\J

Dynamic C

TCP/IP User’s Manual

010719-B

Dynamic C TCP/IP User’s Manuall

Part Number 019-0100 « 010719-B » Printed in U.S.A.
©2001 Z-World Inc. = All rights reserved.

Z-World reserves the right to make changes and
improvements to its products without providing notice.

Notice to Users

Z-WORLD PRODUCTS ARE NOT AUTHORIZED FOR USE AS
CRITICAL COMPONENTS IN LIFE-SUPPORT DEVICES OR SYS
TEMS UNLESS A SPECIFIC WRITTEN AGREEMENT REGARD-
ING SUCH INTENDED USE IS ENTERED INTO BETWEEN THE
CUSTOMER AND Z-WORLD PRIOR TO USE. Life-support devices
or systems are devices or systems intended for surgical implantation into
the body or to sustain life, and whose failure to perform, when properly
used in accordance with instructions for use provided in the labeling and
user’'s manual, can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always
present in a system of any size. In order to prevent danger to life or prop-
erty, it is the responsibility of the system designer to incorporate redun-
dant protective mechanisms appropriate to the risk involved.

The TCP/IP software used in the Rabbit 2000 TCP/IP Development Kit is
designed for use only with Rabbit Semiconductor chips, and is used under
licence from Erick Engelke.

Trademarks
Dynamic C isaregistered trademark of Z-World Inc.
Windows® is aregistered trademark of Microsoft Corporation

Z-World, Inc.

2900 Spafford Street
Davis, California95616-6800
USA

Telephone:(530)757-3737
Fax:(530)753-5141
www.zworld.com

http://www.zworld.com

Table of Contents

1 INtroduCtionccooeeeeeeeeeeeeeeeeeeeenee 1 CPINGceiieeeee e 38
. PSOCKEL ... 38
2 TCPIIPENGINE.......ooovvvviiiiiissinenriririiinnnns 3 N 39
2.1 TCP/IP Configuration.........c.cccccveeeerenunne 3 resolve _Cancelcccoeeeeeveneneneenens 40
IP Addresses Set Manually 3 resolve_name check........cccoeuveueee. 41
IP Addresses Set Dynamically 3 resolve_name_start.........c.ccoceeeeveenee a2
Sizesfor TCP/IP1/O Buffers................ 8 1] o PSR 43
2.2 TCP Socket INterface.......oveeeveeeeerrereenen. 8 _SeNA_PING ..o a4
Number of SOCKELSco.evererrrecrenn. 8 SEtEOmf(iji NNAME......cooereririeninieiene 212
PassiVe OPEN........cocueueeeveeeeeereee et 9 SEthOStId ...
ACHVE OPEN.......oveerreee s 9 sethostname...........cccoeveeveicicicnnnne, 46
Delay aConnectionccceeeeeveveennee. 9 sock_abort......ceceeeieiee e 47
TCP Socket FUNCHONS ..., 10 sock_bytesreadycoeieiiinninnne. 48
2.3 UDP Socket Interface...........cocverrere 12 SOCK_ClOSB v 49
Dynamic C 7.05 (and later) 12 sock_dataready..........ccoovereinennnnennn. 50
UDP Interface Prior to Dynamic C 7.05 zgie;tabhshed g;
13 _estabdlISNeq........cceveeveeireeeenne
Porting Programs from the older UDP sock fasxreqd 53
APl tothe nev UDPAPI 15 SOCK_fastwrite.........ccevviivicicreriinnns 54
2.4 DNS LOOKUDS ...vrrreeeeeeoe oo 15 SOCK FIUSH v %
: ; sock_flushnextccccocvveevnennnnne 56
Configuration Macros for DNS L ookups sock:getc 57
15 SOCK_QELS....cviiveereireerieseeiereeeeeenens 58
2.5 Skeleton Program e 16 SOCK Nt 58
TCP/IP Stack l.n't' aAizalion............. 17 SOCK_MOAE ..ot 59
Packet Processing......... T e 18 sock_prereadcocevevveeeieiieieeeenens 60
TCP/IP Daemon Computing Time18 SOCK_PULC . 61
2.6 State-Based Program Design.................. 18 SOCK_PULS. ... 62
Blocking vs. Non-Blocking................. 18 SOCK_FBIEft.. oo 63
2.7 Multitasking and TCP/IP.........cccecerennene. 20 SOCK_IhSiZe....ccviiii e 63
HCIOSH e 20 sock_rbused........cooovinnennenee 64
Cooperative Multitasking 20 LS00 [("= o (S 65
2.8 Function REfErence..........ccoovvueveeeeveennnns 23 SOCK_FECV ... 71
AP _IESOIVE.....ooeeeeceeeeeee e 23 SOCK_I€CV_froM...covvvvvvvirririnns 73
_ChK_PING..oiiireireiciceeeeeee e 24 SOCK_I€CV_iNit ..o, 74
dhcp_acquire.......coeveeeeeveveeeeeeeee. 25 0101 - 1T 75
dhep_release......oeeveeeeeeeeeeeee. 26 sock_thl (_—:'ft 76
0etdomaiNName...........ceveveveevereennns 27 SOCE_:ESI SZeed ;;
(0151210’ (o I 28 SOCK_TDUSEd.......oovirieeiiiieciiee e
gethostnameccoveveveveverereeeeen. 28 SOCK_tICK v.vvveieveeceireeee et 78
EEPEEINEME oo 29 sock_wait_closedcovverererenenen. 79
getgockname 30 sock_wait_established............ccc.c.... 80
BILONI ..o 31 SOCK_Wait_inpUtoooorvviriens 81
(11000 T 31 SOCK_WHILE....eeeessesesse e 82
INEL_a0A ..o 32 SOCK_Yi€ld oo 83
102 0 10 = W 33 tCP_ClEAITESAIVE ..o 83
ip_timer_expired........ccccoevevevnnn... 33 tep_CoNfig....ceveeeerieirirrerreree 84
ip_timer Nt oo 35 tep_extlisten ... 85
(0100] 3] TR 35 ICP_EeXIOPEN ..o 86
MEONS oo 36 tcp_keepalive ... 87
PAAAN ..o 36 tCP_liSteN e 838
pd_getaddress..........cccoeeeverirerernene. 37 TCP_OPEN ...t 90
TCP/IP User’s Manual iii

3

tCP_reserveportoocveeveeeesieeienennns 92

1007 o I (¢ G 93
Udp_ClOSE.....oieeeeeerece e 93
Udp_EXTOPEN ..o 94

(U0 o 0]/ S 95

(U0 o T = ox AR 97
udp_recviromccoceeevvveevcnennnnns 98

(U0 o = oo 1R 99
udp_sendto......ccceveeeeveeererece e 100

2.9 MACIOSooveiieeieeieie e 101
DISABLE DNS.......ccccovvvrrernn. 101
MAX_SOCKETS......ccceevvrrernnnns 101
MAX_SOCKET_LOCKS............ 101
MAX_TCP_SOCKET_BUFFERS.....

101
MAX_UDP_SOCKET_BUFFERS....
101

MY_DOMAIN ...ccovrrrrrsieieens 101
MY_GATEWAY ...ccovvrrrrieennns 102
MY_IP_ADDRESS........c.c.ceevnn. 102
MY_NAMESERVER..........ccce..... 102
MY_NETMASKcccovevrrrriernnns 102
SOCK_BUF_SIZE......cccccovvuvuennne 102
TCP_BUF _SIZE.......ccooovevvveiine. 102
tcp_MaxBufSize.........ccocoveeeennene. 103
UDP_BUF _SIZE......ccccoovivrennnn. 103

Server Utility Library........ccccoovnenee. 105
3.1 Data Structures for Zserver.lib............. 105
ServerSpec SIructure.........ceeeeeeeenee 105
ServerAuth Structure..........cococeeeiee. 105
FormVar Structure...........ccoceecveneenne. 105

3.2 Constants Used in Zserver.lib.............. 106
ServerSpec TypeFieldcccceeeee. 106
ServerSpec Vartype Fidld................. 106
Servermask fieldcccccoeeveiiieenne 106
Configurable Congtants.................... 107

3.3 HTML FOrmMS.....cceieciececnieeeiee, 107
3.4 FUNCLONS......eeeieeieieeteie e see e 108
sauth_adduserccccceeeeveveenennee, 108
sauth_authenticate........................ 109
sauth_getuserid........cococeeeeenennns 109
sauth_getusernameccoceeeeeens 110
sauth_getwriteacCess........c.cceenee 110
sauth_removeuserccccceeeenee. 111
sauth_setpassword..........cccceeenens 111
sauth_setwriteaccess..........c.o........ 112
sspec_addform.........cooeeeeeeicennns 113
sspec_addfsfile......coonnnnanns 114
sspec_addfunctioncccceeeeeeee 115
SSpeC_addfV ..o 116
sspec_addrootfile........coceveinnans 117
sspec_addvariable..........coccceeeee. 118
sspec_addxmemfile...........cc.c...... 119

SSpec_aliaSsPeC.....ccvvvvevienerieninienns 121
sspec_checkaccess.......ovveerineenas 122
sspec_findfv.....ccveniiniins 122
sspec_findname.........ccocevveiienee 123
sspec_findnextfile.........ccococevnnneee 124
sspec_getfileloc ... 124
sspec_getfiletype.....ccocoovvvenvienns 125
sspec_getformtitle ..o 125
sspec_getfunctionccoceeveneee 126
Sspec_getfvdest......oovveeeveecninee 127
sspec_getfventrytype.......ccocvuenee 128
sspec_getfvlencccoovvvvennenne 128
sspec_getfvnameoccceveeevenene 129
SSpec_getfvnum ... 129
SSpec_getfvoptooeeeevecininieens 130
sspec_getfvoptlistlen.................... 130
sspec_getfvreadonlyc........ 131
(550 o0 1= 1VES o= oI 131
sspec_getlength ... 132
SSPec_getname.........ccoceeveveeereenaens 132
sspec_getpreformfunction............ 133
sspec_getrealmccceeeeveeencnienenne 134
SSPEC_gettype.....coovevvereee e 134
SSpec_getusername.........oceeeeeneee. 135
sspec_getvaraddroccceeeeinenne 135
sspec_getvarkindc.cccceeeeieeene 136
Sspec_getvartypeooeeeeveeveenens 136
sspec_heedsauthentication............ 137
sspec_readfile......occoevvceniniininnns 138
sspec_readvariable..........cccceeeees 139
SSPEC_IEMOVE ... 139
SSPEC_IeStOrecovveeeeeeeeie e 140
SSPEC_SAVEoreeeiieieeeee e 140
sspec_setformepilog ..o 141
sspec_setformfunction.................. 142
sspec_setformprolog.........cccceeenee 143
sspec_setformtitle..........cccoeeeeeee. 144
sspec_setfveheck ... 145
sspec_setfvdeseoevveeeecninees 146
sspec_setfventrytype ..o 146
sspec_setfvfloatrange................... 147
sspec_setfvlen......ovieinnnnns 147
sspec_setfvname........ccoceeeeieeens 148
sspec_setfvoptlist......ccooeveeennnens 148
sspec_setfvrange.......ccoceeeecienens 149
sspec_setfvreadonly.........cccceeeee 149
sspec_setpreformfunction............. 150
sspec_setrealM....oceveeccecccnieene 151
sspec_setsavedata.......cocceeeeerieeene 152
SSPEC_SELUSEN ..o 153
4 HTTP Server.....neennen, 155
4.1 HTTP Server Data Structures.............. 155
HIPSPEC ... e 155

TCP/IP User’s Manual

HUPTYP oo 156 Function Reference.........cccocveevevenene. 202
HttpReaiM.....cccv e, 156 L0 T 203
HtpState ..o 157 L0 O T] o 204
4.2 Configuraﬂon MaACIOS. ..ol 159 tftp_tiCk ... 205
Customizi ng HTTP headers.............. 160 tftp_tiCkX 206
43 Sample Programs 160 tftp_exec .. 207
Serving Static Web Pages................ 161 8 SMTPMail ClieNnt ... 209
Dynamic Web Pages Without HTML 8.1 Sample Conversation.........ccoceeevvvrninns 209
FOrMS...ooeieeeceeeeee e 163))
Web Pages With HTML Forms....... 167 8.2 Configuration.........cceeeeeveeeererreeenennenns 210
HTML Forms Using Zserver.lib....... 174 8.3 Functions............. T 211
4.4 FUNCHONS .o 180 SMEP_SeNdMail .ocooeevvve 211
CQi_redireCtto ... 180 smitp_sendmailxmem.................... 212
CQi_SENASTING w.ovvvvveeeeeeeeeeeeeseeeee 181 smtp_mailtick........cccoceeeineiiinnnne 213
At AOAFI€ wovvvvveeeeeeeee e 181 SMLP_SEBUS. .o 213
http_contentencode........................ 182 8.4 Sample Sending of an E-mail................ 214
http_delfile......ccvveviireiree 183 :
Ot FINGEITDUT o 183 9 POP3 QI |ent_ ... 215
At NEXEVEIT oo 184 9.1 Configuration.........ccoeeeenereriereneseniene 215
http_handlercoovevrvmreernennne. 184 9.2 Three Stepsto Receive E-mal. 215
http iNit ..o, 185 9.3 Cal-Back Function............ccoceveeeeeiuennns 216
http_parseformcccceeeevenenn. 185 Normal call-backccoevrenennee. 216
http_setcookie........ccceereinenenne. 186 POP_PARSE EXTRA call-back......216
http_urldecode.............ccocniiniuenne 187 9.4 FUNCHONSvvereereeeeceereeneeeiesenesneeeean. 217
shtml_addfunction...............ccoceen. 188 POP3 NIt oo 217
shtml_addvariable..........c.cocvennen. 189 POP3_QEtMailveveevereeerrieieans 218
shtml_delfunction.............oocven. 190 POP3_tiCK .e.veevereereeeiseeee s 218
shtml_delvarlable 190 95 Sample receiving of email.oeeoii, 219
5 FTP CHENt....oooooeeeeceeeericeeseeee 101 Sample CONVErsation............c..e... 220
5.1 Configuration Macros..............ccoeeuueune. 191 10 TENEt ..o 221
5.2 FUNCLIONS.......cccviiiece e 192 10.1 Telnet (Dynamic C 7.05 and later)221
ftp_client_setup........ccocovevnnne. 192 LS (0]« T 221
ftp_client_tick 193 Function Reference (Dynarn|c CcC7.05
ftp_client_filesize...........coovvnen. 193 1000 N 1=, JOU 222
5.3 Sample FTP Transfer.......ccoooevvniiennns 194 vserial_Close......ccoooiiiiiiiiciciee 222
vserial Nt 222
FTPServer......cceeeeeeeeeee. 195 vserial Keapalive. ... 293
6.1 Configuration Constants...........c.ccceeee 195 VSEHal TISEOM oo 224
File OptionS..........cceveeveeeeeeererereneans 195 VSEiE_OPEN covvveeeeeeeeeee e 295
6.2 FileHandlers.......ccooveeveeeceviececee, 196 vserial ticK..oiiiieceeeee 226
(0] o FAU SRR 196 Sample Program (Dynamic C 7.05 and
getfilesize....oovveiiceeecee 197 11) PRSI 226
(=70 [T 197 10.2 Telnet (pre_DynarniC C 705) ______________ 228
L (ST 198 Configura[ion MaCroS.....covvviiiii, 228
ClOSE ... 198 Function Reference........coovoivviiiiiin, 228
6.3 FUNCLIONScceeeeeeeeccee e 199 telnet_init ..cccvevveeece e 228
L0 N L 199 15 1915 a1 229
L0 O (T 199 telnet_close......ccovvvvvvveveceen, 229
6.4 Sample FTP Server.......cccooeevevceevennenn. 200 An Example Telnet Server................ 230
7 TFTP CHENt ..o 201 11 General Purpose Console................. 233
BOOTP/DHCPccccecvrerieeiene, 201 11.2 IntroduCtionceeeeveeveereniereeeneeeeens 233
Data Structure for TFTP................... 202 11.2 Console Features............cccowrrvvenneenn. 233
TCP/IP User’s Manual v

Using other Dynamic C Libraries.... 233

11.3 Console Commands and Messages.... 234
Console Command Data Structure... 234

Console Command Array................. 235
Console Commands..........ccoceverenee. 235
Console Error Messages..........c....... 240

11.4 Console l/O Interface.......ccoovevvvnenene. 242
How to Include an I/O Method......... 242
Predefined I/O Methods................... 242
Multiple 1/O Streams........ccccceevveenen. 243

11.5 Console EXecution..........ccccevveeiueennens 244
File System Initiadization................. 244
Serial BUfers......ccoeevievicnincneene, 244

USINg TCP/IP ..o 244
Required Console Functions............ 245
console iNit......cccoceveeieeeeeieeeeeenn, 245

console ticK.....coveieeieececieeeee, 245

Useful Console Function.................. 245
con_backup.......ccoorviiiininns 245
con_backup_bytes.........ccccooeennn. 246
con_backup_reserve........ccceeueeee 246
con_chk_timeoutccccceeeenen. 246
con_load backup........c.ccceeeernnnns 247

(o0 o 1 (=== A (o O 247
con_set_backup Xcccooenennnens 247
con_set files IXueiinveiieiieceenee, 248

con_set user_idle.....oecvcveennen. 248
con_set timeout..........cceceeeeenennen. 248

con_set user_timeout................... 249

Console Execution Choices.............. 249

11.6 Backup System........ccceoevvenincnnnnens 249

Data Structure for Backup System... 250
Array Definition for Backup System250

11.7 Console Macros........ccoceeeeeeveereeiueennens 251
11.8 Sample Program.........cccceveveeeeenennens 252
12 PPP DIIVEN ... 259
12.1 PPPLibraries......cienecenencnennes 259
12.2 Operation Details.......ccccoveeveeerienennnne 260
The Modem Interface.........ccccunee. 260

Flow Controlccccceveeeeveccieerene, 260

Serial POrt C....coovvevveveeeceeeeene, 260

12.3 Software Implementation Overview .. 261
Defining Network Parameters.......... 261
Configuration Options...........c.cceuee... 262
Authentication...........cccceveveeceenenen, 262

Link Teardown........cccccoevvvvevenne, 264

12.4 FUNCLIONS......ccviueereceecreecee e 264
CofModemEXpect.........ccovvvreennns 264
CofModemHangupcccoveveeeennens 265
CofModemlnitccvevreerieennnas 265
CofModemSend..........cocovvernienens 265
CofPPPshutdown........c.ccoceernienne 266

COfPPPStartcoceeeeveeeiecrieceereene 266
ModemCIosecocevvereeveeereenenne 267
ModemConnectedccveueee. 267
MOdeEmMEXPECLcocvvvvvreveerieene 267
ModemHangup.......c.cceevveeveerienenne 268
Modeminit.......coeeeereereeveecreenne 268
ModemOpeN.......cccoveeverieveeeiereens 268
ModemReadyccccvvevereeriennne 269
ModemRinging.........ccoeeveveereeneene 269
ModemSend.........cccoeeveereeieeineene 269
ModemStartPPPccoeeevvenenne 270
PPPCIOSE......ovvcvieceeee e 270
PPPINit....ccovviiiieeeece e 270
PPPflowcontrolOffccccoveuenne 271
PPPflowcontrolOn.........ccccccueeuneen. 271
PPPStartccoovvveeevvieiecrecveeeens 272
PPPnegotiatel P..........cccoovvrveeennen. 272
PPPnegotiateDNS..........ccccevveveneen 273
PPPsetAuthenticatee..................... 273
PPPsetAuthenticator 274
PPPshutdown..........ccoevveeveenene 274
RESELPPP ..ot 275
.. 277

Vi

TCP/IP User’s Manual

1. Introduction

Thismanual isintended for embedded system designers and support professionals who are using
an Ethernet-enabled controller board. Knowledge of networks and TCP/IP (Transmission Control
Protocol/Internet Protocol) is assumed. For an overview of these two topics a separate manual is
provided, An Introduction to TCP/IP. A basic understanding of HTML (HyperText Markup Lan-
guage) is aso assumed. For information on this subject, there are numerous sources on the Web
and in any major book store.

The Dynamic C implementation of TCP/IP comprises several libraries. The main library is
DCRTCP. LI B. Asof Dynamic C 7.05, thislibrary isalight wrapper around DNS. LI B, | P. LI B,
NET. LI B, TCP. LI Band UDP. LI B. Theselibrariesimplement DNS (Domain Name Server), IP,
TCP, and UDP (User Datagram Protocol). This, along with the libraries ARP. LI B and

| CVP. LI B, arethe transport and network layers of the TCP/IP protocol stack.

The remaining libraries implement application-layer protocols.

All user-callable functions are listed and described in their appropriate chapter. Example programs
throughout the manual illustrate the use of all the different protocols. The sample code also pro-
vides templates for creating servers and clients of various types.

To address embedded system design needs, additional functionality has been included in Dynamic
C'simplementation of TCP/IP. There are step-by-step instructions on how to create HTML forms,
alowing remote access and manipulation of information. Thereis also a serial-based consol e that
can be used with TCP/IP to open up legacy systems for additional control and monitoring.

Introduction 1

TCP/IP User’s Manual

2. TCP/IP Engine

This chapter describes the main library file, DCRTCP. LI B, which comprises the configuration
macros, the data structures and the functions used to initialize and drive TCP/IP. IP version 4 is
supported by DCRTCP. LI B.

Starting with Dynamic C version 7.05, DCRTCP. LI B isalight wrapper around
DNS. LI B, I P. LI B, NET. LI B, TCP. LI B and UDP. LI B. No changes are required
to existing code.

2.1 TCP/IP Configuration

To run the TCP/IP engine, ahost (i.e., the controller board) needsto know its | P address, netmask
and default gateway. If DNS (Domain Name System) |ookups are needed, a host will also need to
know the |P address of the local DNS server.

Media Access Control (MAC) address
Some | SPs require that the user provide them with aMAC address for their device. Run the utility

program, Sanpl es/ t cpi p/ di spl ay_nac. c, to display the MAC address of your controller
board.

2.1.1 IP Addresses Set Manually

The necessary |P addresses can be set at compile time by defining the configuration macros:

MY_| P_ADDRESS, MY_NETMASK, MY GATEWAY and MY NAMESERVER respectively. At
runtime, the configuration functions, t cp_confi g, set hosti d and set host namne can over-
ride the configuration macros.

2.1.2 IP Addresses Set Dynamically

Thelibrary BOOTP. LI B alows atarget board to be aBOOTP or DHCP client. The protocol used
depends on what type of server isinstalled on the local network. BOOTP and DHCP servers are
usually centrally located on alocal network and operated by the network administrator.

Both protocols allow a number of configuration parameters to be sent to the client, including:

¢ Client's |P address

* Net mask

e List of gateways

* Host and default domain name
e List of name servers

Both protocols also provide some inessential but useful information:
¢ Various standard servers, such as NTP, NIS, cookie, etc.
* A bootstrap server address
* The name of abootstrap file

Chapter 2: TCP/IP Engine 3

To use these protocoals, include:

#def i ne USE_DHCP
#use DCRTCP. LI B

in your program.
BOOTP assigns permanent | P addresses. DHCP can “lease” an IP addressto ahost, i.e., assign the

IP address for alimited amount of time. The lease can also be specified as permanent by setting
_dhcpl i f e to~0UL (i.e. OXFFFFFFFF).

2.1.2.1 BOOTP/DHCP Control Macros

Various macros control the use of DHCP. They must be set before the line
#use "dcrtcp. i b"intheapplication program.

USE_DHCP

If this macro is defined, the target uses BOOTP or DHCP to configure the required parameters. If
USE_DHCP is not defined, then MY _| P_ADDRESS, MY _NETMASK, My GATEWAY and (possi-
bly) MY_NAMESERVER must be defined in the application program.

DHCP_USE_BOOTP

If defined, the target uses the first BOOTP response it gets. If not defined, the target waits for the
first DHCP offer and only if none comesin the time specified by _boot pti meout doesit
accept aBOOTP response (if any). Use of this macro speeds up the boot process, but at the
expense of ignoring DHCP offers if there is an eager BOOTP server on the local subnet.

DHCP_CLASS | D “Rabbi t 2000- TCPI P: Z-Wor | d: Test: 1. 0. 0"

This macro defines a class identifier by which the OEM can identify the type of configuration
parameters expected. DHCP servers can use this information to direct the target to the appropriate
configuration file. Z-World recommends the standard format: “ hardware:vendor:product
codefirmware” version.

DHCP_USE_TFTP

If thisand USE_DHCP are defined, the library will use the BOOTP filename and server to obtain
an arbitrary configuration file that will be accessiblein a buffer at physical address

_boot pdat a, with length, _boot psi ze. The global variables, _boot pdone and

_boot per ror indicate the status of the boot file download. DHCP_USE TFTP should be
defined to the maximum file size that may be downloaded.

2.1.2.2 BOOTP/DHCP Global Variables
The following list of global variables may be accessed by application code to obtain information
about DHCP or BOOTPR These variable are only accessible if USE_DHCP is defined.

_boot pon

Runtime control of whether to perform DHCP/BOOTP. Thisisinitially set to 'true'. It can be set to
false before calling sock_i ni t (thefunction that initializes the TCP/IP engine), causing static
configuration to be used. Static configuration uses the values defined for the configuration macros,
MY _| P_ADDRESS etc. If BOOTP fails during initialization, thiswill be reset to 0. If reset, then
you can cal dhcp_acqui re() at somelater time.

4 TCP/IP User’s Manual

_surviveboot p
Set to one of the following values:
0: If BOOTP/DHCP fails, then aruntime error occurs. Thisis the default.

1: If BOOTP fails, then use the valuesin MY_| P_ADDRESS etc. If those macros are not
defined, a runtime error occurs.

_dhcphost

I P address of last-used DHCP server (~OUL if none). If _sur vi veboot p istrue, then this vari-
able should be checked to see if DHCP/BOOTP was actually used to obtain the lease. If
dhcphost is~0UL, then the fallback parameters (MY| P_ADDRESS etc.) were used since no
DHCP server responded.

_boot phost

| P address of the last-used BOOTP/TFTP server (~OUL if none). Usually obtained from the siaddr
field of the DHCP OFFER/ACK message. Thisis the default host used if NULL is given for the
hosthameinthecal tot ft p_exec() . Thisisthe host that provides the boot file.

_dhcplife, _dhcptl, _dhcpt2

These variables contain various absol ute time values (referenced against SEC_TI MER) at which
certain aspects of the DHCP protocol get activated. _dhcpl i f e iswhen the current lease
expires. If _dhcpl i f e is~0UL (i.e. OxFFFFFFFF) then the lease is permanent and the other
variables are not used. Otherwise, _dhcpt 1 iswhen the current lease must be renewed by the
current DHCP server. _dhcpt 2 iswhen the lease must be re-bound to a possibly different server,
if the current server does not respond. In general, _dhcpt 1 <_dhcpt 2 <_dhcplife.To
work out the number of seconds remaining until the current lease expires, use code similar to:

if (_dhcplife == ~0UL)
printf("Lease is permanent\r\n");

else if (_dhcplife > SEC Tl MER)
printf("Remaining | ease % u seconds\r\n",
_dhcplife - SEC TI MER);

el se
printf("Lease is expired\r\n");

_boot pti meout

Number of secondsto wait for aBOOTP or DHCP offer. If there is no response within thistime
(default 30 sec), then BOOTP is assumed to have failed, and the action specified by

_survi veboot p will betaken. You can set this variable to a different value before calling
sock_init().

_boot pdone
Is set to anon-zero value when TFTP download of the boot file is complete. This variable only
existsif DHCP_USE TFTP isdefined. It is set to one of the following values:

0: Download not complete, or boot file not yet known.
1: Boot file download completed (check _boot perr or for status).
2: No boot file was specified by the server.

_boot psi ze
Indicates how many bytes of the boot file have been downloaded. Only existsif
DHCP_USE_TFTP is defined.

Chapter 2: TCP/IP Engine 5

_boot pdat a

Physical starting address of boot data. The length of thisareawill be DHCP_USE_TFTP bytes,
however, the actual amount of datain the buffer isgivenby _boot psi ze. Thisvariable only
existsif DHCP_USE TFTP isdefined andisonly validif _boot pdone is1. You can access the
datausing xmen®2r oot () and related functions.

_boot perror
Indicates any error which occurred in a TFTP process. This variable only exists if
DHCP_USE TFTP isdefined and is only valid when _boot pdone is1, in which case
_boot perror issetto one of the following values (which are also documented with the
tftp_tick() function):

0: Noeror.

-1: Error from boot file server, transfer terminated. This usually occurs because the server is not
configured properly, and has denied access to the nominated file.

- 2: FError, could not contact boot file server or lost contact.

- 3: Timed out, transfer terminated.

- 4: (not used)

- 5: Transfer complete, but truncated because buffer too small to receive the complete file.

2.1.2.3 DHCP Functions
There are two user-callable functions regarding | P address leases. To obtain alease, call
dhcp_acquire() . Toreinquishit, cal dhcp_rel ease().

2.1.2.4 DHCP Sample Program
Thefollowing sampleisavery basic TCP/IP program, that will initialize the TCP/I P interface, and
alow the device to be 'pinged’ from another computer on the network. DHCP or BOOTP will be
used to obtain IP addresses and other network configuration items. A more extensive sample pro-
gramisin Sanpl es\t cpi p\ dhcp. c. It demonstrates other DHCP features, such as releasing
and re-acquiring | P addresses and downloading a configuration file.

6 TCP/IP User’s Manual

/1 Main define to cause BOOTP or DHCP to be used.
#def i ne USE_DHCP

/* These val ues may be used as a fall back i f _survivebootp is set true.
O herwise, they will be ignored. Note that in a 'real’ application
setting fall backs as hard-coded addresses would be unwi se. */

#define My_| P_ADDRESS "10. 10. 6. 179"
#define MY_NETMASK " 255. 255. 255. 0"
#defi ne MY_GATEWAY "10. 10. 6. 1"

#menmmap xmem
#use dcrtcp.lib

/* Print sone of the DHCP or BOOTP paraneters received. */
void print_results(void){
printf("Network Paranmeters:\r\n");
printf(" My P Address = %98l X\r\n", ny_ip_addr);
printf(" Netmask = %981 X\r\n", sin_mask);

i f (_dhcphost !'= ~0UL) {
i f (_dhcpstate == DHCP_ST PERMANENT) {
printf(" Permanent |ease\r\n");
} else {
printf("Remaining | ease= %d (sec)\r\n", _dhcplife -
SEC_TI MER)

printf("Renew | ease in %d (sec)\r\n", _dhcptl - SEC TI MER)

}
printf(" DHCP server

printf(" Boot server

= 998l X\r\n", _dhcphost);
= 998l X\r\n", _bootphost);
i f (gethostname(NULL, 0))
printf(" Host name = %\r\n", gethostname(NULL, 0));
i f (getdomai nnane(NULL, 0))
printf(" Domain nane = %\r\n", getdomai nnane(NULL, 0));

}
mai n() {
_survivebootp = 1; // So we can print our own nmessage
_bootptineout = 6; // Short timeout for testing
sock_init();
i f (_dhcphost !'= ~0UL)
printf("Lease obtained\r\n");
el se {
printf("Lease not obtai ned. DHCP server may be down.\r\n");
printf("Using fallback parameters...\r\n");
}
print_results();
for (;;)
tcp_tick(NULL);
}

Chapter 2: TCP/IP Engine

2.1.3 Sizes for TCP/IP 1/O Buffers

Starting with Dynamic C version 7.05, TCP and UDP |/O buffers are sized separately.
* TCP_BUF_SI ZE determines the TCP buffer size and defaults to 4096 bytes.
e UDP_BUF_SI ZE determines the UDP buffer size and defaults to 4096 bytes.

Comepatibility is maintained with earlier versions of Dynamic C. If SOCK_BUF_SI ZE is defined,
TCP_BUF_SI ZE and UDP_BUF_SI ZE will be assigned the value of SOCK_BUF_SI ZE. If
SOCK _BUF_SI ZE isnot defined, butt cp_MaxBuf Si ze is, then TCP_BUF_SI ZE and
UDP_BUF_SI ZE will be assigned the value of t cp_MaxBuf Si ze * 2.

2.1.3.1 User-supplied Buffers

Starting with Dynamic C version 7.05, a user can associate their own buffer witha TCP or UDP
socket. The memory for the buffer must be allocated by the user. This can be done with xal -

| oc(), which returns a pointer to the buffer. This buffer will be tied to a socket by acall to an
extended open function: t cp_ext li sten(),tcp_ext open() orudp_ext open() . Each
function requires along pointer to the buffer and its length be passed as parameters.

2.2 TCP Socket Interface

Throughout this manual, the term socket refers to four numbers: the | P addresses and port num-
bers for both sides of a connection.

With Dynamic C version 6.57, each socket must have an associatedt cp_Socket structure of
145 bytesor audp_Socket structure of 62 bytes. The 1/O buffers are in extended memory. For
Dynamic C 7.05 these sizes are 132 bytes and 48 bytes, respectively.

For earlier versions of Dynamic C, each socket must haveat cp_Socket data structure that
holds the socket state and I/O buffers. These structures are, by default, around 4200 bytes each.
The magjority of this space is used by the input and output buffers.

2.2.1 Number of Sockets

Starting with Dynamic C version 7.05, there are two macros that define the number of sockets
available:

e MAX_ TCP_SOCKET_BUFFERS determines the maximum number of TCP sockets with
preallocated buffers. The default is 4. A buffer istied to a socket with thefirst call to
tcp_open() ortcp_listen().

e MAX UDP_SOCKET_BUFFERS determines the maximum number of UDP sockets with
preallocated buffers. The default is 0. A buffer istied to a socket with thefirst call to
udp_open().

Note that DNS does not need a UDP socket buffer since it manages its own buffer. DHCP and
TFTP. LI B, however, each need one UDP socket buffer.

Prior to Dynamic C version 7.05, MAX _SOCKETS defined the number of sockets that could be allo-
cated, not including the socket for DNS lookups. If you uselibrariessuchas HTTP. LI B or
FTP_SERVER. LI B, you must provide enough socketsin MAX_SOCKETS for them also.

In Dynamic C 7.05 (and later), if MAX_SOCKETS is defined in an application program,
MAX_ TCP_SOCKET _BUFFERS will be assigned the value of MAX_SOCKETS.

8 TCP/IP User’s Manual

2.2.2 Passive Open

There are two ways to open a TCP socket, passive and active. To passively open a socket, call
tcp_listen();thenwait for someoneto contact your device. Thistype of openis commonly
used for Internet servers that listen on awell-known port, like 80 for HTTP (Hypertext Transfer
Protocol) servers. You supply t cp_I i st en() withapointertoat cp_Socket datastructure,
thelocal port number otherswill be contacting on your device, and the | P address and port number
that are valid for the device. If you want to be able to accept connections from any | P address or
any port number, set one or both to zero.

To handle multiple simultaneous connections, each new connection will require its own

t cp_Socket and aseparatecal totcp | i sten(), butusing the samelocal port number
(I port value).tcp_li st en() will immediately return, and you must poll for the incoming
connection. You can usethesock_wai t _est abl i shed macro, whichcallst cp_ti ck()
and blocks until the connection is established or manually poll the socket using

sock _established().

2.2.3 Active Open

When your Web browser retrieves a page, it actively opens one or more connectionsto the server’s
passively opened sockets. To actively open aconnection, you call t cp_open() , which uses

parametersthat aresimilar totheonesusedint cp_| i st en() . Supply exact parametersfori na
and por t , which are the | P address and port number you want to connect to; thel port parame-
ter can be zero, which tells DCRTCP. LI B to select an unused local port between 1024 and 65535.

If t cp_open() returns zero, no connection was made. This could be due to routing difficulties,
such as an inahility to resolve the remote computer’s hardware address with ARP.

2.2.4 Delay a Connection

To accept a connection request when the resources to actually process the request are not avail-
able, usethe functiont cp_r eserveport (). It takes one parameter, the port number where
you want to accept connections. When a connection to that port number is requested, the 3-way
handshaking is done even if thereis not yet a socket available. When replying to the connection
request, the window parameter in the TCP header is set to zero, meaning, “| can take no bytes of
data at thistime.” The other side of the connection will wait until the value in the window parame-
ter indicates that data can be sent. Using the companion function,t cp_cl earreserve(port
number) , causes TCP/IP to treat a connection request to the port in the conventional way. The
macro USE_RESERVEDPORTS is defined by default. It allows the use of these two functions.

Whenusingt cp_reserveport, the2MSL (Maximum Segment Lifetime) waiting period for
closing a socket is avoided.

Chapter 2: TCP/IP Engine 9

2.2.5 TCP Socket Functions

There are many functions that can be applied to an open TCP socket. They fall into three main cat-
egories. Control, Status, and 1/0.

2.2.5.1 Control Functions for TCP Sockets
These functions change the status of the socket or its 1/0 buffer.

e sock_abort e sock_flushnext
* sock_close e tcp listen
e sock_flush * tcp_open

tcp_open() andtcp_| i sten() havebeen explained in previous sections.

Call sock_cl ose() toendaconnection. Thiscall may not immediately close the connection
because it may take some time to send the request to end the connection and receive the acknowl-
edgements. If you want to be sure that the connection is completely closed before continuing, call
tcp_tick() withthe socket structure's address. Whent cp_ti ck() returns zero, then the
socket is completely closed. Please note that if there is data left to be read on the socket, the socket
will not completely close.

Call sock_abort () tocancel an open connection. This function will cause a TCP reset to be
sent to the other end, and all future packets received on this connection will be ignored.

For performance reasons, data may not be immediately sent from a socket to its destination. If
your application requires the datato be sent immediately, you can call sock _f 1 ush() . This
function will cause DCRTCP. LI B to try sending any pending dataimmediately. If you know
ahead of time that data needsto be sent immediately, call sock_f | ushnext () onthe socket.
This function will cause the next set of datawritten to the socket to be sent immediately, and is
more efficient than sock _fl ush().

2.2.5.2 Status Functions for TCP Sockets
These functions return useful information about the status of either a socket or its I/O buffers.

* sock_bytesready * sock_rbused
* sock_dataready * sock_tbleft
* sock_established * sock_tbsize
e sock_rbleft * sock_tbused
* sock_rbsize e tcp_tick

tcp_tick() isthedaemon that drivesthe TCP/IP engine, but it also returns status information.
When you supplyt cp_ti ck() withapointertoat cp_Socket (astructurethat identifiesa
particular socket), it will first process packets and then check the indicated socket for an estab-

10 TCP/IP User’s Manual

lished connection.t cp_ti ck() returnszero when the socket is completely closed. You can use
this return value after calling sock _cl ose() to determineif the socket is completely closed.

sock_cl ose(&ny_socket);

whil e(tcp_tick(&y_socket)) {

/! you can do other things here while waiting for the socket
/[l to be conpletely closed.

}

These status functions can be used to avoid blocking when using sock_wri t e() and some of
the other 1/0O functions, asillustrated in the following code.

This block of code checks to make sure that there is enough room in the buffer before adding data
with ablocking function. .

i f(sock _tbleft(&my_socket, size)) {
sock _write(&ny_socket, buffer, size);
}

Thisblock of code ensuresthat there is a string terminated with anew line in the buffer, or that the
buffer is full before calling sock_get s():

sock _node(&y _socket, TCP_MODE ASCI I) ;

i f (sock byt esready(&ry socket) !'= -1) {
sock _get s(buf fer, MAX BUFFER) ;

}

2.2.5.31/0 Functions for TCP Sockets

* sock_fastread * sock_putc
e sock_fastwrite * sock_puts
* sock_getc * sock_read
* sock_gets e sock_write

* sock_preread

There are two modes of reading and writing to TCP sockets: ASCII and binary. By default, a socket
isopened in binary mode, but you can change the mode with acall to sock_node() .

When a socket isin ASCII mode, DCRTCP. LI B assumes that the datais an ASCI| stream with
record boundaries on the newline characters for some of the functions. This behavior means

sock byt esready() will return =0 only when a complete newline-terminated string isin the
buffer or the buffer isfull. Thesock_put s() function will automatically place a newline char-
acter at the end of astring, and thesock _get s() function will strip the newline character.

When in binary mode, do not usesock _get s().

Chapter 2: TCP/IP Engine 11

2.3 UDP Socket Interface

The UDP protocol is useful when sending messages where either alost message does not cause a
system failure or is handled by the application. Since UDP is a simple protocol and you have con-
trol over the retransmissions, you can decide if you can trade low latency for high reliability.

Broadcast Packets

UDP can send broadcast packets (i.e., to send a packet to a number of computers on the same net-
work). Thisis accomplished by setting the remote IP address to -1, in either acall to
udp_open() oracaltoudp_sendt o().When used properly, broadcasts can reduce overall
network traffic because information does not have to be duplicated when there are multiple desti-
nations.

Checksums

Thereisan optional checksum field inside the UDP header. This field verifies the header and the
data. This feature can be disabled on areliable network where the application has the ability to
detect transmission errors. Disabling the UDP checksum can increase the performance of UDP
packets moving through DCRTCP. LI B. Thisfeature can be modified by:

sock _node(s, UDP_MODE CHK); /1 enabl e checksuns
sock_rmode(s, UDP_MODE NOCHK); // disable checksumns

The first parameter is a pointer to the socket’s data structure, either t cp_Socket or
udp_Socket.

Improved Interface

With Dynamic C version 7.05 there is aredesigned UDP API. The new interface is incompatible
with the previous one. Section 2.3.1 covers the new interface and Section 2.3.2 covers the previ-
ous one.

2.3.1 Dynamic C 7.05 (and later)

This UDP interfaceis arecord service. It receives distinct datagrams and passes them as such to
the user program. The socket 1/0O functions available for TCP sockets will not work for UDP sock-
ets.

See Section 2.3.3 for information on porting a program to the new UDP interface.

2.3.1.1 Control Functions for UDP Sockets
These functions change the status of the socket or its I/O buffer.

* sock flush * udp_close
* sock_flushnext * udp_open

12 TCP/IP User’s Manual

2.3.1.2 I/0O Functions for UDP Sockets
These functions handl e datagram-at-a-time 1/O:

e udp_recv e udp_send
e udp_recvfrom e udp_sendto

The write function, udp_sendt o() , alowsthe remote | P address and port number to be speci-
fied. Theread function, udp_r ecvfrom() , identifiesthe IP address and port number of the host
that sent the datagram. There is no longer a UDP read function that blocks until datais ready.

2.3.1.3 Status Function for UDP Sockets
These functions return useful information about the status of either a socket or its I/O buffers.

* sock_bytesready * sock_rbused
* sock_dataready * sock_tbleft
* sock_established * sock_tbsize
* sock_rbleft * sock_tbused
* sock_rbsize e tcp_tick

For audp socket, sock byt esr eady() returnsthe number of bytesin the next datagramin the
socket buffer, or -1 if no datagrams are waiting. Note that areturn of 0 is valid, since a datagram
can have 0 bytes of data.

2.3.2 UDP Interface Prior to Dynamic C 7.05

Thisinterface isbasically the TCP socket interface with some additional functionsfor simulating a
record service. Some of the TCP socket functions work differently for UDP because of its connec-
tionless state. The descriptions for the applicable functions details these differences.

2.3.2.1 1/O Functions for UDP Sockets
Prior to Dynamic C 7.05, the functions that handle UDP socket 1/0 are mostly the same functions
that handle TCP socket 1/0.

* sock_fastread * sock_read

e sock_fastwrite * sock_recv

* sock_getc e sock_recv_from
* sock_gets e sock_recv_init
* sock_preread e sock_write

e sock_putc e udp_close

* sock_puts e udp_open

Notice that there are three additional 1/0 functions that are only available for use with UDP sock-
ets: sock_recv(),sock recv_from() andsock recv_init (). Thestatusand con-
trol functions that are available for TCP sockets also work for UDP sockets, with the exception of
the open functions,t cp_I| i sten() andt cp_open().

Chapter 2: TCP/IP Engine 13

2.3.2.2 Opening and Closing a UDP Socket

udp_open() takesaremote IP address and aremote port number. If they are set to a specific
value, all incoming and outgoing packets are filtered on that value (i.e., you talk only to the one
remote address).

If the remote IP addressis set to -1, the UDP socket receives packets from any valid remote
address, and outgoing packets are broadcast. If the remote |P address is set to 0, no outgoing pack-
ets may be sent until a packet has been received. This first packet completes the socket, filling in
the remote | P address and port number with the return address of the incoming packet. Multiple
sockets can be opened on the same local port, with the remote address set to 0, to accept multiple
incoming connections from separate remote hosts. When you are done communicating on a socket
that was started with a0 IP address, you can close it with sock _cl ose() and reopen to make it
ready for another source.

2.3.2.3 Writing to a UDP Socket

Prior to Dynamic C 7.05, the normal socket functions you used for writing to a TCP socket will
work for a UDP socket, but since UDP is a significantly different service, the result could be dif-
ferent. Each atomic write—sock_put c(),sock _puts(),sock wite(),or

sock fastwrite()—placesitsdatainto asingle UDP packet. Since UDP does not guarantee
delivery or ordering of packets, the data received may be different either in order or content than
the data sent. Packets may also be duplicated if they cross any gateways. A duplicate packet may
be received well after the original.

2.3.2.4 Reading From a UDP Socket

There are two ways to read packets using DCRTCP. LI B, prior to Dynamic C 7.05. The first
method uses the same read functions that are used for TCP: sock_get c(),sock_gets(),
sock _read(),andsock_fastread() . Thesefunctionswill read the dataasit cameinto the
socket, which is not necessarily the data that was written to the socket.

The second mode of operation for reading usesthesock _recv_init(),sock _recv(),and
sock_recv_from) functions. Thesock_recv_init () functioninstalsalarge buffer
areathat gets divided into smaller buffers. Whenever adatagram arrives, DCRTCP. LI B stuffsthat
datagram into one of these new buffers. Thesock _recv() andsock_recv_from() func-
tions scan these buffers. After callingsock_recv_i ni t onthe socket, you should not use
sock getc(),sock read(),orsock fastread().

Thesock_recv() function scansthe buffersfor any datagrams received by that socket. If there
isadatagram, the length is returned and the user buffer isfilled, otherwisesock _recv() returns
zero.

Thesock _recv_fron() functionworkslikesock recv(), butit alowsyou to record the
| P address where the datagram originated. If you want to reply, you can open anew UDP socket
with the IP address modified by sock_recv_from().

14 TCP/IP User’s Manual

2.3.3 Porting Programs from the older UDP API to the new UDP API
To update applications written with the older-style UDP API, use the mapping information in the

following table.

UDP API prior to Dynamic C 7.05

UDP API starting with Dynamic C 7.05

MAX_SOCKETS

MAX_UDP_SOCKET_BUFFERS and
MAX_TCP_SOCKET BUFFERS

SOCK_BUF_SI ZE

UDP_BUF_SI ZE and TCP_BUF_SI ZE

udp_open()

udp_open()

sock_wite(), sock_fastwite()

udp_send() or udp_sendto()

sock_read() (bl ocking function)

udp_recv() or udp_recvfrom)
(nonbl ocki ng functi ons)

sock fastread()

udp_recv() or udp_recvfrom)

sock_recv_init()

udp_extopen() (to specify your
own buffer)

sock_recv()

udp_recv()

sock _recv_from)

udp_recvfrom))

sock_cl ose()

sock _cl ose() or udp_close()

sock_byt esready()

sock byt esready()

sock_dat ar eady()

sock_dat ar eady()

2.4 DNS Lookups

Starting with Dynamic C 7.05, non-blocking DNS lookups are supported. Prior to DC 7.05, there
wasonly the blocking function, r esol ve() . Compatibility hasbeen preservedforr esol ve(),

MAX_DOVAI N_LENGTH, and DI SABLE_DNS.

The application program has to do two things to resolve a host name:

1.Call resol ve_name_start () to start the process.
2.Call resol ve_nane_check() to check for aresponse.
To cancel apending lookup, call r esol ve_cancel ().

2.4.1 Configuration Macros for DNS Lookups

DISABLE_DNS

If thismacro is defined, DNS lookups will not be done. The DNS subsystem will not be compiled

in, saving some code space and memory.

DNS_MAX_RESOLVES

4 by default. Thisis the maximum number of concurrent DNS queries. It specifies the size of an

interna table that is allocated in xmem.

Chapter 2: TCP/IP Engine

15

DNS_MAX_NAME
64 by default. Specifies the maximum size in bytes of a host name that can be resolved. This num-
ber includes any appended default domain and the NUL L-terminator. Backwards compatibility
exists for the MAX_DOMAI N_LENGTH macro. Its value will be overridden with the value
DNS_MAX_NAME if it is defined.

For temporary storage, a variable of this size must be placed on the stack in DNS processing. Nor-
mally, thisis not a problem. However, for uC/OS-11 with asmall stack and a large value for
DNS_MAX_NANME, this could be an issue.

DNS_MAX_DATAGRAM_SIZE
512 by default. Specifies the maximum length in bytes of a DNS datagram that can be sent or
received. A root data buffer of this size is allocated for DNS support.

DNS_RETRY_TIMEOUT

2000 by default. Specifies the number of milliseconds to wait before retrying a DNS request. If a
request to a nameserver times out, then the next nameserver istried. If that times out, then the next
oneistried, in order, until it wraps around to the first nameserver again (or runs out of retries).

DNS_NUMBER_RETRIES

2 by default. Specifies the number of times arequest will be retried after an error or atimeout. The
first attempt does not constitute aretry. A retry only occurs when arequest has timed out, or when
anameserver returns an unintelligible response. That is, if ahost name islooked up and the
nameserver reports that it does not exist and then the DNS resolver tries the same host name with
or without the default domain, that does not constitute aretry.

DNS_MIN_KEEP_COMPLETED

10000 by default. Specifies the number of milliseconds a completed request is guaranteed to be
valid forresol ve_nane_check() . After thistime, the entry in the internal table correspond-
ing to this request can be reused for a subsequent request.

DNS_SOCK_BUF_SIZE
1024 by default. Specifiesthe size in bytes of an xmem buffer for the DNS socket. Note that this
means that the DN'S socket does not use a buffer from the socket buffer poal.

2.5 Skeleton Program

The following program is a general outline for aDynamic C TCP/IP program. The first couple of
defines set up the default I P configuration information. The “memmap” line causes the program to
compile as much code as it can in the extended code window. The “use” line causes the compiler
to compile in the Dynamic C TCP/IP code using the configuration data provided above it.

16 TCP/IP User’s Manual

/* Pingme.c */
#define My_| P_ADDRESS "10. 10. 6. 101"
#defi ne MY_NETMASK " 255. 255. 255. 0"
#defi ne MY_GATEWAY " 10. 10. 6. 19"
#menmap xmem
#use dcrtcp.lib
mai n() {

sock_init();

for (;3) {

tep_tick(NULL);
}

To run this program, start Dynamic C and open the SAMPLES\ TCPI P\ | CMP\ PI NGVE. Cfile.
Edit the My_| P_ADDRESS, MY_NETMASK, and MY_GATEWAY macros to reflect the appropriate
values for your device. Run the program and try torun pi ng 10. 10. 6. 101 from acommand
line on a computer on the same physical network, replacing 10. 10. 6. 101 with your value for
MY_| P_ADDRESS.

2.5.1 TCP/IP Stack Initialization

Thermai n() function first initializesthe TCP/IP stack withacall tosock_i nit (). Thiscall
initializes internal data structures and enabl es the Ethernet chip, which will take a couple of sec-
onds with the Real Tek chip. At this point, DCRTCP. LI Bisready to handle incoming packets.

Chapter 2: TCP/IP Engine 17

2.5.2 Packet Processing

Incoming packets are processed whenevert cp_ti ck() iscalled. The user-callable functions
thatcalltcp_tick() are:tcp_open,udp_open,sock read,sock_wite,

sock _cl ose,andsock_abort . Some of the higher-level protocols, e.g. HTTP. LI B, will call
tcp_tick() automatically.

Itisagood practiceto make surethatt cp_ti ck() iscalled periodically in your program to
insure that the TCP/IP engine has had a chance to process packets. A rule of thumb isto call
tcp_tick() around 10 times per second, although slower or faster call rates should also work.
The Ethernet interface chip has alarge buffer memory, and TCP/IP is adaptive to the data rates
that both end of the connection can handle; thus the system will generally keep working over a
wide variety of tick rates.

2.5.3 TCP/IP Daemon Computing Time

The computing time consumed by each call tot cp_t i ck() varies. Rough numbers are less than
amillisecond if there is nothing to do, 10s of milliseconds for typical packet processing, and 100s
of milliseconds under exceptional circumstances.

2.6 State-Based Program Design

An efficient design strategy is to create a state machine within a function and pass the socket’s
data structure as afunction parameter. This method allows you to handle multiple sockets without
the services of amultitasking kernel. Thisis the way the HTTP. LI B functions are organized.
Many of the common Internet protocols fit well into this state machine model.

The genera states are:

e Waiting to beinitialized

e Waiting for a connection

* Connected states that perform the real work

* Waiting for the socket to be closed

An example of state-based programming is SAMPLES\ TCPI P\ STATE. C. This program isa
basic Web server that should work with most browsers. It allows a single connection at atime, but
can be extended to allow multiple connections.

2.6.1 Blocking vs. Non-Blocking
There is a choice between blocking and non-blocking functions when doing socket 1/0.

2.6.1.1 Non-Blocking Functions
Thesock_fastread() andsock_preread() functionsread al available datain the buff-
ers, and return immediately. Similarly, thesock _fastwr it e() function fillsthe buffers and

18 TCP/IP User’s Manual

returns the number of characters that were written. When using these functions, you must ensure
that al of the data were written completely.

of f set =0;
whi | e(of fset <l ength) {
bytes written=sock fastwite(&socket, buffer+offset,|ength-offset);
i f(bytes witten<0) {
/1 error handling
}

of f set +=bytes witten;
}

2.6.1.2 Blocking Functions

The other functions (sock_get ¢c(),sock _get s(),sock_putc(),sock _puts(),
sock _read() andsock_write())donotreturn until they have completed or thereisan
error. If it isimportant to avoid blocking, you can check the conditions of an operation to insure
that it will not block.

sock _node(socket, TCP_MODE ASCI) ;

...

if (sock bytesready(&my socket) != -1){
sock_get s(buf f er, MAX BUFFER) ;

}

Inthiscase sock_get s() will not block because it will be called only when thereis a complete
new line terminated record to read.

2.6.1.3 Blocking Macros
To block at a certain point and wait for a condition, the macrossock_wait _cl osed,
sock _wait_establishedandsock _wait _input areprovided.

In this program fragment, sock_wai t _est abl i shed isused to block the program until a con-
nection is established. Notice the timeout (second parameter) value of zero. Thistells Dynamic C
to never timeout. Associated with these macrosisasock_er r label to jump to when thereisan
error. If you supply a pointer to a status integer, it will set the status to an error code. Valid error
codes are - 1 for timeout and 1 for areset connection.

Chapter 2: TCP/IP Engine 19

tcp_open(é&s, 0, i p, PORT, NULL) ;
sock wait _established(&s, 0, NULL, &st at us) ;

1. ..

sock_err:
swi tch(status) {
case 1. /* foreign host closed */
printf("User closed session\n");
br eak;
case -1: /* tineout */
printf("\nConnection timed out\n");
br eak;

2.7 Multitasking and TCP/IP

Dynamic C's TCP/IP implementation is compatible with both uC/OS-I1 and with the language
constructs that implement cooperative multitasking: costatements and cofunctions. Note that
TCP/IPis not compatible with the slice statement.

2.7.1 uC/Os-l
The TCP/IP engine may be used with the uC/OS-I1 real-time kernel. Theline
#use ucos2.1ib
must appear before the line
#use dcrtcp.lib
in the application program.
Dynamic C version 7.05 and later requires the macro MAX _SOCKET _LOCKS for uC/OS-11 sup-
port. If itisnot defined, it will default to MAX_TCP_SOCKET_BUFFERS +

TOTAL_UDP_SOCKET_BUFFERS (which is MAX_UDP_SOCKET_BUFFERS + 1 if there are
DNS lookups).

If buffers have been xal | oc’d for socket 1/O, they should be accounted for in
MAX_SOCKET _LOCKS.

2.7.2 Cooperative Multitasking

The following program demonstrates the use of multiple TCP sockets with costatements. After
compiling and running the program, make the following telnet connections using your own IP
address:

tel net 10.10.6.11 8888
tel net 10.10.6.11 8889

20 TCP/IP User’s Manual

#def i ne
#def i ne
#def i ne

#def i ne
#def i ne

#def i ne
#def i ne

#memmap

MY_I P_ADDRESS "10. 10. 6. 11"
MY_NETMASK " 255. 255. 255. 0"
MY_GATEWAY "10. 10. 6. 1"

PORT1 8888
PORT2 8889

SOCK_BUF_SI ZE 2048
MAX_SOCKETS 2

Xmem

#use "dcrtcp.lib"

tcp_Socket Socket 1;
tcp_Socket Socket 2;

#def i ne

MAX_BUFSI ZE 512

char buf 1[MAX_BUFSI ZE], buf 2[MAX_BUFSI ZE] ;

/1 The function that actually does the TCP work
cofunc int basic_tcp[2](tcp_Socket *tcp_sock, int port, char *buf){

aut o
aut o

int length, space_avali abl e;
sock_type *s;

S = (sock_type *)tcp_sock

tcp_listen(tcp_sock, port, O, O, NULL, 0);

// wait for a connection

while((-1 == sock_bytesready(s)) && (0 == sock_established(s))) {
/1 give other tasks tine to do things while we are waiting
yi el d;

}

whi | e(sock_establ i shed(s)) {
space_aval i abl e = sock_tbl eft(s);

I/

limt transfer size to MAX BUFSI ZE, | eave room for '"\0O’

i f(space_avaliable > (MAX_BUFSI ZE- 1))

space_aval i abl e = (MAX_BUFSI ZE- 1) ;

/] get sone data
| ength = sock_fastread(s, buf, space_avali able);

if(length > 0) { /1 did we receive any data?

}

buf [l ength] ="'\0"; // print it to the stdi o w ndow
printf("%", buf);

// send it back out to the user’s telnet session

/] sock _fastwite will work-we verified the space beforehand
sock _fastwite(s, buf, |length);

yi el d; /1 give other tasks tine to run

}

sock_

cl ose(s);

return 1;

Chapter 2: TCP/IP Engine 21

main() {
sock _init();
while (1) {
costate {
/l Go do the TCP/IP part, on the first socket
wfd basic_tcp[O] (&Socket 1, PORT1, bufl);

}
costate {
/l Go do the TCP/IP part, on the second socet
wfd basic_tcp[1l] (&Socket 2, PORT2, buf2);
}
costate {
/1 drive the tcp stack
tcp_tick(NULL);
}
costate {
/1 Can insert application code herel!
wai t f or (Del ayMs(100));
}

22

TCP/IP User’s Manual

2.8 Function Reference

This section contains descriptions for all user-callable functionsin DCRTCP. LI B. Starting with
Dynamic C 7.05, DCRTCP. LI Bisalight wrapper around DNS. LI B, | P. LI B, NET. LI B,
TCP. LI Band UDP. LI B. Thisupdate requires no changes to existing code.

Descriptions for select user-callable functionsin ARP. LI B, | C\VP. LI B, BSDNAME. LI B and
XVMVEM LI B aredso included here. Note that ARP. LI B, | CVMP. LI B and BSDNAME. LI B are
automatically #use’d from DCRTCP. LI B.

_arp_resol ve
int _arp_resolve(longword i na, eth_address *ethap, int nowait)

DESCRIPTION
Gets the Ethernet address for the given IP address.

PARAMETERS
i na The IP address to resolve to an Ethernet address.
et hap The buffer to hold the Ethernet address.
nowai t If O, return immediately; elseif 10 wait up to 5 seconds trying to re-

solve the address.

RETURN VALUE

1: Success;
0: Failure.

LIBRARY
ARP. LI B

Chapter 2: TCP/IP Engine

23

_chk_ping

| ongword _chk_ping(| ongword host _ip, |ongword
*sequence_number) ;

DESCRIPTION

Checksfor any outstanding ping repliesfromhost. _chk_pi ng should be called fre-
guently with ahost | P address. |f an appropriate packet isfound from that host | P address,
the sequence number is returned through * sequence_nunber . Thetimedifference
between our request and their responseis returned in milliseconds.

PARAMETERS
host _ip IP address to receive ping reply from.

sequence_nunber Sequence number of reply.

RETURN VALUE

Time in milliseconds from the ping request to the host’s ping reply.
If _chk_pingreturnsOxf f ffffffL,therewereno pingreceiptsonthiscurrent call.

LIBRARY
| CMP. LI B

24 TCP/IP User’s Manual

dhcp_acquire
int dhcp_acquire(void);

DESCRIPTION

Thisfunction acquires a DHCP |lease which has not yet been obtained, or has expired, or
wasrelinquished usngdhcp_r el ease() . Normaly, DHCP |eases are renewed auto-
maticaly, however if the DHCP server isdown for an extended period then it might not
be possible to renew theleasein time, in which case the lease expires and TCP/IP should
not beused. Whentheleaseexpires, t cp_ti ck() will return O, and the globa variable
for the IP address will be reset to 0. At some later time, this function can be called to try
to obtain an | P address.

This function blocks until the lease is renewed, or the process times out.

RETURN VALUE

0: OK, lease was not expired, or an |P address |ease was acquired with the same | P ad-
dress as previoudy obtained.

- 1: Anerror occurred, no |P address is available. TCP/IP functionality isthus not avail-
able. Usual causes of an error are timeouts because a DHCP or BOOTP server is not
available within thetimeout specified by theglobal variable _boot pt i meout (default
30 seconds).

1: Lease was re-acquired, however the | P address differs from the one previously ob-
tained. All existing sockets must be re-opened. Normally, DHCP serversare careful to re-
assign the same | P address previoudy used by the client, however this is sometimes not
possible.

LIBRARY
BOOTP. LI B

Chapter 2: TCP/IP Engine

dhcp_rel ease
int dhcp_release(void);

DESCRIPTION

This function relinquishes a lease obtained from a DHCP server. This allows the server
to re-use the | P address which was allocated to thistarget. After calling thisfunction, the
global variablefor the IP addressisset to 0, and it isnot possibleto call any other TCP/IP
function which requiresavalid |P address. Normally, dhcp_r el ease() would be
used on networks where only asmall number of | P addresses are available, but there are
alarge number of hosts which need sporadic network access.

Thisfunction is non-blocking sinceit only sends one packet to the DHCP server and ex-
pects no response.

RETURN VALUE
0: OK, lease was relinquished.

1: Not released, because an address is currently being acquired, or because aboot file
(fromthe BOOTP or DHCP server) isbeing downloaded, or because some other network
resourceisin use e.g. open TCP socket. Call dhcp_r el ease() again after there-
sourceisfreed.

- 1: Not released, because DHCP was hot used to obtain alease, or no lease was acquired.

LIBRARY
BOOTP. LI B

26 TCP/IP User’s Manual

get domai nnane
char * getdonmmi nnane(char *name, int length);

DESCRIPTION

Gets the current domain name. The domain hame can be changed by the set domai n-
nane function.

PARAMETERS
name Buffer to place the name.
| ength Maximum length of the name, or zero to get apointer to theinterna

domain name string. Do not modify this string!

RETURN VALUE

If | engt h =1: Pointer toname. If | engt h isnot long enough to hold the domain
name, aNULL string iswritten to namne.

If | engt h =0: Pointer to internal string containing the domain name. Do not modify
this string!

LIBRARY
BSDNAME. LI B

SEE ALSO
set donmai nnane, gethost name, sethostname, getpeernane,
get socknane

EXAMPLE

mai n() {
sock_init();
printf("Using % for a domai n\n", getdonai nnane(NULL, 0));

Chapter 2: TCP/IP Engine

27

get hosti d

| ongword get hostid(void);

DESCRIPTION
Return the | P address of the controller in host format.

RETURN VALUE
IP addressin host format, or zero if not assigned or not valid.

LIBRARY
IP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
set hostid
EXAMPLE
mai n() {
char buffer[512];
sock_init();

printf("My I P address is %\n", inet_ntoa(buffer, gethostid()));

get host nane

char * gethostname(char *nanme, int length);

DESCRIPTION
Getsthe hogt portion of our name.

PARAMETERS
name Buffer to place the name.
| ength Maximum length of the name, or zero for the internal host name

buffer. Do not modify this buffer.

RETURN VALUE

If | engt h =1, return nane;
dseif | engt h =0, return internal host name buffer (do not modify!)

LIBRARY
BSDNAME. LI B

28 TCP/IP User’s Manual

get peer nane
int getpeername(sock type* s, void * dest, int * len);

DESCRIPTION
Gets the peer’s | P address and port information for the specified socket.

PARAMETERS
S Pointer to the socket.
dest Pointer tosockaddr to hold the socket information for theremote

end of the socket. The data structureis:

typedef struct sockaddr {

wor d s_type; /* reserved */
wor d s_port; /* port nunmber, or zero if not connected */
| ongword s_ip; /* | P address, or zero if not connected */
byt e s _spares[6]; /* not used for tcp/ip connections */

I
I en Pointer to thelength of sockaddr . A NULL pointer can be used to

represent thesi zeof (struct sockaddr).

RETURN VALUE

0: Success;
- 1: Failure.

LIBRARY
BSDNAME. LI B

SEE ALSO
get socknane

Chapter 2: TCP/IP Engine 29

get socknane
int getsockname(sock type * s, void * dest, int * len);

DESCRIPTION
Getsthe controller’s | P address and port information for a particular socket.

PARAMETERS
S Pointer to the socket.
dest Pointer to sockaddr to hold the socket information for the local

end of the socket. The data structureis:

typedef struct sockaddr {

wor d s_type; /* reserved */
wor d S_port; /* port nunber, or zero if not connected */
| ongword s_ip; /* | P address, or zero if not connected */
byt e s _spares[6]; [/* not used for tcp/ip connections */

I
I en Pointer to thelength of sockaddr . A NULL pointer can be used to

represent thesi zeof (struct sockaddr) .BSDNAME. LI B
will assume 14 bytesif a NULL pointer is passed.

RETURN VALUE

0: Success;
- 1: Failure.

LIBRARY
BSDNAME. LI B

SEE ALSO
get peer name

30 TCP/IP User’s Manual

ht onl
| ongword htonl (| ongword val ue);

DESCRIPTION

This function converts a host-ordered double word to a network-ordered double word.
Thisfunction is necessary if you are implementing standard internet protocols because
the Rabbit doesnot use the standard for network-byte ordering. The network orders bytes
with the most significant byte first and the least significant byte last. On the Rabbit, the
bytes are in the opposite order.

PARAMETERS
val ue Host-ordered double word.

RETURN VALUE
Host word in network format, e.g. ht onl (0x44332211) returns 0x11223344.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
ht ons, ntohl, ntohs

ht ons
word htons(word val ue);

DESCRIPTION

Converts host-ordered word to anetwork-ordered word. Thisfunctionisnecessary if you
areimplementing standard internet protocols because the Rabbit does not use the stan-
dard for network-byte ordering. The network orders bytes with the most significant byte
first and the least significant byte last. On the Rabhbit, the bytes are in the opposite order
within each 16-bit section.

PARAMETERS
val ue Host-ordered word.

RETURN VALUE
Host-ordered word in network-ordered format, e.g. ht ons(0x1122) returns 0x2211.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
htonl, ntohl, ntohs

Chapter 2: TCP/IP Engine

31

i net _addr
| ongword inet_addr(char * dotted ip_string);

DESCRIPTION

Converts an |P address from dotted decimal | P format to its binary representation. No
check is made as to the validity of the address.

PARAMETERS
dotted ip_string Dotted decimal IP string, e.g. "10.10.6.100".

RETURN VALUE

0: Failure;
Binary representation of dot t ed_i p_stri ng: Success.

LIBRARY
IP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

i net_ntoa

32 TCP/IP User’s Manual

i net _ntoa
char *inet_ntoa(char *s, longword ip);

DESCRIPTION

Converts a binary IP addressto its dotted decimal format, e.g.
i net _ntoa(s, 0x0a0a0664) returnsapointer to "10.10.6.100".

PARAMETERS
s L ocation to place the dotted decimal string. A sufficient buffer size
would be 16 bytes.
ip The IP address to convert.

RETURN VALUE
Pointer to dotted decimal string, i.e. s.

LIBRARY
IP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
i net _addr

i p_timer_expired

word ip_timer_expired(void * s);

DESCRIPTION
Checksthetimer field (setby i p_ti mer _i ni t ()) inside the socket structure. This
functionisusedinthesock _wai t ... macrosto provide timeouts.
PARAMETERS
s Pointer to a socket.

RETURN VALUE

0: Not expired;
1: Expired.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

Chapter 2: TCP/IP Engine 33

EXAMPLE USING IP_TIMER_EXPIRED

The following code is from a blocking configuration macro that calls the function
_ip_del ay2.

_ip_delay2(void *s, int tineoutseconds, procref fn, int *statusptr) {

i nt status;
ip_timer_init(s , tineoutseconds); [* set timeout */
do {
kbhit(); [* permt ~c */
if ('tep_tick(s)) {
status = 1; [* fully closed or reset */
br eak;
}
if (ip_tinmer_expired(s)) { /* check for expiration */
sock_abort(s); /[* give up and use reset */
status = -1; [* signal an error */
br eak;
}
if (fn) { /* call optional user function */
if (status = fn(s))
br eak;
}
if (s->tcp.usr_yield)
(*s->tcp.usr_yield)(); /[* call yield */

} while (1);
if (statusptr) *statusptr = status;
return(status);

34 TCP/IP User’s Manual

ip_timer_init
void ip_tinmer_init(void * s, word seconds);

DESCRIPTION
Sets atimer inside the socket structure.

PARAMETERS
s Pointer to a socket.
seconds Number of secondsfor thetime-out, if thisvalueiszero, never time-
out.
LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
ip_timer_expired

nt ohl

| ongword ntohl (| ongword val ue);

DESCRIPTION

Converts network-ordered long word to host-ordered long word. This function is neces-
sary if you are implementing standard internet protocol s because the Rabbit does not use
the standard for network byte ordering. The network orders bytes with the most signifi-
cant byte firgt and the least significant byte last. On the Rabbit, the bytes are in the oppo-
Ste order.

PARAMETERS
val ue Network-ordered long word.

RETURN VALUE

Network-ordered long word in host-ordered format,
e.g.nt ohl (0x44332211) returns0x11223344

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

ht ons, ntohs, htonl

Chapter 2: TCP/IP Engine

nt ohs

word ntohs(word val ue);

DESCRIPTION

Converts network-ordered word to host-ordered word. Converts host-ordered word to a
network-ordered word. This function is necessary if you are implementing standard in-
ternet protocol s because the Rabbit does not use the standard for network byte ordering.
The network orders byteswith the most significant bytefirst and theleast significant byte
last. On the Rabhit, the bytes are in the opposite order.

PARAMETERS

val ue Network-ordered word.

RETURN VALUE

Network-ordered word in host-ordered format,
eg.nt ohs(0x2211) returns 0x1122

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

htonl, ntohl, htons

paddr

unsi gned | ong paddr(void* pointer);

DESCRIPTION

Convertsalogica pointer into its physical address. Use caution when converting address
in the EO00-FFFF range. Thisfunction will return the address based on the XPC on entry.

PARAMETERS

poi nt er Pointer to convert.

RETURN VALUE
Physical address of pointer.

LIBRARY
XMEM LI B

36 TCP/IP User’s Manual

pd_get addr ess
voi d pd_getaddress(int nic, void* buffer);

DESCRIPTION
This function copies the Ethernet address (e.g., MAC address) into the buffer.

PARAMETERS
nic This parameter is reserved for future expandability and for now
should be assigned a value of 0.
buf f er Place to copy addressto. Must be at least 6 byes.

RETURN VALUE
None

LIBRARY
PKTDRV. LI B

EXAMPLE

mai n() {
char buf[6];
sock _init();
pd_get addr ess(0, buf);

printf("Your Link Address is: %02x%02x: Y02x%02x: %92x%02x \ n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);

Chapter 2: TCP/IP Engine

37

_ping
int ping(|ongword host _ip, |longword sequence_nunber);

DESCRIPTION
Generates an ICMP request for host. NOTE: thisisamacro that calls _send_pi ng.

PARAMETERS
host _ip |P addressto send ping.
sequence_number User-defined sequence number.

RETURN VALUE

0: Success;
1 0: Failure.

LIBRARY
| CMP. LI B

SEE ALSO

_chk_ping, _send ping

psocket
voi d psocket(void * s);

DESCRIPTION

Given an open UDP or TCP socket, the | P address of the remote host is printed out to the
Stdio window in dotted I P format followed by a colon and the decimal port number on
that machine. This routine can be useful for debugging your programs.

PARAMETERS

S Pointer to a socket.

RETURN VALUE
None

LIBRARY
BSDNAME. LI B

38 TCP/IP User’s Manual

resol ve

| ongword resol ve(char *host _string);

DESCRIPTION
Converts atext string, which contains either the dotted |P address or host name, into the
longword contai ning the IP address. In the case of dotted IP, no validity check ismadefor
the address. NOTE: thisfunction blocks. Names are currently limited to 64 characters. If
it is necessary to lookup larger namesinclude the following line in the application pro-
gram:
#define DNS_MAX NAME <l en in chars>.
If DI SABLE_DNS has been defined, r esol ve() will not do DNS lookup.
If you aretrying to resolve ahost name, you must set up at least one name server. You can
set the default name server by defining the MY_ NAMESERVER macro at the top of your

program. Whenyoucall r esol ve() , it will contact the name server and request the IP
address. If thereisan error, r esol ve() will return OL.

To simply convert dotted IP to longword, seei net _addr () .

For a sample program, see the Example Using tcp_open() listed undert cp_open() .

PARAMETERS
host _string Pointertotext string to convert.

RETURN VALUE

0: Failure.
1 0: ThelPaddress* host _st ri ng resolvesto.

LIBRARY
DNS. LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
_arp_resolve, inet_addr, inet_ntoa

Chapter 2: TCP/IP Engine 39

resol ve_cancel
int resolve_cancel (i nt handl e);

DESCRIPTION

Cancelsthe resolve request represented by the given handle. If the handleis O, then this
function cancels all outstanding resolve requests.

PARAMETERS

handl e Handle that represents aDNS lookup process, or 0to cancel al out-
standing resolve requests.

RETURN VALUE

RESOLVE_SUCCESS: The resolve request corresponding to the given handle has been
cancelled. The given handle will no longer be valid after this value is returned.

RESOLVE_HANDLENOTVALI D: Thereis no request for the given handle.

LIBRARY
DNS. LI B

SEE ALSO
resolve_name_start, resolve_name_check, resolve

40 TCP/IP User’s Manual

resol ve_nanme_check

int resolve_name_check(int handle, |ongword* resolved_ ip);

DESCRIPTION

Checks if the DNS lookup represented by the given handle has completed. On success,
it fillsin the resolved IP address in the space pointed to by ther esol ved_i p parame-
ter.

PARAMETERS
handl e Handle that represents a DNS lookup process.

resolved ip A pointertoauser-supplied | ongwor d where the resolved IP ad-
dresswill be placed.

RETURN VALUE
RESOLVE_SUCCESS The address was successfully resolved. The given handle will no
longer be valid after this value is returned.

RESOLVE_AGAI N The resolve process has not completed, call
resol ve_nane_check() agan.

RESCLVE_FAI LEDThe DNS server responded that the given host name doesnot exist.
The given handle will no longer bevalid if RESOLVE_FAI LED isreturned.

RESOLVE_TI MEDOUT The request has been cancelled because a response from the
DNS server was not received before the last timeout expired. The given handle will no
longer be vaid after this value is returned.

RESOLVE_HANDLENOTVALI D Thereisno DNS lookup occurring for the given han-
de.

LIBRARY
DNS. LI B

SEE ALSO
resolve name_start, resolve _cancel, resolve

Chapter 2: TCP/IP Engine 41

resol ve _nanme_start

int resolve_name_start(char* hostname);

DESCRIPTION

Startsthe process of resolving ahost nameinto an | P address. The given host nameislim-
ited to DNS_MAX_NANE characters, which is 64 by default (63 characters + the NULL
terminator). |f adefault domain isto be added, then the two strings together are limited
to DNS_MAX _NAME.

If host name doesnot containa’.’ then thedefault domain (MY_DOVAI N) , if provided,
isappendedto host nane. If host nane with the appended default domain does not
exist, host nane istried by itsdlf. If that also fails, the lookup fails.

If host nane doescontaina’.’ thenhost nane islooked up by itself. If it does not ex-
ist, the default domain is appended, and that combination istried. If that also fails, the
lookup fails.

If host nanme endswitha’.’, then the default domain is not appended. The host nameis
considered “fully qualified.” The lookup is attempted without the ending . and if that
fails no other combinations are attempted.

This function returns a handle that must be used in the subsequent
resol ve_nane_check() andresol ve_cancel () functions.

PARAMETERS

host nane Host name to convert to an | P address

RETURN VALUE

>0: Handlefor callstor esol ve_name_check() andresol ve_cancel ().
- 1: Could not start the resolve process because there were no resolve entries free.
- 2: The given hosthame was too large.

LIBRARY
DNS. LI B

SEE ALSO
resol ve_name_check, resolve_cancel, resolve

42 TCP/IP User’s Manual

rip
char * rip(char * string);

DESCRIPTION
Strips newline (\n) and/or carriage return (\r) from a string. Only the first \n and \r char-

actersarereplaced with\0s. Theresulting string beyond thefirst \O character isundefined.

PARAMETERS

string Pointer to astring.

RETURN VALUE
Pointer to the modified string.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

EXAMPLE
setmode(s, TCP_MODE ASCII);

sock _puts(s, rip(questionable string));

INASCII modesock _put s() adds \n;r i p isusedto make certain the string does not
aready have anewline character. Remember, r i p modifiesthe source string, not a

copy!

Chapter 2: TCP/IP Engine

43

_send_pi ng

int send_ping(| ongword host, | ongword countnum byte ttl, byte
tos, longword *theid)

DESCRIPTION

Generates an ICMP request for host.

PARAMETERS
host
count num

ttl

t os
t hei d

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
| CMP. LI B

See also
_chk_pi ng,

IP address to send ping.

User-defined count number.

Timeto livefor the packets (hop count). 255 isa standard value for

thisfield.
Type of service on the packets.

The identifier that was sent out.

_bing

44

TCP/IP User’s Manual

set domal nnane

char *setdomai nname(char *nane);

DESCRIPTION

The domain name returned by get domai nname() and usedforr esol ve() isset
to the vauein the string pointed to by namre. Changing the contents of the string after a
set domai nnane() will change the value of the system domain string. It is not rec-
ommended. Instead dedicate a static location for holding the domain name.

set domai nnane(NULL) isan acceptableway to remove any domain name and
subsequent r esol ve calswill not attempt to append adomain name.

PARAMETERS

name Pointer to string.

RETURN VALUE
Pointer to string that was passed in.

LIBRARY
BSDNAME. LI B

SEE ALSO

get domai nnane, sethostname, gethostnanme, getpeernane,
get socknane

Chapter 2: TCP/IP Engine

45

set hosti d
| ongword sethostid(|longword ip);

DESCRIPTION

This function changes the system’s default | P address, overriding the macro
MY _| P_ADDRESS. Changing this address will disrupt existing TCP or UDP sessions.
You should close all sockets before calling this function.

PARAMETERS

ip New IP address.

RETURN VALUE
New |P address.

LIBRARY
IP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

get hosti d

set host nane
char * sethostname(char *nane);
DESCRIPTION
Sets the host portion of our name.

PARAMETERS
nanme The new host name.

RETURN VALUE

Pointer to internal hostname buffer on success, or
NULL on error (if hostname istoo long).

LIBRARY
BSDNAME. LI B

46 TCP/IP User’s Manual

sock abort
voi d sock abort(void * s);

DESCRIPTION
Close a connection immediately. Under TCP thisis done by sending a RST (reset).

Under UDP thereis no difference between sock_cl ose() andsock _abort ().
PARAMETERS

S Pointer to a socket.

RETURN VALUE
None

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
sock_cl ose

Chapter 2: TCP/IP Engine

a7

sock byt esready
int sock_bytesready(void * s);

DESCRIPTION

For TCP sockets:

If the socket isin binary mode, sock byt esr eady() returnsthe number of bytes
waiting to be read. If there are no bytes waiting, it returns - 1.

In ASCII mode, sock_byt esready() returns-1if there are no bytes waiting to be
read or thelinethat iswaiting isincomplete (no lineterminating character has been read).
The number of byteswaiting to be read will be returned given one of the following con-
ditions:

* the buffer isfull

* the socket has been closed (no line terminating character can be sent)
* acomplete lineiswaiting

In ASCII mode, ablank line will be read as a complete line with length 0, which will be
thevauereturned. sock byt esr eady() handles ASCII mode sockets better than
sock_dat ar eady() , sinceit can distinguish between an empty lineon the socket and
an empty buffer.

For UDP sockets:

Returns the number of bytesin the next datagram to beread. If it is adatagram with no
data (an empty datagram), then it will return O. If there are no datagrams waiting, then it
returns -1.

PARAMETERS

S Pointer to a socket.

RETURN VALUE

- 1: No bytes waiting to be read.
0: If in ASCII mode and a blank line is waiting to be read,;
for DC 7.05and later, a UDP datagram with O bytes of datais waiting to be read.
>0: The number of bytes waiting to be read.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
sock_wait_established, sock established, sockstate

48 TCP/IP User’s Manual

sock cl ose
voi d sock _close(void * s);

DESCRIPTION
Attemptsto close a socket; no more data may be sent or received through that socket.

In the case of UDR, the socket is closed immediately since UDP is a connectionless pro-
tocol. TCP, however, is aconnection-oriented protocol so the close must be negotiated
with theremote computer. Usesock _wait _cl osed orwaitfortcp_ti ck() tore
turn O when passed the socket to ensure that a TCP connection is closed.

In emergency cases, it is possible to abort the TCP connection rather than closeit. Al-
though not recommended for normal transactions, this serviceisavailable and is used by
al TCP/IP systems.

PARAMETERS

S Pointer to a socket.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
sock _abort, sock_tick, sock wait_closed

Chapter 2: TCP/IP Engine

49

sock dat ar eady

int sock _dataready(void *s);

DESCRIPTION
Returnsthe number of byteswaiting to be read. If the socket isin ASCII mode, thisfunc-
tionreturns zero if anewline character has not been read or the buffer isnot full. For UDP

sockets, the function returns the number of bytesin the next datagram.

This function cannot tell the difference between no bytesto read and either ablank line
or aUDP datagram with no data. For thisreason, usesock_byt esr eady() instead.

PARAMETERS
S Pointer to a socket.

RETURN VALUE

0: No bytesto read;
or newline not yet read if the socket isin ASCII mode;
or (for DC 7.05 and later) if a UDP datagram has 0 bytes of datawaiting to be read.

>0: Number of bytes ready to read.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

50 TCP/IP User’s Manual

sockerr
char *sockerr(void * s);

DESCRIPTION

Getsthelast ASCII error message recorded for a particular socket. If no messages have
been recorded, the returned valueis NULL. The messages are read-only; do not modify
them!

PARAMETERS

S Pointer to a socket.

RETURN VALUE

Pointer to last error message, or
NULL pointer if there have been no error messages.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

EXAMPLE
char *p;

sock_err:
if (status == 1)
puts("C osed normal ly");
else if (p = sockerr(s))
printf("Socket closed with error *%’'\n\r", p);

Chapter 2: TCP/IP Engine

51

sock establi shed
int sock _established(void *s);

DESCRIPTION

TCP connections require a handshaked open to ensure that both sides recognize a con-
nection. Whether the connectionwasinitiated witht cp_open() ortcp_l i sten(),
sock_est abl i sh() will continueto return O until the connection is established, a
which time it will return 1. It is not enough to spin on this after alisten becauseit is pos-
sible for the socket to be opened, written to and closed between two checks.

sock_byt esready() canbecaledwithsock _est abl i shed() to handlethis
case.

UDPisaconnectionlessprotocol, hencesock _est abl i shed() awaysreturns1for
UDP sockets.

PARAMETERS

S Pointer to a socket.

RETURN VALUE

0: Not established:;
1: Established.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

sock_wait_established, sock bytesready, sockstate

52 TCP/IP User’s Manual

sock fastread
int sock fastread(void *s, byte *dp, int len);

DESCRIPTION

sock _fastread() atemptstoread datafrom asocket. If possible, the buffer, dp, is
filled, otherwise, only the number of bytesread isreturned. A return value of -1 indicates
asocket error.

Thisfunction cannot be used on UDP sockets after sock_recv_i nit () iscaled.

For asample program, see Example of four input functionslistedunder sock _r ead() .

PARAMETERS
s Pointer to a socket.
dp Buffer to put bytes that are read.
I en Maximum number of bytesto write to the buffer.

RETURN VALUE
Number of bytesread or - 1 if there was an error.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
sock read, sock fastwite, sock wite

Chapter 2: TCP/IP Engine

53

sock fastwite
int sock fastwrite(void *s, byte *dp, int len);

DESCRIPTION

Writesup tol en bytesfrom dp on socket s. Thisfunction writes as many bytes as pos-
sible to the socket and returns that number of bytes.

For UDP, sock_fastwite() will send onerecord if
len <= ETH MIU - 20 - 8

ETH_MrUisthe Ethernet Maximum Transmission Unit; 20 isthe IP header sizeand 8 is
the UDP header size. By default, thisis572 bytes. If | en isgreater than thisnumber, then
the function does not send the data and returns -1. Otherwise, the UDP datagram would
need to be fragmented.

For TCP, the new datais queued for sending and sock_fastwrit e() returnsthe
number of bytes that will be sent. The data may be transmitted immediately if enough
dataisin the buffer, or sufficient time has expired, or the user has explicitly used
sock_fl ushnext () toindicatethisdata should be flushed immediately. In either
case, no guarantee of acceptance at the other end is possible.

PARAMETERS
s Pointer to a socket.
dp Buffer to be written.
| en Maximum number of bytesto write to the socket.

RETURN VALUE

Number of byteswritten, or
- 1 if there was an error.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

54 TCP/IP User’s Manual

sock flush
void sock flush(void *s);

DESCRIPTION

sock_fl ush() will flush the unwritten portion of the TCP buffer to the network. No
guaranteeis given that the data was actually delivered. In the case of a UDP socket, no
action istaken.

sock_fl ushnext () isrecommended over sock fl ush().
PARAMETERS

S Pointer to a socket.

RETURN VALUE
None

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
sock flushnext, sock fastwite, sock wite, sockerr

Chapter 2: TCP/IP Engine

55

sock fl ushnext
voi d sock flushnext(void *s);

DESCRIPTION

Writing to TCP sockets does not guarantee that the data are actually transmitted or that
the remote computer will pass that data to the other client in atimely fashion. Using a

flush function will guarantee that DCRTCP. LI B places the data onto the network. No
guarantee is made that the remote client will receive that data.

sock_fl ushnext () isthemost efficient of the flush functions. It causes the next
function that sends data to the socket to flush, meaning the datawill be transmitted im-
mediately.

Several functionsimply aflush and do not require an additional flush: sock _put s(),
and sometimessock_put ¢() (when passed a\n).

PARAMETERS

S Pointer to a socket.

RETURN VALUE
None

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

sock write, sock fastread, sock read, sockerr,
sock_wait_input, sock_flush, sock_flushnext

56 TCP/IP User’s Manual

sock getc
int sock _getc(void *s);

DESCRIPTION
Gets the next character from the socket. NOTE: This function blocks.

Thisfunction cannot be used on UDP sockets after sock_recv_i nit () iscaled.

For asample program, see Example of four input functionslisted under sock_r ead() .
PARAMETERS

s Pointer to a socket.

RETURN VALUE
Character read or - 1 if error.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

Chapter 2: TCP/IP Engine

57

sock gets
int sock _gets(void *s, char *text, int len);

DESCRIPTION

Reads a string from a socket and replacesthe CR or LF witha\0'. If the string islonger
than| en, the string is null terminated and the remaining charactersin the string are dis-
carded.

Tousesock_get s(), youmust first set ASCIl mode using sock _node() .
This function cannot be used on UDP sockets after sock_recv_i nit () iscaled.

For asample program, see Example of four input functionslisted under sock_r ead() .

PARAMETERS
s Pointer to a socket
t ext Buffer to put the string.
I en Max length of buffer.

RETURN VALUE

0: The buffer is empty;
or if no\r’ or \n’ isread, but buffer had room and the connection can get more data.
>0: The length of the string.
- 1: Function was called with a UDP socket (vaid for Dynamic C 7.05 and later).

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
sock_puts, sock putc, sock getc, sock read, sock wite

sock _init
void sock_init(void);

DESCRIPTION

Thisfunction initializesthe packet driver and DCRTCP. LI B using the compiler defaults
for configuration. This function must be called before using other DCRTCP. LI B func-
tions,

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

58 TCP/IP User’s Manual

sock node
voi d sock _node(void *s, word node);

DESCRIPTION

Thisfunction changes some of the basic handling of a socket. The following macros can
be passed as the 2nd parameter (OR'’ d together if necessary):

TCP_MODE_ASCI | | TCP_MODE_BI NARY

TCP and UDP sockets are usualy in binary mode which means an arbitrary stream
of bytesisalowed (TCPistreated as a byte stream and UDP is treated as records
filled with bytes.) The defaultis TCP_MODE_BI NARY. By changing the mode to
TCP_MODE_ASCI | , some of the DCRTCP. LI B functionswill see a stream of
records terminated with a newline character.

In ASCII mode, sock byt esr eady() will return -1 until a newline-terminated
string isin the buffer or the buffer isfull. sock _put s() will append anewlineto
any output. sock_get s() (which should only be used in ASCII mode) removes
the newline and null terminates the string.

For a sample program, see Example of four input functions listed under
sock _read().

TCP_MODE_NAGLE | TCP_MODE_NONAGLE

The Nagle algorithm may substantially reduce network traffic with little negative ef-
fect on auser (In somesituations, the Nagle a gorithm even improves application per-
formance.) The defaultis TCP_MODE _NAGLE. This mode only affects TCP
connections. If you are doing X-Windows or real time data collection, you may
switch the Nagle agorithm off by selecting the TCP_MODE_NONAGLE flag.

UDP_MODE_CHK | UDP_MODE_NOCHK

Checksumsarerequired for TCP, but not for UDP. ThedefaultisUDP_MODE CHK.

If you are providing a checksum at a higher level, the low level checksum may be
redundant. The checksum for UDP can be disabled by selecting the
UDP_MODE_NOCHK flag. Notethat you do not control whether the remote comput-
er will send checksums. If that computer does checksum its outbound data,
DCRTCP. LI B will check the received packet's checksum.

PARAMETERS

s Pointer to a socket.

nmode New mode for specified socket.
LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

Chapter 2: TCP/IP Engine

sock preread
int sock _preread(void *s, byte *dp, int len);

DESCRIPTION

Thisfunctionreadsuptol en bytesfrom the socket into the buffer dp. Thebytesare not

removed from the socket’s buffer.

PARAMETERS
s Pointer to a socket.
dp Buffer to preread into.
| en Maximum number of bytesto preread.

RETURN VALUE

0: No datawaiting;
- 1: Error;
>0: Number of preread bytes.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

sock fastread, sock fastwite, sock read, sock wite

60

TCP/IP User’s Manual

sock putc
byte sock putc(void *s, byte c);

DESCRIPTION

A single character is placed on the output buffer. In the case of ‘\n', the buffer is flushed
asdescribed under sock _f 1 ushnext . No other ASCII character expansion is per-
formed.

Notethat sock put c usessock _writ e, and thus may block if the output buffer is
full. Seesock_wri t e for more details.

PARAMETERS
S Pointer to a socket.
c Character to send.

RETURN VALUE
The character ¢

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

sock _read, sock write, sock fastread, sock fastwite,
sock_node

Chapter 2: TCP/IP Engine

61

sock puts
int sock puts(void *s, byte *dp);

DESCRIPTION

A string is placed on the output buffer and flushed as described under

sock_fl ushnext () .Ifthesocketisin ASCII mode, CR and LF are appended to the
string. No other ASCII character expansion is performed. In binary mode, the string is
sent asis.

Notethat sock put s() usessock _wri t e(),andthusmay block if the output buff-
erisfull. Seesock_write() for moredetails.

PARAMETERS
s Pointer to a socket.
dp Buffer to read the string from.

RETURN VALUE
=0: Length of stringindp
- 1: Function was called with a UDP socket (valid for Dynamic C 7.05 and later).

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

sock_gets, sock_putc, sock_getc, sock_read, sock wite

62 TCP/IP User’s Manual

sock rbleft
int sock rbleft(void *s);
DESCRIPTION
Determines the number of bytes available in the receive buffer.
PARAMETERS
s Pointer to a socket.

RETURN VALUE
Number of bytes available in the receive buffer.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

sock _rbsize, sock rbused, sock thsize, sock_tbused,
sock _tbleft

sock _rbsize
int sock rbsize(void *s);
DESCRIPTION
Determines the size of the receive buffer for the specified socket.
PARAMETERS
s Pointer to a socket.

RETURN VALUE
The size of the receive buffer.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

sock _rbleft, sock rbused, sock tbsize, sock_ tbused,
sock _tbleft

Chapter 2: TCP/IP Engine 63

sock rbused
int sock rbused(void *s);
DESCRIPTION
Gets the number of bytesin usein the receive buffer for the specified socket.

PARAMETERS

S Pointer to a socket.

RETURN VALUE
Number of bytesin use.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
sock _rbleft, sock tbsize, sock tbused, sock tbleft

64 TCP/IP User’s Manual

sock read
int sock read(void *s, byte *dp, int len);

DESCRIPTION

sock_read() will busywait until | en bytesare read or a socket error exists. If
sock_yi el d() hasbeen caled, the user-defined function that is passed to it will be
caled inatight loop whilesock_read() isbusywaiting.

Thisfunction cannot be used on UDP sockets after sock_recv_i nit () iscaled.

PARAMETERS
S Pointer to a socket.
dp Buffer to put bytesthat are read.
| en Max number of bytesto write to the buffer.

RETURN VALUE

Number of bytesread or
- 1if error.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

sock fastread, sock fastwite, sock wite, sockerr,
sock_wait _i nput

Chapter 2: TCP/IP Engine

65

EXAMPLE OF FOUR INPUT FUNCTIONS

B I R T S

~

The following program shows how the four main input functions may be used to read a
text stream. Notethat sock_f ast read() andsock_read() do not necessarily re-
turn acomplete or single line, they return blocks of bytes. In comparison,

sock_get c() returnsasingle byte a atime and yields poor performance.

This is a sanple FINGER program which conpares sock fastread(),
sock _read(), sock _gets(), and sock _getc() for handling ASClI
dat a.

Not e that sock fastread(), sock read(), and sock_getc()

do NOT return single line strings, they return ordered bytes.
sock_getc() |ooks the sinplest, but it has the highest overhead
both in terns of DCRTCP, and especially in terms of the output

t hrough putch().

FI NGER [user] @host node where node is 0, 1, 2 or 3 to indicate
usi ng sock_fastread(), sock read(), sock getc() or sock_gets().
Al'l nmodes returned identical output to the screen.

66

TCP/IP User’s Manual

#define My_| P_ADDRESS "10.10.6.100"
#defi ne MY_NETMASK "255.255. 255. 0"
#memmap xmem

#use "dcrtcp.lib"
#def i ne FI NGER_PORT 79

finger(char* userid, char* host, |ongword hoststring, int nethod) {
tcp_Socket fingersock
tcp_Socket *s;
char buffer[513];/* space for 512 plus zero term nator */
i nt status;
int |en;

s = &fingersock;

if ('tcp_open(s, 0, host, FINGER PORT, NULL)) {
puts("Sorry, unable to connect to that machine right now");
return;

}

printf("waiting...\r");

sock_wait_established(s, sock _delay , NULL, &status);

if (*userid)
printf(" %’ is looking for "%’ ...\n\r\n\n", hoststring, userid);
strcpy(buffer, userid);
rip(buffer);/* kill all \'n and \r’s */
strcat(buffer , "\n");

sock_puts(s, buffer);

switch (nmethod) {

/***

* usi ng sock_fastread() *
***/

case O :
while (1) {
sock wait _input(s, 30, NULL, &status);

len = sock _fastread(s, buffer, 512);
buffer[len] = 0; /[* must terminate it */
printf("9%", buffer);

}

br eak;

Chapter 2: TCP/IP Engine 67

/***

* usi ng sock_read() *

***/

case 1 :
while(1) {
sock wait _input(s, 30, NULL, &status);
| en = sock_dataready(s);
if (len > sizeof(buffer))
| en = sizeof(buffer);

sock _read(s, buffer, len);
buffer[len] = 0;
printf("%", buffer);

}

br eak;

/***

* using sock _getc() *

***/

case 2 :
while (1) {
sock_wait_input(s, 30, NULL, &status);
put ch(sock getc(s));
}

br eak;

68

TCP/IP User’s Manual

/***

* using sock _gets()

***/

case 3 :
sock _node(s, TCP_MODE ASCI|);
while (1) {
sock wait _input(s, 30, NULL, &status);
len = sock_gets(s, buffer, 512);
puts(buffer);
}
br eak;
}
sock_err:
switch (status) {
case 1 : /* foreign host closed */
br eak;
case -1: /* tinmeout */
printf("\n\rConnection tinmed out!");
br eak;
}
sock _close(s);
printf("\n\r");

*

Chapter 2: TCP/IP Engine

69

char *neth[]={"sock fastread", "sock read", "sock getc",
"sock _gets"};

mai n() {
char *user, *server;
| ongword host ;
i nt status;
wor d net hod;

sock _init();

strcpy(user, "root");
strcpy(user, "foo. bar");
met hod=0; /* sock fastread */

if (method > 3) {
puts("only values O through 3 are valid");
exit(2);
}
printf("Using method %s\n\r", meth[method]);
if (host = resolve(server)) {
status = finger(user, host, server, nethod);

} else {
printf("Could not resolve host *%’\n\r", server);
exit(3);

}

exit(status);

70

TCP/IP User’s Manual

sock recv
int sock recv(sock type *s, char *buffer, int len);

DESCRIPTION

After aUDP socket isinitialized withudp_open() andsock _recv_init (),
sock_recv() scansthe buffersfor any datagram received by that socket. This func-
tion is not available starting with Dynamic C 7.05 (see Section 2.3).

PARAMETERS
S Pointer to a UDP socket.
buf fer Buffer to put datagram.
max| engt h Length of buffer.

RETURN VALUE

Length of datagram;
0 if no datagram found;
- 1 if receive buffer not initialized withsock_recv_init ().

LIBRARY
DCRTCP. LI B

SEE ALSO

sock recv_from sock recv_init

Chapter 2: TCP/IP Engine

71

EXAMPLE USING SOCK_RECV()

#define My_| P_ADDRESS "10. 10. 6. 100"
#defi ne MY_NETMASK " 255. 255. 255. 0"
#menmmap xmem

#use "dcrtcp.lib"
#defi ne SAMPLE 401

udp_Socket dat a;
char bigbuf[8192];

mai n() {
word tenpl en;
char spare[1500];

sock _init();

if ('udp_open(&data, SAMPLE, Oxffffffff, SAMPLE, NULL)) {
put s("Coul d not open broadcast socket");
exit(3);

}

/* set large buffer node */
if (sock recv_init(&data, bigbuf, sizeof(bigbuf))) {
put s("Coul d not enable |arge buffers");

exit(3);
}
sock _mpode(&data, UDP_MODE NOCHK); /* turn off checksuns */
while (1) {

tcp_tick(NULL);

if (tenplen = sock recv(&data, spare, sizeof(spare))) {

/* somet hing received */
printf("Got % byte packet\n", tenplen);

}

}

72 TCP/IP User’s Manual

sock_recv_from

int sock recv_fronm sock type *s, long *hisip, word *hisport,
char *buffer, int len);

DESCRIPTION

After aUDP socket isinitialized withudp_open() andsock _recv_init (),
sock_recv_from() scansthe buffersfor any datagram received by that socket and
identifies the remote host’s address. Thisfunction is not available starting with Dynamic

C 7.05 (see Section 2.3).
PARAMETERS
S Pointer to UDP socket.
hi sip IP of remote host, according to UDP header.
hi sport Port of remote host.
buf fer Buffer to put datagram in.
I en Length of buffer.

RETURN VALUE

>0: Length of datagram received;
0: No datagram;
- 1: Receive buffer was not initialized withsock _recv_init ().

LIBRARY
DCRTCP. LI B

SEE ALSO

sock recv, sock recv_init

Chapter 2: TCP/IP Engine

sock_recv_init
int sock recv_init(sock type *s, void *space, word |en);

DESCRIPTION
Thisfunction is not available starting with Dynamic C 7.05 (see Section 2.3).

The basic socket reading functions (sock_read(),sock _fastread(), etc.) are
not adequate for al your UDP needs. The most basic limitation is their inability to treat
UDP as arecord service.

A record service must receive distinct datagrams and pass them to the user program as
such. You must know the length of the received datagram and the sender (if you opened
in broadcast mode). You may also receive the datagrams very quickly, so you must have
amechanism to buffer them.

Once asocket is opened withudp_open() ,youcanusesock recv_init() to
initialize that socket for sock _recv() andsock_recv_fron() . Notethat
sock_recv() andrdated functions areincompatible withsock _read(),
sock fastread(),sock gets() andsock_getc().Onceyou haveused
sock _recv_init(),youcannolonger usethe older-style calls.

sock_recv_init() instalsalargebuffer areawhich gets segmented into smaller
buffers. Whenever aUDP datagram arrives, DCRTCP. LI B stuffsthat datagram into one
of these new buffers. The new functions scan those buffers. You must select the size of
the buffer you submittosock_recv_init () ; makeit aslarge aspossible, say 4K,
8K or 16K.

For a sample program, see Example using sock _recv() listed under sock _recv().

PARAMETERS
S Pointer to a UDP socket.
space Buffer of temporary storage space to store newly received packets.
I en Size of the buffer.

RETURN VALUE
0

LIBRARY
DCRTCP. LI B

SEE ALSO
sock _recv_from sock recv

74 TCP/IP User’s Manual

sockst at e
char *sockstate(void * s);

DESCRIPTION
Returns a string that gives the current state for a socket.

PARAMETERS

S Pointer to a socket.

RETURN VALUE

An ASCII message which represents the current state of the socket. These strings should
not be modified.

“Li st en" indicates a passively opened socket that iswaiting for a connection.
"SynSent " and "SynRcvd" are connection phase intermediate states.
"Est abl i shed" states that the connection is compl ete.

"Est A osi ng" "Fi nWai t 1" "Fi nWi t 2" "Cl oseWai t " "Cl osi ng"
"Last Ack" "Ti meWai t " and "Cl oseMSL" are connection termination intermediate
states.

"Cl osed" indicatesthat the connection is completely closed.
"UDP Socket " isaways returned for UDP sockets because they are stateless.

"Not an active socket "isadefault value used when the socket is not recognized
asUDPor TCPR.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

sock_establ i shed, sock_dat aready

EXAMPLE USAGE

char *p

#i f def DEBUG
if (p = sockstate(s))

printf("Socket state is "%’'\n\r", p);
#endi f DEBUG

Chapter 2: TCP/IP Engine

75

sock thleft
int sock tbleft(void *s);

DESCRIPTION

Getsthe number of bytesleft in the transmit buffer. If you do not wish to block, you may
first query how much space is available for writing by calling this function before gener-
ating data that must be transmitted. This removes the need for your application to also
buffer data.

PARAMETERS
S Pointer to a socket.

RETURN VALUE
Number of bytes|eft in the transmit buffer.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

sock _rbsize, sock rbused, sock rbleft, sock_ tbsize,
sock tbused

if (sock tbleft(s) > 10) {
/* we can send up to 10 bytes wi thout bl ocking or overflow ng */

76 TCP/IP User’s Manual

sock tbsize
int sock tbsize(void *s);
DESCRIPTION
Determines the size of the transmit buffer for the specified socket.
PARAMETERS
s Pointer to a socket.

RETURN VALUE
The size of the transmit buffer.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

sock _rbsize, sock rbused, sock rbleft, sock tbleft,
sock tbused

sock tbused
int sock _tbused(void *s);
DESCRIPTION
Gets the number of bytesin usein the transmit buffer for the specified socket.
PARAMETERS
s Pointer to a socket.

RETURN VALUE
Number of bytesin use.

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

sock rbsize, sock rbused, sock rbleft, sock tbsize,
sock _tbleft

Chapter 2: TCP/IP Engine 77

sock_tick
sock tick(void * s, int * optional _status_ptr);

DESCRIPTION

Thismacrocalst cp_ti ck() toquickly check incoming and outgoing data and to
manage all the open sockets. If our particular socket, s, is either closed or made inoper-
aive dueto an error condition, sock _ti ck() setsthevalue of

*optional _status_ptr (if the pointerisnot NULL) to 1, then jumpsto alocal,
user-supplied label, sock_er r. If the socket connection isfine and the pointer is not
NULL *opti onal _status_ptr issettoO.

PARAMETERS
s Pointer to a socket.
optional _status_ptr Pointer to status word.

RETURN VALUE
None

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

78 TCP/IP User’s Manual

sock wait_cl osed

voi d sock_wait_closed(void* s, int seconds, int (*fptr)(), int*
st at us);

DESCRIPTION

This macro waits until a TCP connection is fully closed. Returns immediately for UDP
sockets. On an error, the macro jumpsto alocal, user-supplied sock_err labdl. If
f pt r returnsnon-zero the macro returnswith the statusword set tothevalueof f ptr ‘s

return value.
PARAMETERS

s Pointer to a socket.

seconds Number of seconds to wait before timing out. A value of zero indi-
cates the macro should never time-out. A good valueto useis
sock_del ay, asystem variable set on configuration. Typically
sock_del ay isabout 20 seconds, but can be set to something else
inmai n() .

fptr Function to call repeatedly while waiting. Thisisauser-supplied
function.

status Pointer to a status word.

RETURN VALUE
None

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
sock _wait_established, sock wait _input

Chapter 2: TCP/IP Engine 79

sock wait_established

voi d sock _wait_established(void* s, int seconds, int (*fptr) (),
int* status);

DESCRIPTION
This macro waits until aconnection is established for the specified TCP socket, or aborts

if atime-out occurs. It returnsimmediately for UDP sockets. On an error, the macro
jumpsto thelocal, user-supplied sock_err labdl. If f pt r returns non-zero, the macro

returns.
PARAMETERS

s Pointer to a socket.

seconds Number of seconds to wait before timing out. A value of zero indi-
cates the macro should never time-out. A good valueto useis
sock_del ay, asystem variable set on configuration. Typically
sock_del ay isabout 20 seconds, but can be set to something else
inmai n() .

fptr Function to call repeatedly while waiting. Thisisauser-supplied
function.

status Pointer to a status word.

RETURN VALUE
None

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
sock _wait_input, sock wait_cl osed

80 TCP/IP User’s Manual

sock _wait i nput

void sock _wait _input(void* s, int seconds, int (*fptr)(), int*
st at us);

DESCRIPTION

Waits until input exists for functionssuch assock _read() andsock _gets().As
describedunder sock_node() ,ifin ASCII mode, sock_wai t _i nput only returns
when acomplete string exists or the buffer isfull. It returnsimmediately for UDP sockets.

On an error, themacro jumpsto alocal, user-suppliedsock_er r label. If f pt r returns
non-zero, the macro returns.

For sample programs, see the exampleslisted undert cp_open() ,tcp_l i sten(),
andsock_read().

PARAMETERS

s Pointer to a socket.

seconds Number of secondsto wait before timing out. A value of zero indi-
cates the macro should never time-out. A good valueto useis
sock_del ay, asystem variable set on configuration. Typically
sock_del ay isabout 20 seconds, but can be set to something else
inmai n() .

fptr Function to call repeatedly while waiting.

st at us A pointer to the statusword. If this parameter is NULL, no status

number will be available, but the macro will otherwise function nor-
mally. Typicaly the pointer will point to alocal signed integer that
isused only for status. st at us may betested to determine how the
socket wasended. A valueof 1 meansaproper closewhilea-1val-
ueindicates areset or abort.

RETURN VALUE
None

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
sock_wait_established, sock wait_closed, sock node

Chapter 2: TCP/IP Engine 81

sock wite
int sock wite(void *s, byte *dp, int len);

DESCRIPTION

Writesup to| en bytesfrom dp on socket s. Thisfunction busywaits until either the
buffer is completely written or a socket error occurs. If sock_vyi el d() hasbeen
called, the user-defined function that is passed to it will be called in atight loop while
sock_write() isbusywaiting.

For UDP,sock_writ e() will sendone (or more) records. For TCP, the new datamay
betransmitted if enough dataisin the buffer or sufficient time has expired or the user has
explicitly used sock _fl ushnext () toindicate this data should be flushed immedi-
ately. In either case, there is no guarantee of acceptance at the other end.

PARAMETERS
s Pointer to a socket
dp Pointer to a buffer.
I en Maximum number of bytesto write to the buffer.

RETURN VALUE
Number of byteswritten or - 1 on an error.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

sock read, sock fastwite, sock fastread, sockerr,
sock_wait_input, sock_flush, sock_flushnext

82 TCP/IP User’s Manual

sock yield
int sock yield(tcp_Socket *s, void (*fn)());

DESCRIPTION

Thisfunction, if called prior to one of the blocking functions, will causef n, the user-
defined function that is passed in asthe second parameter, to be called repeatedly while
the blocking function isin a busywait state.

PARAMETERS
S Pointer to a TCP socket.
fn User-defined function.

RETURN VALUE
0

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

tcp_cl earreserve

void tcp_clearreserve(word port);

DESCRIPTION

This function causes the DCRTCP. LI B stack to handle a socket connection to the spec-
ified port normally. Thisundoesthe actiontakenby t cp_reserveport ().

PARAMETERS

port Port to use.

RETURN VALUE
None

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

tcp_reserveport

Chapter 2: TCP/IP Engine

83

tcp_config

void tcp_config(char *name, char *val ue);

DESCRIPTION
Sets TCP/IP stack parameters at runtime. It should not be called with open sockets.

Additionally, MY_| P_ADDRESS can be overridden by set host i d() , and
MY_HOSTNANME can be overridden by set host nanme() .

PARAMETERS

name Setting to be changed. The possible parameters are:

MY _| P_ADDRESS: host IP address (useset host i d() instead)
MY_NETMASK

MY_GATEWAY: host’'s default gateway

MY _NAMESERVER: host’s default nameserver

MY_HOSTNAME

MY_DOVAI NNAME: host's domain name (useset donmai n-
nanme() instead)

MTI'U: maximum size of packets
val ue Thevaueto assignto nane.

RETURN VALUE
None

LIBRARY
NET.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

84 TCP/IP User’s Manual

tcp_extlisten

int tcp_extlisten(tcp_Socket *s, int iface, word | port,

| ongword renip,
reserved, | ong

DESCRIPTION

word port, dataHandl er t datahandl er, word

buffer, int buflen);

Thisfunction tellsthe TCP/IP engine that an incoming session for a particular port will

be accepted. Thebuf f er andbuf | en parametersalow auser to supply asocket buff-
er, instead of using asocket buffer fromthepool.t cp_ext | i st en() isan extended
versionoftcp_listen().

PARAMETERS
S

i face

| port
remp
port

dat ahandl er

reserved

buf f er

bufl en

RETURN VALUE

0: Failure
1: Success

LIBRARY
TCP. LI B

SEE ALSO
tcp_listen

Pointer to the socket’s data structure.

Local interface on which to open the socket (not yet implemented,
usel F_DEFAULT for now).

Port to listen on.
| P address to accept connections from or O for all.
Port to accept connections from or O for all.

Function to call when dataisreceived, NULL for placing datainthe
socket’s receive buffer.

Set to O for now. This parameter isfor compatibility and possible fu-
ture use.

Address of user-supplied socket buffer in xmem. Thisisthereturn
valueof xal | oc() . If buf f er isO0, the socket buffer for this
socket ispulled from the buffer pool defined by the macro
MAX_TCP_SOCKET_BUFFERS.

Length of user-supplied socket buffer.

Chapter 2: TCP/IP Engine

85

t cp_ext open

int tcp_extopen(tcp_Socket* s, int iface, word | port, |ongword
rem p, word port, dataHandl er _t datahandl er, | ong buffer, int
bufl en);

DESCRIPTION

Actively createsasession with another machine. Thebuf f er andbuf | en parameters
alow auser to supply asocket buffer, instead of using a socket buffer from the pool.
t cp_ext open() isanextended versionof t cp_open().

S Pointer to socket’s data structure.

i face Local interface on which to open the socket (not yet implemented,
usel F_DEFAULT for now).

| port Our port, zero for the next one available in the range 1025-65536.
remp | P address to connect to.
port Port to connect to.

dat ahandl er Functionto call when dataisreceived, NULL for placing datain the
socket’s receive buffer.

buf f er Address of user-supplied socket buffer in xmem. Thisisthe return
valueof xal | oc() . If buf f er isO0, the socket buffer for this
socket ispulled from the buffer pool defined by the macro
MAX_TCP_SOCKET_BUFFERS.

bufl en Length of user-supplied socket buffer.

RETURN VALUE

0 if open was not able resolve the remote computer's hardware address,
I 0 otherwise.

LIBRARY
TCP. LI B

SEE ALSO
tcp_open

86 TCP/IP User’s Manual

tcp_keepalive
int tcp_keepalive(tcp_Socket *s, |long timeout);

DESCRIPTION

Enable or disable TCP keepalives on aspecified socket. The socket must already be open.
Keepalives will then be sent after t | meout seconds of inactivity. It is highly recom-
mendedtokeept i meout aslong aspossible, to reducetheload on the network. Ideally,
it should be no shorter than 2 hours. After the timeout is sent, and

KEEPALI VE_WAI TTI ME seconds pass, another keepalive will be sent, in case thefirst
waslost. Thiswill beretried KEEPALI VE_NUMRETRYS times. Both of these macros
can be #defined at the top of your program, overriding the defaults of 60 seconds, and 4
retries.

Using keepalivesis not arecommended procedure. Ideally, the application using the
socket should senditsownkeepdives.t cp_keepal i ve() isprovided becausetelnet
and afew other network protocols do not have amethod of sending keepalives at the ap-

plication level.
PARAMETERS
s Pointer to a socket.
ti meout Period of inactivity, in seconds, before sending a keepalive or 0to

turn off keepalives.

RETURN VALUE

0: Success;
1: Failure

LIBRARY
TCP. LI B

SEE ALSO
sock _fastread, sock fastwrite, sock write, sockerr, sock_wait_input

Chapter 2: TCP/IP Engine 87

tcp_listen

int tcp listen(tcp_Socket *s, word | port, |longword rem p, word
port, int (*signal _handler), word reserved);

DESCRIPTION

Thisfunction tells DCRTCP. LI B that an incoming session for a particular port will be
accepted. Afteracalltotcp_li sten(),thefunctionsock est abl i shed() (or
themacrosock _wai t _est abl i shed) must be caled to poll the connection until a
session isfully established.

It ispossible for aconnection to be opened, written to and closed between two callsto the
functionsock_est abl i shed() . Tohandlethiscase, cal sock byt esready()
orsock_dat ar eady() todetermineif thereis datato be read from the buffer.

Multiplecallstot cp_I| i st en() tothesameloca port (I port) are acceptable and
constitute the DCRTCP. LI B mechanism for supporting multiple incoming connections
tothe samelocal port. Each time another host attemptsto open asession on that particul ar
port, another one of the listens will be consumed until such time as all listens have be-
come established sessions and subsequent remote host attempts will receive areset.

PARAMETERS

s Pointer to a socket.

| port Port to listen on (the local port number).

remp I P address of the remote host to accept connectionsfrom or O
for all.

port Port to accept connections from or O for all.

si gnal _handl er Thisfunctionis called if the connection is either closed or re-
set. Theparameter for si gnal _handl er isthe pointer to
afunction which will be called when the socket is either
closed or reset. Some details for implementation of this ser-
vice have not been finalized, and it isrecommended the user
insert a value of NULL for the present time.

reserved Set to O for now. This parameter isfor compatibility and pos-

sible future use.

RETURN VALUE
0: Failure;
1: Success.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
tcp_open

88 TCP/IP User’s Manual

EXAMPLE USING TCP_LISTEN()

#define My_| P_ADDRESS "10. 10. 6. 100"
#defi ne MY_NETMASK " 255. 255. 255. 0"
#menmap xmem

#use "dcrtcp.lib"

#def i ne TELNET_PORT 23

static tcp_Socket *s;
char *useri d;

telnets(int port) {
tcp_Socket tel netsock;
char buffer[512];
i nt status;
int len;
s = &t el netsock;
tcp_ listen(s, port, OL, O, NULL, 0);

sock wait_established(s, 0, NULL, &status);

put s(" Recei vi ng i ncom ng connection");
sock _nmode(s, TCP_MODE ASCI|);
sock puts(s, "Wl cone to a sanple tel net server.");
sock puts(s, "Each line you type will be printed on this"\
"screen once you hit return.");
/* other guy closes connection except if we tineout */
while (1) {
sock wait _input(s, 0, NULL, &status);
sock _gets(s, buffer, 512);
puts(buffer);
}
sock_err:
switch (status) {
case 1 : /* foreign host closed */
put s("User closed session");
return;
case -1: /* timeout */
printf("\n\rConnection tinmed out!");

return;
}
}
mai n() {
sock_init();
tel nets(TELNET PORT);
exit(0);
}

Chapter 2: TCP/IP Engine

89

t cp_open

int tcp_open(void *s,

word | port, longword rem p, word port,

int (*signal _handler)());

DESCRIPTION

Thisfunction actively creates a session with another machine. After acal to
tcp_open(),thefunctionsock est abl i shed() (or themacro
sock_wait _est abl i shed) must be caled to poll the connection until asession is

fully established.

It is possible for aconnection to be opened, written to and closed between two callsto the
functionsock_est abl i shed() . Tohandlethiscase, cal sock byt esready()
orsock dat ar eady() todetermineif thereis datato be read from the buffer.

PARAMETERS
S

| port

remp
port

si gnal _handl er

RETURN VALUE

Pointer to a socket.

Our loca port. Use zero for the next available port in the
range 1025-65536. A few applicationswill requireyou to use
aparticular local port number, but most network applications
let you use almost any port with a certain set of restrictions.
For example, FI NGER or TELNET clients can use any local
port value, so passthe value of zero for | port andlet
DCRTCP. LI B pick onefor you.

| P address to connect to.
Port to connect to.

Thisfunctioniscalled if the connection is either closed or re-
set. The parameter for si gnal _handl er isthe pointer to
afunction which will be called when the socket is either
closed or reset. Some details for implementation of this ser-
vice have not been finalized, and it isrecommended the user
insert a value of NULL for the present time.

0: Unable to resolve the remote computer’s hardware address;

1 0 otherwise.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

tcp_listen

90

TCP/IP User’s Manual

EXAMPLE USING TCP_OPEN()

#define My_| P_ADDRESS "10. 10. 6. 100"
#defi ne MY_NETMASK " 255. 255. 255. 0"
#menmap xmem

#use "dcrtcp.lib"

#def i ne ADDRESS "10. 10. 6. 19"
#defi ne PORT "200"

main() {
wor d st at us;
word port;
| ongwor d host ;
tcp_Socket tsock;

sock _init();

if (!(host = resol ve(ADDRESS))) {
put s("Coul d not resolve host");
exit(3);
}
port = atoi(PORT);
printf("Attenpting to open "%’ on port %\n\r", ADDRESS, port);
if (!'tcp_open(& sock, 0, host, port , NULL)) {
put s("Unabl e to open TCP session");
exit(3);
}

printf("Waiting a maxi mum of % seconds for connection"\
' to be established\n\r", sock delay);

sock wait_established(&t sock, sock delay, NULL, &status);
put s(" Socket is established");

sock cl ose(&tsock);

sock wait closed(&t sock, sock delay, NULL, &status);

sock_err:
switch (status) {
case 1 :
put s(" Connection cl osed normal ly");
br eak;
case 2 :
put s("Probl em occurred...");
sockerr(& sock);
br eak;

}
exit((status ==1) ?2 0: 1);

Chapter 2: TCP/IP Engine 91

/* the following are the results fromrunning 'test sunee 25

Attenpting to open 'sunee’ on port 25

Wai ting a maxi mum of 10 seconds for connection to be established
Socket is established

Connection closed nornally

*/

tcp_reserveport
void tcp_reserveport(word port);

DESCRIPTION

Thisfunction allows a connection to be established even if there is not yet a socket avail-
able. Thisisdone by setting a parameter in the TCP header during the connection setup
phase that indicates O bytes of data can be received at the present time. The requesting
end of the connection will wait until the TCP header parameter indicatesthat datawill be
accepted.

The 2M SL waiting period for closing a socket is avoided by using this function.

The penalty of slower connection times on acontroller that is processing alarge number
of connectionsis offset by alowing the program to have less sockets and consequently
lessRAM usage.

PARAMETERS

port Port to use.

RETURN VALUE
None

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

t Cp_C| earreserve

92 TCP/IP User’s Manual

tcp_tick
int tcp_tick(void *s);

DESCRIPTION

Thisfunction isasingle kernel routine designed to quickly process packets and return as
soon aspossible.t cp_ti ck() performs processing on all sockets upon each invoca
tion: checking for new packets, processing those packets, and performing retransmissions
onlost data. On most other computer systems and other kernels, performing these re-
quired operations in the background is often done by atask switch. DCRTCP. LI B does
not use atasker for its basic operation, although it can adopt one for the user-level servic-
€s.

Although you may ignorethereturned valueof t cp_t i ck(), itisthe easiest method
to determine the status of the given socket.

PARAMETERS
S Pointer to asocket. If NULL, the returned valueis always 0.

RETURN VALUE

0: Connection reset or closed by other host or NULL was passed in.
I 0: Connection isfine.

LIBRARY
TCP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO

tcp_open, sock _close, sock _abort, sock tick,
sock_wait_established

udp_cl ose
voi d udp_cl ose(udp_Socket *ds);
DESCRIPTION

This function closes a UDP connection.

PARAMETERS

ds Pointer to socket’s data structure.

LIBRARY
UDP. LI B

Chapter 2: TCP/IP Engine 93

udp_ext open

i nt udp_extopen(udp_Socket *s, int iface, word | port, | ongword
rem p, word port, dataHandl er _t datahandl er, | ong buffer, int
buflen);

DESCRIPTION

Thisfunction is an extended version of udp_open() . It opens asocket on agiven net-
work interface (i f ace) onagivenlocal port (I port). Thei f ace parameter is not
currently supported and should be | F_DEFAULT. The remote end of the connection is
specified by r eni p and por t . The following table explains the possible combinations
and what they mean.

REMIP Effect of REMIP value

The connection completes when the first datagram is received, supplying both
0 the remote | P address and the remote port number. Only datagrams received
from that 1P/port address will be accepted.

All remote hosts can send datagrams to the socket. All outgoing datagrams
will be sent to the broadcast address on the specified port.

If the remote |P address isavalid | P address and the remote port is 0, the
connection will complete when the first datagram is received, supplying the
>0 remote port number.

If the remote | P address and the remote port are both specified when the
function is called, the connection is complete at that point.

Thebuf f er andbuf | en parametersallow auser to supply asocket buffer, instead of
using a socket buffer from the pool.

PARAMETERS
s Pointer to socket’s data structure.
i face L ocal interface on which to open the socket (not yet implemented—
usel F_DEFAULT for now).
| port Local port.
remp Acceptable remote IR, or O for all.
port Acceptable remote port, or O for all.

dat ahandl er Functionto call when dataisreceived, NULL for placing datainthe
socket's receive buffer.

buf f er Address of user-supplied socket buffer in xmem. If buf f er isQ,
the socket buffer for this socket is pulled from the buffer pool de-
fined by the macro MAX_UDP_SOCKET _BUFFERS.

bufl en Length of user-supplied socket buffer.

RETURN VALUE:
I 0: Success; 0: Failure; error opening socket, e.g., abuffer could not be alocated.

LIBRARY
UDP. LI B

94 TCP/IP User’s Manual

udp_open

int udp_open(udp_Socket *s, word |port, longword rem p, word
port, int (*datahandler)());

DESCRIPTION
This function opens a UDP socket on the given local port (I por t). The remote end of
the connection is specified by r eni p and por t . The following table explains the pos-
sible combinations and what they mean.

REMIP Effect of REMIP value

The connection completes when the first datagram is received, supplying both
0 the remote | P address and the remote port number. Only datagrams received
from that 1P/port address will be accepted.

All remote hosts can send datagrams to the socket. All outgoing datagrams
will be sent to the broadcast address on the specified port.

If the remote |P address isavalid | P address and the remote port is 0, the
connection will complete when the first datagram is received, supplying the
>0 remote port number.

If the remote | P address and the remote port are both specified when the
function is called, the connection is complete at that point.

If the remote host is set to a particular address, either host may initiate traffic. Multiple
callstoudp_open() withr eni p setto zero isauseful way of accepting multiplein-
coming sessions.

Although multiplecallstoudp_open() may normally be made with thesamel por t
number, only oneudp_open() should be madeon aparticular | port if ther em p
isset to -1. Essentialy, the broadcast and nonbroadcast protocols cannot co-exist.

PARAMETERS
S Pointer to a UDP socket.
| port Local port
remp Acceptable remote | P, or -1 for broadcast.
port Acceptable remate port, or -1 for broadcast.
dat a_handl er Function to call when datais received.

RETURN VALUE
0: Failure (e.g., destination hardware address cannot be resolved);
1 0: Success.

LIBRARY
UDP.LIB (Prior to DC 7.05, this was DCRTCP. LI B)

SEE ALSO
sock recv, sock recv_init, sock recv_from

Chapter 2: TCP/IP Engine 95

EXAMPLE OF USING UDP_OPEN()

#define My_I P_ADDRESS "10. 10. 6. 100"
#defi ne MY_NETMASK " 255. 255. 255. 0"
#menmap xmem

#use "dcrtcp.lib"

#defi ne ADDRESS " 10.10. 6. 19"
#defi ne PORT "200"

mai n() {
word status, port;
| ongwor d host ;
udp_Socket usock

sock_init();

if (!'(host = resolve(ADDRESS))) {
put s("Coul d not resolve host");
exit(3);

}

port = atoi(PORT);

printf("Attenpting to open '%’ on port %\n\r", ADDRESS, port);
if ('udp_open(&usock, 0, host, port , NULL)) {

put s("Unabl e to open UDP session");
exit(3);
}

/* udp, no need to wait for connection unless expecting inconing
session. wait_sock_established would return inmedi ately */

put s(" Socket is established");

/* note, no data has been sent, no connection established, the

ot her guy doesn’t even know we are interested
sock_cl ose(&usock);

sock_err:
switch (status) {
case 1 :
put s(" Connection closed normal | y");
br eak;
case 2 :
put s("Probl em occurred...");
sockerr(&usock);
br eak;
}
exit((status == 1) ?2 0: 1);

}

/* the results of running this test are
Attenpting to open ’10.10.6.19° on port 200
Socket is established
Connection closed normally */

*/

96

TCP/IP User’s Manual

udp_recv
int udp_recv(udp_Socket* s, char* buffer, int |len)

DESCRIPTION

Receives a single UDP datagram on a UDP socket. If the buffer is not large enough for
the datagram, the datagram is truncated, and the remainder discarded.

PARAMETERS
S Pointer to socket’s data structure.
buf fer Buffer where the UDP datagram will be stored.
| en Maximum length of the buffer.

RETURN VALUE

=0: Number of bytes received
- 1: No datagram waiting
<-1: Error

LIBRARY
UDP. LI B

SEE ALSO
udp_recvfrom udp_send, udp_sendto, udp_open

Chapter 2: TCP/IP Engine

97

udp_recvfrom

int udp_recvfromudp_Socket* s, char* buffer, int |en,
| ongwor d* renmi p, word* renport)

DESCRIPTION

Receives asingle UDP datagram on a UDP socket. If buf f er isnot large enough for
the datagram, the datagram is truncated, and the remainder discarded.

PARAMETERS
S Pointer to socket’s data structure.
buffer Buffer where the UDP datagram will be stored.
I en Maximum length of the buffer.
remp I P address of the remote host of the received datagram.
renport Port number of the remote host of the received datagram.

RETURN VALUE

=0: Number of bytes received
- 1: No datagram waiting
<-1: Error

LIBRARY
UDP. LI B

SEE ALSO
udp_recv, udp_send, udp_sendto, udp_open

98 TCP/IP User’s Manual

udp_send

int udp_send(udp_Socket* s, char* buffer, int |len)

DESCRIPTION

Sends asingle UDP datagram on a UDP socket. It will not work for a socket for which
ther eni p parameter toudp_open() wasO0, unlessadatagram hasfirst been received
on the socket. If ther emi p parameter to udp_open() was-1, the datagram will be

send to the broadcast address.
PARAMETERS
s Pointer to socket’s data structure.
buf fer Buffer that contains the UDP datagram
| en Number of bytes of the UDP datagram.

RETURN VALUE
=>0: Number of bytes sent

- 1: Failure
LIBRARY

UDP. LI B
SEE ALSO

udp_sendt o, udp_recv, udp_recvfrom udp_open

Chapter 2: TCP/IP Engine

99

udp_sendto

i nt udp_sendt o(udp_Socket* s, char* buffer, int len, |ongword
rem p, word renport)

DESCRIPTION

Sendsasingle UDP datagram on aUDP socket. It will send the datagram to the | P address
and port specified by r eni p and r enpor t . Note that this function can be used on a
socket that has been "connected" to a different remote host and port.

PARAMETERS
s Pointer to socket’s data structure.
buf fer Buffer that contains the UDP datagram.
| en Length of the UDP datagram.
remp IP address of the remote host.
renport Port number of the remote host.

RETURN VALUE
=0: Success, number of bytes sent;

- 1: Failure
LIBRARY

UDP. LI B
SEE ALSO

udp_send, udp_recv, udp_recvfrom udp_open

100 TCP/IP User’s Manual

2.9 Macros

DI SABLE_DNS

This macro disables DNS lookup. This prevents a UDP socket for DNS from being alo-
cated, thus saving memory. Users may still call r esol ve() with an IP address.

MAX_SOCKETS

This macro defines the number of sockets that will be alocated, not including the socket
for DNSlookups. It defaultsto 4. If librariessuchasHTTP. LI Bor FTP_SERVER. LI B
areused, you must provide enough socketsin MAX_SOCKET S for them also. Thismacro
has been replaced by MAX_TCP_SOCKET_BUFFERS and

MAX_UDP_SOCKET BUFFERS.

MAX_SOCKET _LOCKS

For uC/OS-11 support. This macro defines the number of socket locks to allocate. It de-
faultsto MAX_TCP_SOCKET _BUFFERS + MAX _UDP_SOCKET _BUFFERS.

This macro is necessary because we can ho longer cal culate the number of socket locks
needed based on the number of socket buffers, now that the user can manage their own
socket buffers.

MAX_TCP_SOCKET BUFFERS

Starting with Dynamic C version 7.05, this macro determines the maximum number of
TCP sockets with preallocated buffers. If MAX_SOCKETS is defined, then

MAX TCP_SOCKET _BUFFERS will be assigned the vaue of MAX_SOCKETS for
backwards compatibility. If neither macro is defined, MAX_TCP_SOCKET _BUFFERS
defaultsto 4.

MAX_UDP_SOCKET BUFFERS

Starting with Dynamic C version 7.05, this macro determines the maximum number of
UDP sockets with preallocated buffers. It defaultsto O.
MY_DOMAI N

Thismacro istheinitia value for the domain portion of the controller’s address. At runt-
ime, it can be overwrittenby t cp_confi g() andset donai nname() .

Chapter 2: TCP/IP Engine 101

MY_GATEWAY

Thismacro givesthe default value for the controllers default gateway. At runtime, it can
be overwrittenby t cp_confi g().

MY_| P_ADDRESS

This macro is the default | P address for the controller. At runtime, it can be overwritten
bytcp_config() andset hosti d().

MY_NAMESERVER

This macro isthe default value for the primary name server. At runtime, it can be over-
writtenby t cp_confi g().

MY_NETMASK

Thismacro isthe default netmask for the controller. At runtime, it can be overwritten by
tcp_config().

SOCK_BUF_SI ZE

This macro determines the size of the socket buffers. A TCP socket will havetwo buffers
of size SOCK_BUF_SI ZE/2 for send and receive. A UDP socket will have asingle sock-
et of size SOCK_BUF_SI ZE. Both types of socketstake the sametotal amount of buffer
space. This macro has been replaced by TCP_BUF_SI ZE and UDP_BUF_SI ZE.

TCP_BUF_SI ZE

Starting with Dynamic C 7.05, TCP and UDP socket buffers are sized separately.
TCP_BUF_SI ZE defines the buffer sizes for TCP sockets. It defaults to 4096 bytes.
Backwardscompatibility existswith earlier version of Dynamic C: if SOCK_BUF_SI ZE
isdefined, TCP_BUF_SI ZE isassigned the value of SOCK_BUF_SI ZE. If
SOCK_BUF_SI ZE isnot defined, but t cp_MaxBuf Si ze is, then TCP_BUF_SI ZE
will be assigned thevalue of t cp_MaxBuf Si ze*2.

102 TCP/IP User’s Manual

tcp_MaxBuf Si ze

This use of thismacro is deprecated in Dynamic C version 6.57 and higher; it has been
replaced by SOCK_BUF_SI ZE.

In Dynamic C versions 6.56 and earlier, t cp_MaxBuf Si ze determinesthe size of the
input and output buffersfor TCP and UDP sockets. Thesi zeof (t cp_Socket) will
be about 200 bytes morethan doublet cp_MaxBuf Si ze. The optimum valuefor local
Ethernet connectionsis greater than the Maximum Segment Size (MSS). The MSSis
1460 bytes. You may want to lower t cp_MaxBuf Si ze, which defaults to 2048 bytes,
to reduce RAM usage. It can be reduced to as little as 600 bytes.

t cp_MaxBuf Si ze will work dightly differently in Dynamic C versions 6.57 and high-
er. Inthese later versions the buffer for the UDP socket will bet cp_MaxBuf Si ze* 2,
which istwice aslarge as before.

UDP_BUF_SI ZE

Starting with Dynamic C 7.05, TCP and UDP socket buffers are sized separately.
UDP_BUF_SI ZE defines the buffer sizes for UDP sockets. It defaults to 4096 bytes.
Backwardscompatibility existswith earlier version of Dynamic C: if SOCK_BUF_SI ZE
is defined, UDP_BUF_SI ZE is assigned the value of SOCK_BUF_SI ZE. If
SOCK_BUF_SI ZE isnot defined, but t cp_MaxBuf Si ze is, then UDP_BUF_SI ZE
will be assigned thevalue of t cp_MaxBuf Si ze*2.

Chapter 2: TCP/IP Engine 103

104 TCP/IP User’s Manual

3. Server Utility Library

The server utility library, ZSERVER. LI B, contains the structures, functions, and constants to
alow HTTP (Hypertext Transfer Protocol) and FTP (File Transfer Protocol) servers to share data
and user authentication information while running concurrently.

HTML form functionality isincluded in ZSERVER. LI B.

3.1 Data Structures for Zserver.lib
There are several data structures in this library of interest to developers of HTTP or FTP servers.

3.1.1 ServerSpec Structure
A filetransfer server has access to alist of objects: files, functions and variables. Thislist is
defined asaglobal array in ZSERVER. LI B.

Server Spec server_spec|[SSPEC_MAXSPEC] ;
Throughout this manual, this array will be called the TCP/IP servers' object list.

3.1.2 ServerAuth Structure

ZSERVER. LI B also definesaglobal array that isalist of user name/password pairs.
Server Aut h server _aut h[SAUTH_MAXUSERS] ;

Throughout this manual, this array will be called the TCP/IP userslist.

3.1.3 FormVar Structure

Anarray of For nVar srepresent the variablesin an HTML form. The devel oper will declare an
array of these structures, with the size needed to hold all variables for a particular form. The
For nVar structure contains:

* A server _spec index that references the variable to be modified. Thisisthe location of
the form variable in the TCP/IP servers' object list.

* An integrity-checking function pointer that ensures that the variables are set to valid values.

* High and low values (for numerical types).

* Length (for the string type, and for the maximum length of the string representations of val-
ues).

* A Pointer to an array of values (for when the value must be one of a specific, and probably
short, list).
The developer can specify whether she wants the variable to be set through atext entry field or a
pull-down menu, and if the variable should be considered read-only.

ThisFor nVar array isplaced in aSer ver Spec structure using the function
sspec_addf orm Ser ver Spec entriesthat represent variables will be added to the For m
Var array using sspec_addf v. Properties (e.g., the integrity-checking properties) for these

Chapter 3: Server Utility Library 105

For mVar entries can be set with various other functions. Hence, thereisaleve of indirection
between the variablesin the forms and the actual variables themselves. This allows the same vari-
ableto beincluded in multiple forms with different ranges for each form, and perhaps be read-only
in one form and modifiable in another.

3.2 Constants Used in Zserver.lib

The constantsin this section are values assigned to the fields of the structures Ser ver Spec and
Ser ver Aut h. They are used in the functions described in Section 3.4, some as function parame-
ters and some as return values.

3.2.1 ServerSpec Type Field
Thisfield describes the objects in the TCP/IP servers' object list.

SSPEC ERROR /| Error condition

SSPEC FI LE /| Dataresidesin afile

SSPEC FSFI LE /| Thedataresidesin afile systemfile
SSPEC FORM /' | Set of modifiable variables
SSPEC _FUNCTI ON /| Dataisafunction

SSPEC ROOTFI LE / | Dataresidesin root memory
SSPEC _UNUSED

SSPEC VARI ABLE /| Dataisavariable (for HTTP)
SSPEC XMEMFI LE /| Dataresidesin extended memory
SSPEC _ROOTVAR / | Dataisavariablein root memory
SSPEC_XMEMVAR /| Dataisavariablein xmem

3.2.2 ServerSpec Vartype Field
If the object is a variable, then thisfield will tell you what type of variableitis:

I NT8, | NT16, | NT32, PTR16, FLOAT32

3.2.3 Servermask field

Thetype of server (HTTP and/or FTP) that has access to a particular data structure is determined
by the servermask field. Both Ser ver Spec and Ser ver Aut h have thisfield. It must be set
when adding the structure to its array. The default is that no server has access. ser ver mask can
be one of the following, or any bitwise inclusive OR of these values:

SERVER_FTP
SERVER_HTTP
SERVER USER [l for use with the flash file system

106 TCP/IP User’s Manual

3.2.4 Configurable Constants
These constants define system limits on various data lengths and array sizes.

SSPEC_MAXNAME
Maximum length of stringsin aSer ver Spec structure entry. Default is 20.

SSPEC_MAXSPEC

Sets the maximum number of entriesin the global array, ser ver _spec. HTTP_MAXRAMSPEC
(from HTTP. LI B) should override SSPEC_MAXSPEC. If you attempt to use both you may not
get the desired results, therefore, the use of HTTP_ MAXRAMSPEC should be deprecated. If both
HTTP_MAXRAMSPEC and SSPEC MAXSPEC are not defined, SSPEC MAXSPEC defaults to 10.

SSPEC_XMEMVARLEN

Defines the size of the stack-allocated buffer used by sspec_r eadvari abl e() whenreading a
variable in xmem. It defaultsto 20.

SAUTH_MAXNANE
Maximum length of stringsin Ser ver Aut h structure. Default is 20.

SAUTH_ MAXUSERS
Maximum number of users for a TCP/IP userslist. Default is 10.

3.3 HTML Forms

Defining FORM_ERROR_BUF is required to use the HTML form functionality in Zser ver. i b.
The value assigned to this macro is the number of bytesto reservein root memory for the buffer used
for form processing. This buffer must be large enough to hold the name and value for each variable,
plus four bytes for each variable.

An array of type For mivar must be declared to hold information about the form variables. Be sureto
allocate enough entriesin the array to hold all of the variables that will go in the form. If more forms
are needed, then more of these arrays can be alocated. Please see Section 4.3.4 on page 174 for an
example program.

Chapter 3: Server Utility Library 107

3.4 Functions

saut h_adduser

i nt saut h_adduser(char* username, char* password, word
server mask) ;

DESCRIPTION
Adds auser to the TCP/IP userslist.

PARAMETERS
user nane Name of the user.
password Password of the user.

server mask Bitmask representing valid servers (e.g. SERVER_HTTP,
SERVER FTP).

RETURN VALUE

- 1: Failure;
20: Success, index in TCP/IP userslist (id passed to saut h_get user nane()).

LIBRARY
ZSERVER. LI B

SEE ALSO

saut h_aut henti cate, sauth_getwiteaccess,
sauth_setwiteaccess, sauth_renoveuser

108 TCP/IP User’s Manual

saut h_aut henti cate

i nt sauth_authenticate(char* usernane, char* password, word
server);

DESCRIPTION
Authenticate a user.

PARAMETERS
user name Name of user.
password Password for the user.
server The server for which this function is authenticating (e.g.

SERVER_HTTP, SERVER _FTP).

RETURN VALUE

- 1: Failure, user not valid.
=0: Success, array index of the Ser ver Aut h structure for authenticated user.

LIBRARY
ZSERVER. LI B

SEE ALSO

saut h_adduser

saut h_getuserid
int sauth_getuserid(char* usernanme, word server);

DESCRIPTION
Getsthe user index for auser.

PARAMETERS
user nanme User'sname.
server Server for which we are looking up.

RETURN VALUE

=0: Success, index of user inthe TCP/IP users list.
- 1: Failure

LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library 109

saut h_get user nanme
char* sauth_getusername(int uid);
DESCRIPTION
Gets apointer to user name fromthe Ser ver Aut h structure.
PARAMETERS
ui d Theuser’sid, i.e., thearray index in the TCP/IP userslist.

RETURN VALUE

NULL: Failure;
I NULL: Success, pointer to theuser namne string on success.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_get user nane

sauth _getwiteaccess
int sauth _getwriteaccess(int sauth);

DESCRIPTION
Checks whether or not a user has write access,

PARAMETERS
saut h Index of the user in the TCP/IP userslist.

RETURN VALUE

0: User does not have write access;
1: User has write access
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO

sauth_setwiteaccess

110 TCP/IP User’s Manual

saut h_renoveuser
i nt sauth_renoveuser(int userid);

DESCRIPTION

Remove the given user from the user list. IMPORTANT: Any associations of the given
user with web pages should be changed. Otherwise, no one will have accessto the un-
changed web pages. Authentication can be turned off for a page with

sspec_setreal m(sspec, "") .
PARAMETERS
userid Index in TCP/IP userslist.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

SEE ALSO

saut h_adduser

saut h_set password
int sauth_set password(int userid, char* password);

DESCRIPTION
Sets the password for a user.

PARAMETERS
userid Index of user in TCP/IP usersligt.
password User's new password

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library

111

sauth_setwiteaccess
int sauth_setwriteaccess(int sauth, int witeaccess);

DESCRIPTION
Sets the write accessibility of auser.

PARAMETERS
saut h Index of the user in the TCP/IP userslist.
writeaccess Set to 1 to give write access, 0 to deny write access.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

SEE ALSO

sauth_getwiteaccess

112 TCP/IP User’s Manual

sspec_addf orm

i nt sspec_addform(char* name, Fornmvar* form int fornsize, word
server mask) ;

DESCRIPTION
Addsaform (set of modifiablevariables) to the TCP/IP servers object list. Make surethat
SSPEC MAXSPECislargeenoughto hold thisnew entry. Thisfunctioniscurrently only
useful for the HTTP server.

PARAMETERS
name Name of the new form.
form Pointer to the form array. Thisisauser-defined array to hold infor-
mation about form variables.
fornsize Size of theform array

server mask Bitmask representing valid servers (currently only useful with
SERVER _HTTP)

RETURN VALUE

=0: Success; location of form in TCP/IP servers' object list;
- 1: Failed to add form

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addfsfil e, sspec_addfunction, sspec_addrootfile,
sspec_addvari abl e, sspec_addxmenvar, sspec_addxnmenfile
sspec_al i asspec, sspec_addfv

Chapter 3: Server Utility Library 113

sspec_addfsfile
i nt sspec_addfsfile(char* nane, byte filenum word servernmask);

DESCRIPTION

Addsafilelocated in the file system to the TCP/IP servers’ abject list. Make sure that
SSPEC_MAXSPEC s large enough to hold this new entry.

PARAMETERS
name Name of the new file.
filenum Number of the filein the file system.

server mask Bitmask representing valid servers.

RETURN VALUE

- 1: Failure;
20: Success; location of filein TCP/IP servers' object list.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addrootfil e, sspec_addfunction, sspec_addvari abl e,
sspec_addxmenfil e, sspec_addform sspec_aliasspec

114 TCP/IP User’s Manual

sspec_addf uncti on

i nt sspec_addfunction(char* nanme, void (*fptr)(), word
server mask) ;

DESCRIPTION

Adds afunction to the list of objects recognized by the server. Make sure that
SSPEC MAXSPECislargeenoughto hold thisnew entry. Thisfunctioniscurrently only
useful for HTTP servers.

PARAMETERS
name Name of the function.
(*ftpr)() Pointer to the function.

server mask Bitmask representing servers for which this function will be valid
(currently only useful with SERVER_HTTP).
RETURN VALUE

- 1: Failure;
=0: Success, location of the function in the TCP/IP servers' object list.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addform sspec_addfsfile, sspec_addrootfile,
sspec_addvari abl e, sspec_addxmenfile, sspec_aliasspec

Chapter 3: Server Utility Library

115

sspec_addfv
i nt sspec_addfv(int form int var);

DESCRIPTION
Addsavariableto aform.

PARAMETERS
form Index of the form in the TCP/IP servers' object list.
var Index of the variable in the TCP/IP servers' object list.

RETURN VALUE

- 1: Failure;
20: Success; next available index into the For nvar array.

LIBRARY
ZSERVER. LI B

116 TCP/IP User’s Manual

sspec_addrootfile

int sspec_addrootfile(char* nane, char* fileloc, int len, word
server mask) ;

DESCRIPTION

Addsafilethat islocated in root memory to the TCP/IP servers' object list. Make sure
that SSPEC_MAXSPEC s large enough to hold this new entry.

PARAMETERS
name Name of the new file.
fileloc Pointer to the beginning of thefile.
| en Length of thefilein bytes.

server mask Bitmask representing serversfor which thisentry will be valid (e.g.
SERVER HTTP, SERVER FTP).

RETURN VALUE
- 1: Failure;
=0: Success, location of thefileinthe TCP/IP servers' object list.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addfsfil e, sspec_addxmenfile, sspec_addvari able,
sspec_addfuncti on sspec_addform sspec_aliasspec

Chapter 3: Server Utility Library 117

sspec_addvari abl e

i nt sspec_addvari abl e(char* nanme, void* variable, word type,
char* format, word servernmask);

DESCRIPTION

Addsavariableto the TCP/IP servers object list. Make sure that SSPEC_MAXSPEC s
large enough to hold this new entry. This function is currently only useful for the HTTP

server.
PARAMETERS

name Name of the new variable.

vari abl e Address of actua variable.

type Type of thevariable (e.g., | NT8,1 NT16, PTR16, etc.).

f or mat Output format of the variable.

server mask Bitmask representing servers for which this function will be vadid
(currently only useful with SERVER_HTTP).

RETURN VALUE

- 1: Failure;
=0: Success, the location of the variable in the TCP/IP servers' object list.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addfsfile, sspec_addrootfile, sspec_addxmenfile,
sspec_addfuncti on sspec_addform sspec_aliasspec

118 TCP/IP User’s Manual

sspec_addxnmenfil e

i nt sspec_addxmenfil e(char* name, long fileloc, word
server mask) ;

DESCRIPTION

Addsafile, located in extended memory, to the TCP/IP servers' object list. Make sure
that SSPEC_MAXSPEC s large enough to hold this new entry.

PARAMETERS
name Name of the new file.
fileloc Location of the beginning of the file. The first 4 bytes of thefile
must represent the length of thefile (#xi npor t doesthisautomat-
icaly).

server mask Bitmask representing serversfor which thisentry will be valid (e.g.
SERVER HTTP, SERVER FTP).

RETURN VALUE

- 1: Failure;
=0: Success, the location of the file in the TCP/IP servers’ object lit.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addfsfile, sspec_addrootfile, sspec_addvari able,
sspec_addxmenvar, sspec_addfunction, sspec_addform
sspec_al i asspec

Chapter 3: Server Utility Library

119

sspec_addxnmenvar

i nt sspec_addxmenvar (char* name, |ong variable, word type,
char* format, word servernmask);

DESCRIPTION
Add avariable located in extended memory to the TCP/IP servers object list. Make sure
that SSPEC MAXSPEC slarge enough to hold this new entry. Currently, thisfunctionis
useful only for the HTTP server.

PARAMETERS
name Name of the new variable.
vari abl e Address of the variablein extended memory.
type Variabletype(e.g., | NT8, | NT16, PTR16, €tc.).
f or mat Output format of the variable.

server mask Bitmask representing valid servers (currently only useful with
SERVER _HTTP).

RETURN VALUE

- 1: Failure;
=0: Success, the location of the variable in the TCP/IP servers' object list.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addfsfile, sspec_addrootfile, sspec_addvari able,
sspec_addfunction, sspec_addform sspec_addxmenfil e,
sspec_al i asspec

120 TCP/IP User’s Manual

sspec_al i asspec
i nt sspec_aliasspec(int sspec, char* nane);

DESCRIPTION

Creates an diasto an existing object in the TCP/IP servers' object list. Make sure that
SSPEC_MAXSPEC s large enough to hold this new entry. Please note, thisisNOT a
deep copy. That is, any file, variable, or form that the alias references will be the same
copy of thefile, variable, or form that already existsin the TCP/IP servers' object list.
This should be called only when the original entry has been completely set up.

PARAMETERS
sspec Location of the object in the TCP/IP servers' object lit that will be
aliased.
name Namefield of the Ser ver Spec structure that will be aliased.

RETURN VALUE

- 1: Failure
=0: Success; return location of alias, i.e., new index

LIBRARY
ZSERVER. LI B

See also

sspec_addform sspec_addfsfile, sspec_addfunction,
sspec_addrootfil e, sspec_addvariable, sspec_addxnenfile

Chapter 3: Server Utility Library 121

sspec_checkaccess
i nt sspec_checkaccess(int sspec, int uid);

DESCRIPTION

Thisfunction checks whether or not the specified user has permission to access the spec-
ified object in the TCP/IP servers' object list.

PARAMETERS
sspec Location of object in TCP/IP servers' object list.
ui d Location of the user in the TCP/IP userslist.

RETURN VALUE

0: User does not have access;
1: User has access
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_needsaut henti cati on

sspec_findfv
int sspec_findfv(int form char* varnane);

DESCRIPTION
Finds the index in the array of type For mvar of aform variablein agiven form.

PARAMETERS
form Location of theform in the TCP/IP servers' object list.
var nane Name of the variable to find.

RETURN VALUE

- 1: Failure;
20: Success, the index of the form variable in the array of type For nVar .

LIBRARY
ZSERVER. LI B

122 TCP/IP User’s Manual

sspec_fi ndnane
i nt sspec_findnane(char* name, word server);

DESCRIPTION

Findsthelocation of the object associated with nanme and returnsthelocation (index into
theser ver _spec array) of the object if the server isallowed accessto it. (Accessis
determined by theser ver nask field inthe Ser ver Spec sructure for the object.)

PARAMETERS
name Name to search for in the TCP/IP servers' abject list.
server The server making the request (e.g. SERVER _HTTP).

RETURN VALUE

- 1: Failure;
=0: Success, location of the object in the TCP/IP servers' abject list.

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_findnextfile

Chapter 3: Server Utility Library

123

sspec_findnextfile
int sspec_findnextfile(int start, word server);
DESCRIPTION

Findsthefirst Ser ver Spec structureinthearray, at or following the structure indexed
by st art, thatisassociated with afile and that is accessible by the server.

PARAMETERS
start The array index at which to begin the search.
server The server making the request (e.g. SERVER _HTTP).

RETURN VALUE
- 1: Failure;
20: Success, index of requested Ser ver Spec structure.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_findname

sspec_getfil el oc
| ong sspec_getfileloc(int sspec);

DESCRIPTION

Getsthelocationin memory or inthefile system of afilerepresented by aSer ver Spec
structure. Note that the location of the fileis returned as along; the return value should
be cast to the appropriate type (char * for aroot file, Fi | eNumfor the file system) by
theuser. sspec_getfil et ype() canbeusedto find thefiletype.

PARAMETERS
sspec Index into the array of Ser ver Spec sructures.

RETURN VALUE

=0: Success, location of thefile;
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_getfiletype, sspec_getlength

124 TCP/IP User’s Manual

sspec_getfiletype
word sspec_getfiletype(int sspec);

DESCRIPTION

Getsthe type of afile represented by a Ser ver Spec structure.

PARAMETERS

sspec Index into the array of Ser ver Spec sructures.

RETURN VALUE

SSPEC ERROR: Failure;
I =SSPEC_ERROR: Success, the type of file.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_getfilel oc, sspec_gettype

sspec_getforntitle
char* sspec_getformitle(int form;

DESCRIPTION
Getsthetitle for an automatically generated form.

PARAMETERS

form server _spec index of theform.

RETURN VALUE

NULL: Failure;
I NULL: Success, title string.

LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library

125

sspec_getfunction
voi d* sspec_getfunction(int sspec);
DESCRIPTION
Accessesthearray of Ser ver Spec structuresto get a pointer to the requested function.

PARAMETERS
sspec Index into the array of Ser ver Spec sructures.

RETURN VALUE

NULL: Failure;
I NULL: Success, pointer to requested function.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addfuncti on

126 TCP/IP User’s Manual

sspec_getfvdesc
char* sspec_getfvdesc(int form int var);

DESCRIPTION
Getsthe description of avariable that is displayed in the HTML form table.

PARAMETERS
form server _spec index of theform.
var Index (into the For mVar array) of the variable.

RETURN VALUE

NULL: Failure;
I NULL: Success, description string.

LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library 127

sspec_getfventrytype
int sspec_getfventrytype(int form int var);

DESCRIPTION
Getsthe type of form entry element that should be used for the given variable.

PARAMETERS
form server _spec index of theform.
var Index (into the For mar array) of the variable.

RETURN VALUE

- 1: Failure;

Type of form entry element on success:
HTM._FORM _TEXT isatext box.
HTM._FORM_PULLDOWN isa pull-down menu.

LIBRARY
ZSERVER. LI B

sspec_getfvlen

int sspec_getfvlen(int form int var);

DESCRIPTION
Getsthelength of aform variable (the maximum length of the string representation of the
variable).
PARAMETERS
form server _spec index of theform.
var Index (into the For mvvar array) of the variable.

RETURN VALUE
- 1: Failure;
>0: Success, length of the variable.

LIBRARY
ZSERVER. LI B

128 TCP/IP User’s Manual

sspec_get fvnane
char* sspec_getfvname(int form int var);

DESCRIPTION
Getsthe name of avariablethat is displayed in the HTML form table.

PARAMETERS
form server _spec index of theform.
var Index into the array of For mVar structures of the variable.

RETURN VALUE

NULL: Failure;
I NULL, name of the form variable.

LIBRARY
ZSERVER. LI B

sspec_get fvnum
int sspec_getfvnum(int form;
DESCRIPTION
Gets the number of variablesin aform.

PARAMETERS

form server _spec index of theform.

RETURN VALUE

- 1: Failure
=0: Success, number of form variables.

LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library

129

sspec_get fvopt
char* sspec_getfvopt(int form int var, int option);

DESCRIPTION

Getsthe numbered option (starting from 0) of the form variable. Thisfunctionisonly val-
idif the form variable has the option list set.

PARAMETERS
form server _spec index of theform.
var Index into the array of For nVar structures of the variable.
option Index of the form variable option.

RETURN VALUE

NULL: Failure;
I NULL: Success, form variable option.

LIBRARY
ZSERVER. LI B

sspec_getfvoptlistlen
int sspec_getfvoptlistlen(int form int var);
DESCRIPTION

Getsthe length of the options list of the form variable. This functionisonly valid if the
form variable has the option list set.

PARAMETERS
form server _spec index of theform.
var Index (into the For mvar array) of the variable.

RETURN VALUE

- 1: Failure;
>0: Success, length of the optionslist.

LIBRARY
ZSERVER. LI B

130 TCP/IP User’s Manual

sspec_getfvreadonly
i nt sspec_getfvreadonly(int form int var);

DESCRIPTION
Checksif aform variableis read-only.

PARAMETERS
form server _spec index of theform.
var Index (into the For mVar array) of the variable.

RETURN VALUE

0: Read-only;
1: Not read-only;
- 1: Failure.

LIBRARY
ZSERVER. LI B

sspec_getfvspec
int sspec_getfvspec(int form int var);

DESCRIPTION
Getstheser ver _spec index of avariablein aform.

PARAMETERS
form server _spec index of theform.
var Index into the array of For mVar structures of the variable.

RETURN VALUE

- 1: Failure;
20: Success, location of the form variable in the TCP/IP servers' object list.

LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library

131

sspec_getl ength
| ong sspec_getlength(int sspec);
DESCRIPTION

Getsthe length of the file associated with the specified Ser ver Spec structure.

PARAMETERS

sspec Location of filein TCP/IP servers' object list.

RETURN VALUE
- 1: Failure;
=0: Success, length of thefilein bytes.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_readfile, sspec_getfileloc

sspec_get nane
char* sspec_getnanme(int sspec);
DESCRIPTION

Accessesthearray of Ser ver Spec structuresand returnsapointer to the object’ sname.

PARAMETERS

sspec Location of object in TCP/IP servers' object list.

RETURN VALUE

NULL: Failure;
'NULL: Success, pointer to name string.

LIBRARY
ZSERVER. LI B

132 TCP/IP User’s Manual

sspec_get prefornfunction
voi d* sspec_getprefornfunction(int form;

DESCRIPTION

Gets the user function that will be called just before HTML form generation. This func-
tion is useful mainly for custom form generation functions.

PARAMETERS

form spec index of the form

RETURN VALUE

NULL: No user function.
I NULL: Pointer to user function.

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_setprefornfuncti on, sspec_setfornfunction

Chapter 3: Server Utility Library 133

sspec_getreal m
char* sspec_getreal mint sspec);

DESCRIPTION
Returns the realm for the object.
PARAMETERS
sspec L ocation of the abject in the TCP/IP servers object list.

RETURN VALUE

NULL: Failure;
I NULL: Success, pointer to the realm string.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_setreal m

sspec_gettype
word sspec_gettype(int sspec);

DESCRIPTION
Getsthet ype fidd of aSer ver Spec structure.

PARAMETERS

sspec Location of the object in the TCP/IP servers object list.

RETURN VALUE

SSPEC _ERROR: Failure;
t ype fidd: Success (See “Constants Used in Zserver.lib” on page 106). For filesand
variables, it returnsthe generic type SSPEC _FI LE or SSPEC_VARI ABLE, respective-

ly.

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_getfiletype, sspec_getvartype

134 TCP/IP User’s Manual

sspec_get user nane
char* sspec_getusername(int sspec);
DESCRIPTION

Gets the username field of aSer ver Aut h structure.

PARAMETERS

sspec Location of user in TCP/IP userslist.

RETURN VALUE

NULL: Failure;
I NULL: Success, pointer touser nane.

LIBRARY
ZSERVER. LI B

SEE ALSO

saut h_adduser, sspec_setuser

sspec_get var addr
voi d* sspec_getvaraddr(int sspec);

DESCRIPTION
Returns a pointer to the requested variablein the TCP/IP servers’ object list.

PARAMETERS

sspec Location of the variable in the TCP/IP servers' object list.

RETURN VALUE

NULL: Failure;
I NULL: Success, pointer to variable.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_readvari abl e

Chapter 3: Server Utility Library

135

sspec_get var ki nd

word sspec_getvarkind(int sspec);

DESCRIPTION
Returnsthekind of variablerepresented by sspec (I NT8,1 NT16, 1 NT32, FLOAT32,
or PTR16).

PARAMETERS
sspec Location of the variable in the TCP/IP servers' object list.

RETURN VALUE

0: Failure;
INT8 | INT16 | INT32 | FLOAT32 | PTR16 : Success.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_getvaraddr, sspec_getvartype, sspec_gettype

sspec_getvartype
word sspec_getvartype(int sspec);
DESCRIPTION
Getsthe type of the variablein the TCP/IP servers’ object list.
PARAMETERS
sspec Location of the variable in the TCP/IP servers' object list.

RETURN VALUE

SSPEC ERROR: Failure;
SSPEC ROOTVAR or SSPEC_XMEMVAR: Success.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_getvaraddr, sspec_getvarkind, sspec_gettype

136 TCP/IP User’s Manual

sspec_needsaut henti cati on
i nt sspec_needsaut hentication(int sspec);

DESCRIPTION

Checksif an object inthe TCP/IP servers object list needs user authentication to permit
access. Thereisafield inthe Ser ver Spec structure that is an index into the array of
Ser ver Aut h structures(list of valid users). If thisfield hasavalue, accessto the object
islimited to the one user specified.

PARAMETERS

sspec Index into the array of Ser ver Spec sructures.

RETURN VALUE

0: Does not need authentication;
1: Does need authentication;
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_getreal m

Chapter 3: Server Utility Library

137

sspec_readfile

int sspec_readfile(int sspec, char* buffer, long offset, int
l en);

DESCRIPTION
Read afilerepresented by thesspec index intobuf f er, starting at of f set , and only
copyingl en bytes. For xmem files, this function automatically skipsthefirst 4 bytes.
Hence, an offset of 0 marks the beginning of the file contents, not the file length.

PARAMETERS
sspec Index into the array of Ser ver Spec sructures.
buf f er The buffer to put the file contents into.
of f set The offset from the start of thefile, in bytes, at which copying
should begin.
I en The number of bytesto copy.

RETURN VALUE

- 1: Failure;
=0: Success, number of bytes copied.

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_getlength, sspec_getfileloc

138 TCP/IP User’s Manual

sspec_readvari abl e
i nt sspec_readvariabl e(int sspec, char* buffer);

DESCRIPTION

Formats the variable associated with the specified Ser ver Spec structure, and puts a
NUL L-terminated string representation of it in buf f er . The macro

SSPEC XMEMVARLEN (default is 20) defines the size of the stack-all ocated buffer
when reading avariable in xmem.

PARAMETERS
sspec Index into the array of Ser ver Spec sructures.
buf f er The buffer in which to put the variable.

RETURN VALUE

0: Success;
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_get var addr

sspec_renove
i nt sspec_renove(int sspec);
DESCRIPTION
Removes an object from the TCP/IP servers' object list.

PARAMETERS
sspec Index into the array of Ser ver Spec structures.

RETURN VALUE

0: Success
- 1: Failure (i.e. theindex is already unused).

LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library

139

sspec_restore
i nt sspec_restore(void);

DESCRIPTION

Restoresthe TCP/IP servers' object list and the TCP/IP userslist (and some user-speci-
fied dataif set upwithsspec_set savedat a()) from thefile system. This does not
restore the actud files and variables, but only the structures that reference them. If the
files are stored in flash, then the references will till bevalid. Filesin volatile RAM and
variables must be rebuilt through other means.

RETURN VALUE

0: Success.
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_save, sspec_setsavedata

sspec_save
i nt sspec_save(void);

DESCRIPTION

Savesthe servers' object list and server authorization list (along with some user-specified
dataif sstupwithsspec_set savedat a()) tothefilesystem. Thisdoesnot savethe
actual filesand variables, but only the structuresthat referencethem. If thefilesare stored
in flash, then the references will still be valid. Filesin volatile RAM and variables must
be rebuilt through other means.

RETURN VALUE

0: Success.
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_restore, sspec_setsavedata

140 TCP/IP User’s Manual

sspec_setfornmepil og
int sspec_setfornepilog(int form int function);

DESCRIPTION

Sets the user-specified function that will be called when the form has been successfully
submitted. Thisfunction can, for example, executeacgi _r edi r ect t o to redirect to
aspecific page. It should accept "HttpState* state” as an argument, return O when it isnot
finished, and 1 when it isfinished (i.e., behave like anormal CGI function).

PARAMETERS
form Index into the array of Ser ver Spec sructures.
function Index into the array of Ser ver Spec structures. Thisisthe return

value of thefunction sspec_addf uncti on().

RETURN VALUE

0 : Success.
-1 : Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addfuncti on

Chapter 3: Server Utility Library

141

sspec_setfornfunction

int sspec_setfornfunction(int form void (*fptr)());

DESCRIPTION

Sets the function that will generate the form.

PARAMETERS
form
fptr

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

server _spec index of theform.

Form generation function (NULL for the default function).

142

TCP/IP User’s Manual

sspec_set f or npr ol og
int sspec_setfornprolog(int form int function);

DESCRIPTION

Allows auser-specified function to be called just before form variables are updated. This
is useful for implementing locking on the form variables (which can then be unlocked in
the epilog function), so that other code will not update the variables during form pro-
cessing. The user-specified function should accept "HttpState* state" as an argument,
return O when it is not finished, and 1 when it isfinished (i.e., behave like anormal CGlI

function).
PARAMETERS
form Index into the array of Ser ver Spec structures.
function Index into the array of Ser ver Spec structures. Thisisthe return

valueof sspec_addf uncti on().

RETURN VALUE

0: Success.
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addfuncti on

Chapter 3: Server Utility Library 143

sspec_setforntitle
int sspec_setforntitle(int form char* title);

DESCRIPTION
Sets thetitle for an automatically generated form.

PARAMETERS
form server _spec index of theform.
title Title of the HTML page.

RETURN VALUE

0: Success
- 1: Failure;

LIBRARY
ZSERVER. LI B

144 TCP/IP User’s Manual

sspec_setfvcheck
int sspec_setfvcheck(int form int var, int (*varcheck)());
DESCRIPTION

Sets afunction that can be used to check the integrity of avariable. The function should
return O if thereisno error, or 10 if thereisan error.

PARAMETERS
form server _spec index of theform.
var Index (into the For mvar array) of the variable.
var check Pointer to integrity-checking function.

RETURN VALUE

>0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library 145

sspec_setfvdesc
i nt sspec_setfvdesc(int form int var, char* desc);

DESCRIPTION
Sets the description of avariable that is displayed in the HTML form table.

PARAMETERS
form server _spec index of theform.
var Index (into the For mar array) of the variable.
desc Description of the variable. Thistext will display on the html page.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

sspec_setfventrytype
int sspec_setfventrytype(int form int var, int entrytype);

DESCRIPTION
Sets the type of form entry element that should be used for the given variable.

PARAMETERS
form server _spec index of theform.
var Index (into the For mar array) of the variable.

entrytype HTM._FORM _TEXT for atext box, HTM._FORM_PULLDOMNfor
apull-down menu. The default isHTM._ FORM_TEXT.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

146 TCP/IP User’s Manual

sspec_setfvfl oatrange

int sspec_setfvfloatrange(int form int var, float |ow,
hi gh) ;

DESCRIPTION
Sets the range of afloat.

PARAMETERS
form server _spec index of theform.
var Index (into the For mvar array) of the variable.
| ow Minimum value of the variable.
hi gh Maximum value of the variable.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

sspec_setfvlen

int sspec_setfvlen(int form int var, int |len);

fl oat

DESCRIPTION
Setsthelength of aform variable (the maximum length of the string representation of the
variable).
PARAMETERS
form server _spec index of theform.
var Index (into the For mvvar array) of the variable.
I en Length of the variable.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library

147

sspec_setfvnane
int sspec_setfvname(int form int var, char* nane);

DESCRIPTION
Sets the name of avariable that is displayed inthe HTML form table.

PARAMETERS
form server _spec index of theform.
var Index (into the For mar array) of the variable.
name Display name of the variable.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

sspec_setfvoptli st

int sspec_setfvoptlist(int form int var, char* list[], int
listlen);

DESCRIPTION
Sets an enumerated list of possible values for a string variable.

PARAMETERS
form server _spec index of theform.
var Index (into the For mvvar array) of the variable.
list[] Array of string values that the variable can assume.
listlen Length of the array.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

148 TCP/IP User’s Manual

sspec_setfvrange
i nt sspec_setfvrange(int form int var, long low, | ong high)

DESCRIPTION
Sets the range of an integer.

PARAMETERS
form server _spec index of theform.
var Index (into the For mVar array) of the variable.
| ow Minimum value of the variable.
hi gh Maximum value of the variable.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

sspec_setfvreadonly
int sspec_setfvreadonly(int form int var, int readonly);

DESCRIPTION
Sets the form variable to be read-only.

PARAMETERS
form server _spec index of theform.
var Index (into the For mvar array) of the variable.
readonly 0 for read/write (thisisthe default);
1 for read-only.
RETURN VALUE
0: Success
- 1: Failure
LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library

149

sspec_set prefornfunction
int sspec_setprefornfunction(int form void (*fptr)());

DESCRIPTION

Sets a user function that will be called just before form generation. The user function is
not called when the form is being generated because of errorsin the form input. The user
function must have the following prototype:

void userfunction(int forn;

The function may not use the parameter, but it is useful if the same user functionis used
for multiple forms.

PARAMETERS
form spec index of the form
fptr Pointer to user function to be called just before form generation

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_get prefornfunction

150 TCP/IP User’s Manual

sspec_setrealm
i nt sspec_setreal mint sspec, char* realm;

DESCRIPTION

Setstheream field of aSer ver Spec sructurefor HTTP authentication purposes. Set-
ting thisfield enables authentication for the given entry inthe TCP/IP servers' object list.
Authentication can be turned off again by passing "" asthe realm parameter to this func-

tion.

PARAMETERS
sspec Index into the array of Ser ver Spec sructures.
realm Name of the realm.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_getreal m

Chapter 3: Server Utility Library

151

sspec_set savedat a

i nt sspec_setsavedata(char* data, unsigned |long |len, void*
fptr);

DESCRIPTION

Sets user-supplied data that will be saved in addition to the spec and user authentication
tableswhensspec_save() iscdled.

PARAMETERS
dat a Pointer to location of user-supplied data.
I en Length of the user-supplied datain bytes.
fptr Pointer to afunction that will be called when the user-supplied data

has been restored

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_save,sspec_restore

152 TCP/IP User’s Manual

sspec_set user
i nt sspec_setuser(int sspec, int uid);

DESCRIPTION
Sets the user (owner) of aSer ver Spec structure.

PARAMETERS
sspec Index into the array of Ser ver Spec sructures.
ui d Index into the array of Ser ver Aut h structures (identifies user).

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

SEE ALSO

saut h_adduser, sspec_getusernane

Chapter 3: Server Utility Library

153

154 TCP/IP User’s Manual

4. HTTP Server

An HTTP (Hypertext Transfer Protocol) server makes HTML (Hypertext Markup Language) docu-
ments and other documents available to clients, i.e., web browsers. HTTP is implemented by
HTTP. LI B.

4.1 HTTP Server Data Structures
There are four data structuresin HTTP. LI B of interest to developers of HTTP servers.

4.1.1 HttpSpec
The data structure Ht t pSpec contains al the files, variables, and functions the Web server has
accessto. The structure Ser ver Spec from ZSERVER. LI B may be instead.

typedef struct {
word type;
char nane[HTTP_MAXNAME] ;
| ong dat a;
voi d* addr;
word vartype;
char* format;
Ht t pReal nt realm
} Htt pSpec;

4.1.1.1 HttpSpec fields

type Thisfield tellsthe server if the entry isafile, variable or function
(HTTPSPEC_FI LE, HTTPSPEC_VARI ABLE or
HTTPSPEC_FUNCTI ON, respectively).

name Thisfield specifies a unique name for referring to the entry. The
Web server recognizes”/ i ndex. ht nl ” astheentity that matches
“http://someurl.comindex. htm”, anddeliverstheen-
try’s content based on the value of t ype (thefirst field).

dat a Thethird field is the physical address of the entity.

addr Thefourthfiedis ashort pointer to the entity. Either the third field
or thefourth field is valid, not both. All files must use the physical
address, variables and functions use the short pointer.

vartype Thisfield describesthetype of variable. Supportedtypesare: | NT8
| NT16, PTR16, | NT32, and FLOAT.

f or mat Theformat field describesthepr i nt f format specifier usedtodis-
play the variable.

realm Thisfield isthe name and password required to access the entity.

Chapter 4: HTTP Server 155

4.1.2 HttpType

The structure Ht t pType associates afile extension with aMIME type (Multipurpose Internet Mail
Extension) and a function which handles the MIME type. Users can override HTTP_MAXNANME
(which defaultsto 20 characters) in their source file.lf the function pointer given is NULL, then the
default handler (which sends the content verbatim) is used.

typedef struct {

char extension[10];

char type[HTTP_MAXNAME] ;

int (*fptr)(/* HtpState* */);
} HttpType;

4.1.3 HttpRealm

The structure Ht t pReal mholds user-I1D and password pairs for partitions called realms. These
realms allow the protected resources on a server to be partitioned into a set of protection spaces, each
with its own authentication scheme and/or authorization database.

typedef struct {
char user name[HTTP_MAXNAME] ;
char passwor d[HTTP_MAXNAME] ;
char real nf HTTP_MAXNAME] ;

} HttpReal m

HTTP/1.0 Basic authentication is used. This scheme is not a secure method of user authentication
across an insecure network (e.g., the Internet). HTTP/1.0 does not, however, prevent additional
authentication schemes and encryption mechanisms from being employed to increase security.

Inthe Ht t pSpec structure, there is a pointer to a structure of type Ht t pReal m To password-pro-
tect the entity, add the name, password, and realm desired. If you do not want to password-protect the
entity, leave the realm pointer in the Ht t pSpec structure NULL.

156 TCP/IP User’s Manual

4.1.4 HttpState
Use of this structure is necessary for CGI functions. Some of the fields are off-limits to developers.

typedef struct {
tcp_Socket s;

/* State information */
int state, substate, subsubstate, nextstate, |aststate;

/* File referenced */

Ht t pSpecAl | spec, subspec;
HitpType *type;

int (*handler)(), (*exec)();

[* rx/tx state variables */

| ong of fset;

| ong | engt h;

long filelength, subfilelength;
| ong pos, subpos;

long tineout, |long main_tineout;
char buf fer[HTTP_MAXBUFFER] ;
char *p;

/* http request and header info */
char nmet hod;

char url [HTTP_MAXURL] ;

char version;

char connecti on;

char content type[40];

| ong content | engt h;

char has_form

char finish form

char user nanme[HTTP_MAXNAME]
char passwor d[HTTP_MAXNAME]
char cooki e[HTTP_MAXNANME]

i nt headerl en;

i nt headeroff;

/* other - don't touch */

char tag[HTTP_MAXNAME] ;

char val ue[HTTP_MAXNAME]
} HttpState;

Chapter 4: HTTP Server 157

4.1.4.1 HttpState Fields
The fields discussed here are available for developers to use in their application programs.

s Thisisthe socket associated with the given HTTP server. A devel-
oper can use thisin a CGlI function to output dynamic data. Any of
the TCP functions can be used.

subst at e

subsubst at e These are intended to be used to hold the current state of a state ma-

chinefor aCGl function. Thatis, if aCGI function relinquishes con-
trol back to the HTTP server, then the values in these variables will
be preserved for thenext ht t p_handl er () call, inwhich the
CGl function will be called again. These variables are initialized to
0 beforethe CGI functioniscalled for thefirst time. Hence, thefirst
state of a state machine using substate should be 0.

ti meout Thisvalue can be used by the CGI function to implement an internal
timeout.
mai n_ti meout Thisvalue holdsthe timeout that is used by the web server. Theweb

server checks against this timeout on every call of

htt p_handl er () . Whentheweb server changes states, it resets
mai n_t i meout . When it has stayed in one state for too long, it
cancelsthe current processing for the server and goes back to theini-
tial state. Hence, a CGlI function may want to reset thistimeout if it
needs more processing time (but care should be taken to make sure
that the server isnot locked up forever). This can be achieved like
this:

state->main_timeout = set_tineout (HTTP_TI MEQUT) ;
HTTP_TI MEQUT isthe number of seconds until theweb server will
time out. It is 16 seconds by default.

buffer[] A buffer that the devel oper can useto put datato be transmitted over
the socket. Itis of size HTTP_MAXBUFFER.

p Pointer into the buffer given above.

nmet hod This should be treated as read-only. It holds the method by which

the web request was submitted. Thevalueis either
HTTP_METHOD_GET or HTTP_METHOD_POST, for the GET
and POST request methods, respectively.

url[] This should be treated as read-only. It holds the URL by which the
current web request was submitted. . If there is GET-style form in-
formation, then that information will follow the first NULL bytein
the url array. The form information will itself be NULL-terminated.
If the information in the url array is truncated to HTTP_ MAXURL
bytes, the truncated information is also NUL L-terminated.

158 TCP/IP User’s Manual

version This should be treated as read-only. This holds the version of the
HTTP request that was made. It canbe HTTP_VER 09,
HTTP_VER 10, or HTTP_VER 11 for 0.9, 1.0, or 1.1 requests,
respectively.

content _type[] Thisshouldbetreated asread-only. Thisbuffer holdsthe valuefrom
the Content-Type header sent by the client.

content | ength Thisshould betreated asread-only. This variable holds the length
of the content sent by the client. It matchesthe value of the Content-
Length header sent by the client.

has_form This should be treated as read-only. If thevalueis 1 thereisa GET
style form, after the\O byteinur | [].

user nane[| Read-only buffer has username of the user making the request, if au-
thentication took place.

password[] Read-only buffer has password of the user making the request, if au-
thentication took place.

cooki e[] Read-only buffer contains the value of the cookie "DCRABBIT"
(seehtt p_set cooki e() for moreinformation).

header | en

header of f These variables can be used in conjunction to cause the web server

to flush datafrom the buf f er [] array in the HttpState structure.
header | en should be set to the amount of datain buffer[],
and header of f should be set to O (to indicate the offset into the
array). The next timethe CGI functioniscalled thedatain buf f -
er [] will beflushed to the socket.

4.2 Configuration Macros
The following macros are availablein HTTP. LI B:

HTTP_MAXNAME

Thisisthe maximum length for anamein the Ht t pSpec structure. This defaults to 20 characters.
Without overriding this value, the maximum length of any name is 19 characters because one charac-
ter isused for the NULL termination.

HTTP_NMAXRAMSPEC
Thisis the maximum number of Ht t pSpec entries that can be added at runtime. This macro over-
rides SSPEC_ MAXSPEC.

HTTP_MAXSERVERS

Thisisthe maximum number of HTTP servers listening on port 80. The default istwo. You may
increase this value to the maximum number of independent entities on your page. For example, for a
Web page with four pictures, two of which are the same, set HTTP_MAXSERVERS to four: one for
the page, one for the duplicate images, and one for each of the other two images. By default, each

Chapter 4: HTTP Server 159

server takes 2500 bytes of RAM. ThisRAM usage can be changed by the macro SOCK_BUF_SI ZE
(ort cp_MaxBuf Si ze which is deprecated as of Dynamic C ver. 6.57). Another optionisto usethe
tcp_reserveport () function and asmaller number of sockets.

HTTP_PORT
This macro allows the user to override the default port. Define it before theline#use http. | i b.

TI MEZONE

This macro specifies the distance in hours you are from Greenwich Mean Time (GMT), which is5
hours ahead of Eastern Standard Time (EST). The default TI MEZONE is -8, which represents Pacific
Standard Time. You can usethet m wr () function to set the clock to the correct value. If you lose
power and don’t have the battery-backup option, the time will need to be reset.

4.2.1 Customizing HTTP headers

The callback macro, HTTP_CUSTOM HEADERS, will be called whenever HTTP headers are being
sent. To be used, it must be defined as a function with the following prototype:

void nmy_headers(HttpState* state, char* buffer, int bytes);

state Pointer to the state structure for the calling web server.
buf f er The buffer in which the header(s) can be written.
byt es The number of bytes available in the buffer.

Typically, the macro would be defined by the user before ht t p. | i b isused, like in the following:

#def i ne HTTP_CUSTOM HEADERS(state, buffer, bytes) \

my_headers(state, buffer, bytes)
Then, for the above to work, the my _header s() function must be defined by the user, like the fol-
lowing:

void nmy_headers(HttpState* state, char* buffer, int bytes)

{
strcpy(buffer, "Fake-Header: Hello zZ-World!\r\n");

printf("bytes: %\ n", bytes);
}
Of course, in the real world, the user may need to check the number of bytes available to be sure they
don't overwrite the buffer. The buffer must end with "\r\n", and be NUL L-terminated.

4.3 Sample Programs

Sample programs demonstrating HTTP are in the\ Sanpl es\ Tcpi p\ Ht t p directory. Thereisa
configuration block at the beginning of each sample program. Unless you are using BOOTP/DHCP,
the macros in this block need to be changed to reflect your network settings. For most HTTP pro-
grams, you will be concerned with TI MEZONE and the | P address macros. MY_| PADDRESS,
MY_NETMASK, MY_GATEVWAY.

160 TCP/IP User’s Manual

4.3.1 Serving Static Web Pages

The sample program, St at i c. ¢, initializesHTTP. LI B and then sets up a basic static web page. It
is assumed you are on the same subnet as the controller. The codefor St at i ¢. ¢ isexplained in the
following pages.

From Dynamic C, compile and run the program. You will see the LNK light on the board come on
after a couple of seconds. Point your internet browser at the controller (e.g., http://10.10.6.100/). The
ACT light will flash a couple of times and your browser will display the page.

// Static.c

#defi ne My_| P_ADDRESS "10. 10. 6. 100"
#defi ne MY_NETMASK "255. 255. 255. 0"
#defi ne TI MEZONE -8

#menmmap Xxmem
#use "dcrtcp.lib"
#use "http.lib"

#xi nport "sanpl es/tcpi p/ http/ pages/static.htm " index_htmn
#xi nport "sanpl es/tcpip/ http/ pages/rabbitl.gif" rabbitl gif

const HttpType http types[] =

{
{ ".htm", "text/htm ", NULL},
{ ".gif", "image/gif", NULL}
b
const HttpSpec http flashspec[] =
{
{HTTPSPEC FILE, "/", index_htnmi, NULL, O, NULL, NULL},
{HTTPSPEC FI LE, "/index.htm ", index_htm, NULL, O, NULL, NULL},
{HTTPSPEC FILE, “/rabbitl.gif", rabbitl gif, NULL, O, NULL, NULL},
b
mai n()
{
sock_init(); // Initializes the TCP/IP stack
http_init(); // Initializes the web server
tcp_reserveport (80);
while (1) {
http_handl er () ;
}
}

This program servesthest ati c. ht m fileandther abbi t 1. gi f fileto any user contacting the
controller. If you want to change the file that is served by the controller, modify thislinein
Static.c:

#xi nport "sanpl es/tcpi p/ http/ pages/static.htm " index_htmn

Chapter 4: HTTP Server 161

4.3.1.1 Adding Files to Display

Adding additional filesto the controller to serve as web pagesis slightly more complicated. First, add
an #xi nmpor t line with the filename as the first parameter, and a symbol that referencesit in
Dynamic C as the second parameter.

#xi nport "sanpl es/tcpip/ http/ pages/static.htm " index_htnl
#xi nport "sanpl es/tcpi p/ http/ pages/newfile.htm" newfile htmn

Next, find theselinesin St ati c. c:

Ht t pSpec http_fl ashspec[] =

{
{HTTPSPEC FILE, "/", index_htm, NULL, 0, NULL, NULL},
{HTTPSPEC FILE, "/index.htnm", index_htni, NULL, O, NULL, NULL},
{HTTPSPEC FILE, "/newfile.htn", index_htm, NULL,0, NULL, NULL},
{HTTPSPEC FILE, "/rabbitl.gif", rabbitl gif, NULL,0, NULL, NULL},
b

Insert the name of your new file, preceded by “/”, into this structure, using the same format as the
other lines. Compile and run the program. Open up your browser to the new page (e.g.
“http://10.10.6.100/newfile.ntml™), and your new page will be displayed by the browser.

4.3.1.2 Adding Files with Different Extensions

If you are adding afile with an extension that is not html or gif, you will need to make an entry in the
Ht t pType structure for the new extension. Thefirst field is the extension and the second field
describes the MIME type for that extension. You can find alist of MIME types at:

ftp://ftp.isi.edu/in-notes/ianalassignnments/ medi a-types/ nedi a-types
In the media-types document located there, the text in the type column would precede the “/”, and the

subtype column would directly follow. Find the type subtype entry that matches your extension and
addittothehtt p_t ypes table.

Htt pType http_types[] =
{
{ ".htm", "text/htm ", NULL},

{ ".ogif", "image/gif", NULL}

4.3.1.3 Handling of Files With No Extension
The entry “/” and files without an extension are dealt with by the handler specified in the first entry in
http_types[].

162 TCP/IP User’s Manual

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types

4.3.2 Dynamic Web Pages Without HTML Forms

Serving a dynamic web page without the use of HTML formsis done by sample program Ssi . c,
shown below and located in/ Sanpl es/ Tcpi p/ H t p. This program displays four 'lights’ and
four buttons to toggle them. Users can browse to the device and change the status of the lights.

#def i ne MY_GATEWAY " 10. 10. 6. 19"
#define My_I P_ADDRESS "10.10. 6. 100"
#def i ne MY_NETMASK " 255. 255. 255. 0"

#def i ne SOCK_BUF_SI ZE 2048
#def i ne HTTP_MAXSERVERS 1
#def i ne MAX_SOCKETS 1

#def i ne REDI RECTHOST MY_I| P_ADDRESS
#defi ne REDI RECTTO "http: //" REDI RECTHOST "/index.shtm "

#memmap Xxmem
#use "dcrtcp.lib"
#use "http.lib"

/*
* The source code for this programis xinported. This allows
* us to put the line <!--#include file="ssi.c" -->in the
* file Sanpl es/ Tcpi p/ Ht t p/ Pages/ Showsrc. shtnl .
*/

#xi nport "sanpl es/tcpip/ http/pages/ssi.shtm " index_htm

#xi nport "sanpl es/tcpip/ http/ pages/rabbitl.gif" rabbitl gif

#xi nport "sanpl es/tcpi p/ http/ pages/|edon.gif" |edon_gif

#xi nport "sanpl es/tcpi p/ http/ pages/|edoff.gif" |edoff _gif

#xi nport "sanpl es/tcpi p/ http/ pages/button.gif" button_gif

#xi nport "sanpl es/tcpip/ http/ pages/showsrc.shtm " showsrc_sht n
#xi nport "sanpl es/tcpip/http/ssi.c" ssi_c

/
In this case the extension .shtm is the first type in
the type table. This causes the default (no extension)
to assunme the shtm _handl er

/

* X %k X X

const HttpType http types[] = {
{ ".shtm", "text/htm", shtm handler}, // ss

{ ".htm", "text/htm ", NULL}, /1 htm
{ ".cgi", "", NULL}, /1l cg
{ ".qgif", "image/gif", NULL}

s

char | edl[15];
char |ed2[15];
char |ed3[15];
char | ed4[15];

Chapter 4: HTTP Server 163

int |edltoggl e(HttpState* state)
{
if (strcnp(ledl, "l edon.gif")==0)
strcpy(l edl, "l edoff.gif");
el se
strcpy(l edl, "l edon. gif");
cgi _redirectto(state, REDI RECTTO);
return O;
}
int |ed2toggl e(HttpState* state)
{
if (strcnp(led2,"ledon.gif")==0)
strcpy(l ed2, "l edoff.gif");
el se
strcpy(l ed2, "l edon.gif");
cgi _redirectto(state, REDI RECTTO);
return O;
}
int led3toggle(HttpState* state)
{
if (strcnp(led3,"ledon.gif")==0)
strcpy(l ed3, "l edoff.gif");
el se
strcpy(l ed3, "l edon.gif");
cgi _redirectto(state, REDI RECTTO);
return O;
}
int |ed4toggl e(HttpState* state)
{
if (strcnp(led4, "l edon.gif")==0)
strcpy(l ed4, "l edoff.gif");
el se
strcpy(l ed4, "l edon.gi f");
cgi _redirectto(state, REDI RECTTO);
return O;
}
164 TCP/IP User’s Manual

const HttpSpec http flashspec[] = {
{HTTPSPEC FILE, "/", index_htm, NULL, 0, NULL, NULL},

{HTTPSPEC_FI LE, "/index.shtm ", index_htm , NULL, O, NULL, NULL},
{HTTPSPEC FI LE, "/showsrc.shtm ", showsrc_shtm , NULL, O, NULL, NULL},
{HTTPSPEC FI LE, "/rabbitl.gif", rabbitl gif, NULL, O, NULL, NULL},

{HTTPSPEC_FI LE, "/ledon.gif",ledon_gif, NULL, O, NULL, NULL},
{HTTPSPEC_FI LE, "/l edoff.gif",ledoff_gif, NULL, O, NULL, NULL},
{HTTPSPEC_FI LE, "/ button. gif", button_gi f, NULL, O, NULL, NULL},

{HTTPSPEC FILE, "ssi.c", ssi_c, NULL, 0, NULL, NULL},
{HTTPSPEC VARl ABLE, "ledl", O, | edl, PTR16, "os", NULL},
{HTTPSPEC VARl ABLE, "l ed2", O, | ed2, PTR16, "os", NULL},
{HTTPSPEC VARl ABLE, "Ied3", O, | ed3, PTR16, "os", NULL},
{HTTPSPEC VARl ABLE, "Il ed4", O, | ed4, PTR16, "os", NULL},
{HTTPSPEC FUNCTI ON, "/l edltog.cgi", 0O, ledltoggle, 0O, NULL, NULL},
{HTTPSPEC FUNCTI ON, "/l ed2tog.cgi", 0, |led2toggle, O, NULL, NULL},
{HTTPSPEC FUNCTI ON, "/l ed3tog.cgi", 0, |led3toggle, O, NULL, NULL},
{HTTPSPEC FUNCTI ON, "/l ed4tog.cgi", 0, |led4toggle, 0O, NULL, NULL},
}
mai n()
{
strcpy(l edl, "l edon.gif");
strcpy(l ed2, "l edon.gif");
strcpy(l ed3, "l edoff.gif");
strcpy(l ed4, "l edon. gif");
sock _init();
http_init();
tcp_reserveport (80);
while (1) {
http_handl er () ;
}
}

When you compile and run Ssi . ¢, you seethe LNK light on the board come on. Point your browser
at the controller (e.g., http://10.10.6.100/). The ACT light will flash a couple of times and your
browser will display the page.

This program displays pictures of LEDs. Their state istoggled by pressing the image of aBUTTON.
This program uses Server Side Includes (SSI) and the Common Gateway Interface (CGI).

Chapter 4: HTTP Server 165

4.3.2.1 SSI Feature

SSI commands are an extension of the HTML comment command (<!--Thisisacomment -->). They
allow dynamic changesto HTML files and are resolved at the server side, so the client never sees
them. HTML files that need to be parsed because they contain SSI commands, are recognized by the
HTTP server by the file extension shtml.

The supported SSI commands are:

e #fecho var
e #fexec cnd
e#include file

They are used by inserting the command into an HTML file:

<lI--#include file="anyfile” -->
The server replaces the command, #i ncl ude fil e, with the contentsof anyfi |l e.

#exec cnd executesacommand and replaces the SSI command with the output.

Dynamically changing a variable on a web page

The Ssi . sht m file, located inthe/ Sanpl es/ Tcpi p/ Ht t p/ Pages folder, gives an example of
dynamically changing a variable on aweb page using #echo var.

<img SRC="<!--#echo var="I|edl" -->">

In an shtml file, the“<! - - #echo var ="I1 edl" -->"isreplaced by the value of the variable
| edl fromthehtt p_fl ashspec structure.

Ht t pSpec http_fl ashspec[] =

{
...

{ HTTPSPEC VARI ABLE, "ledl", 0, |edl, PTR16, "%", NULL}
...

sht M _handl er looksup | ed1 and replaces it with the text output from:

printf("%", (char*)ledl);

Thel edl variableiseither | edon. gi f orl| edof f. gi f. When the browser loads the page, it
replaces

<img SRC="<!--#echo var="I|edl"-->">
with
<i ng SRC="I edon. gi f">

166 TCP/IP User’s Manual

or

This causes the browser to load the appropriate image file.

4.3.2.2 CGI Feature

Ssi . ¢ aso demonstrates the Common Gateway Interface. CGl is a standard for interfacing external
applications with HTTP servers. Each time a client requests an URL corresponding to a CGl pro-
gram, the server will execute the CGI program in real-time.

For increased flexibility, a CGI function is responsible for outputting its own HTTP headers. Informa-
tion about HTTP headers can be found at:

http://deesse. uni v-1 emans. fr: 8003/ Connect ed/ RFC/ 1945/
Inthe Ssi . sht m file, thisline creates the clickable button viewable from the browser.

<TD> <inmg SRC="button.gif"> </ A> </ TD>

When the user clicks on the button, the browser will request the/ | ed1t 0g. cgi entity. This causes
the HTTP server to examine the contents of theht t p_f | ashspec structure looking for
/1 ed1t og. cgi . Itfindsit and noticesthat | ed1t oggl e() needsto be caled.

Thel ed1t oggl e function changesthe value of thel ed1 variable, then redirects the browser back
to the original page. When the original page is reloaded by the browser, the LED image will have
changed states to reflect the user’s action.

4.3.3 Web Pages With HTML Forms

With aweb browser, HTML forms enable users to input values. With a CGI program, those values
can be sent back to the server and processed. The FORM and INPUT tags are used to create formsin
HTML.

The FORM tag specifies which elements congtitute a single form and what CGI program to call when
the form is submitted. The FORM tag has an option called ACTION. This option defines what CGlI
program is called when the form is submitted (when the “ Submit” button is pressed). The FORM tag
also has an option called METHOD that defines the method used to return the form information to the
web server. In Section 4.3.3.1, “Sample HTML Page,” on page 168, the POST method is used, which
will be described later. All of the HTML between the <FORM> and </FORM> tags define what is
contained within aform.

The INPUT tag defines a specific form element, the individual input fieldsin aform. For example, a
text box in which the user may type in avalue, or a pull-down menu from which the user may choose
anitem. The TY PE parameter defines what type of input field is being used. In following example, in
the first two cases, it isthe text input field, which is asingle-line text entry box. The NAME parame-
ter defines what the name of that particular input variable is, so that when the information is returned
to the server, then the server can associate it with a particular variable. The VALUE parameter defines
the current value of the parameter. The SIZE parameter defines how long the text entry box is (in
characters).

Chapter 4: HTTP Server 167

http://deesse.univ-lemans.fr:8003/Connected/RFC/1945/

At the end of the HTML page in our example, the Submit and Reset buttons are defined with the
INPUT tag. These use the special types “submit” and “reset”, since these buttons have specia pur-
poses. When the submit button is pressed, the form is submitted by calling the CGI program

“nmyf orni.

4.3.3.1 Sample HTML Page
An HTML page that includes aform may look like the following:

<HTM_>
<HEAD><TI TLE>ACVMVE Ther nostat Settings</ Tl TLE></ HEAD>
<BODY>
<H1>ACME Thernostat Settings</Hl>
<FORM ACTI ON="nyform html " METHOD=" POST" >
<TABLE BORDER>
<TR>
<TD>Nane</ TD>
<TD>Val ue</ TD>
<TD>Descri pti on</ TD>
</ TR>

<TR>
<TD>H gh Tenp</TD>
<TD><I NPUT TYPE="text" NAME="tenphi" VALUE="80"
Sl ZE="5"></ TD>
<TD>Maxi mumin tenperature range (°F)</TD>
</ TR>

<TR>
<TD>Low Tenp</ TD>
<TD><I NPUT TYPE="text" NAME="tenpl 0" VALUE="65"
Sl ZE="5"></ TD>
<TD>M ni mum in tenperature range (°F)</TD>
</ TR>

</ TABLE>
<p>
<I NPUT TYPE="subm t" VALUE="Submt">
<I NPUT TYPE="reset" Val ue="Reset">
</ FORM></ BODY>
</ HTML>

168 TCP/IP User’s Manual

The form might display as follows:

2 ACME Thermostat Settings - Netscape

File Edt “iew Go Communicator Help
T Back Fonward Reload Home Search Metzcape Print Sﬂ
% wf Bookmarks & Location: [fle:///Climpfom html = | @507 What's Related

ACME Thermostat Settings

|Name |Turalue |Description
Hizgh Temp IBD Ilzzatmum in ternperature range (°F)
Low Tetmp IES Ilinitmum i tetnperature range (°F)

Submit | Reszet |

@ |=4IV= | |D|:u:ument: Done

When the form is displayed by a browser, the user can change values in the form. But how does this
changed data get back to the HTTP server? By using the HTTP POST command. When the user
presses the “ Submit” button, the browser connects to the HTTP server and makes the following
request:

POST nyform HTTP/ 1.0
(some header infornmation)

Content-Length: 19
where “nmyf or ni' isthe CGI program that was specified in the ACTION attribute of the FORM tag
and POST isthe METHOD attribute of the FORM tag. “ Content-Length” defines how many bytes of
information are being sent to the server (not including the request line and the headers).

Then, the browser sends a blank line followed by the form information in the following manner:

t enphi =80&t enpl 0=65
That is, it sends back hame and value pairs, separated by the ‘&’ character. (There can be some fur-
ther encoding done here to represent special characters, but we will ignore that in this explanation.)
The server must read in the information, decode it, parse it, and then handle it in some fashion. It will

check the validity of the new values, and then assign them to the appropriate C variable if they are
valid.

Chapter 4: HTTP Server 169

4.3.3.2 POST-style form submission

If an HTML file specifies a POST-style form submission (i.e., METHOD=" POST"), the form will till
be waiting on the socket when the CGI handler is called. Therefore, it isthe job of the CGI handler to
read this data off the socket and parse it in a meaningful way. The sample files Post . ¢ and

Post 2. ¢ inthe\ Sanpl es\ Tcpi p\ Ht t p folder show how to do this.

The HTTP PCST command can put any kind of data onto the network. There are many known encod-
ing schemes currently used, but we will only look at URL-encoded data in this document. Other
encoding schemes can be handled in a similar manner.

4.3.3.3 URL-encoded Data

URL-encoded datais of the form "namel=valuel& name2=vaue2," and is similar to the CGI form
submission type passed in normal URLSs. This has to be parsed to nane=val ue pairs. Therest of
this section details an extensible way to do this.

Thisinitializes two possible HTML form entriesto be received, and a place to store the results.

#def i ne MAX_FORMSI ZE64
typedef struct {

char *name;

char val ue[MAX_FORMSI ZE] ;
} FORMType;
FORMIype FORMSpec| 2] ;

void init forms(void) {
FORMSpec|[0] . nane
FORMSpec| 1] . nane

"user _nanme";
"user _email";

170 TCP/IP User’s Manual

Reading & Storing URL-encoded Data

par se_post () reads URL-encoded data off the network. and callspar se_t oken() to store
the datain FORMBpec|] .

/1 Parse one token 'foo=bar’, matching 'foo’ to the nane field in
/1 the struct, and store 'bar’ into the val ue

voi d parse_token(HtpState* state) {

int i, len;

for(i=0; i<HTTP_MAXBUFFER;, i ++) {
if(state->buffer[i] == "=")
state->buffer[i] = "\0";

}

state->p = state->buffer + strlen(state->buffer) + 1
for(i=0; i<(sizeof (FORMBpec)/sizeof (FORMIype)); i++) {
i f(!strcnp(FORMSpec[i]. nane, state->buffer)) {
len = (strlen(state->p)>MAX FORMSI ZE) ? MAX FORMSI ZE - 1:
strl en(state->p);
st rncpy(FORMSpec[i]. val ue, st at e- >p, 1+l en) ;
FORMSpec[i].val ue[MAX FORMSBI ZE - 1] = '\0O’

/! Read URL-encoded data and call parsing function to store data
i nt parse_post(HttpState* state) {
int ret;
whi | e(sock_est abli shed((sock_type *)&state->s) |
sock byt esready((sock type *) &state->s) >= 0){
ret = sock _fastread((sock type *)&state->s, state->p, 1);
if(0 ==ret) {
*state->p = '\ 0O’
par se_t oken(state);
return 1;

}
if((*state->p=="&) || (*state->p=="\r') || (*state->p=="\n"))
{ /* found one token */

*state->p = '\ 0O’

par se_t oken(state);

state->p = state->buffer;
} else {

st at e- >p++;
}
if((state->p - state->buffer) > HITP_MAXBUFFER) {

/* input too long */

return 1;

}

}
}

Chapter 4: HTTP Server 171

4.3.3.4 Sample of a CGI Handler

This next function isthe CGI handler. It is a state-machine-based handler that generates the page. It

calspar se_post () and referencesthe structure that is now filled with the parsed data we
wanted.

/*
* Sanpl e submit.cgi function
*/
int submt(HtpState* state) {

int i;
i f(state->length) {

/* buffer to wite out */

if(state->of fset < state->length) {
state->of fset += sock fastwite((sock type *)&state->s,
state->buffer + (int)state->offset, (int)state->length-
(int)state->offset);

}
el se
{
state->of fset = 0;
state->l ength = 0;
}

172 TCP/IP User’s Manual

/*
* Sanpl e submt.cgi function continued
*/
} else {
swi tch(state->substate) {

case O:
strcpy(state->buffer, "HTTP/ 1.0 200 OK\r\n");
br eak;

case 1:
/[* init the FORMSpec data */
FORMSpec[0] . val ue[0] = "\0";
FORMSpec|[1] . val ue[0] = "\0";
state->p = state->buffer;
parse_post(state);
st at e- >subst at e++;
return O;

case 2:
htt p_set cooki e(st at e->buffer, FORMSpec[O].val ue);
br eak;

case 3:
strcpy(state->buffer, "\r\n\r\n<htm ><head>

<title>Results</title></head><body>\r\n");

br eak;

case 4:
sprintf(state->buffer, "<p>Usernane:
%s<p>\r\ n<p>Emmi | :

%s<p>\r\n",

FORMSpec[0] . val ue, FORMSpec[1].val ue);
br eak;

case 5:
strcpy(state->buffer, "<p>Go hone</ a>
</ body></htm >\r\n");
br eak;

defaul t:
stat e->substate = 0;
return 1,

}

state->l ength = strlen(state->buffer);

state->of fset = O;

st at e- >subst at e++;

}

return O;

Chapter 4: HTTP Server 173

4.3.4 HTML Forms Using Zserver.lib

In this section, we will step through a complete example program that uses HTML forms. Through
this step-by-step explanation, the method of using the functionsin ZSERVER. LI B will become
clearer.

These lines are part of the standard TCP/IP configuration. You must change them to whatever your
local IP address and netmask are. Contact your network administrator for these numbers.

#define MY_I P_ADDRESS "10.10.6. 112"
#defi ne MY_NETMASK "255. 255. 255. 0"

Defining FORM_ERROR _BUF isrequired in order to use the HTML form functionality in

Zserver . | i b. The value represents the number of bytes that will be reserved in root memory for
the buffer which will be used for form processing. This buffer must be large enough to hold the name
and value for each variable, plus four bytes for each variable. Since we are building a small form, 256
bytesis sufficient.

#def i ne FORM ERROR BUF 256

Sincewewill not beusingtheht t p_f | ashspec array, then we can define the following macro,
which removes some code for handling this array from the web server.

#def i ne HTTP_NO_FLASHSPEC

These lines are part of the standard TCP/IP configuration.

#menmmap Xmem
#use "dcrtcp.lib"
#use "http.lib"

const HttpType http types[] =
{

b

{ " htm", "text/htm ", NULL}

These are the declarations of the variables that will be included in the form.

i nt tenphi;

i nt tenpnow,
int tenplo;
float hum dity;
char fail[21];

174 TCP/IP User’s Manual

voi d mai n(voi d)

{

An array of type For mivar must be declared to hold information about the form variables. Be sureto
allocate enough entriesin the array to hold all of the variables that will go in the form. If more forms
are needed, then more of these arrays can be allocated.

For nvar nyforni5];

These variables will hold the indicesin the TCP/IP servers’ abject list for the form and the form vari-
ables.

int var;
int form

This array holds the possible values for the fail variable. The fail variable will be used to make a pull-
down menu in the HTML form.

const char* const fail _options[] = {

"Emai | ",

" Page",

"Emai | and page",
"Not hi ng"

b
These lines initialize the form variables.

temphi = 80;
tenpnow = 72;
templ o = 65;
hum dity = 0. 3;

strcpy(fail, "Page");

The next line adds aform to the TCP/IP servers object list. The first parameter gives the name of the
form. Hence, when a browser requests the page “nyf or m ht m ”, the HTML form is generated and
presented to the browser. The second parameter gives the developer-declared array in which form
information will be saved. The third parameter gives the number of entriesin the myf or marray (this
number should match the one given in the myf or mdeclaration above). The fourth parameter indi-
cates that this form should only be accessible to the HTTP server, and not the FTP server.
SERVER_HTTP should aways be given for HTML forms. The return value isthe index of the newly
created form in the TCP/IP servers' object list.

Chapter 4: HTTP Server 175

form = sspec_addforn("myformhtm ", nyform 5, SERVER HTTP)

Thisline setsthe title of the form. The first parameter is the form index (the return value of
sspec_addf or m()), and the second parameter isthe form title. Thistitle will be displayed as the
title of the HTML page and as alarge heading in the HTML page.

sspec_setforntitle(form "ACME Thernostat Settings");

The following line adds a variable to the TCP/IP servers' object list. It must be added to the TCP/IP
servers' object list before being added to the form. The first parameter is the name to be given to the
variable, the second is the address of the variable, the third is the type of variable (thiscan be | NT8,
| NT16, 1 NT32, FLOAT32, or PTR16), the fourth is a printf-style format specifier that indicates
how the variable should be printed, and thefifth isthe server for which thisvariableis accessible. The
return valueis the index of the variable in the TCP/IP servers’ object list.

var = sspec_addvari abl e("tenphi ", &tenphi, |INT16, "%l", SERVER HITP);

The following line adds a variable to aform. The first parameter is the index of the form to add the
variable to (thereturn value of sspec_addf or m()), and the second parameter is the index of the
variable (the return value of sspec_addvari abl e()). Thereturn value is the index of the variable
within the developer-declared For nvar array, myf or m

var = sspec_addfv(form var);

This function sets the name of aform variable that will be displayed in the first column of the form
table. If this nameis not set, it defaults to the name for the variable in the TCP/IP servers’ object list
(“temphi”, in this case). Thefirst parameter is the form in which the variable is located, the second
parameter is the variable index within the form, and the third parameter is the name for the form vari-
able.

sspec_set fvnanme(form var, "Hi gh Tenp");

This function sets the description of the form variable, which is displayed in the third column of the
form table.

sspec_setfvdesc(form var, "Maximumin tenperature range
(60 - 90 ° F)");

176 TCP/IP User’s Manual

This function sets the length of the string representation of the form variable. In this case, the text box
for the form variable in the HTML form will be 5 characters long. If the user enters a value longer
than 5 characters, the extra characters will be ignored.

sspec_setfvlen(form var, 5);

This function sets the range of values for the given form variable. The variable must be within the
range of 60 to 90, inclusive, or an error will be generated when the form is submitted.

sspec_setfvrange(form var, 60, 90);

This concludes setting up the first variable. The next five lines set up the second variable, which rep-
resents the current temperature.

var sspec_addvari abl e("tempnow', &t enpnow, | NT16, "%l", SERVER HTTP);
var sspec_addfv(form var);

sspec_set fvname(form var, "Current Tenp");

sspec_setfvdesc(form var, "Current tenperature in &dleg; F");
sspec_setfvlen(form var, 5);

Since the value of the second variable should not be modifiable viathe HTML form (by default vari-
ables are modifiable,) the following line is necessary and makes the given form variable read-only
when the third parameter is 1. The variable will be displayed in the form table, but can not be modi-
fied within the form.

sspec_setfvreadonly(form var, 1);

These lines set up the low temperature variable. It is set up in much the same way as the high temper-
ature variable.

var sspec_addvari abl e("tenpl 0", & enplo, INT16, "%", SERVER HTTP);
var sspec_addfv(form var);
sspec_setfvname(form var, "Low Tenmp");
sspec_setfvdesc(form var, "Mninmumin tenperature range
(50 - 80 °F)");
sspec_setfvlen(form var, 5);
sspec_setfvrange(form var, 50, 80);

Chapter 4: HTTP Server 177

This code begins setting up the string variable that specifies what to do in case of air conditioning
failure. Note that the variable is of type PTR16, and that the address of the variable is hot given to
sspec_addvari abl e(), sincethevariablef ai | aready represents an address.

var sspec_addvari abl e("failure", fail, PTR16, "%", SERVER HTTP);

var sspec_addfv(form var);

sspec_set fvname(form var, "Failure Action");

sspec_setfvdesc(form var, "Action to take in case of air-conditioning
failure");

sspec_setfvlen(form var, 20);

Thisline associates an option list with aform variable. The third parameter gives the devel oper-
defined option array, and the fourth parameter gives the length of the array. The form variable can
now only take on values listed in the option list.

sspec_setfvoptlist(form var, fail _options, 4);

This function sets the type of form element that is used to represent the variable. The default is
HTM._FORM TEXT, which isa standard text entry box. This line sets the type to
HTM._FORM_PULLDOWN, which is a pull-down menu.

sspec_setfventrytype(form var, HTM._FORM PULLDOWN) ;

Finally, this code sets up the last variable. Note that it isafloat, so FLOAT32 isgiveninthe
sspec_addvari abl e() call. Thelast function call issspec_set f vfl oat range()
instead of sspec_set f vrange(), sincethisis afloating point variable.

var sspec_addvari abl e("hum dity", &hunmidity, FLOAT32, "% 2f",
SERVER HTTP) ;

var = sspec_addfv(form var);

sspec_setfvname(form var, "Hum dity");

sspec_set fvdesc(form var, "Target humidity (between 0.0 and 1.0)");

sspec_setfvlen(form var, 8);

sspec_set fvfl oatrange(form var, 0.0, 1.0);

These calls create aliases in the TCP/IP servers' object list for the HTML form. That is, the same
form can now be generated by requesting “i ndex. ht ml ” or “/ ”. Note that

sspec_al i asspec() should be called after the form has already been set up. The dliasing is
done by creating a new entry in the TCP/IP servers’ object list and copying the original entry into the
new entry. Note that aliasing can also be done for files and other types of server objects.

sspec_al i asspec(form "index.htm");
sspec_al i asspec(form "/");

178 TCP/IP User’s Manual

These lines complete the sample program. They initialize the TCP/IP stack and web server, and run
the web server.

sock_init();
http init();
while (1) {

htt p_handl er () ;
}
}

Thisisthe form that is generated:

= ACME Thermostat Settings - Netscape

File Edit “iew Go Communicator Help

Back Forward Heload Home Search Metzcape Print Security Shop Stu:upm

o " Bockmarks A El:ut-:n:l gﬁ"w’hat's Related
ACME Thermostat Settings

|Name |Value |Descﬁption

High Temp IBD— Tulasarmum in ternperature range (60 - 90 °F)
|Current Temp |T"2 |Current temperature in F

Low Temp IES— Dlinitmom in temnperature range (20 - 80 °F)
Failure Action IF'age j Action to take in case of ar-conditioning falure
Hurmdity 0.30 Target hurmidity (between 0.0 and 1.0)

Subrmit | Reset |

i (== | |Dacument: Done

Chapter 4: HTTP Server 179

4.4 Functions

cgi _redirectto

void cgi _redirectto(HttpState* state, char* url);

DESCRIPTION

This utility function may be called in a CGlI function to redirect the user to another page.
It sendsauser tothe URL storedinur | . You shouldimmediately issuea“r et urn 0;”
after calling thisfunction. The CGl is considered finished when you call this, and will be
in an undefined Hate.

PARAMETERS
state Current server struct, as received by the CGI function.
url Fully qualified URL to redirect to.

RETURN VALUE
None - sets the state, so the CGI must immediately return with avalue of 0.

LIBRARY
HTTP. LI B

SEE ALSO
cgi _sendstring

180 TCP/IP User’s Manual

cgi _sendstring

void cgi _sendstring(HttpState* state, char* str);

DESCRIPTION

Sends a string to the user. You should immediately issuea“r et urn 0; " after caling
thisfunction. The CGl is considered finished when you call this, and will be in an unde-
fined state. This function greatly simplifiesa CGI handler because it allows you to gen-
erate your pagein abuffer, and then let the library handle writing it to the network.

PARAMETERS
state Current server struct, as received by the CGlI function.
str String to send.

RETURN VALUE
None - sets the state, so the CGl must immediately return with avalue of O.

LIBRARY
HTTP. LI B

SEE ALSO
cgi _redirectto

http_addfile

int http_addfile(char* nane, |long | ocation);

DESCRIPTION
Adds afileto the TCP/IP serverslist.

PARAMETERS
name Name of thefile (e.g.,"/ i ndex. ht m).

| ocation Address of thefiledata. (from #xi nport)

RETURN VALUE

0: Success;

1: Failure.
LIBRARY

HTTP. LI B
SEE ALSO

http _delfile

Chapter 4: HTTP Server

181

htt p_cont ent encode

char *http_contentencode(char *dest, const char *src, int |en);

DESCRIPTION
Convertsastring to include HT TP transfer-coding "tokens” (such as & #64; (decimal) for
at-sign) where appropriate. Encodes these characters. "<>@%#& "

Source string is NULL - byte terminated. Destination buffer isbounded by | en. This
function is reentrant.

PARAMETERS
dest Buffer where encoded string is stored.
src Buffer holding original string (not changed)
I en Size of destination buffer.

RETURN VALUE

dest : Therewasroom for al conversions.
NULL: Not enough room.

LIBRARY
HTTP. LI B

SEE ALSO
http_url decode

182 TCP/IP User’s Manual

http_delfile

int http_delfile(char* name);
DESCRIPTION
Ddetes afile from TCP/IP servers object list.

PARAMETERS

name Name of thefile, aspassedtoht t p_addfi | e.

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY
HTTP. LI B

SEE ALSO
http_addfile

htt p_fi nderrbuf

char* http_finderrbuf(char* name);

DESCRIPTION
Findsthe occurrence of the given variablein the HTML form error buffer, and returnsits
location.

PARAMETERS
name Name of the variable.

RETURN VALUE

NULL: Failure;
I NULL: Success, location of the variable in the error buffer.

LIBRARY
HTTP. LI B

Chapter 4: HTTP Server 183

http_nextfverr

void http nextfverr(char* start, char** nane, char** val ue,
int* error, char** next);

DESCRIPTION

Gets the information for the next variable in the HTML form error buffer. If any of the
last four parametersin the function call are NULL, then those parameters will not have a
value returned. Thisisuseful if you are only interested in certain variable information.

PARAMETERS
start Pointer to the variable in the buffer for which we want to get infor-
mation.
name Return location for the name of the variable.
val ue Return location for the value of the variable.
error Return location for whether or not the variableisin error (Oif itis
not, 1if itis).
next Return location for a pointer to the variable after this one.
LIBRARY
HTTP. LI B

htt p_handl er

void http_handl er();

DESCRIPTION

Thisisthe basic control function for the HTTP server, atick functionto runthe HTTP
daemon. It must be called periodically for the daemon to work. It parses the requests and
passes control to the other handlers, either ht Ml _handl er,sht mi _handl er,orto
the devel oper-defined CGI handler based on the request’s extension.

LIBRARY
HTTP. LI B

SEE ALSO
http_init

184 TCP/IP User’s Manual

http_init

int http_init(void);

DESCRIPTION
Initiadlizesthe HT TP daemon.

RETURN VALUE
0: Success.

LIBRARY
HTTP. LI B

SEE ALSO
htt p_handl er

http_parseform

int http_parseformiint form HttpState* state);

DESCRIPTION

Parsesthereturned forminformation. It expectsa POST submission. Thisfunctionisuse-
ful for adeveloper who only wantsthe parsing functionality and wishesto generateforms
herself. Note that the developer must ill build the array of For nVar sand usethe
server _spec table. Thisfunction will not, however, automatically display the form
when used by itsdlf. If al variables satisfy all integrity checks, then the variables' values
are updated. If any variablesfail, then none of the values are updated, and error informa-
tioniswritteninto the error buffer If thisfunctionisused directly, the developer must pro-

CESS ErTors.
PARAMETERS
form server _spec index of theform(i.e., locationin TCP/IP servers
object list).
state The HTTP server with which to parse the POSTed data.

RETURN VALUE

0 if thereis more processing to do;
1 form processing has been completed.

LIBRARY
HTTP. LI B

Chapter 4: HTTP Server

185

http_setcooki e

void http_setcookie(char* buf, char* val ue);

DESCRIPTION

Thisutility generatesacookie on the client. Thiswill storethetextinval ue into acook-
ie-generation header that will bewritten to buf . Thiswill not be written out to the client,
and it isstill the responsibility of the client to write out. Also, this utility will generate an
HTTP header line that must be written along with any other headersthat are written be-

forethe HTML fileitsalf iswritten out. When a pageisregquested from the client, and the
cookieisaready set, thetext of the cookiewill bestoredinst at e- >cooki e[] . This
isachar*,and st at e->cooki e[0] will equal '\ O’ if no cookiewas available.

PARAMETERS
buf Buffer to store cookie-generation header.
val ue Text to store in cookie-generation header.
LIBRARY
HTTP. LI B

186 TCP/IP User’s Manual

http_url decode

char *http_url decode(char *dest, const char *src, int len);

DESCRIPTION

Converts a string with URL -escaped "tokens” (such as %20 (hex) for space) into actual
values. Changes"+" into aspace. String can be NULL terminated; it isalso bounded by a
specified string length. This function is reentrant.

PARAMETERS
dest Buffer where decoded string is stored.
src Buffer holding original string (not changed).
I en Maximum size of string (NULL terminated strings can be shorter).

RETURN VALUE

dedt: If dl conversion was good.
NULL: If some conversion had troubles.

LIBRARY
HTTP. LI B

SEE ALSO
http_cont ent encode

Chapter 4: HTTP Server

187

shtm _addf uncti on

int shtm _addfunction(char* name, void (*fptr()));

DESCRIPTION
Adds a CGI/SSI-exec function for making dynamic web pagesto the TCP/IP servers' ob-
ject list.
PARAMETERS
name Name of the function (e.g., "/ f 0o. cgi ").
fptr Function pointer to the handler, that must take Ht t pSt at e* asan

argument. This function should returnani nt (0 while still pend-
ing, 1 when finished).

RETURN VALUE

0: Success;
1: Failure (no room).

LIBRARY
HTTP. LI B

SEE ALSO
shtml _del function

188 TCP/IP User’s Manual

sht M _addvari abl e

int shtm _addvari abl e(char* name, void* variable, word type,
char* format);

DESCRIPTION
Thisfunction adds a variable so it can be recognized by thesht m _handl er.

PARAMETERS
name Name of the variable.
vari abl e Pointer to the variable.
type Type of variable. The following types are supported: | NT8,
| NT16, | NT32, PTR16, FLOAT32
f or mat Standard printf format string. (e.g., "%d")

RETURN VALUE

0: Success;
1: Failure (no room).

LIBRARY
HTTP. LI B

SEE ALSO
shtml _del vari abl e

Chapter 4: HTTP Server 189

shtm _del function

int shtm _del function(char* name);
DESCRIPTION
Deletes afunction from the TCP/IP servers' object list.
PARAMETERS
name Name of the function asgiventosht m _addf uncti on.

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY
HTTP. LI B

SEE ALSO
sht i _addfunction

sht ml _del vari abl e

int shtm _del variabl e(char* name);

DESCRIPTION
Deletes avariable from the TCP/IP servers' object list.

PARAMETERS

name Name of thevariable, asgiventosht ml _addvari abl e.

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY
HTTP. LI B

SEE ALSO
sht i _addvari abl e

190 TCP/IP User’s Manual

5. FTP Client

Thelibrary FTP_CLI ENT. LI Bimplementsthe File Transfer Protocol (FTP) for the client side of
the connection.

5.1 Configuration Macros

DTP_PORT

The port to listen on for data connections. The low byte of the port number must be 0, as we use
the next 256 ports above the one supplied. The default is 0XAQO.

FTP_MODE_DOWNLOAD
Specifies downloading afile.

FTP_MODE_UPLOAD
Specifies uploading afile.

MAX_NANMELEN

Maximum length for al usernames, passwords, and filenames. The default is 64. Note that this
must contain the NULL byte, so if it is set to 64, the maximum filename length is 63 characters.

Chapter 5: FTP Client 191

5.2 Functions

ftp_client _setup

int ftp client_setup(| ong host, int port, char *usernane, char
*password, int nmode, char *filename, char *dir, char
*pbuffer, int length);

DESCRIPTION

Setsup aFTPtransfer. Itiscalled first,thenft p_cli ent tick() iscaleduntil it
returns non-zero.

PARAMETERS
host Host IP address of FTP server.
port Port of FTP server, O for default.
user nane Username of account on FTP server.
password Password of account on FTP server.
node Mode of transfer (FTP_MODE_UPLQAD or
FTP_MODE_DOWNL QAD).
fil ename Filename to get/puit.
dir Directory fileisin, NULL for default directory.
buf fer Buffer to get/put the file from/to.
I ength On upload, length of file; on download size of buffer.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY
FTP_CLI ENT. LI B

192 TCP/IP User’s Manual

ftp_client tick
int ftp_client_tick(void);

DESCRIPTION
Tick function to run the FTP daemon. Must be called periodically.

RETURN VALUE

0: Still pending, call again;

1: Success (file transfer complete);

2: Failure (generd);

3: Failure (Couldn't connect to remote host);
4: Failure (File not found).

LIBRARY
FTP_CLI ENT. LI B

ftp_client _filesize
int ftp_client _filesize(void);

DESCRIPTION

If afile was downloaded (mode == FTP_MODE_DOWNLOAD), when

ftp_client tick() returnsl, thisfunctionwill return the size of the fetched file.
Thisnumber will beclobberedifft p_cl i ent _set up() iscaledagain, soit should
be copied out and stored quickly!

RETURN VALUE
Size, in bytes.

LIBRARY
FTP_CLI ENT. LI B

Chapter 5: FTP Client 193

5.3 Sample FTP Transfer

#define My_| P_ADDRESS "10. 10. 6. 105"
#define MY_NETMASK " 255. 255. 255. 0"

#menmap xmem
#use "dcrtcp.lib"
#use "ftp client.lib"

#defi ne REMOTE_HOST "10. 10. 6. 19"
#defi ne REMOTE_PORT O

mai n() {
char buf[2048];
int ret, i, j;

printf("Calling sock init()...\n");
sock _init();

/* Set up the ftp transfer. This is to the host defined above,
with a nornmal anonynous/e-mil password | ogin i nfo. A downl oad
of the file "bar" is selected to be stored in 'buf.’*/

printf("Calling ftp_client_setup()...\n");
if(ftp_client_setup(resol ve(REMOTE HOST) , REMOTE PORT,
anonynmous", "anon@non. coni', FTP_MODE DOWLQAD, " bar "
NULL, buf, si zeof (buf))) {
printf("FTP setup failed.\n");
exit(0);
}
printf("Looping on ftp client _tick()...\n");
while(0 == (ret = ftp_client _tick()))
conti nue;

if(1 ==ret) {
printf("FTP conpl eted successfully.\n");

/* ftp_client filesize() returns the size of the transfer,
senses we requested a downl oad. */

buf[ftp client filesize()] = '\0";
printf("Data => "%’'\n", buf);

} else {
printf("FTP failed: status == %\n",ret);

}

194

TCP/IP User’s Manual

6. FTP Server

Thelibrary FTP_SERVER. LI B implements the File Transfer Protocol for the server side of the
connection. FTP uses two TCP connections to transfer afile. The FTP server does a passive open
on well-known port 21 and then listens for a client. Anonymous login is supported.

6.1 Configuration Constants
FTP_MAXSERVERS

Thisisthe number of simultaneous connections the FTP server can support. It isrecommended
that this be set to one (the default), as each subsequent server requires a significant amount of
RAM (2500 bytes by default; this can change through SOCK_BUF_SI ZEort cp_MaxBuf Si ze
(deprecated)).

FTP_MAXNANE

The maximum length of filenames, usernames, and passwords. (It must include anull character so,
with it's default value of 20, filenames can be 19 characterslong.)

FTP_MAXLI NE

The size of the working buffer in each server. Also, thisis the maximum size of each network
read/write. It needs to be a minimum of about 256 bytes for the server to function properly. You
probably don't need to change its default of 1024 bytes.

FTP_TI MEQUT

The length of time to wait for data from the remote host, before terminating the connection. If you
have a high-latency network condition, this might need to be increased from its default of 16 sec-
onds to avoid premature closures.

6.1.1 File Options

#define O _UNUSED 0
#define O RDONLY 1
#define O WRONLY 2
#define O RDW\R 3

Chapter 6: FTP Server 195

6.2 File Handlers

The datastructure FTPhandl er s canbepassedtoft p_i nit toredefine how filesare read and
written to. It contains function pointersto all of the individual functions. The default functions are
listed below.

typedef struct {

int (*open)();

int (*read)();

int (*wite)();

int (*close)();

int (*getfilesize)();
} FTPhandl ers;

open

int open(char *nane, int options, int uid);

DESCRIPTION
Opens afile.
PARAMETERS
nanme Thefileto open,
options For aread-only filethevaueisO_RDONLY; for awrite-only file, the
vaueisO WRONLY
ui d The userid of the currently logged in user.

RETURN VALUE
A file descriptor should be returned, or - 1 on error.

196 TCP/IP User’s Manual

getfilesize
int getfilesize(int fd);

DESCRIPTION

If afile was opened for reading (O_RDONLY), this should return the size of thefile.

PARAMETERS

fd The file descriptor that was returned when the file was opened.

RETURN VALUE
The size of thefilein bytes.

read
int read(int fd, char *buf, int len);

DESCRIPTION
Reads abuffer of length | en fromf d into buf .

PARAMETERS
fd Thefile descriptor returned from open() .
buf Thelocation to read the file into.
| en The number of bytesto read.

RETURN VALUE
The number of bytes read.

Chapter 6: FTP Server

197

wite
int wite(int fd, char *buf, int len);

DESCRIPTION
Writes abuffer of length | en from buf tof d. Thisisnot currently supported.

PARAMETERS
fd Thefile descriptor returned from open() . Thisis destination the
datawill be written to
buf The source location of the data to be written
I en The number of bytesto write.

RETURN VALUE
Number of byteswritten.

cl ose
int close(int fd);

DESCRIPTION
Closesthefile, and invalidates the file descriptor.
PARAMETERS
fd Thefile descriptor (returned from open()) of thefileto close.
RETURN VALUE
0

Please note that if you redefine any of these file handler functions, all must be
replaced.

198 TCP/IP User’s Manual

6.3 Functions

ftp_init
void ftp_init(FTPhandl ers *handl ers);
DESCRIPTION
Initializes the FTP daemon.

PARAMETERS

handl ers NULL means use default internal file handlers;
I NULL meansto supply astruct of pointersto the various custom
file handlers (open, read, write, close, getfilesize).

RETURN VALUE
None

LIBRARY
FTP_SERVER. LI B

ftp_tick
void ftp_ tick(void);

DESCRIPTION

Onceftp_init hasbeencaled,ft p_ti ck mustbecaled periodicaly to run the
daemon. Thisfunction is non-blocking.

LIBRARY
FTP_SERVER. LI B

Chapter 6: FTP Server 199

6.4 Sample FTP Server
This code demonstrates asimple FTP server. The user "anonymous' may download the file "rab-

bitA.gif", but not "rabbitF.gif". The user "foo" (with password "bar") may download "rabbitF.gif",
but not "rabbitA.gif".

[* ftp_server.c */

#define MY_| P_ADDRESS "10. 10. 6. 105"
#defi ne MY_NETMASK "255. 255. 255. 0"
#defi ne MY_GATEWAY "10.10. 6. 19"

#menmap Xmem
#use "dcrtcp.lib"
#use "ftp_server.lib"

#xi nport "sanpl es/tcpi p/ http/ pages/rabbitl.gif" rabbit
mai n() {

int file;

i nt user;

/1 Set up the first file and user

file = sspec_addxmenfile("rabbitA gif", rabbitl gif
user = saut h_adduser ("anonynous", "", SERVER FTP)
sspec_setuser(file, user);

/1 Set up the second file and user

file = sspec_addxmenfile("rabbitF.gif", rabbitl gif
user = sauth_adduser("foo", "bar", SERVER FTP)
sspec_setuser(file, user);

sock_init();
ftp_init(NULL); /* use default handlers */
tcp_reserveport (21);
while(1) {
ftp_tick();
}

1 gif

, SERVER_FTP);

, SERVER_FTP);

The program SSTATI C2. Cin SAMPLES\ TCPI P\ HTL provides a more advanced example
than the one shown here.

200

TCP/IP User’s Manual

7. TFTP Client

TFTP. LI Bimplementsthe Trivial File Transfer Protocol (TFTP). This standard protocol (inter-
net RFC783) isalightweight protocol typically used to transfer bootstrap or configuration files
from a server to aclient host, such as a diskless workstation. TFTP allows data to be sent in either
direction between client and server, using UDP as the underlying transport.

Thislibrary fully implements TFTP, but as aclient only.
Compared with more capabl e protocols such as FTR, TFTP:

* has no security or authentication

* isnot asfast because of the step-by-step protocol

* uses fewer machine resources.

Because of the lack of authentication, most TFTP serversrestrict the set of accessiblefilesto a
small number of configuration filesin a single directory. For uploading files, servers are usually

configured to accept only certain file names that are writable by any user. If these restrictions are
acceptable, TFTP has the advantage of requiring very little footprint’ in the client host.

7.0.1 BOOTP/DHCP

In conjunction with DHCP/BOOTP and appropriate server configuration, TFTP is often used to
download a kernel image to a diskless host. The target TCP/IP board does not currently support
loading the BIOS in this way, since the BIOS and application program are written to non-volatile
flash memory. However, the downloaded file does not have to be abinary executable - it can be
any reasonably small file, such as an application configuration file. TFTP and DHCP/BOOTP can
thus be used to administer the configuration of multiple targets from a central server.

Using TFTP with BOOTP/DHCP requires minimal additional effort for the programmer. Just
#def i ne the symbol DHCP_USE_TFTP to an integer representing the maximum allowable boot
file size (1-65535). See the description of the variables _boot psi ze, _boot pdat a and
_boot perror onpageb5 for further details.

Chapter 7: TFTP Client 201

7.0.2 Data Structure for TFTP

Thisdata structure is used to send and receive. Thet f t p_st at e structure, which isrequired for
many of the API functionsin TFTP. LI B, may be allocated either in root data memory or in
extended memory. This structure is approximately 155 bytes long.

typedef struct tftp state {

byte state; /1l Current state. LSB indicates read(0)
/[l or write(l). Other bits deterni ne
/[l state within this (see bel ow).

| ong buf _addr; /1 Physi cal address of buffer

word buf | en; /1l Length of buffer

word buf used; /1 Amount Tx or Rx fromto buffer

word next bl k; /1 Next expected block #, or next to Tx

word ny_tid; /1 UDP port nunber used by this host

udp_Socket * sock; /1 UDP socket to use

| ongword rem.i p; /1 1P address of renote host

| ongword tinmeout; /1 ms tinmer value for next tineout

char retry; /1l retransmt retry counter

char fl ags; /1 msc flags (see bel ow).

/1l Followi ng fields not
/'l acknow edged.
char node; /1
char file[129]; /1

/] server)-

used after

initial request has been

Transl ati on node (see bel ow).
File name on renote host (TFTP

NULL term nated. This

[l field will be overwitten with a
/1 NULL-term error nmessage fromthe
/1 server if an error occurs.
I
7.0.2.1 Macros for tftp_state- >node
#define TFTP_MODE NETASCII O // ASCI| text
#defi ne TFTP_MODE OCTET 1 /1l 8-bit binary
#define TFTP_MODE MAIL 2 /1 Mail (renpote file nane is
/1l emmi| address e.qg.
/1 user @ost. bl ob. org)

7.0.3 Function Reference

Any of the following functions will require approximately 600-800 bytes of free stack. The data
buffer for the file to put or to get is always alocated in xmem (see xal | oc()).

TFTP Session

A session can be either a single download (get) or upload (put). The functions ending with ’x’ are
versionsthat use a data structure allocated in extended memory, for applications that are con-

strained in their use of root data memory.

202

TCP/IP User’s Manual

tftp_init
int tftp_init(struct tftp_state * ts);

DESCRIPTION

Thisfunction preparesfor a TFTP session and is called to complete initialization of the
TFTP gate structure. Before calling this function, some fieldsin the structure
tftp_state mustbesa upasfollows

<0 for read, 1 for wite>

<physi cal address of xmem buffer>

<l ength of physical buffer, 0-65535>

<UDP port number. Set 0 for default>

<address of UDP socket (udp_Socket *),or NULL to
use DHCP/ BOOTP socket >

<l P address of TFTP server host, or zero to use
default BOOTP host>

ts->state

t s- >buf _addr
ts->buf _len
ts->ny _tid
ts->sock

ts->remip

t s- >node = <one of the follow ng constants:
TFTP_MODE_NETASCI | ASCl | text
TFTP_MODE_OCTET 8-bit binary
TFTP_MODE_MAI L Mai | >

strcpy(ts->file, <renpte filenane or nmil address>)

Notethat mail mode can only be used to write mail to the TFTP server, and the file name
isthe e-mail address of the recipient. The e-mail message must be ASClI-encoded and
formatted with RFC822 headers. Sending e-mail viaTFTP is deprecated. Use SMTPin-
stead since TFTP servers may not implement mail.

PARAMETERS
ts Pointertot ft p_st at e.
RETURN VALUE

0: OK
- 4: Error, default socket in use.

LIBRARY
TFTP. LI B

Chapter 7: TFTP Client 203

http://www.faqs.org/rfcs/rfc822.html

tftp_initx
int tftp_initx(long ts_addr);

DESCRIPTION

Thisfunction is called to completeinitidization of the TFTP state structure, where the
structureis possibly stored somewhere other than in theroot dataspace. Thisisawrapper
functionfort ft p_i ni t () . Seethat function description for details.

PARAMETERS
ts_addr Physical addressof TFTP gtate (structt ft p_st at e)
RETURN VALUE

0: OK
- 1: Error, default socket in use.

LIBRARY
TFTP. LI B

204 TCP/IP User’s Manual

tftp_tick
int tftp_ tick(struct tftp_state * ts);

DESCRIPTION

Thisfunctioniscalled periodically in order to take the next step inaTFTP process. Ap-
propriate use of thisfunction allows single or multiple transfersto occur without block-
ing. For multiple concurrent transfers, there must beauniquet f t p_st at e structure,
and a unique UDP socket, for each transfer in progress. This function calls

sock _tick().

PARAMETERS

ts Pointer to TFTP state. This must have been set up using
tftp_init(),andmustbepassedto each cal of
tftp_tick() without alteration.

RETURN VALUE

1: OK, transfer not yet complete.
0: OK, transfer complete
- 1: Error from remote side, transfer terminated. In this case, thets_addr->file field
will be overwritten with a NULL -terminated error message from the server.
- 2: Error, could not contact remote host or lost contact.
- 3: Timed out, transfer terminated.
- 4: (not used)
- 5: Transfer complete, but truncated -- buffer too small to receive the complete file.

LIBRARY
TFTP. LI B

Chapter 7: TFTP Client

205

tftp_tickx
int tftp_tickx(long ts_addr);

DESCRIPTION

Thisfunction isawrapper for calingt ft p_ti ck() , wherethe structureis possibly
stored somewhere other than in the root data space. See that function description for de-
tails.

PARAMETERS

ts_addr Physical addressof TFTP gtate (structt f t p_st at e).

RETURN VALUE

1: OK, transfer not yet complete.
0: OK, transfer complete
- 1: Error from remote side, transfer terminated. In this case, thets_addr->filefield
will be overwritten with a NULL-terminated error message from the server.
- 2: Error, could not contact remote host or lost contact.
- 3: Timed out, transfer terminated.
- 4: (not used)
- 5: Transfer complete, but truncated -- buffer too small to receive the complete file.

LIBRARY
TFTP. LI B

206 TCP/IP User’s Manual

tftp_exec

int tftp_exec(char put, long buf _addr, word * len, int node,
char * host, char * hostfile, udp_Socket * sock);

DESCRIPTION

Prepare and execute a complete TFTP session, blocking until complete. This function is a wrapper
fortftp_init() andtftp_tick().Itdoesnotreturnuntil thecompletefileistransferred or
an error occurs. Note that approximately 750 bytes of free stack will be required by this function.

PARAMETERS

put 0: get file from remote host; 1: put fileto host.

buf _addr Physical address of data buffer.

I en Length of data buffer. Thisis both an input and areturn parameter.
It should beinitialized to the buffer length. On return, it will be set
to the actual length received (for a get), or unchanged (for a put).

node Data representation: 0=NETASCII, 1=OCTET (binary), 2=MAIL.

host Remote host name, or NULL to use default BOOTP host.

hostfile Name of file on remote host, or e-mail address for mail.

sock UDP socket to use, or NULL to re-use BOOTP socket if available.

RETURN VALUE

0: OK, transfer complete.
- 1: Error from remote side, transfer terminated. Inthiscase, t s_addr->fil e
will be overwritten with a NULL-terminated error message from the server.
- 2: Error, could not contact remote host or lost contact.
- 3: Timed out, transfer terminated
- 4: sock parameter was NULL, but BOOTP socket was unavailable.

LIBRARY
TFTP. LI B

Chapter 7: TFTP Client 207

208 TCP/IP User’s Manual

8. SMTP Mall Client

SMTP (Simple Mail Transfer Protocol) is one of the most common ways of sending e-mail. SMTP
isasimple text conversation across a TCP/IP connection. The SMTP server usualy resides on
TCP port 25 waiting for clients to connect.

Sending mail with the SMTP. LI B client library is afour-step process. First, build your e-mail
message, then call smt p_sendnai | () . Next, repetitively call smt p_nmi | ti ck() whileitis
returning SMIP_PENDI NG Finally, call snt p_st at us() to determineif the mail was sent suc-
cessfully. Thereis asample program in Section 8.4 that outlines how to send a simple mail mes-

sage.

8.1 Sample Conversation

The following isatypical listing of mail from the controller (me@somewhere.com) to some-
one@somewhereelse.com. The mail server that the controller is talking to is mail.somehost.com.
The lines that begin with a numeric value are coming from the mail server. The other lines were
sent by the controller. More information on the exact specification of SMTP and the meanings of
the commands and responses can be found in RFC821 at http://www.ietf.org.

220 mai |l . sonehost.com ESMIP Service (WorldMail 1.3.122) ready
HELO 10. 10. 6. 100

250 mai | . sonewhere. com
MAI L FROM <nme@onewhere. conp

250 MAI L FROM <ne@onewher e. con> OK
RCPT TO. <soneone@onewher eel se. conp

250 RCPT TO <soneone@onewher eel se. con> OK
DATA

354 Start mail input; end with <CRLF>. <CRLF>
From <nme@onmewhere. conp

To: <soneone@onewher eel se. conp

Subj ect: test nail

test mail

250 Mail accepted
QT

221 mail.sonehost.com QUI T

You can see alisting of the conversation between your controller and the mail server by defining
the SMTP_ DEBUG macro at the top of your program.

Note that there must be a blank line after the line “ Subject: test mail”.

Chapter 8: SMTP Mail Client 209

http://www.ietf.org

8.2 Configuration
The SMTP client is configured by using compiler macros.

SMIP_DEBUG

This macro tellsthe SMTP code to log events to the STDIO window in Dynamic C. This provides
aconvenient way of troubleshooting an e-mail problem.

SMIP_DOVAI N

This macro defines the text to be sent with the HEL O client command. Many mail serversignore
the information supplied with the HEL O, but some e-mail serversrequire the fully qualified name
in thisfield (i.e., somemachine.somedomain.com). If you have problems with e-mail being
rejected by the server, turn on SMIP_DEBUG If it is giving an error message after the HELOline,
talk to the administer of the machine for the appropriate value to placein SMIP_DOMAI N. If you
do not define this macro, it will default to MY_| P_ ADDRESS.

#defi ne SMIP_DOVAI N "sonemrmachi ne. somedomai n. cont

SMIP_SERVER

This macro defines the mail server that will relay the controller’'s mail. This server must be config-
ured to relay mail for your controller. You can either place a fully qualified domain name or an IP
addressin thisfield.

#defi ne SMIP_SERVER "nmi | . nydomai n. cont
or
#defi ne SMIP_SERVER " 10. 10. 6. 19"

SMIP_TI MEQUT
This macro tellsthe SMTP code how long in secondsto try to send the e-mail before timing out. It
defaults to 20 seconds.

#define SMIP_TI MEQUT 10

210 TCP/IP User’s Manual

8.3 Functions

smt p_sendnai |

void sntp_sendnuil (char* to, char* from char* subject, char*

nmessage) ;

DESCRIPTION

Thisfunction initializesthe internal data structures with strings for theto e-mail address,
thefrom e-mail address, the subject, and the body of the message. You should not modify
these strings until st p_nai | ti ck nolonger returns SMIP_PENDI NG

PARAMETERS
to
from
subj ect

message

RETURN VALUE
None

LIBRARY
SMTP. LI B

String containing the e-mail address of the destination.
String containing the e-mail address of the source.
String containing the subject of the message.

String containing the message. (This string must NOT contain the
byte sequence "\r\n.\r\n" (CRLF.CRLF), asthisisused to mark the
end of the e-mail, and will be appended to the e-mail automatically.)

Chapter 8: SMTP Mail Client

211

sm p_sendmai | xnem

void sntp_sendnai |l xmenm(char* to, char* from char* subject,
| ong nessage, |ong nessagel en);

DESCRIPTION

Thisfunction initializesthe internd data structures with stringsfor the to e-mail address,
thefrom e-mail address, the subject, and the body of the message. You should not modify
these strings until st p_nai | ti ck nolonger returns SMIP_PENDI NG

PARAMETERS
to String containing the e-mail address of the destination.
from String containing the e-mail address of the source.
subj ect String containing the subject of the message.
nmessage Physica addressin xmem containing the message. (The message

must NOT contain the byte sequence "\n\n.\r\n" (CRLF.CRLF), as
thisis used to mark the end of the e-mail, and will be appended to
the e-mail automatically.)

messagel en Length of the message in xmem.

RETURN VALUE
None

LIBRARY
SMTIP. LI B

212 TCP/IP User’s Manual

smp_miltick
int smp_mailtick(void);

DESCRIPTION

Repetitively call thisfunction until e-mail is completely sent. For a small message, this
function will need to be called about 20 times to send the message. The number of times
will vary depending on the latency of you connection to the mail server and the size of

your message.

RETURN VALUE

SMI'P_SUCCESS - e-mail sent.

SMTP_PENDI NG- e-mail not sentyetcall sntp_mai | ti ck again.
SMIP_TI ME - e-mail not sent within SMI'P_TI MEQUT seconds.
SMTP_UNEXPECTED - received an invalid response from SMTP server.

LIBRARY
SMIP. LI B

snmt p_status
int smp_status(void);

DESCRIPTION
Return the status of the last e-mail processed.

RETURN VALUE

SMI'P_SUCCESS - e-mail sent.

SMTP_PENDI NG- e-mail not sent yet call smtp_mailtick again.
SMIP_TI ME - e-mail not sent within SMI'P_TI MEQUT seconds.
SMI'P_UNEXPECTED - received an invalid response from SMTP server.

LIBRARY
SMTIP. LI B

Chapter 8: SMTP Mail Client 213

8.4 Sample Sending of an E-mail
This program, snt p. ¢, usesthe SMTP library to send an e-mail. For an example of using
snt p_sendmai | xmenm() , see the sample program Sanpl es\ t cpi p\ snt p\ Snt pxnmem c.

[* Change these nmacros to the appropriate val ues or change

* the smp_sendmail (...) call in main() to reference your val ues.
*/

#defi ne FROM "nmyaddr ess@rydonai n. cont'

#define TO "nmyaddr ess@rydonai n. cont'

#define SUBJECT "test mail"

#defi ne BODY "You’ve got mail!"

/* Change these values to your network settings */
#define My_| P_ADDRESS "10. 10. 6. 100"

#defi ne MY_NETMASK " 255. 255. 255. 0"

#defi ne MY_GATEWAY "10.10. 6. 19"

[* SMIP_SERVER tells DCRTCP where your nmmil server is. This
* value can be the name or the | P address. */

#defi ne SMIP_SERVER "nynai | server. mydonai n. cont
[#def i ne SMIP_DOVAI N "nycontrol | er. mydomai n. cont
[| #def i ne SMIP_DEBUG

#memap xmem
#use dcrtcp.lib
#use smp.lib

mai n() {
sock init();

sntp_sendmai | (FROM TO, SUBJECT, BODY);

whi l e(sntp_mailtick()==SMIP_PENDI NG
conti nue;

i f(sntp_status()==SMIP_SUCCESS)
printf("Mssage sent\n");

el se
printf("Error sending nessage\n");

214 TCP/IP User’s Manual

9. POP3 Client

Post Office Protocol version 3 (POP3) is probably the most common way of retrieving e-mail
from aremote server. Most e-mail programs, such as Eudora, MS-Outlook, and Netscape's e-mail
client, use POP3. The protocol is afairly simple text-based chat across a TCP socket, normally
using TCP port 110.

There aretwo ways of using POP3. LI B. Thefirst method provides a raw dump of the incoming
e-mail. Thisincludes all of the header information that is sent with the e-mail, which, while some-
times useful, may be more information than is needed. The second method provides a parsed ver-
sion of the e-mail, with the sender, recipient, subject-line, and body-text separated out.

In both methods, each line of e-mail has CRLF stripped from it and ‘\Q" appended to it.

9.1 Configuration
The POP3 client can be configured through the following macros:

POP_BUFFER_SI ZE
Thiswill set the buffer size for POP_PARSE EXTRA in bytes. These are the buffers that hold the
sender, recipient and subject of the e-mail. POP_BUFFER_SI ZE defaults to 64 bytes.

POP_DEBUG
Thiswill turn on debug information. 1t will show the actual conversation between the device and
the remote mail server, aswell as other useful information.

POP_NCDELETE
Thiswill stop the POP3 library from removing messages from the remote server as they are read.
By default, the messages are deleted to save storage space on the remote mail server.

POP_PARSE_EXTRA

Thiswill enable the second mode, creating a parsed version of the e-mail as mentioned above. The
POP3 library parses the incoming mail more fully to provide the Sender, Recipient, Subject, and
Body fields as separate items to the call-back function.

9.2 Three Steps to Receive E-mail.

1. pop3_init () iscaledto provide the POP3 library with a call-back function. This call-back
will be used to provide you the incoming data. This function is usually called once.

2. pop3_get mai | () iscalledto start the e-mail being received, and to provide the library with
e-mail account information.

3. pop3_tick() iscaledaslong asit returns POP_PENDI NG to actually run the library. The
library will call the function you provided severa timesto give you the e-mail.

Chapter 9: POP3 Client 215

9.3 Call-Back Function

There aretwo types of call-back functions, depending on if POP_PARSE EXTRA is defined and
will be handled separately.

9.3.1 Normal call-back
When not using POP_PARSE _EXTRA, you need to provide a function with the following proto-
type:

int storemail (int nunber, char *buf, int size);

nunber isthe number of the e-mail being transferred, usually 1 for the first, 2 for the second, but
not necessarily. The numbers are only guaranteed to be unique between all e-mails transferred.

buf isthetext buffer containing one line of the incoming e-mail. This must be copied out imme-
diately, asthe buffer will be different when the next line comesin, and your call-back is called

again.
si ze isthe number of bytesin buf .

See pop. ¢ inthe Dynamic C Sample folder for an example of this style of call-back.

9.3.2 POP_PARSE_EXTRA call-back
If POP_PARSE _EXTRA isdefined, you need to provide a call-back function with the following
prototype:

int storemail (i nt nunber, char *to, char *from char *subject,
char *body, int size);

nunber , body, and si ze are the same as before.

t 0 hasthe e-mail address of who this e-mail was sent to.
f r omhas the e-mail address of who sent this e-mail.
subj ect hasthe subject line of the e-mail.

These new fields should only be used the first time your call-back is called with anew nunber
field. In subsequent calls, these fields are not guaranteed to have accurate information.

Seepar se_extra. ¢ in Section 9.5 for an example of thistype of call-back.

216 TCP/IP User’s Manual

9.4 Functions

pop3_init
int pop3_init(int (*storemail)());

DESCRIPTION

Thisfunction must be called before any other POP3 function iscalled. It will set the call-
back function where theincoming e-mail will be passed to. This probably should only be
called once.

PARAMETERS
st oremi | A function pointer to the call-back function.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY
POP3. LI B

Chapter 9: POP3 Client 217

pop3_get mai |
i nt pop3_getmail (char *usernane, char *password, |ong server);

DESCRIPTION

This function will initiate receiving email (a POP3 request to aremote e-mail server).
IMPORTANT NOTE - the buffersfor user nane and passwor d must NOT change
until pop3_ti ck() returnssomething besides POP_PENDI NG These values are not
saved internally, and depend on the buffers not changing.

PARAMETERS
user nane Theuser narne of the account to access.
password Thepasswor d of the account to access.
server The IP address of the server to connect to, as returned from r e-

sol ve().

RETURN VALUE

0: Success;
1: Failure.

LIBRARY
POP3. LI B

pop3 _tick
int pop3_tick(void)

DESCRIPTION

A standard tick function, to run the daemon. Continue to cdl it aslong asit returns
POP_PENDI NG

RETURN VALUE

POP_PENDI NG Transfer isnot done; call pop3_t i ck again.

POP_SUCCESS: All e-mails were received successfully.

POP_ERROR: Unknown error occurred.

POP_TI ME: Session timed-out. Try again, or use POP_TI MEQUT to increase the time-
out length.

LIBRARY
POP3. LI B

218 TCP/IP User’s Manual

9.5 Sample receiving of e-mail
par se_ext ra. ¢ connectsto a POP3 server and downloads e-mail form it.

#define MY_|I P_ADDRESS " 10. 10. 6. 105" /'l change these configuration nmacros
#def i ne MY_NETMASK "255.255.255.0" // to match your host.

#defi ne MY_GATEWAY "10. 10.6. 1"

#defi ne MY_NAMESERVER "10. 10. 6. 254"

#def i ne POP_HOST mai | . domai n. comt //enter the name of your POP3 server

#def i ne POP_USER "nynane" /'l enter usernane for POP3 account
#def i ne POP_PASS "secret" /'l enter password for POP3 account

#def i ne POP_PARSE_EXTRA
#memmap xnem

#use "dcrtcp.lib"

#use "pop3.lib"

int n;

int storenmsg(int num char *to, char *from char *subject, char *body, int
I en) {

}

#GLOBAL_INI T{n = -1;}
if(n!=num {
n = num

printf (" RECElI VI NG MESSAGE <%d>\n", n);
printf("\tFrom %\n", from;
printf("\tTo: %\n", to);
printf("\tSubject: %\n", subject);

}

printf("MG DATA> ' %’'\n", body);

return O;

mai n() {

static | ong address;
static int ret;

sock_init();
pop3_init(storensqg); //set up call-back function

printf("Resolving nanme...\n");

address = resol ve(POP_HOST) ;

printf("Calling pop3_getmail()...\n");

pop3_get mai | (POP_USER, POP_PASS, address); // POP3 request to server

printf("Entering pop3_tick()...\n");
while((ret = pop3_tick()) == POP_PEND NG
conti nue;
i f(ret == POP_SUCCESS)
printf("POP was successful!\n");
if(ret == POP_TI ME)
printf("POP tined out!\n");
if(ret == POP_ERROR)
printf("POP returned a general error!\n");

printf("Al done!\n");

Chapter 9: POP3 Client 219

9.5.1 Sample Conversation
The following is an example POP3 session from the specification in RFC1939. For more informa-

tion see:

http://wwv. rfc-editor.org/rfc/std/std53.txt

In the following example, lines starting with ‘' S;” are the server’s message, and lines starting with
‘C:’ arethe client’s messages.

S: <wait for connection on TCP port 110>
C. <open connection>

+OK POP3 server ready <1896.697170952@lbc. ntvi ew. ca. us>
APOP nrose c4c9334bac560ecc979e58001b3e22f b

+OK nrose’s naildrop has 2 nessages (320 octets)

STAT

+OK 2 320

LI ST

+OK 2 nmessages (320 octets)

1 120

2 200

RETR 1
+OK 120 octets
<t he POP3 server sends nessage 1>

DELE 1

+CK nessage 1 del eted

RETR 2

+OK 200 octets

<t he POP3 server sends nessage 2>

DELE 2
+CK nessage 2 del eted

QT
+OK dewey POP3 server signing off (maildrop enpty)

<cl ose connection>
<wait for next connection>

For debugging purposes, you can observe this conversation by defining POP_DEBUG at the top of

your program.

220

TCP/IP User’s Manual

http://www.rfc-editor.org/rfc/std/std53.txt

10. Telnet

Thelibrary, Vseri al . | i b, implements the telecommunications network interface, known as
telnet. Theimplementation is atel net-to-serial and serial-to-telnet gateway. This chapter is divided
into two parts. The first part describes the library from Dynamic C version 7.05 and later. The sec-
ond part describes the library prior to 7.05.

10.1 Telnet (Dynamic C 7.05 and later)

Thisimplementation is more general than the previous one. Any of the four serial ports can be
used and other /0 streams can be added. Multiple connections are supported by the use of unique
gateway identifiers.

10.1.1 Setup
To use aserial port, the circular buffers must be initialized. For instance, if serial port A isused by
an application, then the following macros must be defined in the program:

#define AINBUFSIZE 31
#defi ne AQUTBUFSI ZE 31

It might be necessary to have bigger buffers for some applications.

10.1.1.1 Low-level Serial Routines
A table to hold the low-level 1/0 routines must be defined astype VSer i al Spec.

typedef struct {
int id; /1 unique IDto match w calls to |isten/open
int (*open)(); /'l serial port routines, or
int (*close)(); [// serial port conpatible routines.
int (*tick)();
int (*rdUsed)();
int (*wFree)();
int (*read)();

int (*wite)();

} VSeri al Spec;

For each serial port (A, B, C and D), there is a pre-defined macro in VSERI AL. LI B:

#define VSERI AL_PORTA(id) { (id), serAopen, serAclose, NULL,
ser ArdUsed, ser Awr Free, serAread, serAwite }

The parameter being passed to VSERI AL PORTA is the unique gateway identifier mentioned
earlier. Thisvalueis chosen by the developer when entries are made to the array of type
VSer i al Spec (also known as the spec table).

Chapter 10: Telnet 221

10.1.1.2 Configuration Macros

VSERI AL_ DEBUG
Turns on debug messages.

VSERI AL_NUM _GATEWAYS

The number of telnet sessions must be defined and must match the number of entries in the spec
table.

10.1.2 Function Reference (Dynamic C 7.05 and later)

vseri al _cl ose
int vserial _close(int id);

DESCRIPTION

Closes the specified gateway. Thiswill not only terminate any network activity, but will
also close the seria port.

PARAMETERS
id ID of the gateway to change, as specified in the spec table.

RETURN VALUE
0: Success;
1: Failure.

LIBRARY
VSERI AL. LI B

vserial _init
int vserial _init (void);
DESCRIPTION

Initializes the daemon and parses the spec table.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY
VSERI AL. LI B

222 TCP/IP User’s Manual

vseri al _keepalive
int vserial _keepalive (int id, long tinmeout);

DESCRIPTION

This function sets the keepalive timer to generate TCP keepalives after t i meout peri-
ods of inactivity. This helps detect if the connection has gone bad.

Keegpalives should be used at the application level, but if that is ot possible, then
t i meout should be set so asto not overload the network. The standard timeout is two
hours, and should be set sooner than that only for a Very Good Reason.

PARAMETERS
id Unique gateway identifier.

ti meout Number of seconds of inactivity allowed beforea TCP keepdiveis
sent. A value of 0 shuts off keepalives.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY
VSERI AL. LI B

Chapter 10: Telnet 223

vserial |isten

int vserial _listen(int
int flags);

renot e_host,

DESCRIPTION

| ong baud,

| ong

Listens on the specified port for atelnet connection. The gateway processis started when
aconnection request isreceived. On disconnect, re-listen happens automaticaly.

PARAMETERS
id
baud

port

renot e_host

flags

RETURN VALUE

0: Success;
1: Failure.

LIBRARY
VSERI AL. LI B

Theloca TCP port to listen on.

ID of the gateway to change, as specified in the spec table.

Theparameter to sendtotheopen() serial port command; it'susu-
aly the baud rate.

Theremote host from whom to accept connections, or 0 to accept a
connection from anybody.

Option flags for this gateway. Currently the only valid bit flags are
VSERI AL_ COOKED to strip out telnet control codes, or 0 to leave
it araw datalink.

224

TCP/IP User’s Manual

vseri al _open

int vserial _open(int id, |ong baud, int port, |ong renote_host
int flags, long retry);

DESCRIPTION

Opens a connection to aremote host and maintainsit, starting the gateway process.

PARAMETERS
id
baud

port
renot e_host

flags

retry

RETURN VALUE

0: Success;
1: Failure.

LIBRARY
VSERI AL. LI B

ID of the gateway to change, as specified in the spec table.

The parameter to sendtotheopen() serial port command; it’susu-
aly the baud rate.

The TCP port on the remote host to connect to.
The remote host to connect to.

Option flags for this gateway. Currently the only valid bit flags are
VSERI AL_ COOKED to strip out telnet control codes, or 0 to leave
it araw datalink.

Theretry timeout, in seconds. When aconnection fails, or if the con-
nection was refused, we will wait this number of seconds befor re-

trying.

Chapter 10: Telnet

225

vserial tick
int vserial tick(void);

DESCRIPTION
Runs the telnet daemon - must be called periodically.

RETURN VALUE

0: Success;
1: Failure.

But call it periodicly no matter the return value! An error message can beseenwhen 1is
returned if you #def i ne VSERI AL_DEBUGat the top of your program.

LIBRARY
VSERI AL. LI B

10.1.3 Sample Program (Dynamic C 7.05 and later)

/**

* vserial.c

* This denonstrates the use of the new VSERI AL. LI B, which provides
* a gateway between serial ports or serial-port-Ilike devices, and
* a telnet-style TCP socket.

***/

#define My_| P_ADDRESS "10.10.6. 105"
#defi ne MY_NETMASK "255.255. 255. 0"
#defi ne MY_GATEWAY "10.10.6.1"

/-k

* Each gat eway mapping must be uniquely identified with a nunber.
* Macros are used for code readability.

*/
#defi ne GATEWAY_PORTC 1

/-k

* Serial buffer sizes have to be defined any time the serial ports
* are used, because of how RS232.LIB worKks.

*/

#defi ne CI NBUFSI ZE 31
#def i ne COUTBUFSI ZE 31

226 TCP/IP User’s Manual

/* Uncoment this to see debug nessages */
/| #def i ne VSERI AL_DEBUG

/*

* The nunber of gateways that will be specified. This nust match the
* nunber of rows in the VSerial SpecTable that is defined bel ow.

*/
#def i ne VSERI AL_NUM _GATEWAYS 1
#use "vserial .lib"
/*

* This table defines the |ow1level serial routines used to talk to
the serial port hardware. Each row is one possi bl e hardware
gateway. Because the built-in Rabbit serial ports will be used
of ten, shortcut-macros are defined for each of the ports, A-D
They take as a paraneter an identifier such that they can be
referenced by the vserial _* functions bel ow
/
const VSeri al Spec VSeri al SpecTable[] = {
VSERI AL_PORTC(GATEWAY_PORTC)

E o T

b
mai n()
{
sock_init();
/* Initilize the vserial library (parse the above structures)*/
if(vserial_init()) {
printf("Error starting vserial library!\n");
exit(-1);
}
/* Enable our first serial->tcp mapping */
i f(vserial _listen(GATEWAY_PORTC, 57600, 23, OL, VSERI AL_COOKED)) {
printf("Error listening!\n");
exit(-1);
}
/*
* Force the tcp connection to be persistent. This causes
* TCP Keepalives to be sent on the socket periodicly. It is
* inmportant to note that this can cause a | arge ammunt of
* network traffic over tine.
*/
i f(vserial _keepalive(GATEWAY_PORTC, 30)) {
printf("Error setting keepalive!\n");
exit(-1);
}
[* run it */
for(;;) {
vserial _tick();
}
}

Chapter 10: Telnet 227

10.2 Telnet (pre-Dynamic C 7.05)

10.2.1 Configuration Macros

SERI AL_PORT _SPEED
The baud rate of the serial port. Defaults to 115,200 bps.

TELNET_COOKED

#def i ne thisto have telnet control codes stripped out of the data stream (useful if you are actu-
aly Telneting to the device from another box; should probably NOT be defined if you are using
two devices as a transparent bridge over the Ethernet).

10.2.2 Function Reference

telnet _init
int telnet_init(int which, |ongword addy, int port);

DESCRIPTION
Initializes the connection.

PARAMETERS

whi ch Is one of the following:
TELNET_LI STEN—L.istens on a port for incoming connections.
TELNET _RECONNECT—Connects to a remote host, and recon-
nectsif the connection dies.
TELNET_CONNECT—Connectsto aremote host, and terminatesif
the connection dies.

addy I P address of the remote host, or O if we are listening.

port Port to bind to if we are listening, or the port of the remote host to

connect to.

RETURN VALUE
0: Success;
1: Failure.

LIBRARY
VSERI AL. LI B

228 TCP/IP User’s Manual

int telnet_tick(void);
DESCRIPTION
Must be called periodicaly to run the daemon.

RETURN VALUE
0: Success (cdll it again);
1: Failure; TELNET_CONNECT died, or afatal error occurred.

LIBRARY
VSERI AL. LI B

void telnet_close(void);

DESCRIPTION
Terminates any connections currently open, and shuts down the daemon.

LIBRARY
VSERI AL. LI B

Chapter 10: Telnet 229

10.2.3 An Example Telnet Server

/*
* Tel net Server: Listens on a telnet port for a connection, and
* transparently passes data on to the serial port
*/

/[l Initilize the |IP address/etc as usua
#define My_| P_ADDRESS "10. 10. 6. 105"
#defi ne MY_NETMASK "255. 255. 255. 0"
#defi ne MY_GATEWAY "10. 10. 6. 19"

#defi ne MY_NAMESERVER "10. 10. 6. 19"

#defi ne SERI AL_PORT_SPEED 115200

/*
* W want RAWdata, leaving in any telnet/etc control codes.
* (this is a raw data port). #define this to cook the input.
*/

#undef TELNET_COOKED

#memmap xmem
#use "dcrtcp.lib"

#use "vserial .lib"

/*
* TCP Port to listen on. O defaults to normal telnet port
*/

#defi ne SERVER PORT 0

mai n() {
sock_init(); // Ilnit TCP/IP
tel net _init(TELNET LI STEN, O, SERVER PORT); //Init Vserial server

/1 Loop on telenet tick() to run server; this is non-bl ocking
while(!tel net tick())
conti nue;

[l Error happened, close telnet connection (shouldn’t happen)
tel net _cl ose();

230 TCP/IP User’s Manual

10.2.3.1 A Sample Client To Connect to the Server

/1 Cient.c Connects to above server, at given |P address and port

#define My_| P_ADDRESS "10. 10. 6. 105"
#defi ne MY_NETMASK " 255. 255. 255. 0"
#def i ne MY_GATEWAY " 10. 10. 6. 19"
#def i ne MY_NAMESERVER "10. 10. 6. 19"

/1l Set the speed of the serial port
#defi ne SERI AL_PORT_SPEED 115200

#undef TELNET COOKED
#menmmap xnmem

#use "dcrtcp.lib"
#use "vserial .lib"

[/ TCP Port to connect to. 0 defaults to normal tel net port
#defi ne SERVER PORT 0

// Renpte |IP to connect to.
#def i ne REMOTE_HOST "10. 10. 6. 19"

mai n() {
sock _init();
/*
* |nit the VSerial server to connect, and reconnect if the
* connection is | ost
*/
tel net _init(TELNET RECONNECT, r esol ve(REMOTE_HOST) , SERVER_PORT) ;

/1 Loop on telenet tick() to run it; this is non-blocking
while(!tel net tick())
conti nue;

[l Error happened, we get here - close it (shouldn’t happen)
tel net _cl ose();

Chapter 10: Telnet

231

232 TCP/IP User’s Manual

11. General Purpose Console

11.1 Introduction
Thelibrary, Zconsol e. | i b, implements a serial-based console that can:

e Configure aboard.

e Upload and download web pages.

* Change web page variables without re-uploading the page.
* Send e-mail.

11.2 Console Features

Recognizing that embedded control systems are wide-ranging in their requirements, Zcon-
sol e. | i b was designed with flexibility and extensibility in mind. Designers can choose the
available functionality they want and leave the rest alone. The Console includes:

* A fail-safe backup system for configuration data.

* Default and custom Console commands.

e Default and custom error messages.

¢ Help text for Console commands, including custom commands

* Multiple I/O streams that can be used simultaneously.

11.2.1 Using other Dynamic C Libraries
An application program that uses the Console must include the lines

#use "FileSystemlib" // if using the inproved file system
/1 that is available starting with
/'l Dynanmic C 7.05, substitute “fs2.1ib”
[l for “FileSystemlib”

#use "zconsole.lib"

Dynamic C TCP/IP functionality may be used by a Console application program by including the
appropriate libraries.

Chapter 11: General Purpose Console 233

11.3 Console Commands and Messages

The Console is a command-driven application. A command is issued either at the keyboard using
aterminal emulator or acommand is generated and sent from an attached machine. The Console
carries out the command, and either the message “ OK” \r\n isreturned, or an error isreturned in
the form of:

ERROR XXXX Thisisan error message.\r\n

Note that the carriage return and new line characters (\r\n) are always returned by the Console
whether the command completed successfully or not.

11.3.1 Console Command Data Structure
The command system is set up at compile time with an array of Consol eConmmand structures.
There isone array entry for each command recognized by the Console.
typedef struct {
char* conmmand;
int (*cndfunc)();
| ong hel pt ext;
} Consol eCommand

command

Thisfield isastring like the following: “SET MAIL FROM “. That is, each word of the command
is separated by a space. The case of the command does not matter. Entering this string is how the
command is invoked.

cmdfunc

Thisfield is afunction pointer to the function that implements the command. The functions that
come with the Console are listed in Section 11.3.3.1 on page 236.

helptext

Thisfield pointsto atext file. The text file contains help information for the associated command.
When HELP COVIVAND is entered, this text file (the help information for COMVAND) will be
printed to the Console. The help text comes from #xi npor t ed text files.

11.3.1.1 Help Text for General Cases
There aretwo casesin Zconsol e. | i b where help text is needed, but is not associated with a
particular command. It is still necessary to alocate a Consol eConmand structure to access the
help text. Thefirst caseisthe help overview given when HELP is entered by itself. The command
field should be“* and the cndf unc field should be NULL.

{ "", NULL, help_txt },

The second caseis HELP SET. Thisis an overview of the family of SET commands, i.e. com-
mands that set configuration values. For HELP SET, the comand field should be “SET” and the
cmdf unc field should be NULL.

{ "SET", NULL, help_set_txt },

This second case illustrates the general case of displaying help for afamily of commands. The
family name can not be the name of a command.

234 TCP/IP User’s Manual

11.3.2 Console Command Array

Anarray of Consol eCommand structures must be defined in an application program as a con-
stant global variable named consol e_commands|] . All commands available at the Console,
those provided in Zconsol e. | i b and custom commands, must have an entry in this array.

11.3.3 Console Commands

Thefollowing isalist of the commands provided by Zconsol e. | i b. When the command name
{i.e, thestring in the command field) is received by the Console, the function pointed to in the
cmdf unc field is executed. When the Consol e receives the command, HEL P <command name>,
the text file located at physical address hel pt ext will be displayed.

const Consol eConmand consol e_conmmands[] =

{

"HELLO WORLD', hello_world, 0 },

"ECHO', con_echo, hel p_echo_txt },

"HELP", con_hel p, hel p_hel p_txt },

"", NULL, help_txt },

"SET", NULL, help_set _txt },

"SET PARAM', con_set_param O },

"SET IP*, con_set_ip, help_set_txt },

"SET NETMASK", con_set _netnask, hel p_set _txt },

"SET GATEWAY", con_set _gateway, hel p_set _txt },

"SET NAMESERVER', con_set_ naneserver, hel p_set _txt },

"SET MAIL", NULL, help_set_rmail _txt },

"SET MAIL SERVER', con_set_mmil _server, help_set_mail _server_txt },
"SET MAIL FROM', con_set_mail _from help_set_mail_fromtxt },
"SHOW, con_show, hel p_show txt },

"PUT", con_put, help_put_txt },

"GET", con_get, help_get_txt },

"DELETE", con_delete, help_delete_txt },

"LIST", NULL, help_list_txt },

"LI ST FILES", con_list _files, help_list_txt },

"LI ST VARI ABLES", con_list_variables, help_list_txt },
"CREATEV', con_createv, help_createv_txt },

"PUTV", con_putv, help_putv_txt },

"GETV', con_getv, help_getv_txt },

"MAIL", con_mail, help_mail _txt },

"RESET FILES", con_reset files, 0}

"RESET VARI ABLES”, con_reset_variables, help_reset_variables }

Lt Rt W et W e W e W e W e W e W e W e N e e Rt Wt W W e W e W e W e e W e N e e N e N e]

Chapter 11: General Purpose Console 235

11.3.3.1 Default Command Functions
The following functions are provided in Zconsol e. | i b. Each one takes a pointer to a Con-
sol eSt at e structure asits only parameter, following the prototype for custom functions
described in Section 11.3.3.2 on page 239. Each of these functions return O when it has more pro-
cessing to do (and thus will be called again), 1 for successful completion of itstask, and - 1 to
report an error.

Parameters needed by the commands using these functions are passed on the command line.

con_createv()
This function creates a variable that can be used with SSI commandsin SHTML files. Certain SSI
commands can be replaced by the value of this variable, so that aweb page can be dynamically
atered without re-uploading the entire page. Note, however, that the value of the variable is not
preserved across power cycles, athough the variable entry is still preserved. That is, the value of
the variable may change after a power cycle. It can be changed again, though, with aput v com-
mand. It works in the following fashion (if the command is called “ CREATEV"):

usage: "createv <varnane> <vartype> <format> <value> [strlen]"
A web variable that can be referenced within web filesis created.
<var nane> isthe name of the variable
<vart ype> isthetypeof thevariable (I NT8, | NT16, | NT32, FLOAT32, or STRI NG
<f or mat > isthe printf-style format specifier for outputting the variable (such as"%d")
<val ue> isthe value to assign the variable.

[strlen] isonly used if the variableis of type STRI NG It is used to give the maximum length
of the string.

con_delete()

Thisfunction deletes afile from the file system. A command that uses this function takes one
parameter: the name of the file to delete.

con_echo()

Thisfunction turns on or off the echoing of characters on a particular 1/0 stream. That is, it does
not affect echoing globally, but only for the I/O stream on which it isissued. A command that uses
this function takes one parameter: ON | OFF.

con_get()

Thisfunction displays afile from the file system. It works in the following fashion (if the com-
mand iscalled “GET"):

¢ ASCII mode: usage: "get <filename>"

Thefile isthen sent, followed by the usual OK message.
* BINARY mode: usage: "get <filename> <sizein bytes>"

Themessage "LENGTH <len>" will be sent, indicating length of the file to be sent, and then the
file will be sent, but not more than <size in bytes> bytes.

236 TCP/IP User’s Manual

con_getv()

This function displays the value of the given variable. The variableis displayed using the printf-
style format specifier giveninthe cr eat ev command. A command that uses this function takes
one parameter: the name of the variable.

con_help()

This function implements the help system for the Console. A command that uses this function
takes one parameter: the name of another command. The Console outputs the associated help text
for the requested command. The help text is the text file referenced in the third field of the Con-
sol eConmand structure.

con_list_files()
Thisfunction lists the files in the file system and their file sizes. A command that uses this func-
tion takes no parameters.

con_list_variables()
This function displays the names and types of al variables. A command that uses this function
takes no parameters.

con_mail()

This function sends e-mail to the server specified by con_mai | _server (), with thereturn
address specified by set _mai | _fron() . A command that uses this function takes one parame-
ter: the destination e-mail address. If the command is named mail, the usageis:

"mai | destinati on@here. cont

Thefirst line of the message will be used as the subject, and the other lines are the body. The body
isterminated with a”D or *Z (0x04 or 0x1A).

con_put()
Thisfunction creates anew filein the file system for use with the HTTP server. It worksin the fol-
lowing fashion (if the command is called “PUT"):

* ASCIl mode: usage: "put <filename>"
Thefileisthen sent, terminating with a~D or ~Z (0x04 or Ox1A).

¢ BINARY mode: usage: "put <filename> <size in bytes>"
Thefileisthen sent, and must be exactly the specified number of bytesin length.

Note that ASCII mode is only useful for text files, since the Console will ignore non-displayable
characters. In binary mode, the put command will time out after CON_TI MEQUT seconds of inac-
tivity (60 by default).

con_putv()
This function updates the value of avariable. A command that uses this function takes two param-
eters: the name of the variable, and the new value for the variable.

con_reset_files
This function removes all web files.

Chapter 11: General Purpose Console 237

con_reset_variables
This function removes all web variables.

con_set_gateway()
This function changes the gateway of the board. A command that uses this function takes one
parameter: the new gateway in dotted quad notation, e.g., 192.168.1.1.

con_set_ip()
This function changes the I P address of the board. A command that uses this function takes one
parameter: the new | P addressin dotted quad notation, e.g., 192.168.1.112.

con_set_param

This function sets the parameter for the current 1/0 device. Depending on the 1/O device, this
value could be abaud rate, a port number or achannel number. A command that uses this function
takes one parameter: the value for the I/O device parameter.

con_set_mail_from

This function sets the return address for all e-mail messages. This address will be added to the out-
going e-mail and should be valid in case the e-mail needsto bereturned. A command that uses this
function takes one parameter: the return address.

con_set_mail_server
This functions identifies the SMTP server to use. A command that uses this function takes one
parameter: the | P address of the SMTP server.

con_set_nameserver()

This function changes the name server for the board. A command that uses this function takes one
parameter: the |P address of the new name server in dotted quad notation, e.g., 192.168.1.1.

con_set_netmask()

This function changes the netmask of the board. A command that uses this function takes one
parameter: the new netmask in dotted quad notation, e.g., 255.255.255.0.

con_show()

This function displays the current configuration of the board (IP address, netmask, and gateway).
If the devel oper’s application has configuration options she would like to show other than the IP
address, netmask, and gateway, she will probably want to implement her own version of the show
command. The new show command can be modelled after con_show() inZConsol e. i b. A
command that uses this function takes no parameters.

238 TCP/IP User’s Manual

11.3.3.2 Custom Console Commands
Developers are not limited to the default commands. A custom command is easy to add to the
Console; simply create an entry for itin consol e_comuands|] . Thethree fields of this entry
were described in Section 11.3.1. Thefirst field is the name of the command. The second field is
the function that implements the command. This function must follow this prototype:

int function_nane (Consol eState* state);

The parameter passed to the function isa structure of type Consol eSt at e. Some of thefieldsin
this structure must be manipulated by your custom command function, other fields are used by
Zconsol e. | i b and must not be changed by the your program.

typedef struct {
i nt consol e_nunber;
Consol el O coni o;
int state;
int | aststate;

char command[CON_CMD_SI ZE] ;

char* cmdptr;

char buffer[CON BUF SIZE]; // Use for reading in data.
char* bufferend; /1l Use for reading in data.

Consol eCommand* cndspec;

int sawcr;

i nt sawesc;

int echo; /1l Check if echo is enabled, or change it.
i nt subst at e;

unsigned int error;

int nunparans; // Read-only: check # of parnms in command.
char cnddat a] CON_CvD_DATA_SI ZE] ;

Fil eNunber filenum // Use for file processing.

File file; /1 Use for file processing.
i nt spec; [l Use for working with Zserver entities
| ong timeout; /1l Use for extending the tineout.

} Consol eSt at g;

To accomplish its tasks, the function should use st at e- >subst at e for its state machine
(which will beinitialized to zero before dispatching the command handler), and

st at e- >conmmand to read out the command buffer (to get other parameters to the command, for
instance). In case of error, the function should set st at e- >er r or to the appropriate value. The
buffer at st at e- >cnddat a is available for the command to preserve data across invocations of
the command’s state machine. The size of the buffer is adjustable viathe CON_CMD_DATA _SI ZE
macro (set to 16 bytes by default). Generally this buffer areawill be cast into a data structure
appropriate for the given command state machine.

IMPORTANT: The fields discussed in the previous paragraph and the fields that have commentsin
the structure definition are the only ones that an application program should change. The other
fields must not be changed.

The function should return O when it has more processing to do (and thus will be called again), 1
for successful completion of itstask, and -1 to report an error.

Chapter 11: General Purpose Console 239

Thethird and final field of theconsol e_commands[] entry isthe physical address of the help
text file for the custom command in question. Thisfile must be #xi npor t ed, along with al of
the default command function help files that are being used.

11.3.4 Console Error Messages

The Console library provides alist of default error messages for the default Console commands.
An application program must define an array for these error messages, as well as for any custom
error messages that are desired. To include only the default error messages, the following array is
sufficient:

const Consol eError console_errors[] = {
CON_STANDARD ERRORS // includes all default error nessages
}

11.3.4.1 Default Error Messages

These are the error codes for the default error messages and the text that will be displayed by the
Consoleif the error occurs.

#defi ne CON_ERR TI MEQUT 1
#defi ne CON_ERR_BADCOMVAND 2
#defi ne CON_ERR_BADPARAMETER 3
#defi ne CON_ERR NAMETOCOLONG 4
#defi ne CON_ERR DUPLI CATE 5
#defi ne CON_ERR_BADFI LESI ZE 6
#defi ne CON_ERR _SAVI NGFI LE 7
#defi ne CON_ERR_READI NGFI LE 8
#defi ne CON_ERR_FI LENOTFOUND 9
#defi ne CON_ERR_MSGTOOLONG 10
#defi ne CON_ERR_SMIPERROR 11
#defi ne CON_ERR _BADPASSPHRASE 12
#defi ne CON_ERR_CANCELRESET 13

#def i ne CON_ERR_BADVARTYPE 14
#defi ne CON_ERR BADVARVALUE 15
#def i ne CON_ERR_NOVARSPACE 16

#def i ne CON_ERR VARNOTFOUND 17
#def i ne CON_ERR _STRI NGTOOLONG 18
#def i ne CON_ERR _NOTAFI LE 19
#def i ne CON_ERR_NOTAVAR 20
#def i ne CON_ERR_COMMANDTOOLONG 21
#def i ne CON_ERR BADI PADDRESS 22

240 TCP/IP User’s Manual

#defi ne CON_STANDARD ERRORS \

CON_ERR _TI MEQUT, "Tinmed out." },\

CON_ERR BADCOMVAND, "Unknown comand. " },\
CON_ERR BADPARAMETER, "Bad or nissing paraneter." },\
CON_ERR NAMETOOLONG, "Filenane too long." },\
CON_ERR _DUPLI CATE, "Duplicate object found." },\
CON_ERR _BADFI LESI ZE, "Bad file size." },\
CON_ERR _SAVI NGFI LE, "Error saving file." },\
CON_ERR READI NGFI LE, "Error reading file." },\
CON_ERR FI LENOTFOUND, "File not found." },\
CON_ERR MSGTOOLONG, "Mail nessage too long." },\
CON_ERR _SMTPERROR, "SMIP server error." },\
CON_ERR_BADPASSPHRASE, "Passphrases do not match!" },\
CON_ERR_CANCELRESET, "Reset cancelled." },\
CON_ERR BADVARTYPE, "Bad variable type." },\
CON_ERR BADVARVALUE, "Bad variable value." },\
CON_ERR NOVARSPACE, "CQut of variable space." },\
CON_ERR_VARNOTFQUND, "Variable not found." },\
CON_ERR_STRI NGTOOLONG, "String too long." },\
CON_ERR_NOTAFI LE, "Not a file." },\

CON_ERR NOTAVAR, "Not a variable." },\

CON_ERR COMVANDTOOLONG, "Command too long." },\
CON_ERR BADI PADDRESS, "Bad | P address." }

[t Nt Nt Wata Watn W e Wae Was W W W W W Nt Ratn W et W s Waan W W W e Wag ¥

11.3.4.2 Custom Error Messages
Developers can create their own error messages by following the format of the default error mes-
sages. The error code numbers should be greater than 1,000 to save room for expansion of built-in
error messages.

#defi ne NEW ERRCR 1001

const Consol eError console_errors[] = {
CON_STANDARD ERRORS, // includes all default error messages
{ NEW ERROR, "Any error nessage | want." }

}
The default error messages should beincluded in consol e_error s[] aongwith any custom
error messages that are used since the commands that come with Zconsol e. | i b each expect
their own particular error message.

Chapter 11: General Purpose Console 241

11.4 Console I/O Interface

Multiple I/O methods are supported, as well as the ahility to add custom I/O methods. An array of
Consol el Ostructures must be defined in the application program and named consol e _i o[] .
This structure holds handlers for common 1/O functions for the 1/0 method.

typedef struct {
|l ong param // Baud for serial, port for telnet, etc.
int (*open) ();
void (*close)();
int (*tick) ();
int (*puts) ();
int (*rdUsed) ();
int (*wUsed) ();
int (*wFree) ();
int (*read) ();
int (*wite) ();

} Consol el O

11.4.1 How to Include an I/0O Method
Each supported 1/O method is determined at compiletime, i.e., each supported I/O method must
haveanentryinconsol e_i o[].

11.4.2 Predefined I/0O Methods

Severd predefined I/0O methodsarein Zconsol e. | i b. They will be included by entering their
respective macrosinconsol e_i o[] .
const Consol el O console io[] = {
CONSCOLE | O SERA(baud rate),
CONSCOLE | O SERB(baud rate),
CONSOLE_| O_SERC(baud rate),
CONSOLE_| O_SERD(baud rate),
CONSOLE_I O_SP(channel nunber),
CONSOLE | O TELNET(port nunber),

}
The macros expand to the appropriate set of pre-defined handler functions, e.g.,

#defi ne CONSOLE_| O SERA(param){ param serAopen, serAcl ose, NULL,
coni o_ser Aputs, serArdUsed, ser Awr Used, serAw Free, serAread, serAwite}

11.4.2.1 Serial Ports

There are predefined 1/0 methods for all four of the seria ports on a Rabbit board. The baud rateis
set by passing it to the macro. See above.

11.4.2.2 Telnet

The Console runs atelnet server. The port number is passed to the macro CONSCLE_| O TELNET.
The user telnets to the controller that is running the Console.

242 TCP/IP User’s Manual

11.4.2.3 Slave Port

The Rabbit slave port is an 8-bit bidirectional data port. The Console runs on the slave processor.
Two drivers are needed.

11.4.2.3.1 Slave Port Driver

The dave port driver isimplemented by SLAVE _PORT. LI B. For an application to use the dave
port:

* Thedriver must beinstalled by including the library in the program.

e AcaltoSPinit(npde) must be madeto initialize the driver.

* A function to process Console commands sent to the slave port must be provided.

The dave port has 256 channels, separate port addresses that are independent of one ancther. A

handler function for each channel that is used must be provided. For details on how to do this,
please see the Dynamic C User’s Manual.

A stream-based handler, SPShandl er () , to process Console commands for the slaveis pro-
vided in SP_STREAM LI B. The handler is set up automatically by the Console when the dave
port 1/0O method isincluded. The macro, CONSOLE_| O_SP, expands to the I/O functions defined
in SP_STREAM LI B.

11.4.2.3.2 Master Connected to Rabbit Slave Port
The master controller board can be another Rabbit processor or something el se.

The master also needs adriver for its end of the slave port connection. An example of the software
needed on the master isgiven in MASTER_SERI AL. LI B. The software on the master controller
is, of course, specific to the task at hand. In the example driver provided, most of the work is done
by the slave, making minimal changes necessary to the code on the master.

11.4.2.4 Custom 1/O Methods
To define a custom 1/O method, you must add a structure of type Consol el Oto
consol e_i o[] . This structure holds the common handler functions for the 1/O method. The
tick function may have a NULL pointer, but the rest of the function pointers must be valid pointers
to functions.

11.4.3 Multiple 1/O Streams

Each 1/0 method has its own state machine in the Console. That means that each I/0O method is
independent of the others and they can all be used simultaneously. Thisimposes the important
restriction that all command handlers be able to run simultaneously on different I/O streams or
support proper locking for functions that cannot be performed simultaneously.

Chapter 11: General Purpose Console 243

11.5 Console Execution

Normally, the Console will communicate over a seria link. The physical connection will differ
dlightly from board to board. Basically, you will need a3 wire (GND, RXD, TXD) seria cable. In
order to execute the Console severd initialization steps must be taken at the beginning of an appli-
cation program.

11.5.1 File System Initialization
The Console depends on the file system that is included with Dynamic C. Besides including the
library and defining the macro that directs the file system to EEPROM memory:

#define FS_FLASH
#use "Fil eSystem|ib"
the application program must initialize the file systemwithacal tofs_init ().

11.5.2 Serial Buffers
If the pre-defined serial 1/0O methods are used, the circular buffers used for 1/O data can be resized
from their default values of 31 bytes by using macros. For example, if CONSOLE | O SERI ALC
isincludedinconsol e_i o[], then lines similar to the following can be in the application pro-
gram:

#define Cl NBUFSI ZE 1023

#defi ne COUTBUFSI ZE 255

In general, these buffers can be smaller for slower baud rates, but must be larger for faster baud
rates.

11.5.3 Using TCP/IP
To use the TCP/IP functionality of the Console you must have the following line in your applica-
tion program:

#use “dcrtcp.lib”

If you are serving web pagesyou must alsoincludeht t p. | i b, and if you are sending e-mail you
must includesmt p. 1i b.

244 TCP/IP User’s Manual

11.5.4 Required Console Functions
To run the Console, the following two functions are required.

console_init
int console_init(void);

DESCRIPTION

This function will initialize the Console data structures. It must be called before
consol e_tick() iscaledforthefirst time Thisfunction also loads the configura-
tion information from the file system.

RETURN VALUE

0: Success;
1: No configuration information found.
<0: Indicates an error loading the configuration data;
- 1 indicates an error reading the 1st set of information,
- 2 the 2nd set, and so on.

consol e_tick
voi d consol e_tick(void);

DESCRIPTION

Thisfunction needs to be called periodically in an application program to allow the Con-
sole time for processing.

11.5.5 Useful Console Function
Most of the following functions are only useful for creating custom commands.

con_backup
i nt con_backup(void);

DESCRIPTION
This function backs up the current configuration.

RETURN VALUE
0: Success
1: Failure

SEE ALSO
con_backup reserve, con_load backup

Chapter 11: General Purpose Console 245

con_backup_bytes
| ong con_backup_bytes(void);

DESCRIPTION

Returns the number of bytes necessary for each backup configuration file. Note that
enough space for 2 of these files needs to be reserved. Thisfunction ismost useful when
ZCONSOLE. LI Bisbeing used with FS2. LI B.

RETURN VALUE
Number of bytes needed for a backup configuration file.

SEE ALSO
con_backup_reserve

con_backup_reserve

voi d con_backup_reserve(void);

DESCRIPTION

Reserves spacefor the configuration information in the file system. For moreinformation
on the file system see the Dynamic C User’'s Manual.

SEE ALSO
con_backup, con _load_backup, con_backup_bytes

con_chk_ti nmeout

int con_chk_timeout (unsigned |long tineout);

DESCRIPTION
Checks whether the given timeout value has passed.

RETURN VALUE

0: Timeout has not passed
! 0: Timeout has passed

SEE ALSO

con_set _tinmeout

246 TCP/IP User’s Manual

con_l oad_backup
int con_| oad _backup(void);

DESCRIPTION
L oads the configuration from the file system.

RETURN VALUE

0: Success
1: No configuration information found
<0: Failure
- 1: error reading 1t set of information
- 2: error reading 2nd set of information, and so on

SEE ALSO
con_backup, con_backup_reserve

con_reset_io
void con_reset _io(void);

DESCRIPTION
Resetsall I/0O methods by calling cl ose() and open() on each of them.

con_set _backup_I x
voi d con_set _backup_I| x(FSLXnum backupl x) ;

DESCRIPTION

Setsthe logical extent (LX) that will be used to store the backup configuration data. For more
information on the file system see the Dynamic C User’s Manual. Thisisonly useful in conjunction
with FS2. LI B. This should be called once beforeconsol e_i ni t (). Careshould betaken
that enough space is available in thislogical extent for the configuration files. See
con_backup_byt es() for moreinformation.

PARAMETER

backupl x L X number to use for backup

SEE ALSO

con_set_files_|x, con_backup_bytes

Chapter 11: General Purpose Console 247

con_set files_ |Xx
void con_set files Ix(FSLXnum fil eslx);

DESCRIPTION

Setsthe logical extent (LX) that will be used to store files. For more information on the
file system see the Dynamic C User’s Manual. Thisis only useful in conjunction with
FS2. LI B. Thisshould be called once beforeconsol e_init ().

PARAMETER

fileslx LX number to use for files.

SEE ALSO
con_set backup_I x

con_set _user _idle
void con_set _user _idle(void (*funcptr)());

DESCRIPTION

Sets a user-defined function that will be called when the console (for a particular 1/0
channel) isidle. The user-defined function should take an argument of type
Consol eSt at e*

SEE ALSO

con_set _user_timeout

con_set _timeout

unsi gned | ong con_set tinmeout (unsigned int seconds);

DESCRIPTION

Returnsthevaluethat Ms_TI MER should have when the number of seconds given have
elapsed.

SEE ALSO
con_chk_ti meout

248 TCP/IP User’s Manual

con_set _user _tinmeout
void con_set _user_tinmeout(void (*funcptr)());

DESCRIPTION

Sets auser-defined function that will be called when atimeout event has occured. The
user-defined function should take an argument of type Consol eSt at e*.

SEE ALSO

con_set _user_idle

11.5.6 Console Execution Choices

The Console can be used interactively with aterminal emulator or programatically by sending
commands from a program running on a device connected to the controller that is running the
Console.

11.5.6.1 Terminal Emulator

To manually enter Console commands from a keyboard and view results in the Stdio window you
must:

1. Run Dynamic C, version 7.05 or later.

2. Open aterminal emulator. Windows HyperTerminal comes with Windows. It does not work
with binary files, only ASCII. TeraTerm, available for free download at

http://hp.vector.co.jp/authors/VA002416/teraterm htn
can handle both ASCII and binary.
Configure the terminal emulator as follows:

COM port (1 or 2) to which 3-wire serial cableis connected
Baud Rate 57,600 bps
DataBits 8
Parity None
Stop Bits 1
Flow Control None
The terminal emulator should now accept Console commands.

To avoid losing a<LF> at the beginning of afile when using thecon_put command function,
select Setup->Terminal from the Tera Term menu and set the Transmit option to CR+LF. This
option might be located el sewhere if you are using a different terminal emulator.

11.6 Backup System

The Console can save configuration parameters to the file system so that they are available across
power cycles. The backup processis done by con_backup() . Unlike the other console com-
mand functions, con_backup() does not take a parameter and it returns O if the backup was
successful and 1 if it was not. Thisfunction is called by severa of the console command functions
that change configuration parameters, or that add or delete files or variables from the file system.
Caution is advised when calling con_backup() sinceit writes to flash memory.

Chapter 11: General Purpose Console 249

http://hp.vector.co.jp/authors/VA002416/teraterm.html

11.6.1 Data Structure for Backup System
The developer must define an array called consol e_backup[] of Consol eBackup struc-
tures.

typedef struct {
voi d* dat a;
int |len;
void (*postload)();
void (*presave)();
} Consol eBackup;

data
Thisis apointer to the datato be backed up.

len
Thisis how many bytes of data need to be backed up.

postload
Thisisafunction pointer to afunction that is called after configuration data is loaded, in case the
devel oper needs to do something with the newly loaded configuration data.

presave
Thisisafunction pointer that is called just before the configuration datais saved so that the devel-
oper can fill in the data structure to be saved. The functions referenced by post | oad() and
pr esave() should have the following prototype:

void ny_prel oad(voi d* dataptr);

Thedat apt r parameter is the address of the configuration data (the same as the data pointer in
the Consol eBackup structure).

11.6.2 Array Definition for Backup System

const Consol eBackup consol e_backup[] = {
CONSOLE_BASI C BACKUP, // echo state, baud-rate/port nunber
CONSOLE_TCPI P_BACKUP,
CONSOLE_HTTP_BACKUP,
CONSOLE_SMTP_BACKUP
{ ny_data, ny_data_len, ny preload, ny presave }
}
CONSOLE_BASI C_BACKUP causes backup of the echo state (on or off), baud rate and port num-
ber information.

CONSOLE_TCPI P_BACKUP causes backup of the IP addresses of the controller board and the |P
address of its netmask, gateway and name server.

CONSOLE_HTTP_BACKUP causes backup of the files and variables visibleto the HTTP server.
CONSOLE_SMTP_BACKUP causes backup of the mail configuration.

250 TCP/IP User’s Manual

11.7 Console Macros
Zconsol e. | i b offers many macros that change the behavior of the Console.

CON_BACKUP_FILE1

The file number used for the first backup file. For FS1, this number must be in the range 128-143,
sothatfs_reserve_ bl ocks() can beusedto guarantee free space for the backup files.
Defaultsto 128 for FS1. Defaults to 254 for FS2.

CON_BACKUP_FILE2

Same as above, except thisis for the second backup file. Two files are used so that configuration
information is preserved even if the power cycles while configuration data is being saved. For
FS1, this number must be in the range 128-143. Defaults to 129 for FS1. Defaults to 255 for FS2.

CON_BUF_SIZE
Changes the size of the data buffer that is allocated for each |/O methaod. If the baud rate or trans-

fer speed istoo great for the Console to keep up, then increasing this value may help avoid
dropped characters. It is allocated in root data space. It defaults to 1024 bytes.

CON_CMD_SIZE
Changes the size of the command buffer that is allocated for each I/O method. This limits the
length of acommand line. It isallocated in root data space. Defaults to 128 bytes.

CON_CMD_DATA_SIZE
Adjusts the size of the user data area within the state structure so that user commands can preserve

arbitrary information across calls. It isallocated in root data space. Defaults to 16 bytes.

CON_HELP_VERSION

This macro should be defined if the developer wants a version message to be displayed when the
HELP command is issued with no parameters. If this macro is defined, then the macro
CON_VERSI ON_MESSAGE must also be defined.

CON_INIT_MESSAGE
Defines the message that is displayed on all Console I/O methods upon startup. Defaults to “ Con-

sole Ready\r\n”.

CON_MAIL_BUF_SIZE
Maximum length of amail message. Defaults to 1024.

CON_MAIL_FROM_SIZE
Maximum length of mail from addressto NULL terminator. Default to 51.

CON_MAIL_SERV_SIZE
Maximum length of mail server name and NULL terminator. Defaults to 51.

CON_SP_RDBUF_SIZE
Size of the slave port read buffer. Defaults to 255.

CON_SP_WRBUF_SIZE
Size of the slave port write buffer. Defaults to 255.

Chapter 11: General Purpose Console 251

CON_TIMEOUT
Adjusts the number of seconds that the Console will wait before cancelling the current command.
The timeout can be adjusted in user code in the following manner:

state->timeout = con_set tineout (CON_TI MEQUT);

Thisis useful for custom user commands so that they can indicate when something “ meaningful”
has happened on the Consol e (such as some data being successfully transferred).

CON_VAR_BUF_SIZE
Adjusts the size of the variable buffer, in which values of variables can be stored for use with the

HTTP server. It isalocated in xmem space. Defaultsto 1024 bytes.

CON_VERSION_MESSAGE
This defines the version message to display when the HEL P command is issued with no parame-
ters. It is not defined by default, so has no default value.

11.8 Sample Program

/***

t cpi pconsol e. c
Z-World, 2001
Thi s sanpl e programdenonstrates many of the features of ZCONSOLE. LI B.

Among the features this sanple program supports is network
configuration, upl oadi ng web pages, changing variables for use wi th web
pages, sending mail, and access to the console through a telnet client.

**/

#define MY_lI P_ADDRESS "10.10.6.112"
#define MY_NETMASK "255. 255, 255. 0"
#define MY_GATEWAY "10.10.6.1"
#defi ne MY_NAMESERVER "10.10.6. 1"
#define SMIP_SERVER "10.10.6.1"

/
Si ze of the buffers for serial port C. If you want to use
anot her serial port, you should change the buffer nacros bel ow
* appropriately (and change the console io[] array bel ow).

*/

#define CINBUFSI ZE 1023

#defi ne COUTBUFSI ZE 255

* X ok

/*

* Maxi mum nunber of connections to the web server. This indicates
* the nunber of sockets that the web server will use.

*/

#defi ne HTTP_MAXSERVERS 2

252 TCP/IP User’s Manual

* X

Maxi mum nunber of sockets this program can use. The web server
is taking two sockets (see above), the mail client uses one

* socket, and the telnet interface uses 1 socket.

*/

#defi ne MAX _SOCKETS 4

/*

* All web server content is dynamic, so we do not need
* http_flashspec[].

*/

#define HTTP_NO_FLASHSPEC

/*

* The file systemthat the console uses should be |l ocated in flash
*/

#define FS_FLASH

/-k
* Consol e configuration
*/

/-k

* The nunber of console 1/0O streans that this program supports. Since
* we are supporting serial port Cand telnet, there are two |/ O streans.
*/

#defi ne NUM_CONSOLES 2

/*

* If this macro is defined, then the version message will be shown
* with the help command (when the hel p conmand has no paraneters).
*/

#defi ne CON_HELP_VERSI ON

/*

* Defines the version nessage that will be displayed in the help

* command if CON _HELP_VERSI ON i s defined

*/

#defi ne CON_VERSI ON_MESSAGE "TCP/I P Consol e Version 1.0\r\n"

/*

* Defines the message that is displayed on all 1/0O channels when the
consol e starts.

*/

#define CON_| NI T_MESSAGE CON_VERSI ON_MESSAGE

Chapter 11: General Purpose Console 253

These xinport directives include the help texts for the
consol ecommands. Having the help text in xmem hel ps save
root code space
/
#xi nmport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p. txt" hel p_t xt
#xi nport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_hel p. txt"
hel p_hel p_t xt
#xi nmport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_echo. t xt"
hel p_echo_t xt
#xi nport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_set.txt"
hel p_set txt
#xi nmport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_set _param txt"
hel p_set paramt xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_set _mai |l . txt
hel p_set _mail _txt
#xi mport
"sampl es\ zconsol e\t cpi pconsol e_hel p\ hel p_set_mai | _server.txt"
hel p_set _mail _server _txt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_set _mail _fromtxt"
hel p_set _mail _fromtxt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_show. t xt"
hel p_show_t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_put .t xt"
hel p_put _t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_get . txt"
hel p_get _t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_del ete. txt"
hel p_del et e_t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\hel p_list.txt"
hel p_list_txt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_createv.txt"
hel p_createv_txt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_putv.txt"
hel p_put v_t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_getv.txt"
hel p_get v_t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_mai | .t xt
hel p_mai | _t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_reset.txt"
hel p_reset _txt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_reset _files.txt"
hel p_reset files_txt
#xi mport
"sampl es\ zconsol e\t cpi pconsol e_hel p\ hel p_reset_vari ables.txt"
hel p_reset _variabl es_t xt

* % %k * X

254 TCP/IP User’s Manual

#memmap xmem

#use "FileSystem|lib"
#use "dcrtcp.lib"
#use "http.lib"

#use "sntp.lib"

/*

*

*/

Note that all libraries that zconsole.lib needs nust be #use d
before #use’'ing zconsole.lib .

#use "zconsole.lib"

/*
*
*
*/
i nt

/

EEE D R S B R N

/

This function prototype is for a custom comuand, so it must be
decl ared before the consol e_conmand[] array.

hel |l o_worl d(Consol eSt at e* state);

This array defines which I/O streanms for which the console will
be avail able. The streans included bel ow are defined through
macros. Avail abl e macros are CONSOLE | O SERA, CONSOLE | O SERB
CONSOLE_| O_SERC, CONSOLE_| O SERD, CONSOLE_I O TELNET, and
CONSOLE 1O SP (for the slave port). The paraneter for the macro
represents the initial baud rate for serial ports, the port
nunber for telnet, or the channel nunber for the slave port.

It is possible for the user to define her own I/O handl ers and
include themin a ConsolelO structure in the console_io array.
Remember that if you change the nunber of I/O streans here, you
shoul d al so change the NUM CONSOLES nacro above.

const Consol el O console_io[] =

{

b

CONSOLE_I O_SERC(57600),
CONSOLE_| O TELNET(23)

Chapter 11: General Purpose Console

255

This array defines the commands that are available in the console.
The first paraneter for the Consol eCommand structure is the
command specification--that is, the nmeans by which the consol e
recogni zes a conmmand. The second parameter is the function
to call when the conmand is recogni zed. The third paraneter is
the | ocation of the #xinport'ed help file for the command.
Not e that the second paraneter can be NULL, which is useful if
hel p information is needed for sonmething that is not a conmand
(like for the "SET" command bel ow--the help file for "SET"
contains a list of all of the set commands). Also note the
entry for the commmand "", which is used to set up the help text
that is displayed when the help conmand is used by itself (that
is, with no paraneters).
/
const Consol eCommand consol e_conmands[] =

{

EIE R B T B B R R R . T N

"HELLO WORLD", hello_world, 0 },
"ECHO', con_echo, hel p_echo_txt },
"HELP", con_hel p, help_help_txt },
"' NULL, help_txt },
"SET", NULL, help_set_txt },
"SET PARAM', con_set_param hel p_set_paramtxt },
"SET I P', con_set_ip, help_set_txt },
"SET NETMASK", con_set_netmask, hel p_set _txt },
"SET GATEWAY", con_set_gateway, hel p_set_txt },
"SET NAMESERVER', con_set _naneserver, help_set_txt },
"SET MAIL", NULL, help_set_mail _txt },
"SET MAIL SERVER', con_set _mmil _server,
hel p_set _mail _server_txt },
"SET MAIL FROM', con_set_mail_from help_set_mail_fromtxt },
"SHOW , con_show, hel p_show txt },
"PUT", con_put, help_put_txt },
"GET", con_get, help_get_txt },
"DELETE", con_del ete, help_delete_txt },
"LIST", NULL, help_list_txt },
"LI ST FILES", con_list _files, help_list_txt },
"LI ST VARI ABLES", con_list_variables, help_list_txt },
"CREATEV", con_createv, help_createv_txt },
"PUTV", con_putv, help_putv_txt },
"GETV", con_getv, help_getv_txt },
"MAIL", con_mail, help_mail _txt },
"RESET", NULL, hel p_reset_txt },
"RESET FILES", con_reset files, help_reset files_txt },
"RESET VARI ABLES", con_reset _vari abl es,
hel p_reset variables_txt }

[t Kt Nt Nt W e Wt W e W W W W W

Lt Wt W e W W e W e W e N e e W e W e W e W e Y e Wt}

256 TCP/IP User’s Manual

This array sets up the error nessages that can be generated.
CON_STANDARD ERRORS is a nmacro that expands to the standard
errors that the built-in commands in zconsole.lib uses. Users
can define their own errors here, as well

/

const Consol eError console_errors[] = {

CON_STANDARD_ERRORS

~
EE T

E R R SR T R T R

~

This array defines the information (such as configuration) that
array above, then the backup information nust be included in
this array. The entries bel ow are macros that expand to the

add their own information to be backed up here by adding nore
Consol eBackup structures.

const Consol eBackup consol e_backup[] =

appropriate entry for each set of functionality. Users can also

will be saved to the file system Note that if, for exanple, the
HTTP or SMIP rel ated commands are include in the consol e_conmands

{
CONSOLE_BASI C_BACKUP,
CONSOLE_TCP_BACKUP
CONSOLE_HTTP_BACKUP,
CONSOLE_SMIP_BACKUP
b
/*
* The follow ng defines the M ME types that the web server will handl e.
*/
const HttpType http_types[] =
{
{ ".shtm", "text/htm", shtm _handler}, // ss
{ ".htm ™, "text/htm", NULL}, /Il htm
{ ".gif", "image/gif", NULL},
{ ".jpg", "image/jpeg", NULL},
{ ".jpeg", "imagel/jpeg", NULL},
{ ".txt", "text/plain", NULL}
i
/*
* This is a custom conmand. Custom conmands al ways take a
* Consol eState* as an argunent (a pointer to the state structure
* for the given 1/O stream), and return an int. The return val ue
* should be 0 when the command wi shes to be called again on the
* next console_tick(), 1 when the conmand has successfully
* finished processing, or -1 when the command has fini shed due
* to an error.
*

~

nt hell o_worl d(Consol eSt at e* state)

st at e- >coni o->puts("Hello, World!\r\n");
return 1;

Chapter 11: General Purpose Console

257

voi d mai n(voi d)

{

/*

* ALl initialization of TCP/IP, clients, servers, and I1/0O

* nmust be done by the user prior to using any consol e functions.
*/

sock _init();

tcp_reserveport(80); /1 Enabl e SYN-queuei ng and di sabl e the
/1 2MSL wait for the web server (results
/1 in performance inprovenents).

http_ init();

if (fs_init(0, 64)) {
printf("Filesystem not present!\n");

}
if (console_init() !'=0) {
printf("Console did not initialize!\n");
fs_format (0, 64, 1);
/-k
* Anytinme after the file system has been initialized or
* formatted (after console_init() has been executed),
* con_backup_reserve() must be called to reserve space in
* the file systemfor the backup information
*/
con_backup_reserve();
con_backup(); // Savethebackup information to the console.
}
while (1) {
consol e_tick();
htt p_handl er ();
}

258

TCP/IP User’s Manual

12. PPP Driver

The PPP packet driver isaset of librariesin Dynamic C that allows the user to establish a PPP
(Point-to-Point Protocol) link over a full-duplex serial line between a Rabbit-based controller and
another system that supports PPP.

A common use of the PPP protocoal is the transfer of | P packets between aremote host and an
Internet Service Provider (1SP) over amodem connection. The PPP packet driver supports the
transfer of Internet Protocol (IP) dataand is compatible with all TCP/IP libraries for the Rabbit.

The PPP packet driver was derived from source code originally written by Darby Corporate Solu-
tions (DCS).

12.1 PPP Libraries
The PPP driver isintwo library files.
PPPLI NK. LI B contains:

e Theinterrupt service routine for transmitting and receiving characters over the serial link. It
also handles the insertion and detection of escape characters and CRC generation and
checking.

e PPPfl owcontrol On(),PPPfl owcontrol O f(),andPPPcl ose()

PPP. LI B contains:

* Routines for setting up and running the PPP connection.

A third library, MODEM LI B, contains functions for controlling an external modem through a full
RS232 link.

Chapter 12: PPP Driver 259

12.2 Operation Details
Thefirst step isto configure whatever transport medium will be used for the PPP connection. For

directly connecting a seria line to the peer, the two serial datalines TX and RX may be adequate.
The most common situation, however, will be some sort of modem.

12.2.1 The Modem Interface

The interface between a modem and a controller is either atrue RS232 interface or avariation on
RS232 that uses TTL voltage levelsfor al of the signals. The latter are used by board-mounted
modem modules. If an external modem is used, an RS232 transceiver chip is needed to convert
RS232 voltages to logic signals and vice versa. A full RS232 connection has 3 outputs and 5
inputs from the controllers point of view. In RS232 terminology, the controller is referred to asthe
DTE (Data Terminal Equipment). Modems and other peripherals are referred to as DCE's (Data
Communications Equipment).

The specifics of adial-up PPP connection are dependant on the modem hardware and the ISP,

12.2.1.1 Rabbit Pin Connections to Modem
The modem control library, MODEM LI B, defines default connections to the Rabbit as follows:

Table 1. Modem Pin Assignments

RS232 Si gnal Rabbit Pin Direction
DTR PB6 out
RTS PB7 out
CTS PBO in
DCD PB2 in

RI PB3 in
DSR PB4 in
D PC2 out
RD PC3 in

12.2.2 Flow Control

Hardware flow control isimplemented for the Rabbit PPP system. It follows the RS232 conven-
tion of using Ready To Send (RTS) and Clear To Send (CTS) lines. Flow control isusually
required for baud rates above 9600. Flow control can be enabled or disabled by PPPf | owcon-
trol On() and PPPf | owcont r ol OF f (), respectively. Flow control is off by default.

12.2.3 Serial Port C

By default the PPP link is established using serial port C. It can be changed, but it requires some
#def i ne changes near the top of PPPLI NK. LI B in the section starting with PPP_SERDR. If a
modem is used, some rewriting of MODEM LI B is aso required.

260 TCP/IP User’s Manual

12.3 Software Implementation Overview

Thefirst stage in dia-up PPP isto establish a modem connection with the I SP. The function
Modeml ni t () opensthe serial port, then detectsif there isa modem connected and ready. It does
this by sending “AT” to the modem a set number of times until it receives an “OK” response. This
should work with any Hayes-compatible modem, which is the standard today. At this point the
modem is ready and commands can be sent to it using ModenSend() . Remember to include a
carriage return “\r” at the end of each command sent.

The function ModenExpect () isused to wait for a character sequence to occur. Normally the
first use of thisin a program isto determine that the modem has connected. When a connection
occurs, the modem will send a string along the lines of “CONNECT AT x” or something similar.
ModenmExpect () can be set to listen for this. Once connected, the ISP may either attempt PPP
negotiation immediately, or request a user name and password first. In the latter case, a sequence
of ModentSend() and ModenExpect () callsareused to handle this (see See “ Authentication
Sequence” on page 262).

Eventually the ISP will begin PPP negotiation. At this stage ModemCl ose() should be called to
shutdown normal serial operation. After calling sock i ni t () and doing any other necessary
TCP/IPinitiaization, PPPi ni t () iscalled, followed by any necessary PPP option initialization,
and finally acal toPPPst art ().

Once the PPP connection is established through a successful call to PPPst art () , the user can
send packets to the peer using the TCP/IP libraries.

12.3.1 Defining Network Parameters
The following parameters must be defined at compile time:

Il Sets the TCP/IP stack to use PPP. This should be “ppoe. | i b” when using PPP over Ethernet.
#defi ne PKTDRV "ppp.lib"

// In the most common case, the Rabbit will be dialing into an ISP. The ISP will usually wish to

I/ assign the I P address. Setting the IP addressto 0.0.0.0 indicates that the Rabbit does not have a
Il valid address when started. If the Rabbit has a permanent address or will be dialed into,

/I MY_| P_ADDRESS should be set to a proper |P address.

#define MY_I P_ADDRESS "0. 0. 0. 0"

/I Thisis a parameter intended for Ethernet and other shared network schemes. Since PPPisa
Il single point-to-paoint link, all traffic must be routed through a peer. There is no such thing as
Il “local” traffic. A netmask of 255.255.255.255 causes all addresses to be routed to.

#defi ne MY_NETMASK " 255. 255. 255. 255"

Il Thisisthe address of the host that will perform routing for the Rabbit. (With PPP thisis aways

/I the peer.) If the | SP assigns a gateway machine to use, then define MY_GATEWAY to that. If the

/I gateway is not known, defining PPP_PEERROUTE will make a gateway out of whatever

/I machine you connect to, i.e. the Rabbit will use whatever address the peer uses when identifying
I/ itself during PPP negotiation. PPP_PEERROUTE will work under most circumstances, but a

/I stetic gateway address may be needed for special cases.

#defi ne MY _GATEWAY "10.1.1.1"

/I Thisworks the same as with Ethernet: it defines a host that will resolve names into | P addresses.
#def i ne MY_NAMESERVER "10.1.1. 2"

Chapter 12: PPP Driver 261

12.3.1.1 IP Addresses
When the Rabbit and the peer are establishing a connection, they negotiate what their | P addresses
will be. When the Rabbit is connecting to an ISP, an I P address will be assigned to it by the ISP, In
some cases, such as the Rabbit acting asadial-in ISP, IP addresses for the Rabbit and the peer
should be set by the Rabbit. Thisisdone using PPPnegot i at el P() .

12.3.2 Configuration Options
The following configuration options are supported by the Rabbit PPP system:

Table 2. Configuration Options

LCP
Configuration Meaning of Option Type

Option Type Field

01 MRU (Maximum-Receive-Unit)

02 ACCM (Async-Control-Character-Map)

03 Auth (Authentication-Type): PAP only

05 Magic Number

07 PFC (Protocol-Field-Compression)

08 ACFC (Address-and-Control-Field-Compression)

For more information on these options, refer to RFC 1661: The Point-to-Point Protocol (PPP) at:
http://rfc.asuka. net/rfc/rfcl661l. htm

12.3.3 Authentication

The PPP library supports an optional authentication phase. Both the authentication of a peer and
being authenticated by a peer are done using Password Authentication Protocol (PAP). Thisisa
simple two-way handshake only done upon initial link establishment.

The most common case is when the Rabbit must authenticate itself to the ISP it is connecting to.
Thisis configured using PPPset Aut hent i cat ee() , which sets the username and password
the Rabbit will use.

A different situation arises when the Rabbit needs to authenticate a connecting peer. Thisis neces-
sary when the Rabbit isbeing dialed into. PPPset Aut hent i cat or () setsaname and pass-
word that will be required from the peer before a connection will be established.

12.3.3.1 Authentication Sequence
A common situation with dial-up PPPisthat an | SP will want to authenticate the dialer before PPP
negotiation. There are no real standards for doing this, so each ISP is potentially different. The
best way to develop a correct sequence of ModentSend() and MbdenExpect () commandsis
to connect to the ISP using a terminal program on a PC. You can then take note of the necessary
sequence to start PPP negotiation.

262 TCP/IP User’s Manual

Here is ahypothetical session as seen by aterminal program. Characters typed in and sent to the
ISP or the modem are displayed in bol d.

AT

K

ATDT5554545

(014

CONNECT 28800

Wl cone to sonei sp.com

Logi n?r abbi t

Password: Ili kecarrots

Logging in as rabbit

Start PPP $*($}}}}}$}$#$#${ @>>}}FF}}$}

From this session we could use ModenSend() and ModenExpect () to create adia-up func-
tion likethis:

int myDial Up(){
i f (ModenOpen(57600) == 0){

return O;

}

i f(Modemnit() == 0){
return O;

}

ModenSend(“ ATDT5554545\r ") ;
i f (ModenExpect (“OK”, 2000) == 0)){

return O; //something is wong with the nodem
}
i f (ModenExpect (“ CONNECT”, 30000) == 0){
return O; //didn’t connect to the ISP
}
i f (ModenExpect (“Logi n?”, 5000) == 0){
return O;
}

Modentend(“rabbit\r”);
i f (ModenExpect (“word:”, 5000) == 0){
return O;

}
Modentend(“1 | i kecarrots\r”);
i f (ModenExpect (“PPP”, 5000) == 0){
return O; [/ probably a failed | ogin
}

ModenCl ose() ;

sock _init();

PPPi ni t (57600) ;

PPPf | owcont r ol On() ;
return 1; //all done

Asyou can see, ModenExpect () will pick up any part of the received string. Clever use of this
alowstheinitialization to be fairly generic, but subtle differences between ISP’ s will often require
customized sequences such asthis.

Chapter 12: PPP Driver 263

12.3.4 Link Teardown

Tearing down the link must also be done in stages. First, aterminate request must be sent to the
peer. Thisis done with PPPshut down() . PPPshut down() will return once an acknowledge-
ment has been sent by the peer, or after atime out period. Thisis followed by acall to PPP-

cl ose, which unloads the PPP seria driver. If the connection is via a modem, the modem must
then be hung up. First the regular serial driver is reopened with ModenOpen() . Modem
Hangup() sendsthe hang up and reset commands to the modem. Finally, acall to Modem

Ol ose() shutsdown the serial driver.

12.4 Functions

This section describes the functions that compose the PPP driver and the functions for modem
control.

Using Cofunctions

Establishing a PPP connection over amodem is time-consuming. Depending on the baud rate
negotiated by the modem, the whole process can take 30 seconds or more. Much of thistimeis
spent by the controller waiting for aresponse from the other end. In a practical application, where
the controller has other tasks to perform, this may be unacceptable. For this, there are cofunction
versions of all of the functions that wait for responses from the peer. There are still parts of the ini-
tialization process that create delays, but the effect is much smaller.

Cof MbdenExpect

i nt Cof ModenExpect (char *send_string, unsigned |ong tineout);

DESCRIPTION

Listensfor a specific string to be sent by the modem. Yields to other tasks while waiting
for input.

PARAMETERS
send_string A NULL-terminated string to listen for.

ti meout Maximum wait in milliseconds for a character.

RETURN VALUE

1: The expected string was received
0: A timeout occured before receiving the string

LIBRARY
MODEM LI B

264 TCP/IP User’s Manual

Cof ModenHangup

i nt Cof ModenHangup() ;
DESCRIPTION
Sends"ATH" and "ATZ" commands. Yields to other tasks while waiting for responses.

RETURN VALUE

1: Success
0: Modem not responding

LIBRARY
MODEM LI B

Cof Mbdenl ni t
i nt Cof Moden nit();

DESCRIPTION

Resets modem with AT, ATZ commands. Yields to other tasks while waiting for
responses.

RETURN VALUE

1: Success
0: Modem not responding

LIBRARY
MODEM LI B

Cof Mbdentend
voi d Cof ModentSend(char *send_string);

DESCRIPTION
Sends a string to the modem. Yields to other tasks while sending.

PARAMETERS

send_string A NULL-terminated string to be sent to the modem.

LIBRARY
MODEM LI B

Chapter 12: PPP Driver 265

Cof PPPshut down
i nt Cof PPPshut down(unsi gned | ong timeout);

DESCRIPTION
Sends aLink Terminate Request packet. Waits for the link to be torn down.

PARAMETERS

ti meout Number of millisecondsto wait before giving up on aresponsefrom
the peer. Yieldsto other tasks while waiting.

RETURN VALUE

1:Shutdown succeeded
0: Shutdown timed out

LIBRARY
PPP. LI B

Cof PPPst ar t
i nt Cof PPPstart (unsigned |ong tinmeout, int retry);

DESCRIPTION
Starts link negotiation process with a connected peer. Yields to other tasks,

PARAMETERS
ti meout The number of millisecondsto wait between phases of negotiation
before starting over.
retry Number of timesto retry the connection

RETURN VALUE

1: Negotiation succeeded;
0: A link could not be negotiated.

LIBRARY
PPP. LI B

266 TCP/IP User’s Manual

ModenCl ose
voi d ModenCl ose();
DESCRIPTION
Closes the serid driver down.

LIBRARY
MODEM LI B

ModenmConnect ed
i nt ModenmConnect ed();

DESCRIPTION

Returnstrueif the DCD lineis asserted, meaning the modem is connected to aremote
carrier.

RETURN VALUE

1: DCD lineisactive
0: DCD inactive (nothing connected)

LIBRARY
MODEM LI B

ModenExpect
i nt ModenExpect (char *send_string, unsigned |ong timeout);
DESCRIPTION
Listens for a specific string to be sent by the modem.

PARAMETERS
send_string A NULL-terminated string to listen for.
ti meout Maximum wait in milliseconds for a character

RETURN VALUE

1: The expected string was received
0: A timeout occured before receiving the string

LIBRARY
MODEM LI B

Chapter 12: PPP Driver 267

i nt ModemHangup();

DESCRIPTION
Sends"ATH" and "ATZ" commands

RETURN VALUE

1: Success

0: Modem not responding
LIBRARY

MODEM LI B

int Modemnit();

DESCRIPTION
Resets modem with AT, ATZ commands.

RETURN VALUE

1: Success

0: Modem not responding
LIBRARY

MODEM LI B

i nt ModemOpen(unsi gned | ong baud);

DESCRIPTION
Starts up communication with an external modem.

PARAMETERS
baud The baud rate for communicating with the modem.

RETURN VALUE

1: External modem detected
0: Not connected to external modem

LIBRARY
MODEM LI B

268 TCP/IP User’s Manual

i nt ModenReady();

DESCRIPTION
Returnstrueif the DSR lineis asserted.

RETURN VALUE

1: DSRlineisactive
0: DSR inactive (nothing connected)

LIBRARY
MODEM LI B

i nt ModenRi ngi ng();

DESCRIPTION
Returnstrueif the RI lineis asserted, meaning that the lineis ringing.

RETURN VALUE

1: Rl lineisactive
0: RI inactive (nothing connected)

LIBRARY
MODEM LI B

voi d ModenSend(char *send_string);
DESCRIPTION
Sends a string to the modem.

PARAMETERS

send_string A NULL-terminated string to be sent to the modem.

LIBRARY
MODEM LI B

Chapter 12: PPP Driver 269

voi d Modentt art PPP() ;
DESCRIPTION
Hands control of the serial line over to the PPP driver.

LIBRARY
MODEM LI B

voi d PPPcl ose();
DESCRIPTION
Closesthe serid port and unloads the PPP interrupt service routine.

LIBRARY
PPPLI NK. LI B

void PPPinit(unsigned | ong baud)

DESCRIPTION

Initializesthe PPP driver, sets parameters. Must be calledimmediately following acall to
sock init().

PARAMETERS
baud Thebaud rate of the serial port PPPisrunning on (port C by default).

LIBRARY
PPP. LI B

270 TCP/IP User’s Manual

PPPf | owcont r ol OF f
voi d PPPfl owcontrol O f ()

DESCRIPTION
Deactivates hardware flow control for the serid link.

LIBRARY
PPPLI NK. LI B

PPPf | owcont r ol On
voi d PPPfl owcontrol On()

DESCRIPTION

Activates hardware flow control for the serial link. The pins used for flow control are de-
finedin PPPLI NK. LI B asfollows:

PPP_CTSPORT: the port address for the CTS input line.
PPP_CTSPI N: the pin number of the CTSinput line.
PPP_RTSPORT: the port address of the RTS output line.
PPP_RTSSHADOW the name of the port’s shadow register.
PPP_RTSPI N: the pin number of the RTS output line.

LIBRARY
PPPLI NK. LI B

Chapter 12: PPP Driver 271

PPPst ar t
int PPPstart(unsigned long tinmeout, int retry);

DESCRIPTION
Starts link negotiation process with a connected peer.

PARAMETERS
ti meout Number of milliseconds to wait between phases of negotiation be-
fore starting over.
retry Number of timesto retry the connection.

RETURN VALUE

1: Negotiation succeeded;
0: A link could not be negotiated.

LIBRARY
PPP. LI B

PPPnegoti atel P

voi d PPPnegoti at el P(unsi gned | ong | ocal _ip, unsigned | ong
renote_ip);

DESCRIPTION

Sets PPP driver to negotiate | P addresses for itsalf and the remote peer. Otherwise, the
system will rely on the remote peer to set addresses.

PARAMETERS
local ip IP number to use for this PPP connection.
renmote_ip IP number that the remote peer should be set to.
LIBRARY
PPP. LI B

272 TCP/IP User’s Manual

PPPnegot i at eDNS
voi d PPPnegoti at eDNS(unsi gned | ong dns_ip);

DESCRIPTION
Sets PPP driver to configure a DNS address for the remote peer.

PARAMETERS

dns_ip IP number for the DNS server

LIBRARY
PPP. LI B

PPPset Aut henti cat ee

voi d PPPset Aut henti cat ee(char *usernane, char *password);

DESCRIPTION
Setsthe driver up to send a PAP authentication message to a peer when requested.

PARAMETERS
user nane The usernameto send to the peer. The argument string isnot copied,
so the argument string must stay constant.
password The password to send to the peer. The argument string isnot copied,
so the argument string must stay constant
LIBRARY
PPP. LI B

Chapter 12: PPP Driver

273

PPPset Aut henti cat or
voi d PPPset Aut henti cat or (char *usernanme, char *password);

DESCRIPTION

Setsthe driver up to require a PAP authentication message from a peer. Negotiation will
fail unlessthe peer sendsthe specified username/password pair. Thisfunctionisgeneraly
used when the Rabbit is acting as adial-in server.

PARAMETERS
user nane The user name that the peer must match for the link to proceed.
password The password that the peer must match for the link to proceed.
LIBRARY
PPP. LI B

PPPshut down
i nt PPPshut down(unsi gned | ong tineout);

DESCRIPTION
Sends aLink Terminate Request packet. Waits for link to be torn down.

PARAMETERS

ti meout Number of millisecondsto wait before giving up on aresponsefrom
the peer.

RETURN VALUE

1: Shutdown succeeded
0: Shutdown timed out

LIBRARY
PPP. LI B

274 TCP/IP User’s Manual

voi d Reset PPP();

DESCRIPTION

Under normal operations, thisfunction will not be needed; the modem control functions
make it unnecessary. There are, however, conditions that may make it useful.

LIBRARY
PPP. LI B

Chapter 12: PPP Driver 275

276 TCP/IP User’s Manual

I ndex
Numerics
2MSL 92
A
Application Protocols
FTPClientccocoevvvvnnnn. 191
FTP Servercccocvvvienae 195
HTTP o 155
POP3 Clientc.ccoceveee. 215
SMTPClientcccccvvveunene. 209
LI 14 (= 221
TFTP e 201
B
Buffer Sizescccevevvevvvvnnnnn, 8
C
Checksumsccccocevvvveriennne, 59
(001010 = 233
Backup System 249
circular buffers 244
Commandsccoeeevriennnne 234
action takencc.ce.e... 234
command array 235
custom commands 239
data structure 234
default commands 235
default functions 236
help overview 234
help text for command .234
name of command 234
configuration macros 251
Console Execution 244
slave portccocveeereeinnne 243
Telnet .o, 242
termina emulator 249
Daemoncccovcevvecveninnne 245
Error Messages 240
custom error messages .241
default error messages ..240
file system initialization ...244
1/O Interfacecccevveenee. 242
custom I/O methods243
including an I/O method ...
242
multiple I/O streams243
predefined 1/0 methods 242
Initializationccccuevee. 245
physical connection 244
required functions 245
sample program 252

using TCP/IPcccccuvene. 244
D

Daemons
ftp_client_tickccoue..e. 193
ftp tick oo 199
http_handler 184
POP3_ticK .o 218
tCP_tiCK o 93
telnet_tickcoevevveiienene 229
tp tick .o 205
E
E-mail
POP3 Client
cal-back function 216
configuration 215
receiving e-mail 215
sample conversation220
sample program 219
SMTP Client
configuration 210
debug ..oooovveireee e 210
define server 210
HELO command 210
sample conversation209
sample program 214
sending e-mail 209
timeout value 210
Ethernet Transmission Unit ...54
F
FTPClientccoeeveeeriennnae 191
download file 191
FTP daemoncccccec..e. 193
port number ... 191
set up filetransfer 192
size of downloaded file193
upload filesccoeeerenneee. 191
FTP Serverooeevveevciennas 195
anonymous login 195
Configuration Constants ..195
buffer sizeccceeeeeee 195
connection timeout 195
simultaneous connections ..
195
string lengths 195
filehandlers........ccccoeeeee 196
sample program 200
Function Reference
Addressing
arp_resolveccceeeenes 23
dhcp_acquirec........ 25

dhcp_releasecceeeneee 26
getdomainname 27
gethostidcccceevverennne 28
gethostnamecccce.e.e 28
getpeername 29
getsocknNameocvveeeene 30
pd_getaddress................. 37
PSOCKEL ..o 38
rESOIVE ..o 39
resolve cancel 40
resolve_name_check 411
resolve_name_start 42
setdomainname 45
sethostidcceevevverennne 46
sethostnameccoceeee 46
CGl
cgi_redirectto 180
cgi_sendstring 181
Configuration
tep_config ceeveevvncieenne. 84
Console
con_backupcccc...... 245
con_backup_bytes 246
con_backup_reserve246
con_chk_timeout 246
con_load backup 247
con_reset i0 ..ooceevenns 247
con_set_backup_Ix 247
con_set files Ix 248
con_set timeout 248
con_set user idle......... 248
con_set user_timeout ..249
console initcc.cevees 245
console tick 245
Cookie
http_setcookie 186
Data Conversion
htonl ..o 31
htons ..o 31
http_contentencode 182
http_urldecode............... 187
inet_addrc.ccoeevvennnne. 32
inet_ntoa.......ccceeeeeeeennen. 33
[910] | IR 35
[4100] 0T 36
paddr ..o 36
(] o J PSR 43
E-mail
pop3_getmail 218
POpP3_iNit .ooeereeieee 217
POpP3_ticK ..ocviriiiine 218
smtp_mailtick 213
smtp_sendmail 211

smtp_sendmailxmem ...212

TCP/IP User’s Manual

277

smtp_statuscceeee... 213
FTP Client
ftp_client_filesize 193
ftp_client_setup 192
ftp_client_tick 193
FTP Server
ftp_init oo 199
ftp tick oo 199
HTML Forms
http_finderrbuf 183
http_nextfverr 184
http_parseform 185
sspec_addfv 116
sspec findfv 122
sspec_getformtitle 125
sspec_getfvdesc 127
sspec_getfventrytype ... 128
sspec_getfvlen 128
sspec_getfvname 129
sspec_getfvnum 129
sspec_getfvopt 130

sspec_getfvoptlistlen ... 130

sspec_getfvreadonly131

sspec_getpreformfunction .
133

sspec_setformepilog 141

sspec_setformfunction . 142

sspec_setformprolog 143

sspec_setformtitle 144
sspec_setfvcheck 145
sspec_setfvdesc 146

sspec_setfventrytype ... 146
sspec_setfvfloatrange .. 147

sspec_setfvlen 147
sspec_setfvname 148
sspec_setfvoptlist 148
sspec_setfvrange 149
sspec_setfvreadonly 149

sspec_setpreformfunction ..
150

HTTP server
http_handler 184
http_initccooovineenne 185

Modem
CofModemExpect 264
CofModemHangup 265
CofModeminit 265
CofModemSend 265
ModemClose 267
ModemConnected 267
ModemExpect 267
ModemHangup 268
Modemlinit 268
ModemOpencc..... 268

ModemReady 269

ModemRinging 269
ModemSend 269
Ping
_chk_pingcccooeveerienns 24
PING e 38
_send ping ..ccoeveeeeeeennnns 44
PPP
CofPPPshutdown 266
CofPPPstart 266
ModemStartPPP 270
PPPclosecccoveeueenne. 270
PPPflowcontrol Off 271
PPPflowcontrolOn 271
PPPiNitcovvevivriveenns 270
PPPnegotiateDNS 273
PPPnegotiatelP 272

PPPsetAuthenticatee 273
PPPsetAuthenticator 274

PPPshutdown 274
PPPstartccccceveenne 272
ResetPPPooviee 275
Socket Configuration
sock_modeccceeueueee 59
tcp_clearreserve 83
tcp_reserveport 92
Socket Connection
sock_abortccceeeeees 47
sock closeccvceeienen, 49
sock_established 52
tcp_keepdive 87
Socket 1/0
sock_preread 60
Socket 1/0 Buffer
sock_rbleft ... 63
sock_rbsize ... 63
sock_rbused 64
sock_tbleftccoeeei. 76
sock thsize 77
sock tbused 77
Socket Status
sock_bytesready 48
sock_dataready 50
SOCKENT .ot 51
500G 7 (R 75
tep_tick o 93
TCP Socket 110
sock fastread 53
sock_fastwrite 54
sock flushccoeeenes 55
sock_flushnext 56
SOCK_QEtC ...oevveveeeeiennne 57
SOCK_QEtS ...oevveeeerenienene 58
SOCK_PULCevveeeeeeiennne 61

SOCK_PULS ..o 62
sock_readcocoeevveennne, 65
Sock_Writeococeveeenne, 82
tcp_extlisten ... 85
tcp_extopen ... 86
tep_listen ..o 88
tCP_OPEN ..o 90
TCP/IP Engine
SOCK_iNit o, 58
tep_tick o 93
TCP/IP servers' object list
http_addfile 181
http_delfile.........c....... 183
shtml_addfunction 188
shtml_addvariable 189
shtml_delfunction 190
shtml_delvariable 190
sspec_addform 113
sspec_addfsfile ... 114
sspec_addfunction 115
sspec_addrootfile 117
sspec_addvariable 118
sspec_addxmemfile 119
sspec_addxmemvar 120
sspec_aliasspec 121
sspec_checkaccess 122
sspec_findname 123
sspec_findnextfile 124
sspec_getfileloc 124
sspec_getfiletype 125
sspec_getfunction 126
sspec_getfvspec 131
sspec_getlength 132
sspec_getname.............. 132
sspec_getream 134
Sspec_gettype 134
sspec_getusername 135
sspec_getvaraddr 135
sspec_getvarkind 136
sspec_getvartype 136

sspec_heedsauthentication .
137

sspec_readfile 138
sspec_readvariable 139
SSpec_remove 139
SSpec_restore 140
SSPEC_SAVE ...ceereeeennen 140
sspec_setream 151
sspec_setsavedata 152
SSpec_Setuser 153
TCP/IP userslist
sauth_adduser 108
sauth_authenticate 109
sauth_getuserid 109

TCP/IP User’s Manual

sauth_getusername 110 option listcccvvvvveevereenne 178 N
sauth_getwriteaccess110 POST-style submission170)
sauth_removeuser 111 pulldown menu 175 Naglealgorithm 59
sauth_setpassword 111 sample pageccccevveuenene 168 p
sauth_setwriteaccess112 Zserver.lib functionality ...174
Telnet HTTP Serverscccovereenne. 155 packet Processing 18
telnet_close.......cccccevenne 229 authentication 156 POP3 Client
telnet_initcccovvveenee. 228 (O] 167 Configuration 215
telnet_tickcooeeviinns 229 sample handler 172 debug option 215
vserial_close 222 configurable constants159 receiving email 215
vserial_initccccoceeees 222 Data Structures 155 PPP DIVEN oo, 259
vserial_keepalive 223 HttpRealmcccovvenes 156 Flow COntrol ..o, 260
vserial_listen 224 HUPSPEC ..o 155 Modem Interface 260
vserial_open 225 HttpStatecoeeene 157 Network Parameters ... 261
vserial_tick ... 226 HttpType ..o 156 PPP Libraries ...oovvvunn.. 259
TFTP Client dynamic web pages 163 PPP_PEERROUTE 261
tFP_EXEC v 207 file extensions 156, 162 B
111 LA 1 SO 203 HTML FOrmS w..ovvceeree. 167 R
P iNitX oo 204 MIME typeccoooeveeienenne 156
thp tick oo, 205 number of servers............. 159 RESEL CIOCK wvvvvevrr 160
titp_tickX ..o 206 POST command 170 §
Timers protection spaces 156
ip_timer_expired 33 (XS [166 Server Utility Library 105
ip_timer_initccoo...... 35 static web pages 161 configurable constants107
UDP Socket I/0 URL-encoded Data 170 Data Structures 105
udp_closecccoeuvicunnen. 93 Reading & Storing 171 ACCESS ..o, 106
udp_extopen 94 HTTP_PORT ..coeoeeeererernene, 160 TCP/IP servers object list .
udp_opencccceeeeeeennee 95 105
Udp_recv ...oeeveveveeeeennene g7 | TCP/IPuserslist 105
udp_recvfrom 98 |pAddresses number of objects 107
UOP_SENM ovvvrivnrsnn 9 ease 4,5 "UMDerof USErs.............. 107
udp_sendtocccceenee. 100 Set Dynamically .oo...... 3 obj ect tYPES i 106
UDP Socket I/O (pre-DC 7.05) Set Manually oo 3 varlabl_etypes 106
sock_fastread 53 SMTP Client
sock fastWIite ..., 54 M Configurationc.cc..... 210
SOCK_r€ad oo, 65 debug option 210
SOCK_TECV ervvrverereeeeeveeeeee 71 Macros define mail server 210
sock recv from ... 73 DISABLE DNS............... 101 HELO command 210
SOCK_1ecV_init vovvvvvveennn... 74 MAX_SOCKETS 101 timeout value 210
SOCK_ W€ ooreeeeveeeeennn, 82 MAX_TCP_SOCKET_BUFF sending e-mail 209
udp_a 0L oo 03 ERS ..o, 101 Socket
UdP_OPEN v, 95 MAX_UDP_SOCKET_BUFF data Structurec.coeeee.... 8
ERS ..o 101 default mode ..oovvvnveeviiin, 11
H MY_DOMAINcccc... 101 efinition oo 8
HTML FOMMS v 167 o Ao d02 empty line s empty buffer 48
D er 210CAON oo L MY_NAMESERVER...102 T
=10 [
ACTION Option ... 167 poa e s 10 TCP SOCKEL 8
METHOD option 167 TCP BUF SIZE ... 102 Actlvg Open ..., 9
INPUT tag ..cooovevveereeeinas 167 tcp_MaxBUSIZE ... 103 Blocking M aCTOS ...vvvvvvvveeen 19
NAME parameter 167 UDP BUE SIZE ... 103 Control Funct|oqs 10
SIZE parameter 167 \Maximum Se&m ent Size . 103 Delay a C_onnectlon 9
TY PE parameter 167 memm B0 oo 16 110 Fungtlons 11
VALUE parameter167 \1IME typeso...ooovo. 162 BIOCKING oo 19
TCP/IP User’s Manual 279

Non-Blocking 18

Passive Opencccccveenene. 9
TCPIIP .o, 3
Configurationccccceveenene 3
BOOTP/DHCP 3
I/O BUFferS ...oeeveevveerenee, 8
IP Addresses ..o 3
MAC address 3
Skeleton Program 16
Initializationcccceeveneee 17
Multitaskingcccocvvevreennn 20
TETPClientcccceevvevvennnee. 201
Data Structure 202
DHCP/BOOTP 201
stack spaceccoceverieenne 202
TICK ratesS ..ouvveeveecveiecieeciveeiens 18
U
UDP
Broadcast Packets 12
Performancecccccue...... 12
UDP Socket
Checksumcccoeveeeeninenns 12
Functionscccccceveeeveenen. 12
Open and Closecccc..... 14
Read ..o, 14
record Serviceooeeeuee.e. 74
W i, 14
URL-encoded Data 170, 171
W
WEell-known Ports
FTPserverccooevevecens 195
HTTP serverccooveeeennee 159
POPS3 ...t 215
SMTP servercoeeuenee. 209

280

TCP/IP User’s Manual

TCP/IP User’'s Manual 281

	Table of Contents
	�1. Introduction
	�2. TCP/IP Engine
	2.1� TCP/IP Configuration
	2.1.1� IP Addresses Set Manually
	2.1.2� IP Addresses Set Dynamically
	2.1.2.1 BOOTP/DHCP Control Macros
	2.1.2.2 BOOTP/DHCP Global Variables
	2.1.2.3 DHCP Functions
	2.1.2.4 DHCP Sample Program

	2.1.3 Sizes for TCP/IP I/O Buffers
	2.1.3.1 User-supplied Buffers

	2.2� TCP Socket Interface
	2.2.1� Number of Sockets
	2.2.2� Passive Open
	2.2.3 Active Open
	2.2.4 Delay a Connection
	2.2.5 TCP Socket Functions
	2.2.5.1 Control Functions for TCP Sockets
	2.2.5.2 Status Functions for TCP Sockets
	2.2.5.3 I/O Functions for TCP Sockets

	2.3� UDP Socket Interface
	2.3.1� Dynamic C 7.05 (and later)
	2.3.1.1 Control Functions for UDP Sockets
	2.3.1.2 I/O Functions for UDP Sockets
	2.3.1.3 Status Function for UDP Sockets

	2.3.2� UDP Interface Prior to Dynamic C 7.05
	2.3.2.1 I/O Functions for UDP Sockets
	2.3.2.2 Opening and Closing a UDP Socket
	2.3.2.3 Writing to a UDP Socket
	2.3.2.4 Reading From a UDP Socket

	2.3.3� Porting Programs from the older UDP API to the new UDP API

	2.4� DNS Lookups
	2.4.1� Configuration Macros for DNS Lookups

	2.5� Skeleton Program
	2.5.1� TCP/IP Stack Initialization
	2.5.2� Packet Processing
	2.5.3� TCP/IP Daemon Computing Time

	2.6� State-Based Program Design
	2.6.1� Blocking vs. Non-Blocking
	2.6.1.1 Non-Blocking Functions
	2.6.1.2 Blocking Functions
	2.6.1.3 Blocking Macros

	2.7� Multitasking and TCP/IP
	2.7.1� µC/OS-II
	2.7.2� Cooperative Multitasking

	2.8� Function Reference
	_arp_resolve
	_chk_ping
	dhcp_acquire
	dhcp_release
	getdomainname
	gethostid
	gethostname
	getpeername
	getsockname
	htonl
	htons
	inet_addr
	inet_ntoa
	ip_timer_expired
	ip_timer_init
	ntohl
	ntohs
	paddr
	pd_getaddress
	_ping
	psocket
	resolve
	resolve_cancel
	resolve_name_check
	resolve_name_start
	rip
	_send_ping
	setdomainname
	sethostid
	sethostname
	sock_abort
	sock_bytesready
	sock_close
	sock_dataready
	sockerr
	sock_established
	sock_fastread
	sock_fastwrite
	sock_flush
	sock_flushnext
	sock_getc
	sock_gets
	sock_init
	sock_mode
	sock_preread
	sock_putc
	sock_puts
	sock_rbleft
	sock_rbsize
	sock_rbused
	sock_read
	sock_recv
	sock_recv_from
	sock_recv_init
	sockstate
	sock_tbleft
	sock_tbsize
	sock_tbused
	sock_tick
	sock_wait_closed
	sock_wait_established
	sock_wait_input
	sock_write
	sock_yield
	tcp_clearreserve
	tcp_config
	tcp_extlisten
	tcp_extopen
	tcp_keepalive
	tcp_listen
	tcp_open
	tcp_reserveport
	tcp_tick
	udp_close
	udp_extopen
	udp_open
	udp_recv
	udp_recvfrom
	udp_send
	udp_sendto

	2.9� Macros
	DISABLE_DNS
	MAX_SOCKETS
	MAX_SOCKET_LOCKS
	MAX_TCP_SOCKET_BUFFERS
	MAX_UDP_SOCKET_BUFFERS
	MY_DOMAIN
	MY_GATEWAY
	MY_IP_ADDRESS
	MY_NAMESERVER
	MY_NETMASK
	SOCK_BUF_SIZE
	TCP_BUF_SIZE
	tcp_MaxBufSize
	UDP_BUF_SIZE

	�3. Server Utility Library
	3.1� Data Structures for Zserver.lib
	3.1.1� ServerSpec Structure
	3.1.2� ServerAuth Structure
	3.1.3� FormVar Structure

	3.2� Constants Used in Zserver.lib
	3.2.1� ServerSpec Type Field
	3.2.2� ServerSpec Vartype Field
	3.2.3� Servermask field
	3.2.4� Configurable Constants

	3.3� HTML Forms
	3.4� Functions
	sauth_adduser
	sauth_authenticate
	sauth_getuserid
	sauth_getusername
	sauth_getwriteaccess
	sauth_removeuser
	sauth_setpassword
	sauth_setwriteaccess
	sspec_addform
	sspec_addfsfile
	sspec_addfunction
	sspec_addfv
	sspec_addrootfile
	sspec_addvariable
	sspec_addxmemfile
	sspec_addxmemvar
	sspec_aliasspec
	sspec_checkaccess
	sspec_findfv
	sspec_findname
	sspec_findnextfile
	sspec_getfileloc
	sspec_getfiletype
	sspec_getformtitle
	sspec_getfunction
	sspec_getfvdesc
	sspec_getfventrytype
	sspec_getfvlen
	sspec_getfvname
	sspec_getfvnum
	sspec_getfvopt
	sspec_getfvoptlistlen
	sspec_getfvreadonly
	sspec_getfvspec
	sspec_getlength
	sspec_getname
	sspec_getpreformfunction
	sspec_getrealm
	sspec_gettype
	sspec_getusername
	sspec_getvaraddr
	sspec_getvarkind
	sspec_getvartype
	sspec_needsauthentication
	sspec_readfile
	sspec_readvariable
	sspec_remove
	sspec_restore
	sspec_save
	sspec_setformepilog
	sspec_setformfunction
	sspec_setformprolog
	sspec_setformtitle
	sspec_setfvcheck
	sspec_setfvdesc
	sspec_setfventrytype
	sspec_setfvfloatrange
	sspec_setfvlen
	sspec_setfvname
	sspec_setfvoptlist
	sspec_setfvrange
	sspec_setfvreadonly
	sspec_setpreformfunction
	sspec_setrealm
	sspec_setsavedata
	sspec_setuser

	�4. HTTP Server
	4.1� HTTP Server Data Structures
	4.1.1� HttpSpec
	4.1.1.1� HttpSpec fields

	4.1.2� HttpType
	4.1.3� HttpRealm
	4.1.4� HttpState
	4.1.4.1� HttpState Fields

	4.2� Configuration Macros
	4.2.1� Customizing HTTP headers

	4.3� Sample Programs
	4.3.1� Serving Static Web Pages
	4.3.1.1� Adding Files to Display
	4.3.1.2� Adding Files with Different Extensions
	4.3.1.3� Handling of Files With No Extension

	4.3.2� Dynamic Web Pages Without HTML Forms
	4.3.2.1� SSI Feature
	4.3.2.2� CGI Feature

	4.3.3� Web Pages With HTML Forms
	4.3.3.1� Sample HTML Page
	4.3.3.2� POST-style form submission
	4.3.3.3� URL-encoded Data
	4.3.3.4� Sample of a CGI Handler

	4.3.4� HTML Forms Using Zserver.lib

	4.4� Functions
	cgi_redirectto
	cgi_sendstring
	http_addfile
	http_contentencode
	http_delfile
	http_finderrbuf
	http_nextfverr
	http_handler
	http_init
	http_parseform
	http_setcookie
	http_urldecode
	shtml_addfunction
	shtml_addvariable
	shtml_delfunction
	shtml_delvariable

	�5. FTP Client
	5.1� Configuration Macros
	5.2� Functions
	ftp_client_setup
	ftp_client_tick
	ftp_client_filesize

	5.3� Sample FTP Transfer

	�6. FTP Server
	6.1� Configuration Constants
	6.1.1� File Options

	6.2� File Handlers
	open
	getfilesize
	read
	write
	close

	6.3� Functions
	ftp_init
	ftp_tick

	6.4� Sample FTP Server

	�7. TFTP Client
	7.0.1� BOOTP/DHCP
	7.0.2� Data Structure for TFTP
	7.0.2.1 Macros for tftp_state->mode

	7.0.3� Function Reference
	tftp_init
	tftp_initx
	tftp_tick
	tftp_tickx
	tftp_exec

	�8. SMTP Mail Client
	8.1� Sample Conversation
	8.2� Configuration
	8.3� Functions
	smtp_sendmail
	smtp_sendmailxmem
	smtp_mailtick
	smtp_status

	8.4� Sample Sending of an E-mail

	�9. POP3 Client
	9.1� Configuration
	9.2� Three Steps to Receive E-mail.
	9.3� Call-Back Function
	9.3.1� Normal call-back
	9.3.2� POP_PARSE_EXTRA call-back

	9.4� Functions
	pop3_init
	pop3_getmail
	pop3_tick

	9.5� Sample receiving of e-mail
	9.5.1� Sample Conversation

	�10. Telnet
	10.1� Telnet (Dynamic C 7.05 and later)
	10.1.1� Setup
	10.1.1.1� Low-level Serial Routines
	10.1.1.2� Configuration Macros

	10.1.2� Function Reference (Dynamic C 7.05 and later)
	vserial_close
	vserial_init
	vserial_keepalive
	vserial_listen
	vserial_open
	vserial_tick

	10.1.3� Sample Program (Dynamic C 7.05 and later)

	10.2� Telnet (pre-Dynamic C 7.05)
	10.2.1� Configuration Macros
	10.2.2� Function Reference
	telnet_init
	telnet_tick
	telnet_close

	10.2.3� An Example Telnet Server
	10.2.3.1� A Sample Client To Connect to the Server

	�11. General Purpose Console
	11.1� Introduction
	11.2� Console Features
	11.2.1� Using other Dynamic C Libraries

	11.3� Console Commands and Messages
	11.3.1� Console Command Data Structure
	11.3.1.1 Help Text for General Cases

	11.3.2� Console Command Array
	11.3.3� Console Commands
	11.3.3.1 Default Command Functions
	11.3.3.2 Custom Console Commands

	11.3.4� Console Error Messages
	11.3.4.1 Default Error Messages
	11.3.4.2 Custom Error Messages

	11.4� Console I/O Interface
	11.4.1� How to Include an I/O Method
	11.4.2� Predefined I/O Methods
	11.4.2.1 Serial Ports
	11.4.2.2 Telnet
	11.4.2.3 Slave Port
	11.4.2.4 Custom I/O Methods

	11.4.3� Multiple I/O Streams

	11.5� Console Execution
	11.5.1� File System Initialization
	11.5.2� Serial Buffers
	11.5.3� Using TCP/IP
	11.5.4� Required Console Functions
	console_init
	console_tick

	11.5.5� Useful Console Function
	con_backup
	con_backup_bytes
	con_backup_reserve
	con_chk_timeout
	con_load_backup
	con_reset_io
	con_set_backup_lx
	con_set_files_lx
	con_set_user_idle
	con_set_timeout
	con_set_user_timeout

	11.5.6� Console Execution Choices
	11.5.6.1 Terminal Emulator

	11.6� Backup System
	11.6.1� Data Structure for Backup System
	11.6.2� Array Definition for Backup System

	11.7� Console Macros
	11.8� Sample Program

	�12. PPP Driver
	12.1� PPP Libraries
	12.2� Operation Details
	12.2.1� The Modem Interface
	12.2.1.1 Rabbit Pin Connections to Modem

	12.2.2� Flow Control
	12.2.3� Serial Port C

	12.3� Software Implementation Overview
	12.3.1� Defining Network Parameters
	12.3.1.1 IP Addresses

	12.3.2� Configuration Options
	12.3.3� Authentication
	12.3.3.1 Authentication Sequence

	12.3.4� Link Teardown

	12.4� Functions
	CofModemExpect
	CofModemHangup
	CofModemInit
	CofModemSend
	CofPPPshutdown
	CofPPPstart
	ModemClose
	ModemConnected
	ModemExpect
	ModemHangup
	ModemInit
	ModemOpen
	ModemReady
	ModemRinging
	ModemSend
	ModemStartPPP
	PPPclose
	PPPinit
	PPPflowcontrolOff
	PPPflowcontrolOn
	PPPstart
	PPPnegotiateIP
	PPPnegotiateDNS
	PPPsetAuthenticatee
	PPPsetAuthenticator
	PPPshutdown
	ResetPPP

	Index

