation 11 - 2
hierarchical compile 9 - 3
hierarchy 2 - 11, 2 - 16, 9 - 2
high impedance 13 - 3

I

IEEE 1076 9 - 13
IEEE 1076.3 8 - 8, 9 - 13, 13 - 3
IEEE 1164 2 - 3, 3 - 11, 9 - 13
IEEE Documents E - 1
ieee.numeric_bit 9 - 14
ieee.numeric_std 9 - 14
ieee.std_logic_1164 9 - 14
if 4 - 9
IF STATEMENT A - 5
impure functions A - 15
incomplete assignment 5 - 3
incomplete specificatio 13 - 14
inference priority 5 - 14
inferred structure 2 - 17
initial value 13 - 10
inout 13 - 8
instantiating components 9 - 2
integer 3 - 11, 8 - 8
internal tristate 4 - 19

L

last_value A - 16
latch 2 - 4, 5 - 2, 5 - 3
latches 5 - 5, 13 - 14

lexical elements
characters A - 2
extended identifiers A - 2
identifiers A - 2
strings A - 2

libraries 9 - 11
tuned for synthesis 13 - 8

library 9 - 2
alias 9 - 12
work 9 - 11

LIBRARY CLAUSE A - 11
library declaration 3 - 11
library IEEE 9 - 12
library statement 9 - 11
list of files 9 - 12
logic expressions 10 - 2
logic optimizer 9 - 2, 12 - 4
logic values

0, 1, Z, L and H 10 - 7
logical operators

and, or, nand, nor, xor, xnor, not 4
- 3

long signal path 13 - 3
long signal paths 13 - 5
LOOP STATEMENT A - 6
LOOP,NEXT,EXIT STATEMENTS A -

6
loops 4 - 13, 13 - 5
LPM 11 - 1
lpm.macros 9 - 17

M

macrocell
inference 11 - 5
instantiation 11 - 4

macrocells 11 - 2
metalogic 10 - 1
metalogic expression A - 16
metalogic expressions 10 - 2
metalogic values 10 - 2

U, X, W and - 10 - 8
metalogical values
Index - Metamor User’s Guide 3

U, X, W and - 8 - 5
metamor.attributes 9 - 15
mode

in, out, inout, buffer 2 - 3
mux 2 - 4, 5 - 3

N

nand 4 - 3
nested if 13 - 3
next 4 - 14
NEXT STATEMENT A - 6
nor 4 - 3
not 4 - 3
number of wire 8 - 2
numeric types 8 - 8

2’s complement numbers 8 - 8
binary numbers 8 - 8
floating point 8 - 8
integer 8 - 8
physical types 8 - 8

O

one hot encoding 8 - 6
operator overloading 4 - 2
operators 4 - 2
optimization 2 - 17, 8 - 5
optimize faster 9 - 2
or 4 - 3
ordering operator 8 - 6
ordering operators 4 - 5
others 4 - 9

P

package 3 - 3, 9 - 2, 9 - 10
PACKAGE BODY DECLARATION A -

11
PACKAGE DECLARATION A - 11
pad names 12 - 6

partitioning a design 2 - 14
physical types 8 - 8, A - 16
pin feedback 2 - 3, 13 - 8
pin numbers 12 - 6
pinout 12 - 6
port statemet 2 - 3
ports 2 - 3, 2 - 4
power up 13 - 11
procedure 3 - 4, 4 - 13
PROCEDURE DECLARATION A - 7
procedures 2 - 8
process 3 - 4
PROCESS STATEMENT A - 8
process statement 3 - 9
processes 2 - 9
propagation delay 4 - 10, 4 - 14

R

real 3 - 11
register feedback 2 - 3
register inference 5 - 13
register inference conventions 13 - 16
registers 2 - 6
register-transfer-level 3 - 8
relational operators

=, /=, >, =, 4 - 5
replicated logic 4 - 13
replicates logic 13 - 5
report and assert statements 2 - 18
report statement 4 - 14
reserved words A - 3
reset 5 - 2
reset/preset 5 - 13
resolution functions A - 15
return statement 4 - 15
rising edge 12 - 2
rising_edge 2 - 6
root (top level) of the design 9 - 9
rotate operator 4 - 17
RTL descriptions 3 - 8
4 Index - Metamor User’s Guide

S

SELECTED SIGNAL ASSIGNMENT A
- 10

selected signal assignment 4 - 9
sensitivity list A - 16
Sequential 2 - 9
sequential logic 5 - 2
sequential machines 5 - 2
sequential statements 2 - 8, 3 - 9, A - 5
shared variables A - 15
shift and rotate operators

sll, srl, sla, sra, rol, ror 4 - 17
sign extended 8 - 9
signal 3 - 4
SIGNAL ASSIGNMENT STATEMENT

A - 6
signal attributes

event
stable

last_value A - 15
signal kind register A - 15
signals 2 - 8
signed subtypes 8 - 8
silicon specific components 9 - 4
simulation 3 - 13, 13 - 6
simulation libraries 13 - 8
simulation models 13 - 8
simulation optimized code 13 - 6
source files 9 - 11
stable A - 16
state machines 2 - 9
statement 3 - 4
statements 2 - 9
std.standard 9 - 14
std_logic 2 - 3, 2 - 12, 3 - 11, 10 - 8, 13

- 13
std_logic_1164 2 - 3, 2 - 6, 3 - 11, 8 - 5

’-’ 13 - 13
std_logic_vector 3 - 11, 8 - 5
STD_MATCH 8 - 5
std_ulogic 8 - 5, 10 - 7
std_ulogic values

U, X, 0, 1, Z, W, L, H and - 8 - 5
std_vector_logic 2 - 12
string 3 - 11
structural VHDL 3 - 6
subprogram A - 16
subprograms 4 - 13, A - 7
subtype A - 16
subtype declaration 8 - 2
subtypes 3 - 12
synchronous 5 - 2
synchronous set or reset 5 - 9
Synopsys

std_logic_arith 9 - 13
std_logic_signed 9 - 13
std_logic_unsigned 9 - 13

Synopsys library 9 - 12
synthesis attributes 12 - 1
synthesis coding 13 - 1
system level simulation 2 - 16

T

T'high A - 12
T'val(N) A - 12
textio 3 - 2
textio package A - 15
time zero 13 - 10
timing 3 - 13
tri-state 2 - 6
tristates 2 - 7, 4 - 18

Z 4 - 18
type A - 16
type bit value

0, 1 3 - 11
type conversion functions 13 - 9
types 2 - 12

U

unconstrained loop A - 16
unidirectional dataflow 13 - 8
Index - Metamor User’s Guide 5

unintended combinational feedback 13
- 15

unintended latches 13 - 14
USE CLAUSE A - 11
use clause 3 - 11, 9 - 10
use statements 9 - 11

V

VARIABLE ASSIGNMENT
STATEMENT A - 6

variables 2 - 8, 3 - 4
declared in a process 10 - 6
declared in subprograms 10 - 6

VHDL
design description organization 3 -

3
VHDL constructs A - 13
VHDL types 3 - 11, 8 - 2
VHDL'87 2 - 4, 3 - 2
VHDL'93 2 - 4, 3 - 2
VIUF E - 1
vlbit.pack1076 9 - 15

W

WAIT STATEMENT A - 6
wait statement 3 - 9, 5 - 4, A - 16
waveforms A - 15
while loop 4 - 13, A - 16
wildcard matching 8 - 6
work library 9 - 10

X

XBLOX 11 - 1
xblox.macros 9 - 16
xnor 4 - 3
xor 4 - 3

Z

Z 2 - 7
zero extended 8 - 9
6 Index - Metamor User’s Guide

	Main Table of Contents
	Metamor User’s Guide - Version 2.4
	Table of Contents
	1 - About This Guide
	Notation Conventions
	Copyright Notice

	2 - PLD Programming using VHDL
	VHDL for PLD Designers
	Design I/O
	Combinational Logic
	Registers and Tri-state
	State Machines
	Hierarchy
	Types
	Compiling
	Debugging
	System level simulation
	Hierarchy
	Attribute 'critical'
	Verbose option
	Report and assert statements

	Downstream Tools
	How to be Happy

	3 - Introduction to VHDL
	VHDL '93
	Structure of a VHDL Design Description
	Structural VHDL
	Data Flow VHDL
	Behavioral VHDL
	VHDL Types
	My model simulates, but....
	Some other issues

	4 - Programming Combinational Logic
	Combinational Logic
	Logical Operators
	Relational Operators
	Arithmetic Operators
	Control Statements
	Subprograms and Loops
	Shift and Rotate Operators
	Tristates

	5 - Programming Sequential Logic
	Sequential Logic
	Conditional Specification
	Wait Statement
	Guarded Blocks

	Latches
	Flip-Flops
	Gated Clocks and Clock Enable
	Synchronous Set/Reset
	Asynchronous Set or Reset
	Asynchronous Set and Reset
	Asynchronous Load
	Register Inference Rules
	Reset/Preset
	Clock
	Clock Enable
	Inference priority

	6 - Programming Finite State Machines
	Introduction
	Feedback Mechanisms
	Feedback on signals
	Feedback on variables

	Moore Machine
	Output registers
	Input Registers

	Mealy Machine

	7 - Some Common Examples in VHDL
	Seven-Segment Decoder
	Craps Game
	Blackjack
	Traffic Light Controller
	A Simple ALU
	Hello
	Fifo

	8 - Synthesis of VHDL Types
	Introduction
	Enumerated Types
	Don't Cares
	User Defined Encoding
	Std_logic_ll64
	One Hot Encoding

	Numeric Types
	Arrays and Records

	9 - Managing Large Designs
	Using Hierarchy
	Controlling the logic optimize granularity
	Hierarchical compile
	Silicon specific components

	Blocks
	Direct Instantiation
	Components and Configurations
	Package Declarations and Use Clauses
	VHDL Design Libraries
	Direct association
	Alias association

	Metamor VHDL Libraries
	std.standard
	ieee.std_logic_1164
	ieee.numeric_bit
	ieee.numeric_std
	metamor.attributes
	metamor.array_arith
	vlbit.pack1076
	ieee.std_logic_arith ieee.std_logic_unsigned
	xblox.macros
	lpm.macros200 lpm.macros201

	Hierarchical Compilation

	10 - Logic and Metalogic
	Introduction
	Logic expressions
	Metalogic expression
	Metalogic values

	11 - XBLOX and LPM
	Macrocells
	LPM and XBLOX
	Macrocell Instantiation
	Combinatorial Macrocell Inference
	Sequential Macrocell Inference

	12 - Synthesis Attributes
	Predefined attributes
	User defined attributes
	Attribute 'critical'
	Attribute 'enum_encoding'
	Attribute part_name
	Attribute pinnum
	Attribute property
	Atribute Xilinx_BUFG
	Atribute Xilinx_GSR
	Attribute foreign
	Attribute array_to_numeric
	Attribute macrocell
	Attribute Ungroup
	Attribute Inhibit_buf
	Attributes for Downstream Tools

	13 - Synthesis Coding Issues
	Introduction
	Test for High Impedance
	Long Signal Paths - Nested ifs
	Long Signal Paths - loops
	Simulation Optimized Code
	Port Mode inout or buffer
	Using Simulation Libraries
	Type Conversion Functions
	Depending on Initial Value
	Assign to Array Index
	Don't Care
	Unintended Latches
	Unintended Combinational Feedback
	Observe the Register Inference Conventions

	A - VHDL Quick Reference
	Lexical Elements
	Reserved Words
	Declarations and Names
	Declarations
	Names

	Sequential Statements
	Subprograms
	Concurrent Statements
	Library Units
	 Attributes
	VHDL constructs
	Unsupported Constructs
	Ignored Constructs
	Constrained Constructs
	Constrained statement
	Constrained expressions

	B - PREP Examples
	PREP 1
	PREP 2
	PREP 3
	PREP 4: Using enum_encoding
	PREP 4: Using std_logic_1164
	PREP 5
	PREP 6
	PREP 7
	PREP 9

	C - Error Message Index
	D - Compile options
	All formats:
	Analyze
	Log File
	Elaborate
	Device
	Verbose
	Quiet
	Library Alias
	Exit strategy
	Optimize level

	Cupl only:
	Clock Enable
	Reset

	Open Abel 2 only:
	Clock Enable
	Reset

	XNF only (for XactStep 6.0)
	EDIF only

	E - VHDL Information Resources
	VHDL International Users Forum (VIUF) Home Page
	IEEE Documents
	Books on VHDL in English
	Books on VHDL in French
	Books on VHDL in German
	Books on VHDL in Japanese

	Index

