
Dynamic C

TCP/IP User’s Manual
010719-B

Dynamic C TCP/IP User’s Manuall

Part Number 019-0100 • 010719–B • Printed in U.S.A.

©2001 Z-World Inc. • All rights reserved.

Z-World reserves the right to make changes and
improvements to its products without providing notice.

Notice to Users
Z-WORLD PRODUCTS ARE NOT AUTHORIZED FOR USE AS
CRITICAL COMPONENTS IN LIFE-SUPPORT DEVICES OR SYS-
TEMS UNLESS A SPECIFIC WRITTEN AGREEMENT REGARD-
ING SUCH INTENDED USE IS ENTERED INTO BETWEEN THE
CUSTOMER AND Z-WORLD PRIOR TO USE. Life-support devices
or systems are devices or systems intended for surgical implantation into
the body or to sustain life, and whose failure to perform, when properly
used in accordance with instructions for use provided in the labeling and
user’s manual, can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always
present in a system of any size. In order to prevent danger to life or prop-
erty, it is the responsibility of the system designer to incorporate redun-
dant protective mechanisms appropriate to the risk involved.

The TCP/IP software used in the Rabbit 2000 TCP/IP Development Kit is
designed for use only with Rabbit Semiconductor chips, and is used under
licence from Erick Engelke.

Trademarks
Dynamic C is a registered trademark of Z-World Inc.

Windows® is a registered trademark of Microsoft Corporation

Z-World, Inc.
2900 Spafford Street

Davis, California95616-6800
USA

Telephone:(530)757-3737
Fax:(530)753-5141
www.zworld.com
ii

http://www.zworld.com

Table of Contents

1 Introduction ...1

2 TCP/IP Engine..3

2.1 TCP/IP Configuration...............................3
IP Addresses Set Manually...................3
IP Addresses Set Dynamically3
Sizes for TCP/IP I/O Buffers8

2.2 TCP Socket Interface................................8
Number of Sockets8
Passive Open...9
Active Open ..9
Delay a Connection9
TCP Socket Functions10

2.3 UDP Socket Interface12
Dynamic C 7.05 (and later)12
UDP Interface Prior to Dynamic C 7.05

13
Porting Programs from the older UDP

API to the new UDP API.............15

2.4 DNS Lookups ...15
Configuration Macros for DNS Lookups

15

2.5 Skeleton Program16
TCP/IP Stack Initialization17
Packet Processing18
TCP/IP Daemon Computing Time18

2.6 State-Based Program Design..................18
Blocking vs. Non-Blocking18

2.7 Multitasking and TCP/IP........................20
µC/OS-II ...20
Cooperative Multitasking20

2.8 Function Reference.................................23
_arp_resolve23
_chk_ping..24
dhcp_acquire25
dhcp_release....................................26
getdomainname27
gethostid ..28
gethostname28
getpeername29
getsockname....................................30
htonl ..31
htons ..31
inet_addr..32
inet_ntoa..33
ip_timer_expired33
ip_timer_init....................................35
ntohl ..35
ntohs ..36
paddr..36
pd_getaddress..................................37

_ping..38
psocket ..38
resolve ...39
resolve_cancel.................................40
resolve_name_check41
resolve_name_start..........................42
rip ..43
_send_ping44
setdomainname................................45
sethostid ..46
sethostname.....................................46
sock_abort47
sock_bytesready48
sock_close49
sock_dataready................................50
sockerr...51
sock_established..............................52
sock_fastread...................................53
sock_fastwrite54
sock_flush55
sock_flushnext56
sock_getc...57
sock_gets...58
sock_init ..58
sock_mode59
sock_preread60
sock_putc ..61
sock_puts...62
sock_rbleft.......................................63
sock_rbsize......................................63
sock_rbused.....................................64
sock_read ..65
sock_recv ..71
sock_recv_from...............................73
sock_recv_init74
sockstate ..75
sock_tbleft.......................................76
sock_tbsize77
sock_tbused.....................................77
sock_tick ...78
sock_wait_closed79
sock_wait_established.....................80
sock_wait_input81
sock_write82
sock_yield83
tcp_clearreserve83
tcp_config..84
tcp_extlisten85
tcp_extopen86
tcp_keepalive87
tcp_listen ...88
tcp_open ..90
TCP/IP User’s Manual iii

tcp_reserveport 92
tcp_tick ... 93
udp_close.. 93
udp_extopen 94
udp_open .. 95
udp_recv ... 97
udp_recvfrom 98
udp_send... 99
udp_sendto.................................... 100

2.9 Macros ... 101
DISABLE_DNS 101
MAX_SOCKETS......................... 101
MAX_SOCKET_LOCKS 101
MAX_TCP_SOCKET_BUFFERS.....

101
MAX_UDP_SOCKET_BUFFERS....

101
MY_DOMAIN 101
MY_GATEWAY 102
MY_IP_ADDRESS...................... 102
MY_NAMESERVER................... 102
MY_NETMASK 102
SOCK_BUF_SIZE 102
TCP_BUF_SIZE........................... 102
tcp_MaxBufSize 103
UDP_BUF_SIZE.......................... 103

3 Server Utility Library........................... 105

3.1 Data Structures for Zserver.lib 105
ServerSpec Structure........................ 105
ServerAuth Structure........................ 105
FormVar Structure............................ 105

3.2 Constants Used in Zserver.lib 106
ServerSpec Type Field 106
ServerSpec Vartype Field................. 106
Servermask field 106
Configurable Constants.................... 107

3.3 HTML Forms....................................... 107

3.4 Functions.. 108
sauth_adduser 108
sauth_authenticate 109
sauth_getuserid 109
sauth_getusername 110
sauth_getwriteaccess 110
sauth_removeuser 111
sauth_setpassword 111
sauth_setwriteaccess..................... 112
sspec_addform.............................. 113
sspec_addfsfile 114
sspec_addfunction 115
sspec_addfv 116
sspec_addrootfile 117
sspec_addvariable......................... 118
sspec_addxmemfile 119

sspec_addxmemvar 120
sspec_aliasspec............................. 121
sspec_checkaccess........................ 122
sspec_findfv.................................. 122
sspec_findname 123
sspec_findnextfile......................... 124
sspec_getfileloc 124
sspec_getfiletype 125
sspec_getformtitle 125
sspec_getfunction 126
sspec_getfvdesc 127
sspec_getfventrytype 128
sspec_getfvlen 128
sspec_getfvname 129
sspec_getfvnum 129
sspec_getfvopt 130
sspec_getfvoptlistlen 130
sspec_getfvreadonly 131
sspec_getfvspec 131
sspec_getlength 132
sspec_getname.............................. 132
sspec_getpreformfunction 133
sspec_getrealm 134
sspec_gettype................................ 134
sspec_getusername 135
sspec_getvaraddr 135
sspec_getvarkind 136
sspec_getvartype 136
sspec_needsauthentication............ 137
sspec_readfile 138
sspec_readvariable........................ 139
sspec_remove 139
sspec_restore 140
sspec_save 140
sspec_setformepilog 141
sspec_setformfunction.................. 142
sspec_setformprolog..................... 143
sspec_setformtitle 144
sspec_setfvcheck 145
sspec_setfvdesc 146
sspec_setfventrytype 146
sspec_setfvfloatrange 147
sspec_setfvlen............................... 147
sspec_setfvname........................... 148
sspec_setfvoptlist.......................... 148
sspec_setfvrange........................... 149
sspec_setfvreadonly...................... 149
sspec_setpreformfunction............. 150
sspec_setrealm.............................. 151
sspec_setsavedata 152
sspec_setuser 153

4 HTTP Server... 155

4.1 HTTP Server Data Structures 155
HttpSpec... 155
iv TCP/IP User’s Manual

HttpType ...156
HttpRealm...156
HttpState ...157

4.2 Configuration Macros...........................159
Customizing HTTP headers..............160

4.3 Sample Programs..................................160
Serving Static Web Pages161
Dynamic Web Pages Without HTML

Forms...163
Web Pages With HTML Forms167
HTML Forms Using Zserver.lib174

4.4 Functions ..180
cgi_redirectto180
cgi_sendstring181
http_addfile181
http_contentencode182
http_delfile183
http_finderrbuf183
http_nextfverr................................184
http_handler184
http_init ...185
http_parseform185
http_setcookie186
http_urldecode...............................187
shtml_addfunction.........................188
shtml_addvariable189
shtml_delfunction..........................190
shtml_delvariable190

5 FTP Client..191

5.1 Configuration Macros...........................191

5.2 Functions ..192
ftp_client_setup.............................192
ftp_client_tick193
ftp_client_filesize..........................193

5.3 Sample FTP Transfer............................194

6 FTP Server ...195

6.1 Configuration Constants.......................195
File Options195

6.2 File Handlers ..196
open...196
getfilesize197
read..197
write ..198
close ..198

6.3 Functions ..199
ftp_init ...199
ftp_tick ..199

6.4 Sample FTP Server...............................200

7 TFTP Client ...201
BOOTP/DHCP201
Data Structure for TFTP202

Function Reference...........................202
tftp_init..203
tftp_initx..204
tftp_tick ...205
tftp_tickx206
tftp_exec..207

8 SMTP Mail Client209

8.1 Sample Conversation............................209

8.2 Configuration..210

8.3 Functions ..211
smtp_sendmail211
smtp_sendmailxmem212
smtp_mailtick................................213
smtp_status....................................213

8.4 Sample Sending of an E-mail214

9 POP3 Client...215

9.1 Configuration..215

9.2 Three Steps to Receive E-mail.215

9.3 Call-Back Function...............................216
Normal call-back216
POP_PARSE_EXTRA call-back......216

9.4 Functions ..217
pop3_init217
pop3_getmail.................................218
pop3_tick.......................................218

9.5 Sample receiving of e-mail...................219
Sample Conversation........................220

10 Telnet ...221

10.1 Telnet (Dynamic C 7.05 and later)221
Setup ..221
Function Reference (Dynamic C 7.05

and later)....................................222
vserial_close..................................222
vserial_init.....................................222
vserial_keepalive...........................223
vserial_listen224
vserial_open225
vserial_tick226

Sample Program (Dynamic C 7.05 and
later)...226

10.2 Telnet (pre-Dynamic C 7.05)..............228
Configuration Macros.......................228
Function Reference...........................228

telnet_init228
telnet_tick......................................229
telnet_close....................................229

An Example Telnet Server................230

11 General Purpose Console233

11.1 Introduction ..233

11.2 Console Features.................................233
TCP/IP User’s Manual v

Using other Dynamic C Libraries 233

11.3 Console Commands and Messages 234
Console Command Data Structure... 234
Console Command Array................. 235
Console Commands 235
Console Error Messages................... 240

11.4 Console I/O Interface 242
How to Include an I/O Method 242
Predefined I/O Methods 242
 Multiple I/O Streams....................... 243

11.5 Console Execution 244
File System Initialization 244
Serial Buffers 244
Using TCP/IP 244
Required Console Functions 245

console_init................................... 245
console_tick.................................. 245

Useful Console Function.................. 245
con_backup................................... 245
con_backup_bytes 246
con_backup_reserve 246
con_chk_timeout 246
con_load_backup.......................... 247
con_reset_io.................................. 247
con_set_backup_lx 247
con_set_files_lx............................ 248
con_set_user_idle 248
con_set_timeout............................ 248
con_set_user_timeout 249

Console Execution Choices 249

11.6 Backup System................................... 249
Data Structure for Backup System... 250
Array Definition for Backup System250

11.7 Console Macros.................................. 251

11.8 Sample Program................................. 252

12 PPP Driver... 259

12.1 PPP Libraries 259

12.2 Operation Details 260
The Modem Interface....................... 260
Flow Control 260
Serial Port C 260

12.3 Software Implementation Overview.. 261
Defining Network Parameters.......... 261
Configuration Options...................... 262
Authentication.................................. 262
Link Teardown 264

12.4 Functions.. 264
CofModemExpect......................... 264
CofModemHangup 265
CofModemInit 265
CofModemSend............................ 265
CofPPPshutdown.......................... 266

CofPPPstart 266
ModemClose 267
ModemConnected 267
ModemExpect 267
ModemHangup............................. 268
ModemInit 268
ModemOpen................................. 268
ModemReady 269
ModemRinging............................. 269
ModemSend.................................. 269
ModemStartPPP 270
PPPclose 270
PPPinit .. 270
PPPflowcontrolOff 271
PPPflowcontrolOn........................ 271
PPPstart .. 272
PPPnegotiateIP 272
PPPnegotiateDNS......................... 273
PPPsetAuthenticatee..................... 273
PPPsetAuthenticator 274
PPPshutdown................................ 274
ResetPPP 275

Index.. 277
vi TCP/IP User’s Manual

1. Introduction

This manual is intended for embedded system designers and support professionals who are using
an Ethernet-enabled controller board. Knowledge of networks and TCP/IP (Transmission Control
Protocol/Internet Protocol) is assumed. For an overview of these two topics a separate manual is
provided, An Introduction to TCP/IP. A basic understanding of HTML (HyperText Markup Lan-
guage) is also assumed. For information on this subject, there are numerous sources on the Web
and in any major book store.

The Dynamic C implementation of TCP/IP comprises several libraries. The main library is
DCRTCP.LIB. As of Dynamic C 7.05, this library is a light wrapper around DNS.LIB, IP.LIB,
NET.LIB, TCP.LIB and UDP.LIB. These libraries implement DNS (Domain Name Server), IP,
TCP, and UDP (User Datagram Protocol). This, along with the libraries ARP.LIB and
ICMP.LIB, are the transport and network layers of the TCP/IP protocol stack.

The remaining libraries implement application-layer protocols.

All user-callable functions are listed and described in their appropriate chapter. Example programs
throughout the manual illustrate the use of all the different protocols. The sample code also pro-
vides templates for creating servers and clients of various types.

To address embedded system design needs, additional functionality has been included in Dynamic
C’s implementation of TCP/IP. There are step-by-step instructions on how to create HTML forms,
allowing remote access and manipulation of information. There is also a serial-based console that
can be used with TCP/IP to open up legacy systems for additional control and monitoring.
Introduction 1

2 TCP/IP User’s Manual

2. TCP/IP Engine

This chapter describes the main library file, DCRTCP.LIB, which comprises the configuration
macros, the data structures and the functions used to initialize and drive TCP/IP. IP version 4 is
supported by DCRTCP.LIB.

Starting with Dynamic C version 7.05, DCRTCP.LIB is a light wrapper around
DNS.LIB, IP.LIB, NET.LIB, TCP.LIB and UDP.LIB. No changes are required
to existing code.

2.1 TCP/IP Configuration
To run the TCP/IP engine, a host (i.e., the controller board) needs to know its IP address, netmask
and default gateway. If DNS (Domain Name System) lookups are needed, a host will also need to
know the IP address of the local DNS server.

Media Access Control (MAC) address
Some ISPs require that the user provide them with a MAC address for their device. Run the utility
program, Samples/tcpip/display_mac.c, to display the MAC address of your controller
board.

2.1.1 IP Addresses Set Manually
The necessary IP addresses can be set at compile time by defining the configuration macros:
MY_IP_ADDRESS, MY_NETMASK, MY_GATEWAY and MY_NAMESERVER respectively. At
runtime, the configuration functions, tcp_config, sethostid and sethostname can over-
ride the configuration macros.

2.1.2 IP Addresses Set Dynamically
The library BOOTP.LIB allows a target board to be a BOOTP or DHCP client. The protocol used
depends on what type of server is installed on the local network. BOOTP and DHCP servers are
usually centrally located on a local network and operated by the network administrator.

Both protocols allow a number of configuration parameters to be sent to the client, including:

•Client’s IP address
•Net mask
•List of gateways
•Host and default domain name
•List of name servers

Both protocols also provide some inessential but useful information:

•Various standard servers, such as NTP, NIS, cookie, etc.
•A bootstrap server address
•The name of a bootstrap file
Chapter 2: TCP/IP Engine 3

To use these protocols, include:

#define USE_DHCP
#use DCRTCP.LIB

in your program.

BOOTP assigns permanent IP addresses. DHCP can “lease” an IP address to a host, i.e., assign the
IP address for a limited amount of time. The lease can also be specified as permanent by setting
_dhcplife to ~0UL (i.e. 0xFFFFFFFF).

 2.1.2.1 BOOTP/DHCP Control Macros
Various macros control the use of DHCP. They must be set before the line
#use "dcrtcp.lib"in the application program.

USE_DHCP
If this macro is defined, the target uses BOOTP or DHCP to configure the required parameters. If
USE_DHCP is not defined, then MY_IP_ADDRESS, MY_NETMASK, MY_GATEWAY and (possi-
bly) MY_NAMESERVER must be defined in the application program.

DHCP_USE_BOOTP
If defined, the target uses the first BOOTP response it gets. If not defined, the target waits for the
first DHCP offer and only if none comes in the time specified by _bootptimeout does it
accept a BOOTP response (if any). Use of this macro speeds up the boot process, but at the
expense of ignoring DHCP offers if there is an eager BOOTP server on the local subnet.

DHCP_CLASS_ID “Rabbit2000-TCPIP:Z-World:Test:1.0.0”
This macro defines a class identifier by which the OEM can identify the type of configuration
parameters expected. DHCP servers can use this information to direct the target to the appropriate
configuration file. Z-World recommends the standard format: “hardware:vendor:product
code:firmware” version.

DHCP_USE_TFTP
If this and USE_DHCP are defined, the library will use the BOOTP filename and server to obtain
an arbitrary configuration file that will be accessible in a buffer at physical address
_bootpdata, with length, _bootpsize. The global variables, _bootpdone and
_bootperror indicate the status of the boot file download. DHCP_USE_TFTP should be
defined to the maximum file size that may be downloaded.

 2.1.2.2 BOOTP/DHCP Global Variables
The following list of global variables may be accessed by application code to obtain information
about DHCP or BOOTP. These variable are only accessible if USE_DHCP is defined.

_bootpon
Runtime control of whether to perform DHCP/BOOTP. This is initially set to 'true'. It can be set to
false before calling sock_init (the function that initializes the TCP/IP engine), causing static
configuration to be used. Static configuration uses the values defined for the configuration macros,
MY_IP_ADDRESS etc. If BOOTP fails during initialization, this will be reset to 0. If reset, then
you can call dhcp_acquire() at some later time.
4 TCP/IP User’s Manual

_survivebootp
Set to one of the following values:

0: If BOOTP/DHCP fails, then a runtime error occurs. This is the default.
1: If BOOTP fails, then use the values in MY_IP_ADDRESS etc. If those macros are not

defined, a runtime error occurs.

_dhcphost
IP address of last-used DHCP server (~0UL if none). If _survivebootp is true, then this vari-
able should be checked to see if DHCP/BOOTP was actually used to obtain the lease. If
_dhcphost is ~0UL, then the fallback parameters (MY_IP_ADDRESS etc.) were used since no
DHCP server responded.

_bootphost
IP address of the last-used BOOTP/TFTP server (~0UL if none). Usually obtained from the siaddr
field of the DHCP OFFER/ACK message. This is the default host used if NULL is given for the
hostname in the call to tftp_exec(). This is the host that provides the boot file.

_dhcplife, _dhcpt1, _dhcpt2
These variables contain various absolute time values (referenced against SEC_TIMER) at which
certain aspects of the DHCP protocol get activated. _dhcplife is when the current lease
expires. If _dhcplife is ~0UL (i.e. 0xFFFFFFFF) then the lease is permanent and the other
variables are not used. Otherwise, _dhcpt1 is when the current lease must be renewed by the
current DHCP server. _dhcpt2 is when the lease must be re-bound to a possibly different server,
if the current server does not respond. In general, _dhcpt1 < _dhcpt2 < _dhcplife. To
work out the number of seconds remaining until the current lease expires, use code similar to:

_bootptimeout
Number of seconds to wait for a BOOTP or DHCP offer. If there is no response within this time
(default 30 sec), then BOOTP is assumed to have failed, and the action specified by
_survivebootp will be taken. You can set this variable to a different value before calling
sock_init().

_bootpdone
Is set to a non-zero value when TFTP download of the boot file is complete. This variable only
exists if DHCP_USE_TFTP is defined. It is set to one of the following values:

 0: Download not complete, or boot file not yet known.
 1: Boot file download completed (check _bootperror for status).
 2: No boot file was specified by the server.

_bootpsize
Indicates how many bytes of the boot file have been downloaded. Only exists if
DHCP_USE_TFTP is defined.

if (_dhcplife == ~0UL)
printf("Lease is permanent\r\n");

else if (_dhcplife > SEC_TIMER)
printf("Remaining lease %lu seconds\r\n",
 _dhcplife - SEC_TIMER);

else
printf("Lease is expired\r\n");
Chapter 2: TCP/IP Engine 5

_bootpdata
Physical starting address of boot data. The length of this area will be DHCP_USE_TFTP bytes,
however, the actual amount of data in the buffer is given by _bootpsize. This variable only
exists if DHCP_USE_TFTP is defined and is only valid if _bootpdone is 1. You can access the
data using xmem2root() and related functions.

_bootperror
Indicates any error which occurred in a TFTP process. This variable only exists if
DHCP_USE_TFTP is defined and is only valid when _bootpdone is 1, in which case
_bootperror is set to one of the following values (which are also documented with the
tftp_tick() function):

 2.1.2.3 DHCP Functions
There are two user-callable functions regarding IP address leases. To obtain a lease, call
dhcp_acquire(). To relinquish it, call dhcp_release().

 2.1.2.4 DHCP Sample Program
The following sample is a very basic TCP/IP program, that will initialize the TCP/IP interface, and
allow the device to be ’pinged’ from another computer on the network. DHCP or BOOTP will be
used to obtain IP addresses and other network configuration items. A more extensive sample pro-
gram is in Samples\tcpip\dhcp.c. It demonstrates other DHCP features, such as releasing
and re-acquiring IP addresses and downloading a configuration file.

0: No error.

-1: Error from boot file server, transfer terminated. This usually occurs because the server is not
configured properly, and has denied access to the nominated file.

-2: Error, could not contact boot file server or lost contact.

-3: Timed out, transfer terminated.

-4: (not used)

-5: Transfer complete, but truncated because buffer too small to receive the complete file.
6 TCP/IP User’s Manual

// Main define to cause BOOTP or DHCP to be used.
#define USE_DHCP

/* These values may be used as a fallback if _survivebootp is set true.
Otherwise, they will be ignored. Note that in a ’real’ application,
setting fallbacks as hard-coded addresses would be unwise.*/

#define MY_IP_ADDRESS "10.10.6.179"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"

#memmap xmem
#use dcrtcp.lib

/* Print some of the DHCP or BOOTP parameters received. */
void print_results(void){

printf("Network Parameters:\r\n");
printf(" My IP Address = %08lX\r\n", my_ip_addr);
printf(" Netmask = %08lX\r\n", sin_mask);
if (_dhcphost != ~0UL) {

if (_dhcpstate == DHCP_ST_PERMANENT) {
printf(" Permanent lease\r\n");

} else {
printf("Remaining lease= %ld (sec)\r\n", _dhcplife -

 SEC_TIMER);
printf("Renew lease in %ld (sec)\r\n", _dhcpt1 - SEC_TIMER);

}
printf(" DHCP server = %08lX\r\n", _dhcphost);
printf(" Boot server = %08lX\r\n", _bootphost);

}
if (gethostname(NULL,0))

printf(" Host name = %s\r\n", gethostname(NULL,0));
if (getdomainname(NULL,0))

printf(" Domain name = %s\r\n", getdomainname(NULL,0));
}
main(){

_survivebootp = 1; // So we can print our own message
_bootptimeout = 6; // Short timeout for testing
sock_init();
if (_dhcphost != ~0UL)

printf("Lease obtained\r\n");
else {

printf("Lease not obtained. DHCP server may be down.\r\n");
printf("Using fallback parameters...\r\n");

}
print_results();
for (;;)

tcp_tick(NULL);
}
Chapter 2: TCP/IP Engine 7

2.1.3 Sizes for TCP/IP I/O Buffers
Starting with Dynamic C version 7.05, TCP and UDP I/O buffers are sized separately.

• TCP_BUF_SIZE determines the TCP buffer size and defaults to 4096 bytes.

• UDP_BUF_SIZE determines the UDP buffer size and defaults to 4096 bytes.

Compatibility is maintained with earlier versions of Dynamic C. If SOCK_BUF_SIZE is defined,
TCP_BUF_SIZE and UDP_BUF_SIZE will be assigned the value of SOCK_BUF_SIZE. If
SOCK_BUF_SIZE is not defined, but tcp_MaxBufSize is, then TCP_BUF_SIZE and
UDP_BUF_SIZE will be assigned the value of tcp_MaxBufSize * 2.

 2.1.3.1 User-supplied Buffers
Starting with Dynamic C version 7.05, a user can associate their own buffer with a TCP or UDP
socket. The memory for the buffer must be allocated by the user. This can be done with xal-
loc(), which returns a pointer to the buffer. This buffer will be tied to a socket by a call to an
extended open function: tcp_extlisten(), tcp_extopen() or udp_extopen(). Each
function requires a long pointer to the buffer and its length be passed as parameters.

2.2 TCP Socket Interface
Throughout this manual, the term socket refers to four numbers: the IP addresses and port num-
bers for both sides of a connection.

With Dynamic C version 6.57, each socket must have an associated tcp_Socket structure of
145 bytes or a udp_Socket structure of 62 bytes. The I/O buffers are in extended memory. For
Dynamic C 7.05 these sizes are 132 bytes and 48 bytes, respectively.

For earlier versions of Dynamic C, each socket must have a tcp_Socket data structure that
holds the socket state and I/O buffers. These structures are, by default, around 4200 bytes each.
The majority of this space is used by the input and output buffers.

2.2.1 Number of Sockets
Starting with Dynamic C version 7.05, there are two macros that define the number of sockets
available:

• MAX_TCP_SOCKET_BUFFERS determines the maximum number of TCP sockets with
preallocated buffers. The default is 4. A buffer is tied to a socket with the first call to
tcp_open() or tcp_listen().

• MAX_UDP_SOCKET_BUFFERS determines the maximum number of UDP sockets with
preallocated buffers. The default is 0. A buffer is tied to a socket with the first call to
udp_open().

Note that DNS does not need a UDP socket buffer since it manages its own buffer. DHCP and
TFTP.LIB, however, each need one UDP socket buffer.

Prior to Dynamic C version 7.05, MAX_SOCKETS defined the number of sockets that could be allo-
cated, not including the socket for DNS lookups. If you use libraries such as HTTP.LIB or
FTP_SERVER.LIB, you must provide enough sockets in MAX_SOCKETS for them also.

In Dynamic C 7.05 (and later), if MAX_SOCKETS is defined in an application program,
MAX_TCP_SOCKET_BUFFERS will be assigned the value of MAX_SOCKETS.
8 TCP/IP User’s Manual

2.2.2 Passive Open
There are two ways to open a TCP socket, passive and active. To passively open a socket, call
tcp_listen(); then wait for someone to contact your device. This type of open is commonly
used for Internet servers that listen on a well-known port, like 80 for HTTP (Hypertext Transfer
Protocol) servers. You supply tcp_listen() with a pointer to a tcp_Socket data structure,
the local port number others will be contacting on your device, and the IP address and port number
that are valid for the device. If you want to be able to accept connections from any IP address or
any port number, set one or both to zero.

To handle multiple simultaneous connections, each new connection will require its own
tcp_Socket and a separate call to tcp_listen(), but using the same local port number
(lport value). tcp_listen() will immediately return, and you must poll for the incoming
connection. You can use the sock_wait_established macro, which calls tcp_tick()
and blocks until the connection is established or manually poll the socket using
sock_established().

2.2.3 Active Open
When your Web browser retrieves a page, it actively opens one or more connections to the server’s
passively opened sockets. To actively open a connection, you call tcp_open(), which uses
parameters that are similar to the ones used in tcp_listen(). Supply exact parameters for ina
and port, which are the IP address and port number you want to connect to; the lport parame-
ter can be zero, which tells DCRTCP.LIB to select an unused local port between 1024 and 65535.

If tcp_open() returns zero, no connection was made. This could be due to routing difficulties,
such as an inability to resolve the remote computer’s hardware address with ARP.

2.2.4 Delay a Connection
To accept a connection request when the resources to actually process the request are not avail-
able, use the function tcp_reserveport(). It takes one parameter, the port number where
you want to accept connections. When a connection to that port number is requested, the 3-way
handshaking is done even if there is not yet a socket available. When replying to the connection
request, the window parameter in the TCP header is set to zero, meaning, “I can take no bytes of
data at this time.” The other side of the connection will wait until the value in the window parame-
ter indicates that data can be sent. Using the companion function, tcp_clearreserve(port
number), causes TCP/IP to treat a connection request to the port in the conventional way. The
macro USE_RESERVEDPORTS is defined by default. It allows the use of these two functions.

When using tcp_reserveport, the 2MSL (Maximum Segment Lifetime) waiting period for
closing a socket is avoided.
Chapter 2: TCP/IP Engine 9

2.2.5 TCP Socket Functions
There are many functions that can be applied to an open TCP socket. They fall into three main cat-
egories: Control, Status, and I/O.

 2.2.5.1 Control Functions for TCP Sockets
These functions change the status of the socket or its I/O buffer.

tcp_open() and tcp_listen() have been explained in previous sections.

Call sock_close() to end a connection. This call may not immediately close the connection
because it may take some time to send the request to end the connection and receive the acknowl-
edgements. If you want to be sure that the connection is completely closed before continuing, call
tcp_tick() with the socket structure’s address. When tcp_tick() returns zero, then the
socket is completely closed. Please note that if there is data left to be read on the socket, the socket
will not completely close.

Call sock_abort() to cancel an open connection. This function will cause a TCP reset to be
sent to the other end, and all future packets received on this connection will be ignored.

For performance reasons, data may not be immediately sent from a socket to its destination. If
your application requires the data to be sent immediately, you can call sock_flush(). This
function will cause DCRTCP.LIB to try sending any pending data immediately. If you know
ahead of time that data needs to be sent immediately, call sock_flushnext() on the socket.
This function will cause the next set of data written to the socket to be sent immediately, and is
more efficient than sock_flush().

 2.2.5.2 Status Functions for TCP Sockets
These functions return useful information about the status of either a socket or its I/O buffers.

tcp_tick() is the daemon that drives the TCP/IP engine, but it also returns status information.
When you supply tcp_tick() with a pointer to a tcp_Socket (a structure that identifies a
particular socket), it will first process packets and then check the indicated socket for an estab-

• sock_abort • sock_flushnext

• sock_close • tcp_listen

• sock_flush • tcp_open

• sock_bytesready • sock_rbused

• sock_dataready • sock_tbleft

• sock_established • sock_tbsize

• sock_rbleft • sock_tbused

• sock_rbsize • tcp_tick
10 TCP/IP User’s Manual

lished connection. tcp_tick() returns zero when the socket is completely closed. You can use
this return value after calling sock_close() to determine if the socket is completely closed.

These status functions can be used to avoid blocking when using sock_write() and some of
the other I/O functions, as illustrated in the following code.

This block of code checks to make sure that there is enough room in the buffer before adding data
with a blocking function. .

This block of code ensures that there is a string terminated with a new line in the buffer, or that the
buffer is full before calling sock_gets():

 2.2.5.3 I/O Functions for TCP Sockets

There are two modes of reading and writing to TCP sockets: ASCII and binary. By default, a socket
is opened in binary mode, but you can change the mode with a call to sock_mode().

When a socket is in ASCII mode, DCRTCP.LIB assumes that the data is an ASCII stream with
record boundaries on the newline characters for some of the functions. This behavior means
sock_bytesready() will return ≥0 only when a complete newline-terminated string is in the
buffer or the buffer is full. The sock_puts() function will automatically place a newline char-
acter at the end of a string, and the sock_gets() function will strip the newline character.

When in binary mode, do not use sock_gets().

sock_close(&my_socket);
while(tcp_tick(&my_socket)) {
 // you can do other things here while waiting for the socket
 // to be completely closed.
}

if(sock_tbleft(&my_socket,size)) {
sock_write(&my_socket,buffer,size);

}

sock_mode(&my_socket,TCP_MODE_ASCII);
if(sock_bytesready(&my_socket) != -1) {

sock_gets(buffer,MAX_BUFFER);
}

• sock_fastread • sock_putc

• sock_fastwrite • sock_puts

• sock_getc • sock_read

• sock_gets • sock_write

• sock_preread
Chapter 2: TCP/IP Engine 11

2.3 UDP Socket Interface
The UDP protocol is useful when sending messages where either a lost message does not cause a
system failure or is handled by the application. Since UDP is a simple protocol and you have con-
trol over the retransmissions, you can decide if you can trade low latency for high reliability.

Broadcast Packets
UDP can send broadcast packets (i.e., to send a packet to a number of computers on the same net-
work). This is accomplished by setting the remote IP address to -1, in either a call to
udp_open() or a call to udp_sendto(). When used properly, broadcasts can reduce overall
network traffic because information does not have to be duplicated when there are multiple desti-
nations.

Checksums
There is an optional checksum field inside the UDP header. This field verifies the header and the
data. This feature can be disabled on a reliable network where the application has the ability to
detect transmission errors. Disabling the UDP checksum can increase the performance of UDP
packets moving through DCRTCP.LIB. This feature can be modified by:

sock_mode(s, UDP_MODE_CHK); // enable checksums
sock_mode(s, UDP_MODE_NOCHK); // disable checksums

The first parameter is a pointer to the socket’s data structure, either tcp_Socket or
udp_Socket.

Improved Interface
With Dynamic C version 7.05 there is a redesigned UDP API. The new interface is incompatible
with the previous one. Section 2.3.1 covers the new interface and Section 2.3.2 covers the previ-
ous one.

2.3.1 Dynamic C 7.05 (and later)
This UDP interface is a record service. It receives distinct datagrams and passes them as such to
the user program. The socket I/O functions available for TCP sockets will not work for UDP sock-
ets.

See Section 2.3.3 for information on porting a program to the new UDP interface.

 2.3.1.1 Control Functions for UDP Sockets
These functions change the status of the socket or its I/O buffer.

• sock_flush • udp_close

• sock_flushnext • udp_open
12 TCP/IP User’s Manual

 2.3.1.2 I/O Functions for UDP Sockets
These functions handle datagram-at-a-time I/O:

The write function, udp_sendto(), allows the remote IP address and port number to be speci-
fied. The read function, udp_recvfrom(), identifies the IP address and port number of the host
that sent the datagram. There is no longer a UDP read function that blocks until data is ready.

 2.3.1.3 Status Function for UDP Sockets
These functions return useful information about the status of either a socket or its I/O buffers.

For a udp socket, sock_bytesready() returns the number of bytes in the next datagram in the
socket buffer, or -1 if no datagrams are waiting. Note that a return of 0 is valid, since a datagram
can have 0 bytes of data.

2.3.2 UDP Interface Prior to Dynamic C 7.05
This interface is basically the TCP socket interface with some additional functions for simulating a
record service. Some of the TCP socket functions work differently for UDP because of its connec-
tionless state. The descriptions for the applicable functions details these differences.

 2.3.2.1 I/O Functions for UDP Sockets
Prior to Dynamic C 7.05, the functions that handle UDP socket I/O are mostly the same functions
that handle TCP socket I/O.

Notice that there are three additional I/O functions that are only available for use with UDP sock-
ets: sock_recv(), sock_recv_from() and sock_recv_init(). The status and con-
trol functions that are available for TCP sockets also work for UDP sockets, with the exception of
the open functions, tcp_listen() and tcp_open().

• udp_recv • udp_send

• udp_recvfrom • udp_sendto

• sock_bytesready • sock_rbused

• sock_dataready • sock_tbleft

• sock_established • sock_tbsize

• sock_rbleft • sock_tbused

• sock_rbsize • tcp_tick

• sock_fastread • sock_read

• sock_fastwrite • sock_recv

• sock_getc • sock_recv_from

• sock_gets • sock_recv_init

• sock_preread • sock_write

• sock_putc • udp_close

• sock_puts • udp_open
Chapter 2: TCP/IP Engine 13

 2.3.2.2 Opening and Closing a UDP Socket
udp_open() takes a remote IP address and a remote port number. If they are set to a specific
value, all incoming and outgoing packets are filtered on that value (i.e., you talk only to the one
remote address).

If the remote IP address is set to -1, the UDP socket receives packets from any valid remote
address, and outgoing packets are broadcast. If the remote IP address is set to 0, no outgoing pack-
ets may be sent until a packet has been received. This first packet completes the socket, filling in
the remote IP address and port number with the return address of the incoming packet. Multiple
sockets can be opened on the same local port, with the remote address set to 0, to accept multiple
incoming connections from separate remote hosts. When you are done communicating on a socket
that was started with a 0 IP address, you can close it with sock_close() and reopen to make it
ready for another source.

 2.3.2.3 Writing to a UDP Socket
Prior to Dynamic C 7.05, the normal socket functions you used for writing to a TCP socket will
work for a UDP socket, but since UDP is a significantly different service, the result could be dif-
ferent. Each atomic write—sock_putc(), sock_puts(), sock_write(), or
sock_fastwrite()—places its data into a single UDP packet. Since UDP does not guarantee
delivery or ordering of packets, the data received may be different either in order or content than
the data sent. Packets may also be duplicated if they cross any gateways. A duplicate packet may
be received well after the original.

 2.3.2.4 Reading From a UDP Socket
There are two ways to read packets using DCRTCP.LIB, prior to Dynamic C 7.05. The first
method uses the same read functions that are used for TCP: sock_getc(), sock_gets(),
sock_read(), and sock_fastread(). These functions will read the data as it came into the
socket, which is not necessarily the data that was written to the socket.

The second mode of operation for reading uses the sock_recv_init(), sock_recv(), and
sock_recv_from() functions. The sock_recv_init() function installs a large buffer
area that gets divided into smaller buffers. Whenever a datagram arrives, DCRTCP.LIB stuffs that
datagram into one of these new buffers. The sock_recv() and sock_recv_from() func-
tions scan these buffers. After calling sock_recv_init on the socket, you should not use
sock_getc(), sock_read(), or sock_fastread().

The sock_recv() function scans the buffers for any datagrams received by that socket. If there
is a datagram, the length is returned and the user buffer is filled, otherwise sock_recv() returns
zero.

The sock_recv_from() function works like sock_recv(), but it allows you to record the
IP address where the datagram originated. If you want to reply, you can open a new UDP socket
with the IP address modified by sock_recv_from().
14 TCP/IP User’s Manual

2.3.3 Porting Programs from the older UDP API to the new UDP API
To update applications written with the older-style UDP API, use the mapping information in the
following table.

2.4 DNS Lookups
Starting with Dynamic C 7.05, non-blocking DNS lookups are supported. Prior to DC 7.05, there
was only the blocking function, resolve(). Compatibility has been preserved for resolve(),
MAX_DOMAIN_LENGTH , and DISABLE_DNS.

The application program has to do two things to resolve a host name:

1.Call resolve_name_start() to start the process.

2.Call resolve_name_check() to check for a response.

To cancel a pending lookup, call resolve_cancel().

2.4.1 Configuration Macros for DNS Lookups

DISABLE_DNS
If this macro is defined, DNS lookups will not be done. The DNS subsystem will not be compiled
in, saving some code space and memory.

DNS_MAX_RESOLVES
4 by default. This is the maximum number of concurrent DNS queries. It specifies the size of an
internal table that is allocated in xmem.

UDP API prior to Dynamic C 7.05 UDP API starting with Dynamic C 7.05

MAX_SOCKETS
MAX_UDP_SOCKET_BUFFERS and
MAX_TCP_SOCKET_BUFFERS

SOCK_BUF_SIZE UDP_BUF_SIZE and TCP_BUF_SIZE

udp_open() udp_open()

sock_write(), sock_fastwrite() udp_send() or udp_sendto()

sock_read()(blocking function)
udp_recv() or udp_recvfrom()
(nonblocking functions)

sock_fastread() udp_recv() or udp_recvfrom()

sock_recv_init()
udp_extopen() (to specify your
own buffer)

sock_recv() udp_recv()

sock_recv_from() udp_recvfrom()

sock_close() sock_close() or udp_close()

sock_bytesready() sock_bytesready()

sock_dataready() sock_dataready()
Chapter 2: TCP/IP Engine 15

DNS_MAX_NAME
64 by default. Specifies the maximum size in bytes of a host name that can be resolved. This num-
ber includes any appended default domain and the NULL-terminator. Backwards compatibility
exists for the MAX_DOMAIN_LENGTH macro. Its value will be overridden with the value
DNS_MAX_NAME if it is defined.

For temporary storage, a variable of this size must be placed on the stack in DNS processing. Nor-
mally, this is not a problem. However, for µC/OS-II with a small stack and a large value for
DNS_MAX_NAME, this could be an issue.

DNS_MAX_DATAGRAM_SIZE
512 by default. Specifies the maximum length in bytes of a DNS datagram that can be sent or
received. A root data buffer of this size is allocated for DNS support.

DNS_RETRY_TIMEOUT
2000 by default. Specifies the number of milliseconds to wait before retrying a DNS request. If a
request to a nameserver times out, then the next nameserver is tried. If that times out, then the next
one is tried, in order, until it wraps around to the first nameserver again (or runs out of retries).

DNS_NUMBER_RETRIES
2 by default. Specifies the number of times a request will be retried after an error or a timeout. The
first attempt does not constitute a retry. A retry only occurs when a request has timed out, or when
a nameserver returns an unintelligible response. That is, if a host name is looked up and the
nameserver reports that it does not exist and then the DNS resolver tries the same host name with
or without the default domain, that does not constitute a retry.

DNS_MIN_KEEP_COMPLETED
10000 by default. Specifies the number of milliseconds a completed request is guaranteed to be
valid for resolve_name_check(). After this time, the entry in the internal table correspond-
ing to this request can be reused for a subsequent request.

DNS_SOCK_BUF_SIZE
1024 by default. Specifies the size in bytes of an xmem buffer for the DNS socket. Note that this
means that the DNS socket does not use a buffer from the socket buffer pool.

2.5 Skeleton Program
The following program is a general outline for a Dynamic C TCP/IP program. The first couple of
defines set up the default IP configuration information. The “memmap” line causes the program to
compile as much code as it can in the extended code window. The “use” line causes the compiler
to compile in the Dynamic C TCP/IP code using the configuration data provided above it.
16 TCP/IP User’s Manual

To run this program, start Dynamic C and open the SAMPLES\TCPIP\ICMP\PINGME.C file.
Edit the MY_IP_ADDRESS, MY_NETMASK, and MY_GATEWAY macros to reflect the appropriate
values for your device. Run the program and try to run ping 10.10.6.101 from a command
line on a computer on the same physical network, replacing 10.10.6.101 with your value for
MY_IP_ADDRESS.

2.5.1 TCP/IP Stack Initialization
The main() function first initializes the TCP/IP stack with a call to sock_init(). This call
initializes internal data structures and enables the Ethernet chip, which will take a couple of sec-
onds with the RealTek chip. At this point, DCRTCP.LIB is ready to handle incoming packets.

/* Pingme.c */
#define MY_IP_ADDRESS "10.10.6.101"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"
#memmap xmem
#use dcrtcp.lib
main() {

sock_init();
for (;;) {

tcp_tick(NULL);
}

}

Chapter 2: TCP/IP Engine 17

2.5.2 Packet Processing
Incoming packets are processed whenever tcp_tick() is called. The user-callable functions
that call tcp_tick() are: tcp_open, udp_open, sock_read, sock_write,
sock_close, and sock_abort. Some of the higher-level protocols, e.g. HTTP.LIB, will call
tcp_tick() automatically.

It is a good practice to make sure that tcp_tick() is called periodically in your program to
insure that the TCP/IP engine has had a chance to process packets. A rule of thumb is to call
tcp_tick() around 10 times per second, although slower or faster call rates should also work.
The Ethernet interface chip has a large buffer memory, and TCP/IP is adaptive to the data rates
that both end of the connection can handle; thus the system will generally keep working over a
wide variety of tick rates.

2.5.3 TCP/IP Daemon Computing Time
The computing time consumed by each call to tcp_tick() varies. Rough numbers are less than
a millisecond if there is nothing to do, 10s of milliseconds for typical packet processing, and 100s
of milliseconds under exceptional circumstances.

2.6 State-Based Program Design
An efficient design strategy is to create a state machine within a function and pass the socket’s
data structure as a function parameter. This method allows you to handle multiple sockets without
the services of a multitasking kernel. This is the way the HTTP.LIB functions are organized.
Many of the common Internet protocols fit well into this state machine model.

The general states are:

• Waiting to be initialized

• Waiting for a connection

• Connected states that perform the real work

• Waiting for the socket to be closed

An example of state-based programming is SAMPLES\TCPIP\STATE.C. This program is a
basic Web server that should work with most browsers. It allows a single connection at a time, but
can be extended to allow multiple connections.

2.6.1 Blocking vs. Non-Blocking
There is a choice between blocking and non-blocking functions when doing socket I/O.

 2.6.1.1 Non-Blocking Functions
The sock_fastread() and sock_preread() functions read all available data in the buff-
ers, and return immediately. Similarly, the sock_fastwrite() function fills the buffers and
18 TCP/IP User’s Manual

returns the number of characters that were written. When using these functions, you must ensure
that all of the data were written completely.

 2.6.1.2 Blocking Functions
The other functions (sock_getc(), sock_gets(), sock_putc(), sock_puts(),
sock_read() and sock_write()) do not return until they have completed or there is an
error. If it is important to avoid blocking, you can check the conditions of an operation to insure
that it will not block.

In this case sock_gets() will not block because it will be called only when there is a complete
new line terminated record to read.

 2.6.1.3 Blocking Macros
To block at a certain point and wait for a condition, the macros sock_wait_closed,
sock_wait_established and sock_wait_input are provided.

In this program fragment, sock_wait_established is used to block the program until a con-
nection is established. Notice the timeout (second parameter) value of zero. This tells Dynamic C
to never timeout. Associated with these macros is a sock_err label to jump to when there is an
error. If you supply a pointer to a status integer, it will set the status to an error code. Valid error
codes are -1 for timeout and 1 for a reset connection.

offset=0;
while(offset<length) {
bytes_written=sock_fastwrite(&socket,buffer+offset,length-offset);
if(bytes_written<0) {

// error handling
}
offset+=bytes_written;

}

sock_mode(socket,TCP_MODE_ASCII);
// ...
if (sock_bytesready(&my_socket) != -1){

sock_gets(buffer,MAX_BUFFER);
}

Chapter 2: TCP/IP Engine 19

2.7 Multitasking and TCP/IP
Dynamic C’s TCP/IP implementation is compatible with both µC/OS-II and with the language
constructs that implement cooperative multitasking: costatements and cofunctions. Note that
TCP/IP is not compatible with the slice statement.

2.7.1 µC/OS-II
The TCP/IP engine may be used with the µC/OS-II real-time kernel. The line

#use ucos2.lib

 must appear before the line

#use dcrtcp.lib

in the application program.

Dynamic C version 7.05 and later requires the macro MAX_SOCKET_LOCKS for µC/OS-II sup-
port. If it is not defined, it will default to MAX_TCP_SOCKET_BUFFERS +
TOTAL_UDP_SOCKET_BUFFERS (which is MAX_UDP_SOCKET_BUFFERS + 1 if there are
DNS lookups).

If buffers have been xalloc’d for socket I/O, they should be accounted for in
MAX_SOCKET_LOCKS.

2.7.2 Cooperative Multitasking
The following program demonstrates the use of multiple TCP sockets with costatements. After
compiling and running the program, make the following telnet connections using your own IP
address:

telnet 10.10.6.11 8888
telnet 10.10.6.11 8889

tcp_open(&s,0,ip,PORT,NULL);
sock_wait_established(&s,0,NULL,&status);

//...

sock_err:
switch(status) {

case 1: /* foreign host closed */
printf("User closed session\n");
break;

case -1: /* timeout */
printf("\nConnection timed out\n");
break;

}

20 TCP/IP User’s Manual

#define MY_IP_ADDRESS "10.10.6.11"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"

#define PORT1 8888
#define PORT2 8889

#define SOCK_BUF_SIZE 2048
#define MAX_SOCKETS 2

#memmap xmem
#use "dcrtcp.lib"

tcp_Socket Socket_1;
tcp_Socket Socket_2;

#define MAX_BUFSIZE 512
char buf1[MAX_BUFSIZE], buf2[MAX_BUFSIZE];

// The function that actually does the TCP work
cofunc int basic_tcp[2](tcp_Socket *tcp_sock, int port, char *buf){

auto int length, space_avaliable;
auto sock_type *s;
s = (sock_type *)tcp_sock;

tcp_listen(tcp_sock, port, 0, 0, NULL, 0);

// wait for a connection
while((-1 == sock_bytesready(s)) && (0 == sock_established(s))) {

// give other tasks time to do things while we are waiting
yield;

}
while(sock_established(s)) {

space_avaliable = sock_tbleft(s);
// limit transfer size to MAX_BUFSIZE, leave room for ’\0’
if(space_avaliable > (MAX_BUFSIZE-1))

space_avaliable = (MAX_BUFSIZE-1);
// get some data
length = sock_fastread(s, buf, space_avaliable);

if(length > 0) { // did we receive any data?
buf[length] = ’\0’; // print it to the stdio window
printf("%s",buf);
// send it back out to the user’s telnet session
// sock_fastwrite will work-we verified the space beforehand
sock_fastwrite(s, buf, length);

}
yield; // give other tasks time to run

}
sock_close(s);
return 1;

}

Chapter 2: TCP/IP Engine 21

main() {
sock_init();
while (1) {

costate {
// Go do the TCP/IP part, on the first socket
wfd basic_tcp[0](&Socket_1, PORT1, buf1);

}
costate {

// Go do the TCP/IP part, on the second socet
wfd basic_tcp[1](&Socket_2, PORT2, buf2);

}
costate {

// drive the tcp stack
tcp_tick(NULL);

}
costate {

// Can insert application code here!
waitfor(DelayMs(100));

}
}

}

22 TCP/IP User’s Manual

2.8 Function Reference
This section contains descriptions for all user-callable functions in DCRTCP.LIB. Starting with
Dynamic C 7.05, DCRTCP.LIB is a light wrapper around DNS.LIB, IP.LIB, NET.LIB,
TCP.LIB and UDP.LIB. This update requires no changes to existing code.

Descriptions for select user-callable functions in ARP.LIB, ICMP.LIB, BSDNAME.LIB and
XMEM.LIB are also included here. Note that ARP.LIB, ICMP.LIB and BSDNAME.LIB are
automatically #use’d from DCRTCP.LIB.

int _arp_resolve(longword ina, eth_address *ethap, int nowait);

DESCRIPTION

Gets the Ethernet address for the given IP address.

PARAMETERS

ina The IP address to resolve to an Ethernet address.

ethap The buffer to hold the Ethernet address.

nowait If 0, return immediately; else if !0 wait up to 5 seconds trying to re-
solve the address.

RETURN VALUE

1: Success;
0: Failure.

LIBRARY

ARP.LIB

_arp_resolve
Chapter 2: TCP/IP Engine 23

longword _chk_ping(longword host_ip, longword
*sequence_number);

DESCRIPTION

Checks for any outstanding ping replies from host. _chk_ping should be called fre-
quently with a host IP address. If an appropriate packet is found from that host IP address,
the sequence number is returned through *sequence_number. The time difference
between our request and their response is returned in milliseconds.

PARAMETERS

host_ip IP address to receive ping reply from.

sequence_number Sequence number of reply.

RETURN VALUE

Time in milliseconds from the ping request to the host’s ping reply.
If _chk_ping returns 0xffffffffL, there were no ping receipts on this current call.

LIBRARY

 ICMP.LIB

_chk_ping
24 TCP/IP User’s Manual

int dhcp_acquire(void);

DESCRIPTION

This function acquires a DHCP lease which has not yet been obtained, or has expired, or
was relinquished using dhcp_release(). Normally, DHCP leases are renewed auto-
matically, however if the DHCP server is down for an extended period then it might not
be possible to renew the lease in time, in which case the lease expires and TCP/IP should
not be used. When the lease expires, tcp_tick() will return 0, and the global variable
for the IP address will be reset to 0. At some later time, this function can be called to try
to obtain an IP address.

This function blocks until the lease is renewed, or the process times out.

RETURN VALUE

0: OK, lease was not expired, or an IP address lease was acquired with the same IP ad-
dress as previously obtained.

-1: An error occurred, no IP address is available. TCP/IP functionality is thus not avail-
able. Usual causes of an error are timeouts because a DHCP or BOOTP server is not
available within the timeout specified by the global variable _bootptimeout (default
30 seconds).

1: Lease was re-acquired, however the IP address differs from the one previously ob-
tained. All existing sockets must be re-opened. Normally, DHCP servers are careful to re-
assign the same IP address previously used by the client, however this is sometimes not
possible.

LIBRARY

BOOTP.LIB

dhcp_acquire
Chapter 2: TCP/IP Engine 25

int dhcp_release(void);

DESCRIPTION

This function relinquishes a lease obtained from a DHCP server. This allows the server
to re-use the IP address which was allocated to this target. After calling this function, the
global variable for the IP address is set to 0, and it is not possible to call any other TCP/IP
function which requires a valid IP address. Normally, dhcp_release() would be
used on networks where only a small number of IP addresses are available, but there are
a large number of hosts which need sporadic network access.

This function is non-blocking since it only sends one packet to the DHCP server and ex-
pects no response.

RETURN VALUE

0: OK, lease was relinquished.

1: Not released, because an address is currently being acquired, or because a boot file
(from the BOOTP or DHCP server) is being downloaded, or because some other network
resource is in use e.g. open TCP socket. Call dhcp_release() again after the re-
source is freed.

-1: Not released, because DHCP was not used to obtain a lease, or no lease was acquired.

 LIBRARY

BOOTP.LIB

dhcp_release
26 TCP/IP User’s Manual

char * getdomainname(char *name, int length);

DESCRIPTION

Gets the current domain name. The domain name can be changed by the setdomain-
name function.

PARAMETERS

name Buffer to place the name.

length Maximum length of the name, or zero to get a pointer to the internal
domain name string. Do not modify this string!

RETURN VALUE

If length ≥1: Pointer to name. If length is not long enough to hold the domain
name, a NULL string is written to name.
If length = 0: Pointer to internal string containing the domain name. Do not modify
this string!

LIBRARY

BSDNAME.LIB

SEE ALSO

setdomainname, gethostname, sethostname, getpeername,
getsockname

EXAMPLE

getdomainname

main() {
 sock_init();
 printf("Using %s for a domain\n", getdomainname(NULL, 0));
}

Chapter 2: TCP/IP Engine 27

longword gethostid(void);

DESCRIPTION

Return the IP address of the controller in host format.

RETURN VALUE

IP address in host format, or zero if not assigned or not valid.

LIBRARY

IP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sethostid

EXAMPLE

char * gethostname(char *name, int length);

DESCRIPTION

Gets the host portion of our name.

PARAMETERS

name Buffer to place the name.

length Maximum length of the name, or zero for the internal host name
buffer. Do not modify this buffer.

RETURN VALUE

If length ≥1, return name;
else if length = 0, return internal host name buffer (do not modify!)

LIBRARY

BSDNAME.LIB

gethostid

main() {
char buffer[512];
sock_init();
printf("My IP address is %s\n", inet_ntoa(buffer, gethostid()));

}

gethostname
28 TCP/IP User’s Manual

int getpeername(sock_type * s, void * dest, int * len);

DESCRIPTION

Gets the peer’s IP address and port information for the specified socket.

PARAMETERS

s Pointer to the socket.

dest Pointer to sockaddr to hold the socket information for the remote
end of the socket.The data structure is:

len Pointer to the length of sockaddr. A NULL pointer can be used to
represent the sizeof(struct sockaddr).

RETURN VALUE

0: Success;
-1: Failure.

LIBRARY

BSDNAME.LIB

SEE ALSO

getsockname

getpeername

typedef struct sockaddr {
 word s_type; /* reserved */
 word s_port; /* port number, or zero if not connected */
 longword s_ip; /* IP address, or zero if not connected */
 byte s_spares[6]; /* not used for tcp/ip connections */
};
Chapter 2: TCP/IP Engine 29

int getsockname(sock_type * s, void * dest, int * len);

DESCRIPTION

Gets the controller’s IP address and port information for a particular socket.

PARAMETERS

 s Pointer to the socket.

dest Pointer to sockaddr to hold the socket information for the local
end of the socket. The data structure is:

len Pointer to the length of sockaddr. A NULL pointer can be used to
represent the sizeof(struct sockaddr). BSDNAME.LIB
will assume 14 bytes if a NULL pointer is passed.

RETURN VALUE

0: Success;
-1: Failure.

LIBRARY

BSDNAME.LIB

SEE ALSO

getpeername

getsockname

typedef struct sockaddr {
 word s_type; /* reserved */
 word s_port; /* port number, or zero if not connected */
 longword s_ip; /* IP address, or zero if not connected */
 byte s_spares[6]; /* not used for tcp/ip connections */
};
30 TCP/IP User’s Manual

longword htonl(longword value);

DESCRIPTION

This function converts a host-ordered double word to a network-ordered double word.
This function is necessary if you are implementing standard internet protocols because
the Rabbit does not use the standard for network-byte ordering. The network orders bytes
with the most significant byte first and the least significant byte last. On the Rabbit, the
bytes are in the opposite order.

PARAMETERS

 value Host-ordered double word.

RETURN VALUE

Host word in network format, e.g. htonl(0x44332211) returns 0x11223344.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

htons, ntohl, ntohs

word htons(word value);

DESCRIPTION

Converts host-ordered word to a network-ordered word. This function is necessary if you
are implementing standard internet protocols because the Rabbit does not use the stan-
dard for network-byte ordering. The network orders bytes with the most significant byte
first and the least significant byte last. On the Rabbit, the bytes are in the opposite order
within each 16-bit section.

PARAMETERS

value Host-ordered word.

RETURN VALUE

Host-ordered word in network-ordered format, e.g. htons(0x1122) returns 0x2211.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

htonl, ntohl, ntohs

htonl

htons
Chapter 2: TCP/IP Engine 31

longword inet_addr(char * dotted_ip_string);

DESCRIPTION

Converts an IP address from dotted decimal IP format to its binary representation. No
check is made as to the validity of the address.

PARAMETERS

dotted_ip_string Dotted decimal IP string, e.g. "10.10.6.100".

RETURN VALUE

0: Failure;
Binary representation of dotted_ip_string: Success.

LIBRARY

IP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

inet_ntoa

inet_addr
32 TCP/IP User’s Manual

char *inet_ntoa(char *s, longword ip);

DESCRIPTION

Converts a binary IP address to its dotted decimal format, e.g.
inet_ntoa(s,0x0a0a0664) returns a pointer to "10.10.6.100".

PARAMETERS

s Location to place the dotted decimal string. A sufficient buffer size
would be 16 bytes.

ip The IP address to convert.

RETURN VALUE

Pointer to dotted decimal string, i.e. s.

LIBRARY

IP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

inet_addr

word ip_timer_expired(void * s);

DESCRIPTION

Checks the timer field (set by ip_timer_init()) inside the socket structure. This
function is used in the sock_wait_... macros to provide timeouts.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

0: Not expired;
1: Expired.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

inet_ntoa

ip_timer_expired
Chapter 2: TCP/IP Engine 33

EXAMPLE USING IP_TIMER_EXPIRED

The following code is from a blocking configuration macro that calls the function
_ip_delay2.

_ip_delay2(void *s, int timeoutseconds, procref fn, int *statusptr) {
int status;
ip_timer_init(s , timeoutseconds); /* set timeout */
do {

kbhit(); /* permit ^c */
if (!tcp_tick(s)) {

status = 1; /* fully closed or reset */
break;

}
if (ip_timer_expired(s)) { /* check for expiration */

sock_abort(s); /* give up and use reset */
status = -1; /* signal an error */
break;

}
if (fn) { /* call optional user function */

if (status = fn(s))
break;

}
if (s->tcp.usr_yield)

(*s->tcp.usr_yield)(); /* call yield */
} while (1);
if (statusptr) *statusptr = status;
return(status);

}

34 TCP/IP User’s Manual

void ip_timer_init(void * s, word seconds);

DESCRIPTION

Sets a timer inside the socket structure.

PARAMETERS

s Pointer to a socket.

seconds Number of seconds for the time-out, if this value is zero, never time-
out.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

ip_timer_expired

longword ntohl(longword value);

DESCRIPTION

Converts network-ordered long word to host-ordered long word. This function is neces-
sary if you are implementing standard internet protocols because the Rabbit does not use
the standard for network byte ordering. The network orders bytes with the most signifi-
cant byte first and the least significant byte last. On the Rabbit, the bytes are in the oppo-
site order.

PARAMETERS

value Network-ordered long word.

RETURN VALUE

Network-ordered long word in host-ordered format,
e.g. ntohl(0x44332211) returns 0x11223344

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

htons, ntohs, htonl

ip_timer_init

ntohl
Chapter 2: TCP/IP Engine 35

word ntohs(word value);

DESCRIPTION

Converts network-ordered word to host-ordered word. Converts host-ordered word to a
network-ordered word. This function is necessary if you are implementing standard in-
ternet protocols because the Rabbit does not use the standard for network byte ordering.
The network orders bytes with the most significant byte first and the least significant byte
last. On the Rabbit, the bytes are in the opposite order.

PARAMETERS

value Network-ordered word.

RETURN VALUE

Network-ordered word in host-ordered format,
e.g. ntohs(0x2211) returns 0x1122

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

htonl, ntohl, htons

unsigned long paddr(void* pointer);

DESCRIPTION

Converts a logical pointer into its physical address. Use caution when converting address
in the E000-FFFF range. This function will return the address based on the XPC on entry.

PARAMETERS

pointer Pointer to convert.

RETURN VALUE

Physical address of pointer.

LIBRARY

XMEM.LIB

ntohs

paddr
36 TCP/IP User’s Manual

void pd_getaddress(int nic, void* buffer);

DESCRIPTION

This function copies the Ethernet address (e.g., MAC address) into the buffer.

PARAMETERS

nic This parameter is reserved for future expandability and for now
should be assigned a value of 0.

buffer Place to copy address to. Must be at least 6 byes.

RETURN VALUE

None

LIBRARY

PKTDRV.LIB

EXAMPLE

pd_getaddress

main() {
char buf[6];
sock_init();
pd_getaddress(0,buf);

printf("Your Link Address is:%02x%02x:%02x%02x:%02x%02x \n",
 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);

}

Chapter 2: TCP/IP Engine 37

int _ping(longword host_ip, longword sequence_number);

DESCRIPTION

Generates an ICMP request for host. NOTE: this is a macro that calls _send_ping.

PARAMETERS

host_ip IP address to send ping.

sequence_number User-defined sequence number.

RETURN VALUE

0: Success;
!0: Failure.

LIBRARY

ICMP.LIB

SEE ALSO

_chk_ping, _send_ping

void psocket(void * s);

DESCRIPTION

Given an open UDP or TCP socket, the IP address of the remote host is printed out to the
Stdio window in dotted IP format followed by a colon and the decimal port number on
that machine. This routine can be useful for debugging your programs.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

None

LIBRARY

BSDNAME.LIB

_ping

psocket
38 TCP/IP User’s Manual

longword resolve(char *host_string);

DESCRIPTION

Converts a text string, which contains either the dotted IP address or host name, into the
longword containing the IP address. In the case of dotted IP, no validity check is made for
the address. NOTE: this function blocks. Names are currently limited to 64 characters. If
it is necessary to lookup larger names include the following line in the application pro-
gram:

#define DNS_MAX_NAME <len in chars>.

If DISABLE_DNS has been defined, resolve() will not do DNS lookup.

If you are trying to resolve a host name, you must set up at least one name server. You can
set the default name server by defining the MY_NAMESERVER macro at the top of your
program. When you call resolve(), it will contact the name server and request the IP
address. If there is an error, resolve() will return 0L.

To simply convert dotted IP to longword, see inet_addr().

For a sample program, see the Example Using tcp_open() listed under tcp_open().

PARAMETERS

host_string Pointer to text string to convert.

RETURN VALUE

0: Failure.
!0: The IP address *host_string resolves to.

LIBRARY

DNS.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

_arp_resolve, inet_addr, inet_ntoa

resolve
Chapter 2: TCP/IP Engine 39

int resolve_cancel(int handle);

DESCRIPTION

Cancels the resolve request represented by the given handle. If the handle is 0, then this
function cancels all outstanding resolve requests.

PARAMETERS

handle Handle that represents a DNS lookup process, or 0 to cancel all out-
standing resolve requests.

RETURN VALUE

RESOLVE_SUCCESS: The resolve request corresponding to the given handle has been
cancelled. The given handle will no longer be valid after this value is returned.

RESOLVE_HANDLENOTVALID: There is no request for the given handle.

LIBRARY

DNS.LIB

SEE ALSO

resolve_name_start, resolve_name_check, resolve

resolve_cancel
40 TCP/IP User’s Manual

int resolve_name_check(int handle, longword* resolved_ip);

DESCRIPTION

Checks if the DNS lookup represented by the given handle has completed. On success,
it fills in the resolved IP address in the space pointed to by the resolved_ip parame-
ter.

PARAMETERS

handle Handle that represents a DNS lookup process.

resolved_ip A pointer to a user-supplied longword where the resolved IP ad-
dress will be placed.

RETURN VALUE

RESOLVE_SUCCESS The address was successfully resolved. The given handle will no
longer be valid after this value is returned.

RESOLVE_AGAIN The resolve process has not completed, call
resolve_name_check() again.

RESOLVE_FAILED The DNS server responded that the given host name does not exist.
The given handle will no longer be valid if RESOLVE_FAILED is returned.

RESOLVE_TIMEDOUT The request has been cancelled because a response from the
DNS server was not received before the last timeout expired. The given handle will no
longer be valid after this value is returned.

RESOLVE_HANDLENOTVALID There is no DNS lookup occurring for the given han-
dle.

LIBRARY

DNS.LIB

SEE ALSO

resolve_name_start, resolve_cancel, resolve

resolve_name_check
Chapter 2: TCP/IP Engine 41

int resolve_name_start(char* hostname);

DESCRIPTION

Starts the process of resolving a host name into an IP address. The given host name is lim-
ited to DNS_MAX_NAME characters, which is 64 by default (63 characters + the NULL
terminator). If a default domain is to be added, then the two strings together are limited
to DNS_MAX_NAME.

If hostname does not contain a ’.’ then the default domain (MY_DOMAIN) , if provided,
is appended to hostname. If hostname with the appended default domain does not
exist, hostname is tried by itself. If that also fails, the lookup fails.

If hostname does contain a ’.’ then hostname is looked up by itself. If it does not ex-
ist, the default domain is appended, and that combination is tried. If that also fails, the
lookup fails.

If hostname ends with a ’.’, then the default domain is not appended. The host name is
considered “fully qualified.” The lookup is attempted without the ending '.' and if that
fails no other combinations are attempted.

This function returns a handle that must be used in the subsequent
resolve_name_check() and resolve_cancel() functions.

PARAMETERS

hostname Host name to convert to an IP address

RETURN VALUE

 >0: Handle for calls to resolve_name_check() and resolve_cancel().
 -1: Could not start the resolve process because there were no resolve entries free.
 -2: The given hostname was too large.

LIBRARY

DNS.LIB

SEE ALSO

resolve_name_check, resolve_cancel, resolve

resolve_name_start
42 TCP/IP User’s Manual

char * rip(char * string);

DESCRIPTION

Strips newline (\n) and/or carriage return (\r) from a string. Only the first \n and \r char-
acters are replaced with \0s. The resulting string beyond the first \0 character is undefined.

PARAMETERS

string Pointer to a string.

RETURN VALUE

Pointer to the modified string.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

EXAMPLE

In ASCII mode sock_puts() adds \n; rip is used to make certain the string does not
already have a newline character. Remember, rip modifies the source string, not a
copy!

rip

setmode(s, TCP_MODE_ASCII);
...
sock_puts(s, rip(questionable_string));
Chapter 2: TCP/IP Engine 43

int _send_ping(longword host, longword countnum, byte ttl, byte
tos, longword *theid)

DESCRIPTION

Generates an ICMP request for host.

PARAMETERS

host IP address to send ping.

countnum User-defined count number.

ttl Time to live for the packets (hop count). 255 is a standard value for
this field.

tos Type of service on the packets.

theid The identifier that was sent out.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ICMP.LIB

See also
_chk_ping, _ping

_send_ping
44 TCP/IP User’s Manual

char *setdomainname(char *name);

DESCRIPTION

The domain name returned by getdomainname() and used for resolve() is set
to the value in the string pointed to by name. Changing the contents of the string after a
setdomainname() will change the value of the system domain string. It is not rec-
ommended. Instead dedicate a static location for holding the domain name.

setdomainname(NULL) is an acceptable way to remove any domain name and
subsequent resolve calls will not attempt to append a domain name.

PARAMETERS

name Pointer to string.

RETURN VALUE

Pointer to string that was passed in.

LIBRARY

BSDNAME.LIB

SEE ALSO

getdomainname, sethostname, gethostname, getpeername,
getsockname

setdomainname
Chapter 2: TCP/IP Engine 45

longword sethostid(longword ip);

DESCRIPTION

This function changes the system’s default IP address, overriding the macro
MY_IP_ADDRESS. Changing this address will disrupt existing TCP or UDP sessions.
You should close all sockets before calling this function.

PARAMETERS

ip New IP address.

RETURN VALUE

New IP address.

LIBRARY

IP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

gethostid

char * sethostname(char *name);

DESCRIPTION

Sets the host portion of our name.

PARAMETERS

name The new host name.

RETURN VALUE

Pointer to internal hostname buffer on success, or
NULL on error (if hostname is too long).

LIBRARY

BSDNAME.LIB

sethostid

sethostname
46 TCP/IP User’s Manual

void sock_abort(void * s);

DESCRIPTION

Close a connection immediately. Under TCP this is done by sending a RST (reset).

Under UDP there is no difference between sock_close() and sock_abort().

PARAMETERS

s Pointer to a socket.

RETURN VALUE

None

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_close

sock_abort
Chapter 2: TCP/IP Engine 47

int sock_bytesready(void * s);

DESCRIPTION

For TCP sockets:

If the socket is in binary mode, sock_bytesready() returns the number of bytes
waiting to be read. If there are no bytes waiting, it returns -1.

In ASCII mode, sock_bytesready() returns -1 if there are no bytes waiting to be
read or the line that is waiting is incomplete (no line terminating character has been read).
The number of bytes waiting to be read will be returned given one of the following con-
ditions:

• the buffer is full
• the socket has been closed (no line terminating character can be sent)
• a complete line is waiting

In ASCII mode, a blank line will be read as a complete line with length 0, which will be
the value returned. sock_bytesready() handles ASCII mode sockets better than
sock_dataready(), since it can distinguish between an empty line on the socket and
an empty buffer.

 For UDP sockets:

Returns the number of bytes in the next datagram to be read. If it is a datagram with no
data (an empty datagram), then it will return 0. If there are no datagrams waiting, then it
returns -1.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

-1: No bytes waiting to be read.
0: If in ASCII mode and a blank line is waiting to be read;

for DC 7.05 and later, a UDP datagram with 0 bytes of data is waiting to be read.
>0: The number of bytes waiting to be read.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_wait_established, sock_established, sockstate

sock_bytesready
48 TCP/IP User’s Manual

void sock_close(void * s);

DESCRIPTION

Attempts to close a socket; no more data may be sent or received through that socket.

In the case of UDP, the socket is closed immediately since UDP is a connectionless pro-
tocol. TCP, however, is a connection-oriented protocol so the close must be negotiated
with the remote computer. Use sock_wait_closed or wait for tcp_tick() to re-
turn 0 when passed the socket to ensure that a TCP connection is closed.

In emergency cases, it is possible to abort the TCP connection rather than close it. Al-
though not recommended for normal transactions, this service is available and is used by
all TCP/IP systems.

PARAMETERS

s Pointer to a socket.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_abort, sock_tick, sock_wait_closed

sock_close
Chapter 2: TCP/IP Engine 49

int sock_dataready(void *s);

DESCRIPTION

Returns the number of bytes waiting to be read. If the socket is in ASCII mode, this func-
tion returns zero if a newline character has not been read or the buffer is not full. For UDP
sockets, the function returns the number of bytes in the next datagram.

This function cannot tell the difference between no bytes to read and either a blank line
or a UDP datagram with no data. For this reason, use sock_bytesready() instead.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

 0: No bytes to read;
or newline not yet read if the socket is in ASCII mode;
or (for DC 7.05 and later) if a UDP datagram has 0 bytes of data waiting to be read.

>0: Number of bytes ready to read.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

sock_dataready
50 TCP/IP User’s Manual

char *sockerr(void * s);

DESCRIPTION

Gets the last ASCII error message recorded for a particular socket. If no messages have
been recorded, the returned value is NULL. The messages are read-only; do not modify
them!

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Pointer to last error message, or
NULL pointer if there have been no error messages.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

EXAMPLE

sockerr

char *p;
...
sock_err:
if (status == 1)

puts("Closed normally");
else if (p = sockerr(s))

printf("Socket closed with error ’%s’\n\r", p);
Chapter 2: TCP/IP Engine 51

int sock_established(void *s);

DESCRIPTION

TCP connections require a handshaked open to ensure that both sides recognize a con-
nection. Whether the connection was initiated with tcp_open() or tcp_listen(),
sock_establish() will continue to return 0 until the connection is established, at
which time it will return 1. It is not enough to spin on this after a listen because it is pos-
sible for the socket to be opened, written to and closed between two checks.
sock_bytesready() can be called with sock_established() to handle this
case.

UDP is a connectionless protocol, hence sock_established() always returns 1 for
UDP sockets.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

0: Not established;
1: Established.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_wait_established, sock_bytesready, sockstate

sock_established
52 TCP/IP User’s Manual

int sock_fastread(void *s, byte *dp, int len);

DESCRIPTION

sock_fastread() attempts to read data from a socket. If possible, the buffer, dp, is
filled, otherwise, only the number of bytes read is returned. A return value of -1 indicates
a socket error.

This function cannot be used on UDP sockets after sock_recv_init() is called.

For a sample program, see Example of four input functions listed under sock_read().

PARAMETERS

s Pointer to a socket.

dp Buffer to put bytes that are read.

len Maximum number of bytes to write to the buffer.

RETURN VALUE

Number of bytes read or -1 if there was an error.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_read, sock_fastwrite, sock_write

sock_fastread
Chapter 2: TCP/IP Engine 53

int sock_fastwrite(void *s, byte *dp, int len);

DESCRIPTION

Writes up to len bytes from dp on socket s. This function writes as many bytes as pos-
sible to the socket and returns that number of bytes.

For UDP, sock_fastwrite() will send one record if
len <= ETH_MTU - 20 - 8

ETH_MTU is the Ethernet Maximum Transmission Unit; 20 is the IP header size and 8 is
the UDP header size. By default, this is 572 bytes. If len is greater than this number, then
the function does not send the data and returns -1. Otherwise, the UDP datagram would
need to be fragmented.

For TCP, the new data is queued for sending and sock_fastwrite() returns the
number of bytes that will be sent. The data may be transmitted immediately if enough
data is in the buffer, or sufficient time has expired, or the user has explicitly used
sock_flushnext() to indicate this data should be flushed immediately. In either
case, no guarantee of acceptance at the other end is possible.

PARAMETERS

s Pointer to a socket.

dp Buffer to be written.

len Maximum number of bytes to write to the socket.

RETURN VALUE

Number of bytes written, or
-1 if there was an error.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

sock_fastwrite
54 TCP/IP User’s Manual

void sock_flush(void *s);

DESCRIPTION

sock_flush() will flush the unwritten portion of the TCP buffer to the network. No
guarantee is given that the data was actually delivered. In the case of a UDP socket, no
action is taken.

sock_flushnext() is recommended over sock_flush().

PARAMETERS

s Pointer to a socket.

RETURN VALUE

None

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_flushnext, sock_fastwrite, sock_write, sockerr

sock_flush
Chapter 2: TCP/IP Engine 55

void sock_flushnext(void *s);

DESCRIPTION

Writing to TCP sockets does not guarantee that the data are actually transmitted or that
the remote computer will pass that data to the other client in a timely fashion. Using a
flush function will guarantee that DCRTCP.LIB places the data onto the network. No
guarantee is made that the remote client will receive that data.

sock_flushnext() is the most efficient of the flush functions. It causes the next
function that sends data to the socket to flush, meaning the data will be transmitted im-
mediately.

Several functions imply a flush and do not require an additional flush: sock_puts(),
and sometimes sock_putc() (when passed a \n).

PARAMETERS

s Pointer to a socket.

RETURN VALUE

None

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_write, sock_fastread, sock_read, sockerr,
sock_wait_input, sock_flush, sock_flushnext

sock_flushnext
56 TCP/IP User’s Manual

int sock_getc(void *s);

DESCRIPTION

Gets the next character from the socket. NOTE: This function blocks.

This function cannot be used on UDP sockets after sock_recv_init() is called.

For a sample program, see Example of four input functions listed under sock_read().

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Character read or -1 if error.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

sock_getc
Chapter 2: TCP/IP Engine 57

int sock_gets(void *s, char *text, int len);

DESCRIPTION

Reads a string from a socket and replaces the CR or LF with a ’\0’. If the string is longer
than len, the string is null terminated and the remaining characters in the string are dis-
carded.

To use sock_gets(), you must first set ASCII mode using sock_mode().

This function cannot be used on UDP sockets after sock_recv_init() is called.

For a sample program, see Example of four input functions listed under sock_read().

PARAMETERS

s Pointer to a socket

text Buffer to put the string.

len Max length of buffer.

RETURN VALUE

0: The buffer is empty;
or if no ’\r’ or ’\n’ is read, but buffer had room and the connection can get more data.

>0: The length of the string.
-1: Function was called with a UDP socket (valid for Dynamic C 7.05 and later).

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_puts, sock_putc, sock_getc, sock_read, sock_write

void sock_init(void);

DESCRIPTION

This function initializes the packet driver and DCRTCP.LIB using the compiler defaults
for configuration. This function must be called before using other DCRTCP.LIB func-
tions.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

sock_gets

sock_init
58 TCP/IP User’s Manual

void sock_mode(void *s, word mode);

DESCRIPTION

This function changes some of the basic handling of a socket. The following macros can
be passed as the 2nd parameter (OR’d together if necessary):

TCP_MODE_ASCII | TCP_MODE_BINARY

TCP and UDP sockets are usually in binary mode which means an arbitrary stream
of bytes is allowed (TCP is treated as a byte stream and UDP is treated as records
filled with bytes.) The default is TCP_MODE_BINARY. By changing the mode to
TCP_MODE_ASCII, some of the DCRTCP.LIB functions will see a stream of
records terminated with a newline character.

In ASCII mode, sock_bytesready() will return -1 until a newline-terminated
string is in the buffer or the buffer is full. sock_puts() will append a newline to
any output. sock_gets() (which should only be used in ASCII mode) removes
the newline and null terminates the string.

For a sample program, see Example of four input functions listed under
sock_read().

TCP_MODE_NAGLE | TCP_MODE_NONAGLE

The Nagle algorithm may substantially reduce network traffic with little negative ef-
fect on a user (In some situations, the Nagle algorithm even improves application per-
formance.) The default is TCP_MODE_NAGLE. This mode only affects TCP
connections. If you are doing X-Windows or real time data collection, you may
switch the Nagle algorithm off by selecting the TCP_MODE_NONAGLE flag.

UDP_MODE_CHK | UDP_MODE_NOCHK

Checksums are required for TCP, but not for UDP. The default is UDP_MODE_CHK.
If you are providing a checksum at a higher level, the low level checksum may be
redundant. The checksum for UDP can be disabled by selecting the
UDP_MODE_NOCHK flag. Note that you do not control whether the remote comput-
er will send checksums. If that computer does checksum its outbound data,
DCRTCP.LIB will check the received packet's checksum.

PARAMETERS

s Pointer to a socket.

mode New mode for specified socket.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

sock_mode
Chapter 2: TCP/IP Engine 59

int sock_preread(void *s, byte *dp, int len);

DESCRIPTION

This function reads up to len bytes from the socket into the buffer dp. The bytes are not
removed from the socket’s buffer.

PARAMETERS

s Pointer to a socket.

dp Buffer to preread into.

len Maximum number of bytes to preread.

RETURN VALUE

0: No data waiting;
-1: Error;
>0: Number of preread bytes.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_fastread, sock_fastwrite, sock_read, sock_write

sock_preread
60 TCP/IP User’s Manual

byte sock_putc(void *s, byte c);

DESCRIPTION

A single character is placed on the output buffer. In the case of ‘\n’, the buffer is flushed
as described under sock_flushnext. No other ASCII character expansion is per-
formed.

Note that sock_putc uses sock_write, and thus may block if the output buffer is
full. See sock_write for more details.

PARAMETERS

s Pointer to a socket.

c Character to send.

RETURN VALUE

The character c

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_read, sock_write, sock_fastread, sock_fastwrite,
sock_mode

sock_putc
Chapter 2: TCP/IP Engine 61

int sock_puts(void *s, byte *dp);

DESCRIPTION

A string is placed on the output buffer and flushed as described under
sock_flushnext(). If the socket is in ASCII mode, CR and LF are appended to the
string. No other ASCII character expansion is performed. In binary mode, the string is
sent as is.

Note that sock_puts() uses sock_write(), and thus may block if the output buff-
er is full. See sock_write() for more details.

PARAMETERS

s Pointer to a socket.

dp Buffer to read the string from.

RETURN VALUE

≥0: Length of string in dp
-1: Function was called with a UDP socket (valid for Dynamic C 7.05 and later).

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_gets, sock_putc, sock_getc, sock_read, sock_write

sock_puts
62 TCP/IP User’s Manual

int sock_rbleft(void *s);

DESCRIPTION

Determines the number of bytes available in the receive buffer.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Number of bytes available in the receive buffer.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_rbsize, sock_rbused, sock_tbsize, sock_tbused,
sock_tbleft

int sock_rbsize(void *s);

DESCRIPTION

Determines the size of the receive buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

The size of the receive buffer.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_rbleft, sock_rbused, sock_tbsize, sock_tbused,
sock_tbleft

sock_rbleft

sock_rbsize
Chapter 2: TCP/IP Engine 63

int sock_rbused(void *s);

DESCRIPTION

Gets the number of bytes in use in the receive buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Number of bytes in use.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_rbleft, sock_tbsize, sock_tbused, sock_tbleft

sock_rbused
64 TCP/IP User’s Manual

int sock_read(void *s, byte *dp, int len);

DESCRIPTION

sock_read() will busywait until len bytes are read or a socket error exists. If
sock_yield() has been called, the user-defined function that is passed to it will be
called in a tight loop while sock_read() is busywaiting.

This function cannot be used on UDP sockets after sock_recv_init() is called.

PARAMETERS

s Pointer to a socket.

dp Buffer to put bytes that are read.

len Max number of bytes to write to the buffer.

RETURN VALUE

Number of bytes read or
 -1 if error.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_fastread, sock_fastwrite, sock_write, sockerr,
sock_wait_input

sock_read
Chapter 2: TCP/IP Engine 65

EXAMPLE OF FOUR INPUT FUNCTIONS

The following program shows how the four main input functions may be used to read a
text stream. Note that sock_fastread() and sock_read() do not necessarily re-
turn a complete or single line, they return blocks of bytes. In comparison,
sock_getc() returns a single byte at a time and yields poor performance.

/*
 * This is a sample FINGER program which compares sock_fastread(),
 * sock_read(), sock_gets(), and sock_getc() for handling ASCII
 * data.
 *
 * Note that sock_fastread(), sock_read(), and sock_getc()
 * do NOT return single line strings, they return ordered bytes.
 * sock_getc() looks the simplest, but it has the highest overhead
 * both in terms of DCRTCP, and especially in terms of the output
 * through putch().
 *
 * FINGER [user]@host mode where mode is 0, 1, 2 or 3 to indicate
 * using sock_fastread(), sock_read(), sock_getc() or sock_gets().
 * All modes returned identical output to the screen.
 */
66 TCP/IP User’s Manual

/***
 * using sock_fastread() *
 ***/

#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"
#memmap xmem

#use "dcrtcp.lib"

#define FINGER_PORT 79

finger(char* userid, char* host, longword hoststring, int method) {
tcp_Socket fingersock;
tcp_Socket *s;
char buffer[513];/* space for 512 plus zero terminator */
int status;
int len;

s = &fingersock;
if (!tcp_open(s, 0, host, FINGER_PORT, NULL)) {

puts("Sorry, unable to connect to that machine right now!");
return;

}
printf("waiting...\r");
sock_wait_established(s, sock_delay , NULL, &status);

if (*userid)
printf("’%s’ is looking for ’%s’...\n\r\n\n", hoststring, userid);

strcpy(buffer, userid);
rip(buffer);/* kill all \n and \r’s */
strcat(buffer , "\n");

sock_puts(s, buffer);

switch (method) {

case 0 :
while (1) {

sock_wait_input(s, 30, NULL, &status);

len = sock_fastread(s, buffer, 512);
buffer[len] = 0; /* must terminate it */
printf("%s", buffer);

}
break;
Chapter 2: TCP/IP Engine 67

/***
 * using sock_read() *
 ***/

/***
 * using sock_getc() *
 ***/

case 1 :
while(1) {

sock_wait_input(s, 30, NULL, &status);
len = sock_dataready(s);
if (len > sizeof(buffer))
len = sizeof(buffer);

sock_read(s, buffer, len);
buffer[len] = 0;
printf("%s", buffer);

}
break;

case 2 :
while (1) {

sock_wait_input(s, 30, NULL, &status);
putch(sock_getc(s));

}
break;
68 TCP/IP User’s Manual

/***
 * using sock_gets() *
 ***/

case 3 :
sock_mode(s, TCP_MODE_ASCII);
while (1) {

sock_wait_input(s, 30, NULL, &status);
len = sock_gets(s, buffer, 512);
puts(buffer);

}
break;

}
sock_err:

switch (status) {
case 1 : /* foreign host closed */

break;
case -1: /* timeout */

printf("\n\rConnection timed out!");
break;

}
sock_close(s);
printf("\n\r");

}

Chapter 2: TCP/IP Engine 69

char *meth[]={"sock_fastread", "sock_read", "sock_getc",
"sock_gets"};

main() {
char *user,*server;
longword host;
int status;
word method;

sock_init();

strcpy(user,"root");
strcpy(user,"foo.bar");
method=0; /* sock_fastread */

if (method > 3) {
puts("only values 0 through 3 are valid");
exit(2);

}
printf("Using method %s\n\r", meth[method]);
if (host = resolve(server)) {

status = finger(user, host, server, method);
} else {

printf("Could not resolve host ’%s’\n\r", server);
exit(3);

}
exit(status);

}

70 TCP/IP User’s Manual

int sock_recv(sock_type *s, char *buffer, int len);

DESCRIPTION

After a UDP socket is initialized with udp_open() and sock_recv_init(),
sock_recv() scans the buffers for any datagram received by that socket. This func-
tion is not available starting with Dynamic C 7.05 (see Section 2.3).

PARAMETERS

s Pointer to a UDP socket.

buffer Buffer to put datagram.

maxlength Length of buffer.

RETURN VALUE

Length of datagram;
0 if no datagram found;
-1 if receive buffer not initialized with sock_recv_init().

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_recv_from, sock_recv_init

sock_recv
Chapter 2: TCP/IP Engine 71

EXAMPLE USING SOCK_RECV()

#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"
#memmap xmem

#use "dcrtcp.lib"

#define SAMPLE 401

udp_Socket data;
char bigbuf[8192];

main() {
 word templen;
 char spare[1500];

 sock_init();
 if (!udp_open(&data, SAMPLE, 0xffffffff, SAMPLE, NULL)) {
 puts("Could not open broadcast socket");
 exit(3);
 }

 /* set large buffer mode */
 if (sock_recv_init(&data, bigbuf, sizeof(bigbuf))) {
 puts("Could not enable large buffers");
 exit(3);
 }

 sock_mode(&data, UDP_MODE_NOCHK); /* turn off checksums */

 while (1) {
 tcp_tick(NULL);

 if (templen = sock_recv(&data, spare, sizeof(spare))) {
 /* something received */
 printf("Got %u byte packet\n", templen);
 }
 }
}

72 TCP/IP User’s Manual

int sock_recv_from(sock_type *s, long *hisip, word *hisport,
char *buffer, int len);

DESCRIPTION

After a UDP socket is initialized with udp_open() and sock_recv_init(),
sock_recv_from () scans the buffers for any datagram received by that socket and
identifies the remote host’s address. This function is not available starting with Dynamic
C 7.05 (see Section 2.3).

PARAMETERS

s Pointer to UDP socket.

hisip IP of remote host, according to UDP header.

hisport Port of remote host.

buffer Buffer to put datagram in.

len Length of buffer.

RETURN VALUE

>0: Length of datagram received;
0: No datagram;

-1: Receive buffer was not initialized with sock_recv_init().

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_recv, sock_recv_init

sock_recv_from
Chapter 2: TCP/IP Engine 73

int sock_recv_init(sock_type *s, void *space, word len);

DESCRIPTION

This function is not available starting with Dynamic C 7.05 (see Section 2.3).

The basic socket reading functions (sock_read(), sock_fastread(), etc.) are
not adequate for all your UDP needs. The most basic limitation is their inability to treat
UDP as a record service.

A record service must receive distinct datagrams and pass them to the user program as
such. You must know the length of the received datagram and the sender (if you opened
in broadcast mode). You may also receive the datagrams very quickly, so you must have
a mechanism to buffer them.

Once a socket is opened with udp_open(), you can use sock_recv_init() to
initialize that socket for sock_recv() and sock_recv_from(). Note that
sock_recv() and related functions are incompatible with sock_read(),
sock_fastread(), sock_gets() and sock_getc(). Once you have used
sock_recv_init(), you can no longer use the older-style calls.

sock_recv_init() installs a large buffer area which gets segmented into smaller
buffers. Whenever a UDP datagram arrives, DCRTCP.LIB stuffs that datagram into one
of these new buffers. The new functions scan those buffers. You must select the size of
the buffer you submit to sock_recv_init(); make it as large as possible, say 4K,
8K or 16K.

For a sample program, see Example using sock_recv() listed under sock_recv().

PARAMETERS

s Pointer to a UDP socket.

space Buffer of temporary storage space to store newly received packets.

len Size of the buffer.

RETURN VALUE

0

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_recv_from, sock_recv

sock_recv_init
74 TCP/IP User’s Manual

char *sockstate(void * s);

DESCRIPTION

Returns a string that gives the current state for a socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

An ASCII message which represents the current state of the socket. These strings should
not be modified.

“Listen" indicates a passively opened socket that is waiting for a connection.

"SynSent" and "SynRcvd" are connection phase intermediate states.

"Established" states that the connection is complete.

"EstClosing" "FinWait1" "FinWait2" "CloseWait" "Closing"
"LastAck" "TimeWait" and "CloseMSL" are connection termination intermediate
states.

"Closed" indicates that the connection is completely closed.

"UDP Socket" is always returned for UDP sockets because they are stateless.

"Not an active socket" is a default value used when the socket is not recognized
as UDP or TCP.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_established, sock_dataready

EXAMPLE USAGE

sockstate

char *p;
...
#ifdef DEBUG
if (p = sockstate(s))

printf("Socket state is ’%s’\n\r", p);
#endif DEBUG
Chapter 2: TCP/IP Engine 75

int sock_tbleft(void *s);

DESCRIPTION

Gets the number of bytes left in the transmit buffer. If you do not wish to block, you may
first query how much space is available for writing by calling this function before gener-
ating data that must be transmitted. This removes the need for your application to also
buffer data.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Number of bytes left in the transmit buffer.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_rbsize, sock_rbused, sock_rbleft, sock_tbsize,
sock_tbused

sock_tbleft

if (sock_tbleft(s) > 10) {
 /* we can send up to 10 bytes without blocking or overflowing */

}

76 TCP/IP User’s Manual

int sock_tbsize(void *s);

DESCRIPTION

Determines the size of the transmit buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

The size of the transmit buffer.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_rbsize, sock_rbused, sock_rbleft, sock_tbleft,
sock_tbused

int sock_tbused(void *s);

DESCRIPTION

Gets the number of bytes in use in the transmit buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Number of bytes in use.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_rbsize, sock_rbused, sock_rbleft, sock_tbsize,
sock_tbleft

sock_tbsize

sock_tbused
Chapter 2: TCP/IP Engine 77

sock_tick(void * s, int * optional_status_ptr);

DESCRIPTION

This macro calls tcp_tick() to quickly check incoming and outgoing data and to
manage all the open sockets. If our particular socket, s, is either closed or made inoper-
ative due to an error condition, sock_tick() sets the value of
*optional_status_ptr (if the pointer is not NULL) to 1, then jumps to a local,
user-supplied label, sock_err. If the socket connection is fine and the pointer is not
NULL *optional_status_ptr is set to 0.

PARAMETERS

s Pointer to a socket.

optional_status_ptr Pointer to status word.

RETURN VALUE

None

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

sock_tick
78 TCP/IP User’s Manual

void sock_wait_closed(void * s, int seconds, int (*fptr)(), int*
status);

DESCRIPTION

This macro waits until a TCP connection is fully closed. Returns immediately for UDP
sockets. On an error, the macro jumps to a local, user-supplied sock_err label. If
fptr returns non-zero the macro returns with the status word set to the value of fptr‘s
return value.

PARAMETERS

s Pointer to a socket.

seconds Number of seconds to wait before timing out. A value of zero indi-
cates the macro should never time-out. A good value to use is
sock_delay, a system variable set on configuration. Typically
sock_delay is about 20 seconds, but can be set to something else
in main().

fptr Function to call repeatedly while waiting. This is a user-supplied
function.

status Pointer to a status word.

RETURN VALUE

None

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_wait_established, sock_wait_input

sock_wait_closed
Chapter 2: TCP/IP Engine 79

void sock_wait_established(void* s, int seconds, int (*fptr)(),
int* status);

DESCRIPTION

This macro waits until a connection is established for the specified TCP socket, or aborts
if a time-out occurs. It returns immediately for UDP sockets. On an error, the macro
jumps to the local, user-supplied sock_err label. If fptr returns non-zero, the macro
returns.

PARAMETERS

s Pointer to a socket.

seconds Number of seconds to wait before timing out. A value of zero indi-
cates the macro should never time-out. A good value to use is
sock_delay, a system variable set on configuration. Typically
sock_delay is about 20 seconds, but can be set to something else
in main().

fptr Function to call repeatedly while waiting. This is a user-supplied
function.

status Pointer to a status word.

RETURN VALUE

None

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

 sock_wait_input, sock_wait_closed

sock_wait_established
80 TCP/IP User’s Manual

void sock_wait_input(void* s, int seconds, int (*fptr)(), int*
status);

DESCRIPTION

Waits until input exists for functions such as sock_read() and sock_gets(). As
described under sock_mode(), if in ASCII mode, sock_wait_input only returns
when a complete string exists or the buffer is full. It returns immediately for UDP sockets.

On an error, the macro jumps to a local, user-supplied sock_err label. If fptr returns
non-zero, the macro returns.

For sample programs, see the examples listed under tcp_open(), tcp_listen(),
and sock_read().

PARAMETERS

s Pointer to a socket.

seconds Number of seconds to wait before timing out. A value of zero indi-
cates the macro should never time-out. A good value to use is
sock_delay, a system variable set on configuration. Typically
sock_delay is about 20 seconds, but can be set to something else
in main().

fptr Function to call repeatedly while waiting.

status A pointer to the status word. If this parameter is NULL, no status
number will be available, but the macro will otherwise function nor-
mally. Typically the pointer will point to a local signed integer that
is used only for status. status may be tested to determine how the
socket was ended. A value of 1 means a proper close while a -1 val-
ue indicates a reset or abort.

RETURN VALUE

None

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_wait_established, sock_wait_closed, sock_mode

sock_wait_input
Chapter 2: TCP/IP Engine 81

int sock_write(void *s, byte *dp, int len);

DESCRIPTION

Writes up to len bytes from dp on socket s. This function busywaits until either the
buffer is completely written or a socket error occurs. If sock_yield() has been
called, the user-defined function that is passed to it will be called in a tight loop while
sock_write() is busywaiting.

For UDP, sock_write() will send one (or more) records. For TCP, the new data may
be transmitted if enough data is in the buffer or sufficient time has expired or the user has
explicitly used sock_flushnext() to indicate this data should be flushed immedi-
ately. In either case, there is no guarantee of acceptance at the other end.

PARAMETERS

s Pointer to a socket

dp Pointer to a buffer.

len Maximum number of bytes to write to the buffer.

RETURN VALUE

Number of bytes written or -1 on an error.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_read, sock_fastwrite, sock_fastread, sockerr,
sock_wait_input, sock_flush, sock_flushnext

sock_write
82 TCP/IP User’s Manual

int sock_yield(tcp_Socket *s, void (*fn)());

DESCRIPTION

This function, if called prior to one of the blocking functions, will cause fn, the user-
defined function that is passed in as the second parameter, to be called repeatedly while
the blocking function is in a busywait state.

PARAMETERS

s Pointer to a TCP socket.

fn User-defined function.

RETURN VALUE

0

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

void tcp_clearreserve(word port);

DESCRIPTION

This function causes the DCRTCP.LIB stack to handle a socket connection to the spec-
ified port normally. This undoes the action taken by tcp_reserveport().

PARAMETERS

port Port to use.

RETURN VALUE

None

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

tcp_reserveport

sock_yield

tcp_clearreserve
Chapter 2: TCP/IP Engine 83

void tcp_config(char *name, char *value);

DESCRIPTION

Sets TCP/IP stack parameters at runtime. It should not be called with open sockets.

Additionally, MY_IP_ADDRESS can be overridden by sethostid(), and
MY_HOSTNAME can be overridden by sethostname().

PARAMETERS

name Setting to be changed.The possible parameters are:

MY_IP_ADDRESS: host IP address (use sethostid() instead)
MY_NETMASK
MY_GATEWAY: host’s default gateway
MY_NAMESERVER: host’s default nameserver
MY_HOSTNAME
MY_DOMAINNAME: host’s domain name (use setdomain-
name() instead)
MTU: maximum size of packets

value The value to assign to name.

RETURN VALUE

None

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

tcp_config
84 TCP/IP User’s Manual

int tcp_extlisten(tcp_Socket *s, int iface, word lport,
longword remip, word port, dataHandler_t datahandler, word
reserved, long buffer, int buflen);

DESCRIPTION

This function tells the TCP/IP engine that an incoming session for a particular port will
be accepted. The buffer and buflen parameters allow a user to supply a socket buff-
er, instead of using a socket buffer from the pool. tcp_extlisten() is an extended
version of tcp_listen().

PARAMETERS

s Pointer to the socket’s data structure.

iface Local interface on which to open the socket (not yet implemented,
use IF_DEFAULT for now).

lport Port to listen on.

remip IP address to accept connections from or 0 for all.

port Port to accept connections from or 0 for all.

datahandler Function to call when data is received, NULL for placing data in the
socket’s receive buffer.

reserved Set to 0 for now. This parameter is for compatibility and possible fu-
ture use.

buffer Address of user-supplied socket buffer in xmem. This is the return
value of xalloc(). If buffer is 0, the socket buffer for this
socket is pulled from the buffer pool defined by the macro
MAX_TCP_SOCKET_BUFFERS.

buflen Length of user-supplied socket buffer.

RETURN VALUE

0: Failure
1: Success

LIBRARY

TCP.LIB

SEE ALSO

tcp_listen

tcp_extlisten
Chapter 2: TCP/IP Engine 85

int tcp_extopen(tcp_Socket* s, int iface, word lport, longword
remip, word port, dataHandler_t datahandler, long buffer, int
buflen);

DESCRIPTION

Actively creates a session with another machine. The buffer and buflen parameters
allow a user to supply a socket buffer, instead of using a socket buffer from the pool.
tcp_extopen() is an extended version of tcp_open().

s Pointer to socket’s data structure.

iface Local interface on which to open the socket (not yet implemented,
use IF_DEFAULT for now).

lport Our port, zero for the next one available in the range 1025-65536.

remip IP address to connect to.

port Port to connect to.

datahandler Function to call when data is received, NULL for placing data in the
socket’s receive buffer.

buffer Address of user-supplied socket buffer in xmem. This is the return
value of xalloc(). If buffer is 0, the socket buffer for this
socket is pulled from the buffer pool defined by the macro
MAX_TCP_SOCKET_BUFFERS.

buflen Length of user-supplied socket buffer.

RETURN VALUE

0 if open was not able resolve the remote computer's hardware address,
!0 otherwise.

LIBRARY

TCP.LIB

SEE ALSO

tcp_open

tcp_extopen
86 TCP/IP User’s Manual

int tcp_keepalive(tcp_Socket *s, long timeout);

DESCRIPTION

Enable or disable TCP keepalives on a specified socket. The socket must already be open.
Keepalives will then be sent after timeout seconds of inactivity. It is highly recom-
mended to keep timeout as long as possible, to reduce the load on the network. Ideally,
it should be no shorter than 2 hours. After the timeout is sent, and
KEEPALIVE_WAITTIME seconds pass, another keepalive will be sent, in case the first
was lost. This will be retried KEEPALIVE_NUMRETRYS times. Both of these macros
can be #defined at the top of your program, overriding the defaults of 60 seconds, and 4
retries.

Using keepalives is not a recommended procedure. Ideally, the application using the
socket should send its own keepalives. tcp_keepalive() is provided because telnet
and a few other network protocols do not have a method of sending keepalives at the ap-
plication level.

PARAMETERS

s Pointer to a socket.

timeout Period of inactivity, in seconds, before sending a keepalive or 0 to
turn off keepalives.

RETURN VALUE

0: Success;
1: Failure

LIBRARY

TCP.LIB

SEE ALSO

sock_fastread, sock_fastwrite, sock_write, sockerr, sock_wait_input

tcp_keepalive
Chapter 2: TCP/IP Engine 87

int tcp_listen(tcp_Socket *s, word lport, longword remip, word
port, int (*signal_handler), word reserved);

DESCRIPTION

This function tells DCRTCP.LIB that an incoming session for a particular port will be
accepted. After a call to tcp_listen(), the function sock_established() (or
the macro sock_wait_established) must be called to poll the connection until a
session is fully established.

It is possible for a connection to be opened, written to and closed between two calls to the
function sock_established(). To handle this case, call sock_bytesready()
or sock_dataready() to determine if there is data to be read from the buffer.

Multiple calls to tcp_listen() to the same local port (lport) are acceptable and
constitute the DCRTCP.LIB mechanism for supporting multiple incoming connections
to the same local port. Each time another host attempts to open a session on that particular
port, another one of the listens will be consumed until such time as all listens have be-
come established sessions and subsequent remote host attempts will receive a reset.

PARAMETERS

s Pointer to a socket.

lport Port to listen on (the local port number).

remip IP address of the remote host to accept connections from or 0
for all.

port Port to accept connections from or 0 for all.

signal_handler This function is called if the connection is either closed or re-
set. The parameter for signal_handler is the pointer to
a function which will be called when the socket is either
closed or reset. Some details for implementation of this ser-
vice have not been finalized, and it is recommended the user
insert a value of NULL for the present time.

reserved Set to 0 for now. This parameter is for compatibility and pos-
sible future use.

RETURN VALUE

0: Failure;
1: Success.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

tcp_open

tcp_listen
88 TCP/IP User’s Manual

EXAMPLE USING TCP_LISTEN()

#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"
#memmap xmem
#use "dcrtcp.lib"

#define TELNET_PORT 23

static tcp_Socket *s;
char *userid;

telnets(int port) {
 tcp_Socket telnetsock;
 char buffer[512];
 int status;
 int len;
 s = &telnetsock;
 tcp_listen(s, port, 0L, 0, NULL, 0);

 sock_wait_established(s, 0, NULL, &status);

 puts("Receiving incoming connection");
 sock_mode(s, TCP_MODE_ASCII);
 sock_puts(s, "Welcome to a sample telnet server.");
 sock_puts(s, "Each line you type will be printed on this"\
 "screen once you hit return.");
 /* other guy closes connection except if we timeout */
 while (1) {
 sock_wait_input(s , 0, NULL, &status);
 sock_gets(s, buffer, 512);
 puts(buffer);
 }
 sock_err:
 switch (status) {
 case 1 : /* foreign host closed */
 puts("User closed session");
 return;
 case -1: /* timeout */
 printf("\n\rConnection timed out!");
 return;
 }
}
main() {
 sock_init();
 telnets(TELNET_PORT);
 exit(0);
}

Chapter 2: TCP/IP Engine 89

int tcp_open(void *s, word lport, longword remip, word port,
int (*signal_handler)());

DESCRIPTION

This function actively creates a session with another machine. After a call to
tcp_open(), the function sock_established() (or the macro
sock_wait_established) must be called to poll the connection until a session is
fully established.

It is possible for a connection to be opened, written to and closed between two calls to the
function sock_established(). To handle this case, call sock_bytesready()
or sock_dataready() to determine if there is data to be read from the buffer.

PARAMETERS

s Pointer to a socket.

lport Our local port. Use zero for the next available port in the
range 1025-65536. A few applications will require you to use
a particular local port number, but most network applications
let you use almost any port with a certain set of restrictions.
For example, FINGER or TELNET clients can use any local
port value, so pass the value of zero for lport and let
DCRTCP.LIB pick one for you.

remip IP address to connect to.

port Port to connect to.

signal_handler This function is called if the connection is either closed or re-
set. The parameter for signal_handler is the pointer to
a function which will be called when the socket is either
closed or reset. Some details for implementation of this ser-
vice have not been finalized, and it is recommended the user
insert a value of NULL for the present time.

RETURN VALUE

0: Unable to resolve the remote computer’s hardware address;
!0 otherwise.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

tcp_listen

tcp_open
90 TCP/IP User’s Manual

EXAMPLE USING TCP_OPEN()

#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"
#memmap xmem

#use "dcrtcp.lib"

#define ADDRESS "10.10.6.19"
#define PORT "200"

main() {
 word status;
 word port;
 longword host;
 tcp_Socket tsock;

 sock_init();

 if (!(host = resolve(ADDRESS))) {
 puts("Could not resolve host");
 exit(3);
 }
 port = atoi(PORT);
 printf("Attempting to open ’%s’ on port %u\n\r", ADDRESS, port);
 if (!tcp_open(&tsock, 0, host, port , NULL)) {
 puts("Unable to open TCP session");
 exit(3);
 }

 printf("Waiting a maximum of %u seconds for connection"\
 " to be established\n\r", sock_delay);

 sock_wait_established(&tsock, sock_delay, NULL, &status);
 puts("Socket is established");
 sock_close(&tsock);
 sock_wait_closed(&tsock, sock_delay, NULL, &status);

 sock_err:
 switch (status) {
 case 1 :
 puts("Connection closed normally");
 break;
 case 2 :
 puts("Problem occurred...");
 sockerr(&tsock);
 break;
 }
 exit((status == 1) ? 0 : 1);
}

Chapter 2: TCP/IP Engine 91

void tcp_reserveport(word port);

DESCRIPTION

This function allows a connection to be established even if there is not yet a socket avail-
able. This is done by setting a parameter in the TCP header during the connection setup
phase that indicates 0 bytes of data can be received at the present time. The requesting
end of the connection will wait until the TCP header parameter indicates that data will be
accepted.

The 2MSL waiting period for closing a socket is avoided by using this function.

The penalty of slower connection times on a controller that is processing a large number
of connections is offset by allowing the program to have less sockets and consequently
less RAM usage.

PARAMETERS

port Port to use.

RETURN VALUE

None

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

tcp_clearreserve

/* the following are the results from running ’test sunee 25’

Attempting to open ’sunee’ on port 25
Waiting a maximum of 10 seconds for connection to be established
Socket is established
Connection closed normally
*/

tcp_reserveport
92 TCP/IP User’s Manual

int tcp_tick(void *s);

DESCRIPTION

This function is a single kernel routine designed to quickly process packets and return as
soon as possible. tcp_tick() performs processing on all sockets upon each invoca-
tion: checking for new packets, processing those packets, and performing retransmissions
on lost data. On most other computer systems and other kernels, performing these re-
quired operations in the background is often done by a task switch. DCRTCP.LIB does
not use a tasker for its basic operation, although it can adopt one for the user-level servic-
es.

Although you may ignore the returned value of tcp_tick(), it is the easiest method
to determine the status of the given socket.

PARAMETERS

s Pointer to a socket. If NULL, the returned value is always 0.

RETURN VALUE

0: Connection reset or closed by other host or NULL was passed in.
!0: Connection is fine.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

tcp_open, sock_close, sock_abort, sock_tick,
sock_wait_established

void udp_close(udp_Socket *ds);

DESCRIPTION

This function closes a UDP connection.

PARAMETERS

ds Pointer to socket’s data structure.

LIBRARY

UDP.LIB

tcp_tick

udp_close
Chapter 2: TCP/IP Engine 93

int udp_extopen(udp_Socket *s, int iface, word lport, longword
remip, word port, dataHandler_t datahandler, long buffer, int
buflen);

DESCRIPTION

This function is an extended version of udp_open(). It opens a socket on a given net-
work interface (iface) on a given local port (lport). The iface parameter is not
currently supported and should be IF_DEFAULT. The remote end of the connection is
specified by remip and port. The following table explains the possible combinations
and what they mean.

The buffer and buflen parameters allow a user to supply a socket buffer, instead of
using a socket buffer from the pool.

PARAMETERS

s Pointer to socket’s data structure.

iface Local interface on which to open the socket (not yet implemented—
use IF_DEFAULT for now).

lport Local port.

remip Acceptable remote IP, or 0 for all.
port Acceptable remote port, or 0 for all.

datahandler Function to call when data is received, NULL for placing data in the
socket’s receive buffer.

buffer Address of user-supplied socket buffer in xmem. If buffer is 0,
the socket buffer for this socket is pulled from the buffer pool de-
fined by the macro MAX_UDP_SOCKET_BUFFERS.

buflen Length of user-supplied socket buffer.

RETURN VALUE:

!0: Success; 0: Failure; error opening socket, e.g., a buffer could not be allocated.

LIBRARY

UDP.LIB

udp_extopen

REMIP Effect of REMIP value

 0
The connection completes when the first datagram is received, supplying both
the remote IP address and the remote port number. Only datagrams received
from that IP/port address will be accepted.

-1
All remote hosts can send datagrams to the socket. All outgoing datagrams
will be sent to the broadcast address on the specified port.

>0

If the remote IP address is a valid IP address and the remote port is 0, the
connection will complete when the first datagram is received, supplying the
remote port number.

If the remote IP address and the remote port are both specified when the
function is called, the connection is complete at that point.
94 TCP/IP User’s Manual

int udp_open(udp_Socket *s, word lport, longword remip, word
port, int (*datahandler)());

DESCRIPTION

This function opens a UDP socket on the given local port (lport). The remote end of
the connection is specified by remip and port. The following table explains the pos-
sible combinations and what they mean.

If the remote host is set to a particular address, either host may initiate traffic. Multiple
calls to udp_open() with remip set to zero is a useful way of accepting multiple in-
coming sessions.

Although multiple calls to udp_open() may normally be made with the same lport
number, only one udp_open() should be made on a particular lport if the remip
is set to -1. Essentially, the broadcast and nonbroadcast protocols cannot co-exist.

PARAMETERS

s Pointer to a UDP socket.

lport Local port

remip Acceptable remote IP, or -1 for broadcast.

port Acceptable remote port, or -1 for broadcast.

data_handler Function to call when data is received.

RETURN VALUE

0: Failure (e.g., destination hardware address cannot be resolved);
!0: Success.

LIBRARY

UDP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_recv, sock_recv_init, sock_recv_from

udp_open

REMIP Effect of REMIP value

 0
The connection completes when the first datagram is received, supplying both
the remote IP address and the remote port number. Only datagrams received
from that IP/port address will be accepted.

-1
All remote hosts can send datagrams to the socket. All outgoing datagrams
will be sent to the broadcast address on the specified port.

>0

If the remote IP address is a valid IP address and the remote port is 0, the
connection will complete when the first datagram is received, supplying the
remote port number.

If the remote IP address and the remote port are both specified when the
function is called, the connection is complete at that point.
Chapter 2: TCP/IP Engine 95

EXAMPLE OF USING UDP_OPEN()

#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"
#memmap xmem
#use "dcrtcp.lib"

#define ADDRESS "10.10.6.19"
#define PORT "200"

main() {
 word status, port;
 longword host;
 udp_Socket usock;

 sock_init();
 if (!(host = resolve(ADDRESS))) {
 puts("Could not resolve host");
 exit(3);
 }
 port = atoi(PORT);
 printf("Attempting to open ’%s’ on port %u\n\r", ADDRESS, port);
 if (!udp_open(&usock, 0, host, port , NULL)) {
 puts("Unable to open UDP session");
 exit(3);
 }
 /* udp, no need to wait for connection unless expecting incoming
 session. wait_sock_established would return immediately */

 puts("Socket is established");

 /* note, no data has been sent, no connection established, the
 other guy doesn’t even know we are interested */

 sock_close(&usock);

 sock_err:
 switch (status) {
 case 1 :
 puts("Connection closed normally");
 break;
 case 2 :
 puts("Problem occurred...");
 sockerr(&usock);
 break;
 }
 exit((status == 1) ? 0 : 1);
}
/* the results of running this test are :
 Attempting to open ’10.10.6.19’ on port 200
 Socket is established
 Connection closed normally */
96 TCP/IP User’s Manual

int udp_recv(udp_Socket* s, char* buffer, int len)

DESCRIPTION

Receives a single UDP datagram on a UDP socket. If the buffer is not large enough for
the datagram, the datagram is truncated, and the remainder discarded.

PARAMETERS

s Pointer to socket’s data structure.

buffer Buffer where the UDP datagram will be stored.

len Maximum length of the buffer.

RETURN VALUE

≥0: Number of bytes received
-1: No datagram waiting

<-1: Error

LIBRARY

UDP.LIB

SEE ALSO

udp_recvfrom, udp_send, udp_sendto, udp_open

udp_recv
Chapter 2: TCP/IP Engine 97

int udp_recvfrom(udp_Socket* s, char* buffer, int len,
longword* remip, word* remport)

DESCRIPTION

Receives a single UDP datagram on a UDP socket. If buffer is not large enough for
the datagram, the datagram is truncated, and the remainder discarded.

PARAMETERS

s Pointer to socket’s data structure.

buffer Buffer where the UDP datagram will be stored.

len Maximum length of the buffer.

remip IP address of the remote host of the received datagram.

remport Port number of the remote host of the received datagram.

RETURN VALUE

≥0: Number of bytes received
-1: No datagram waiting

<-1: Error

LIBRARY

UDP.LIB

SEE ALSO

udp_recv, udp_send, udp_sendto, udp_open

udp_recvfrom
98 TCP/IP User’s Manual

int udp_send(udp_Socket* s, char* buffer, int len)

DESCRIPTION

Sends a single UDP datagram on a UDP socket. It will not work for a socket for which
the remip parameter to udp_open() was 0, unless a datagram has first been received
on the socket. If the remip parameter to udp_open() was -1, the datagram will be
send to the broadcast address.

PARAMETERS

s Pointer to socket’s data structure.

buffer Buffer that contains the UDP datagram

len Number of bytes of the UDP datagram.

RETURN VALUE

≥0: Number of bytes sent
-1: Failure

LIBRARY

UDP.LIB

SEE ALSO

udp_sendto, udp_recv, udp_recvfrom, udp_open

udp_send
Chapter 2: TCP/IP Engine 99

int udp_sendto(udp_Socket* s, char* buffer, int len, longword
remip, word remport)

DESCRIPTION

Sends a single UDP datagram on a UDP socket. It will send the datagram to the IP address
and port specified by remip and remport. Note that this function can be used on a
socket that has been "connected" to a different remote host and port.

PARAMETERS

s Pointer to socket’s data structure.

buffer Buffer that contains the UDP datagram.

len Length of the UDP datagram.

remip IP address of the remote host.

remport Port number of the remote host.

RETURN VALUE

≥0: Success, number of bytes sent;
-1: Failure

LIBRARY

UDP.LIB

SEE ALSO

udp_send, udp_recv, udp_recvfrom, udp_open

udp_sendto
100 TCP/IP User’s Manual

2.9 Macros

This macro disables DNS lookup. This prevents a UDP socket for DNS from being allo-
cated, thus saving memory. Users may still call resolve() with an IP address.

This macro defines the number of sockets that will be allocated, not including the socket
for DNS lookups. It defaults to 4. If libraries such as HTTP.LIB or FTP_SERVER.LIB
are used, you must provide enough sockets in MAX_SOCKETS for them also. This macro
has been replaced by MAX_TCP_SOCKET_BUFFERS and
MAX_UDP_SOCKET_BUFFERS.

For µC/OS-II support. This macro defines the number of socket locks to allocate. It de-
faults to MAX_TCP_SOCKET_BUFFERS + MAX_UDP_SOCKET_BUFFERS.

This macro is necessary because we can no longer calculate the number of socket locks
needed based on the number of socket buffers, now that the user can manage their own
socket buffers.

Starting with Dynamic C version 7.05, this macro determines the maximum number of
TCP sockets with preallocated buffers. If MAX_SOCKETS is defined, then
MAX_TCP_SOCKET_BUFFERS will be assigned the value of MAX_SOCKETS for
backwards compatibility. If neither macro is defined, MAX_TCP_SOCKET_BUFFERS
defaults to 4.

Starting with Dynamic C version 7.05, this macro determines the maximum number of
UDP sockets with preallocated buffers. It defaults to 0.

This macro is the initial value for the domain portion of the controller’s address. At runt-
ime, it can be overwritten by tcp_config() and setdomainname().

DISABLE_DNS

MAX_SOCKETS

MAX_SOCKET_LOCKS

MAX_TCP_SOCKET_BUFFERS

MAX_UDP_SOCKET_BUFFERS

MY_DOMAIN
Chapter 2: TCP/IP Engine 101

This macro gives the default value for the controllers default gateway. At runtime, it can
be overwritten by tcp_config().

This macro is the default IP address for the controller. At runtime, it can be overwritten
by tcp_config() and sethostid().

This macro is the default value for the primary name server. At runtime, it can be over-
written by tcp_config().

This macro is the default netmask for the controller. At runtime, it can be overwritten by
tcp_config().

This macro determines the size of the socket buffers. A TCP socket will have two buffers
of size SOCK_BUF_SIZE/2 for send and receive. A UDP socket will have a single sock-
et of size SOCK_BUF_SIZE. Both types of sockets take the same total amount of buffer
space. This macro has been replaced by TCP_BUF_SIZE and UDP_BUF_SIZE.

Starting with Dynamic C 7.05, TCP and UDP socket buffers are sized separately.
TCP_BUF_SIZE defines the buffer sizes for TCP sockets. It defaults to 4096 bytes.
Backwards compatibility exists with earlier version of Dynamic C: if SOCK_BUF_SIZE
is defined, TCP_BUF_SIZE is assigned the value of SOCK_BUF_SIZE. If
SOCK_BUF_SIZE is not defined, but tcp_MaxBufSize is, then TCP_BUF_SIZE
will be assigned the value of tcp_MaxBufSize*2.

MY_GATEWAY

MY_IP_ADDRESS

MY_NAMESERVER

MY_NETMASK

SOCK_BUF_SIZE

TCP_BUF_SIZE
102 TCP/IP User’s Manual

This use of this macro is deprecated in Dynamic C version 6.57 and higher; it has been
replaced by SOCK_BUF_SIZE.

In Dynamic C versions 6.56 and earlier, tcp_MaxBufSize determines the size of the
input and output buffers for TCP and UDP sockets. The sizeof(tcp_Socket) will
be about 200 bytes more than double tcp_MaxBufSize. The optimum value for local
Ethernet connections is greater than the Maximum Segment Size (MSS). The MSS is
1460 bytes. You may want to lower tcp_MaxBufSize, which defaults to 2048 bytes,
to reduce RAM usage. It can be reduced to as little as 600 bytes.

tcp_MaxBufSize will work slightly differently in Dynamic C versions 6.57 and high-
er. In these later versions the buffer for the UDP socket will be tcp_MaxBufSize*2,
which is twice as large as before.

Starting with Dynamic C 7.05, TCP and UDP socket buffers are sized separately.
UDP_BUF_SIZE defines the buffer sizes for UDP sockets. It defaults to 4096 bytes.
Backwards compatibility exists with earlier version of Dynamic C: if SOCK_BUF_SIZE
is defined, UDP_BUF_SIZE is assigned the value of SOCK_BUF_SIZE. If
SOCK_BUF_SIZE is not defined, but tcp_MaxBufSize is, then UDP_BUF_SIZE
will be assigned the value of tcp_MaxBufSize*2.

tcp_MaxBufSize

UDP_BUF_SIZE
Chapter 2: TCP/IP Engine 103

104 TCP/IP User’s Manual

3. Server Utility Library

The server utility library, ZSERVER.LIB, contains the structures, functions, and constants to
allow HTTP (Hypertext Transfer Protocol) and FTP (File Transfer Protocol) servers to share data
and user authentication information while running concurrently.

HTML form functionality is included in ZSERVER.LIB.

3.1 Data Structures for Zserver.lib
There are several data structures in this library of interest to developers of HTTP or FTP servers.

3.1.1 ServerSpec Structure
A file transfer server has access to a list of objects: files, functions and variables. This list is
defined as a global array in ZSERVER.LIB.

ServerSpec server_spec[SSPEC_MAXSPEC];

Throughout this manual, this array will be called the TCP/IP servers’ object list.

3.1.2 ServerAuth Structure
ZSERVER.LIB also defines a global array that is a list of user name/password pairs.

ServerAuth server_auth[SAUTH_MAXUSERS];

Throughout this manual, this array will be called the TCP/IP users list.

3.1.3 FormVar Structure
An array of FormVars represent the variables in an HTML form. The developer will declare an
array of these structures, with the size needed to hold all variables for a particular form. The
FormVar structure contains:

•A server_spec index that references the variable to be modified. This is the location of
the form variable in the TCP/IP servers’ object list.

•An integrity-checking function pointer that ensures that the variables are set to valid values.

•High and low values (for numerical types).

•Length (for the string type, and for the maximum length of the string representations of val-
ues).

•A Pointer to an array of values (for when the value must be one of a specific, and probably
short, list).

The developer can specify whether she wants the variable to be set through a text entry field or a
pull-down menu, and if the variable should be considered read-only.

This FormVar array is placed in a ServerSpec structure using the function
sspec_addform. ServerSpec entries that represent variables will be added to the Form-
Var array using sspec_addfv. Properties (e.g., the integrity-checking properties) for these
Chapter 3: Server Utility Library 105

FormVar entries can be set with various other functions. Hence, there is a level of indirection
between the variables in the forms and the actual variables themselves. This allows the same vari-
able to be included in multiple forms with different ranges for each form, and perhaps be read-only
in one form and modifiable in another.

3.2 Constants Used in Zserver.lib
The constants in this section are values assigned to the fields of the structures ServerSpec and
ServerAuth. They are used in the functions described in Section 3.4, some as function parame-
ters and some as return values.

3.2.1 ServerSpec Type Field
This field describes the objects in the TCP/IP servers’ object list.

SSPEC_ERROR // Error condition
SSPEC_FILE // Data resides in a file
SSPEC_FSFILE // The data resides in a file system file
SSPEC_FORM // Set of modifiable variables
SSPEC_FUNCTION // Data is a function
SSPEC_ROOTFILE // Data resides in root memory
SSPEC_UNUSED
SSPEC_VARIABLE // Data is a variable (for HTTP)
SSPEC_XMEMFILE // Data resides in extended memory
SSPEC_ROOTVAR // Data is a variable in root memory
SSPEC_XMEMVAR // Data is a variable in xmem

3.2.2 ServerSpec Vartype Field
If the object is a variable, then this field will tell you what type of variable it is:

INT8, INT16, INT32, PTR16, FLOAT32

3.2.3 Servermask field
The type of server (HTTP and/or FTP) that has access to a particular data structure is determined
by the servermask field. Both ServerSpec and ServerAuth have this field. It must be set
when adding the structure to its array. The default is that no server has access. servermask can
be one of the following, or any bitwise inclusive OR of these values:

SERVER_FTP
SERVER_HTTP
SERVER_USER // for use with the flash file system
106 TCP/IP User’s Manual

3.2.4 Configurable Constants
These constants define system limits on various data lengths and array sizes.

SSPEC_MAXNAME

Maximum length of strings in a ServerSpec structure entry. Default is 20.

SSPEC_MAXSPEC

Sets the maximum number of entries in the global array, server_spec. HTTP_MAXRAMSPEC
(from HTTP.LIB) should override SSPEC_MAXSPEC. If you attempt to use both you may not
get the desired results, therefore, the use of HTTP_MAXRAMSPEC should be deprecated. If both
HTTP_MAXRAMSPEC and SSPEC_MAXSPEC are not defined, SSPEC_MAXSPEC defaults to 10.

SSPEC_XMEMVARLEN

Defines the size of the stack-allocated buffer used by sspec_readvariable() when reading a
variable in xmem. It defaults to 20.

SAUTH_MAXNAME

Maximum length of strings in ServerAuth structure. Default is 20.

SAUTH_MAXUSERS

Maximum number of users for a TCP/IP users list. Default is 10.

3.3 HTML Forms
Defining FORM_ERROR_BUF is required to use the HTML form functionality in Zserver.lib.
The value assigned to this macro is the number of bytes to reserve in root memory for the buffer used
for form processing. This buffer must be large enough to hold the name and value for each variable,
plus four bytes for each variable.

An array of type FormVar must be declared to hold information about the form variables. Be sure to
allocate enough entries in the array to hold all of the variables that will go in the form. If more forms
are needed, then more of these arrays can be allocated. Please see Section 4.3.4 on page 174 for an
example program.
Chapter 3: Server Utility Library 107

3.4 Functions

int sauth_adduser(char* username, char* password, word
servermask);

DESCRIPTION

Adds a user to the TCP/IP users list.

PARAMETERS

username Name of the user.

password Password of the user.

servermask Bitmask representing valid servers (e.g. SERVER_HTTP,
SERVER_FTP).

RETURN VALUE

-1: Failure;
≥0: Success; index in TCP/IP users list (id passed to sauth_getusername()).

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_authenticate, sauth_getwriteaccess,
sauth_setwriteaccess, sauth_removeuser

sauth_adduser
108 TCP/IP User’s Manual

int sauth_authenticate(char* username, char* password, word
server);

DESCRIPTION

Authenticate a user.

PARAMETERS

username Name of user.

password Password for the user.

server The server for which this function is authenticating (e.g.
SERVER_HTTP, SERVER_FTP).

RETURN VALUE

-1: Failure, user not valid.
≥0: Success, array index of the ServerAuth structure for authenticated user.

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_adduser

int sauth_getuserid(char* username, word server);

DESCRIPTION

Gets the user index for a user.

PARAMETERS

username User’s name.

server Server for which we are looking up.

RETURN VALUE

≥0: Success, index of user in the TCP/IP users list.
-1: Failure

LIBRARY

ZSERVER.LIB

sauth_authenticate

sauth_getuserid
Chapter 3: Server Utility Library 109

char* sauth_getusername(int uid);

DESCRIPTION

Gets a pointer to username from the ServerAuth structure.

PARAMETERS

uid The user’s id, i.e., the array index in the TCP/IP users list.

RETURN VALUE

NULL: Failure;
!NULL: Success, pointer to the username string on success.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getusername

int sauth_getwriteaccess(int sauth);

DESCRIPTION

Checks whether or not a user has write access.

PARAMETERS

sauth Index of the user in the TCP/IP users list.

RETURN VALUE

0: User does not have write access;
1: User has write access

-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_setwriteaccess

sauth_getusername

sauth_getwriteaccess
110 TCP/IP User’s Manual

int sauth_removeuser(int userid);

DESCRIPTION

Remove the given user from the user list. IMPORTANT: Any associations of the given
user with web pages should be changed. Otherwise, no one will have access to the un-
changed web pages. Authentication can be turned off for a page with
sspec_setrealm(sspec, "") .

PARAMETERS

userid Index in TCP/IP users list.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_adduser

int sauth_setpassword(int userid, char* password);

DESCRIPTION

Sets the password for a user.

PARAMETERS

userid Index of user in TCP/IP users list.

password User’s new password

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

sauth_removeuser

sauth_setpassword
Chapter 3: Server Utility Library 111

int sauth_setwriteaccess(int sauth, int writeaccess);

DESCRIPTION

Sets the write accessibility of a user.

PARAMETERS

sauth Index of the user in the TCP/IP users list.

writeaccess Set to 1 to give write access, 0 to deny write access.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_getwriteaccess

sauth_setwriteaccess
112 TCP/IP User’s Manual

int sspec_addform(char* name, FormVar* form, int formsize, word
servermask);

DESCRIPTION

Adds a form (set of modifiable variables) to the TCP/IP servers’object list. Make sure that
SSPEC_MAXSPEC is large enough to hold this new entry. This function is currently only
useful for the HTTP server.

PARAMETERS

name Name of the new form.

form Pointer to the form array. This is a user-defined array to hold infor-
mation about form variables.

formsize Size of the form array

servermask Bitmask representing valid servers (currently only useful with
SERVER_HTTP)

RETURN VALUE

≥0: Success; location of form in TCP/IP servers’ object list;
-1: Failed to add form

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addfunction, sspec_addrootfile,
sspec_addvariable, sspec_addxmemvar, sspec_addxmemfile
sspec_aliasspec, sspec_addfv

sspec_addform
Chapter 3: Server Utility Library 113

int sspec_addfsfile(char* name, byte filenum, word servermask);

DESCRIPTION

Adds a file located in the file system to the TCP/IP servers’ object list. Make sure that
SSPEC_MAXSPEC is large enough to hold this new entry.

PARAMETERS

name Name of the new file.

filenum Number of the file in the file system.

servermask Bitmask representing valid servers.

RETURN VALUE

-1: Failure;
≥0: Success; location of file in TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addrootfile, sspec_addfunction, sspec_addvariable,
sspec_addxmemfile, sspec_addform, sspec_aliasspec

sspec_addfsfile
114 TCP/IP User’s Manual

int sspec_addfunction(char* name, void (*fptr)(), word
servermask);

DESCRIPTION

Adds a function to the list of objects recognized by the server. Make sure that
SSPEC_MAXSPEC is large enough to hold this new entry. This function is currently only
useful for HTTP servers.

PARAMETERS

name Name of the function.

(*ftpr)() Pointer to the function.

servermask Bitmask representing servers for which this function will be valid
(currently only useful with SERVER_HTTP).

RETURN VALUE

-1: Failure;
≥0: Success, location of the function in the TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addform, sspec_addfsfile, sspec_addrootfile,
sspec_addvariable, sspec_addxmemfile, sspec_aliasspec

sspec_addfunction
Chapter 3: Server Utility Library 115

int sspec_addfv(int form, int var);

DESCRIPTION

Adds a variable to a form.

PARAMETERS

form Index of the form in the TCP/IP servers’ object list.

var Index of the variable in the TCP/IP servers’ object list.

RETURN VALUE

-1: Failure;
≥0: Success; next available index into the FormVar array.

LIBRARY

ZSERVER.LIB

sspec_addfv
116 TCP/IP User’s Manual

int sspec_addrootfile(char* name, char* fileloc, int len, word
servermask);

DESCRIPTION

Adds a file that is located in root memory to the TCP/IP servers’ object list. Make sure
that SSPEC_MAXSPEC is large enough to hold this new entry.

PARAMETERS

name Name of the new file.

fileloc Pointer to the beginning of the file.

len Length of the file in bytes.

servermask Bitmask representing servers for which this entry will be valid (e.g.
SERVER_HTTP, SERVER_FTP).

RETURN VALUE

-1: Failure;
≥0: Success, location of the file in the TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addxmemfile, sspec_addvariable,
sspec_addfunction sspec_addform, sspec_aliasspec

sspec_addrootfile
Chapter 3: Server Utility Library 117

int sspec_addvariable(char* name, void* variable, word type,
char* format, word servermask);

DESCRIPTION

Adds a variable to the TCP/IP servers’ object list. Make sure that SSPEC_MAXSPEC is
large enough to hold this new entry. This function is currently only useful for the HTTP
server.

PARAMETERS

name Name of the new variable.

variable Address of actual variable.

type Type of the variable (e.g., INT8, INT16, PTR16, etc.).

format Output format of the variable.

servermask Bitmask representing servers for which this function will be valid
(currently only useful with SERVER_HTTP).

RETURN VALUE

-1: Failure;
≥0: Success, the location of the variable in the TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addrootfile, sspec_addxmemfile,
sspec_addfunction sspec_addform, sspec_aliasspec

sspec_addvariable
118 TCP/IP User’s Manual

int sspec_addxmemfile(char* name, long fileloc, word
servermask);

DESCRIPTION

Adds a file, located in extended memory, to the TCP/IP servers’ object list. Make sure
that SSPEC_MAXSPEC is large enough to hold this new entry.

PARAMETERS

name Name of the new file.

fileloc Location of the beginning of the file. The first 4 bytes of the file
must represent the length of the file (#ximport does this automat-
ically).

servermask Bitmask representing servers for which this entry will be valid (e.g.
SERVER_HTTP, SERVER_FTP).

RETURN VALUE

-1: Failure;
≥0: Success, the location of the file in the TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addrootfile, sspec_addvariable,
sspec_addxmemvar, sspec_addfunction, sspec_addform,
sspec_aliasspec

sspec_addxmemfile
Chapter 3: Server Utility Library 119

int sspec_addxmemvar(char* name, long variable, word type,
char* format, word servermask);

DESCRIPTION

Add a variable located in extended memory to the TCP/IP servers’ object list. Make sure
that SSPEC_MAXSPEC is large enough to hold this new entry. Currently, this function is
useful only for the HTTP server.

PARAMETERS

name Name of the new variable.

variable Address of the variable in extended memory.

type Variable type (e.g., INT8, INT16, PTR16, etc.).

format Output format of the variable.

servermask Bitmask representing valid servers (currently only useful with
SERVER_HTTP).

RETURN VALUE

-1: Failure;
≥0: Success, the location of the variable in the TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addrootfile, sspec_addvariable,
sspec_addfunction, sspec_addform, sspec_addxmemfile,
sspec_aliasspec

sspec_addxmemvar
120 TCP/IP User’s Manual

int sspec_aliasspec(int sspec, char* name);

DESCRIPTION

Creates an alias to an existing object in the TCP/IP servers’ object list. Make sure that
SSPEC_MAXSPEC is large enough to hold this new entry. Please note, this is NOT a
deep copy. That is, any file, variable, or form that the alias references will be the same
copy of the file, variable, or form that already exists in the TCP/IP servers’ object list.
This should be called only when the original entry has been completely set up.

PARAMETERS

sspec Location of the object in the TCP/IP servers’ object list that will be
aliased.

name Name field of the ServerSpec structure that will be aliased.

RETURN VALUE

-1: Failure;
≥0: Success; return location of alias, i.e., new index

LIBRARY

ZSERVER.LIB

See also
sspec_addform, sspec_addfsfile, sspec_addfunction,
sspec_addrootfile, sspec_addvariable, sspec_addxmemfile

sspec_aliasspec
Chapter 3: Server Utility Library 121

int sspec_checkaccess(int sspec, int uid);

DESCRIPTION

This function checks whether or not the specified user has permission to access the spec-
ified object in the TCP/IP servers’ object list.

PARAMETERS

sspec Location of object in TCP/IP servers’ object list.

uid Location of the user in the TCP/IP users list.

RETURN VALUE

0: User does not have access;
1: User has access

-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_needsauthentication

int sspec_findfv(int form, char* varname);

DESCRIPTION

Finds the index in the array of type FormVar of a form variable in a given form.

PARAMETERS

form Location of the form in the TCP/IP servers’ object list.

varname Name of the variable to find.

RETURN VALUE

-1: Failure;
≥0: Success; the index of the form variable in the array of type FormVar.

LIBRARY

ZSERVER.LIB

sspec_checkaccess

sspec_findfv
122 TCP/IP User’s Manual

int sspec_findname(char* name, word server);

DESCRIPTION

Finds the location of the object associated with name and returns the location (index into
the server_spec array) of the object if the server is allowed access to it. (Access is
determined by the servermask field in the ServerSpec structure for the object.)

PARAMETERS

name Name to search for in the TCP/IP servers’ object list.

server The server making the request (e.g. SERVER_HTTP).

RETURN VALUE

-1: Failure;
≥0: Success, location of the object in the TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_findnextfile

sspec_findname
Chapter 3: Server Utility Library 123

int sspec_findnextfile(int start, word server);

DESCRIPTION

Finds the first ServerSpec structure in the array, at or following the structure indexed
by start, that is associated with a file and that is accessible by the server.

PARAMETERS

start The array index at which to begin the search.

server The server making the request (e.g. SERVER_HTTP).

RETURN VALUE

-1: Failure;
≥0: Success, index of requested ServerSpec structure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_findname

long sspec_getfileloc(int sspec);

DESCRIPTION

Gets the location in memory or in the file system of a file represented by a ServerSpec
structure. Note that the location of the file is returned as a long; the return value should
be cast to the appropriate type (char* for a root file, FileNum for the file system) by
the user. sspec_getfiletype() can be used to find the file type.

PARAMETERS

sspec Index into the array of ServerSpec structures.

RETURN VALUE

≥0: Success, location of the file;
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfiletype, sspec_getlength

sspec_findnextfile

sspec_getfileloc
124 TCP/IP User’s Manual

word sspec_getfiletype(int sspec);

DESCRIPTION

Gets the type of a file represented by a ServerSpec structure.

PARAMETERS

sspec Index into the array of ServerSpec structures.

RETURN VALUE

SSPEC_ERROR: Failure;
!=SSPEC_ERROR: Success, the type of file.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfileloc, sspec_gettype

char* sspec_getformtitle(int form);

DESCRIPTION

Gets the title for an automatically generated form.

PARAMETERS

form server_spec index of the form.

RETURN VALUE

NULL: Failure;
!NULL: Success, title string.

LIBRARY

ZSERVER.LIB

sspec_getfiletype

sspec_getformtitle
Chapter 3: Server Utility Library 125

void* sspec_getfunction(int sspec);

DESCRIPTION

Accesses the array of ServerSpec structures to get a pointer to the requested function.

PARAMETERS

sspec Index into the array of ServerSpec structures.

RETURN VALUE

NULL: Failure;
!NULL: Success, pointer to requested function.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfunction

sspec_getfunction
126 TCP/IP User’s Manual

char* sspec_getfvdesc(int form, int var);

DESCRIPTION

 Gets the description of a variable that is displayed in the HTML form table.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

RETURN VALUE

NULL: Failure;
!NULL: Success, description string.

LIBRARY

ZSERVER.LIB

sspec_getfvdesc
Chapter 3: Server Utility Library 127

int sspec_getfventrytype(int form, int var);

DESCRIPTION

Gets the type of form entry element that should be used for the given variable.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

RETURN VALUE

-1: Failure;
Type of form entry element on success:

HTML_FORM_TEXT is a text box.
HTML_FORM_PULLDOWN is a pull-down menu.

LIBRARY

ZSERVER.LIB

int sspec_getfvlen(int form, int var);

DESCRIPTION

Gets the length of a form variable (the maximum length of the string representation of the
variable).

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

RETURN VALUE

-1: Failure;
>0: Success, length of the variable.

LIBRARY

ZSERVER.LIB

sspec_getfventrytype

sspec_getfvlen
128 TCP/IP User’s Manual

char* sspec_getfvname(int form, int var);

DESCRIPTION

 Gets the name of a variable that is displayed in the HTML form table.

PARAMETERS

form server_spec index of the form.

var Index into the array of FormVar structures of the variable.

RETURN VALUE

NULL: Failure;
!NULL, name of the form variable.

LIBRARY

ZSERVER.LIB

int sspec_getfvnum(int form);

DESCRIPTION

Gets the number of variables in a form.

PARAMETERS

form server_spec index of the form.

RETURN VALUE

-1: Failure;
≥0: Success, number of form variables.

LIBRARY

ZSERVER.LIB

sspec_getfvname

sspec_getfvnum
Chapter 3: Server Utility Library 129

char* sspec_getfvopt(int form, int var, int option);

DESCRIPTION

Gets the numbered option (starting from 0) of the form variable. This function is only val-
id if the form variable has the option list set.

PARAMETERS

form server_spec index of the form.

var Index into the array of FormVar structures of the variable.

option Index of the form variable option.

RETURN VALUE

NULL: Failure;
!NULL: Success, form variable option.

LIBRARY

ZSERVER.LIB

int sspec_getfvoptlistlen(int form, int var);

DESCRIPTION

Gets the length of the options list of the form variable. This function is only valid if the
form variable has the option list set.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

RETURN VALUE

-1: Failure;
>0: Success, length of the options list.

LIBRARY

ZSERVER.LIB

sspec_getfvopt

sspec_getfvoptlistlen
130 TCP/IP User’s Manual

int sspec_getfvreadonly(int form, int var);

DESCRIPTION

Checks if a form variable is read-only.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

RETURN VALUE

0: Read-only;
1: Not read-only;

-1: Failure.

LIBRARY

ZSERVER.LIB

int sspec_getfvspec(int form, int var);

DESCRIPTION

Gets the server_spec index of a variable in a form.

PARAMETERS

form server_spec index of the form.

var Index into the array of FormVar structures of the variable.

RETURN VALUE

-1: Failure;
≥0: Success, location of the form variable in the TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

sspec_getfvreadonly

sspec_getfvspec
Chapter 3: Server Utility Library 131

long sspec_getlength(int sspec);

DESCRIPTION

Gets the length of the file associated with the specified ServerSpec structure.

PARAMETERS

sspec Location of file in TCP/IP servers’ object list.

RETURN VALUE

-1: Failure;
≥0: Success, length of the file in bytes.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_readfile, sspec_getfileloc

char* sspec_getname(int sspec);

DESCRIPTION

Accesses the array of ServerSpec structures and returns a pointer to the object’s name.

PARAMETERS

sspec Location of object in TCP/IP servers’ object list.

RETURN VALUE

NULL: Failure;
!NULL: Success, pointer to name string.

LIBRARY

ZSERVER.LIB

sspec_getlength

sspec_getname
132 TCP/IP User’s Manual

void* sspec_getpreformfunction(int form);

DESCRIPTION

Gets the user function that will be called just before HTML form generation. This func-
tion is useful mainly for custom form generation functions.

PARAMETERS

form spec index of the form

RETURN VALUE

NULL: No user function.
!NULL: Pointer to user function.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setpreformfunction, sspec_setformfunction

sspec_getpreformfunction
Chapter 3: Server Utility Library 133

char* sspec_getrealm(int sspec);

DESCRIPTION

Returns the realm for the object.

PARAMETERS

sspec Location of the object in the TCP/IP servers’ object list.

RETURN VALUE

NULL: Failure;
!NULL: Success, pointer to the realm string.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setrealm

word sspec_gettype(int sspec);

DESCRIPTION

Gets the type field of a ServerSpec structure.

PARAMETERS

sspec Location of the object in the TCP/IP servers’ object list.

RETURN VALUE

SSPEC_ERROR: Failure;
type field: Success (See “Constants Used in Zserver.lib” on page 106). For files and
variables, it returns the generic type SSPEC_FILE or SSPEC_VARIABLE, respective-
ly.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfiletype, sspec_getvartype

sspec_getrealm

sspec_gettype
134 TCP/IP User’s Manual

char* sspec_getusername(int sspec);

DESCRIPTION

Gets the username field of a ServerAuth structure.

PARAMETERS

sspec Location of user in TCP/IP users list.

RETURN VALUE

NULL: Failure;
!NULL: Success, pointer to username.

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_adduser, sspec_setuser

void* sspec_getvaraddr(int sspec);

DESCRIPTION

Returns a pointer to the requested variable in the TCP/IP servers’ object list.

PARAMETERS

sspec Location of the variable in the TCP/IP servers’ object list.

RETURN VALUE

NULL: Failure;
!NULL: Success, pointer to variable.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_readvariable

sspec_getusername

sspec_getvaraddr
Chapter 3: Server Utility Library 135

word sspec_getvarkind(int sspec);

DESCRIPTION

Returns the kind of variable represented by sspec (INT8, INT16, INT32, FLOAT32,
or PTR16).

PARAMETERS

sspec Location of the variable in the TCP/IP servers’ object list.

RETURN VALUE

0: Failure;
INT8 | INT16 | INT32 | FLOAT32 | PTR16 : Success.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getvaraddr, sspec_getvartype, sspec_gettype

word sspec_getvartype(int sspec);

DESCRIPTION

Gets the type of the variable in the TCP/IP servers’ object list.

PARAMETERS

sspec Location of the variable in the TCP/IP servers’ object list.

RETURN VALUE

SSPEC_ERROR: Failure;
SSPEC_ROOTVAR or SSPEC_XMEMVAR: Success.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getvaraddr, sspec_getvarkind, sspec_gettype

sspec_getvarkind

sspec_getvartype
136 TCP/IP User’s Manual

int sspec_needsauthentication(int sspec);

DESCRIPTION

Checks if an object in the TCP/IP servers’ object list needs user authentication to permit
access. There is a field in the ServerSpec structure that is an index into the array of
ServerAuth structures (list of valid users). If this field has a value, access to the object
is limited to the one user specified.

PARAMETERS

sspec Index into the array of ServerSpec structures.

RETURN VALUE

0: Does not need authentication;
1: Does need authentication;

-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getrealm

sspec_needsauthentication
Chapter 3: Server Utility Library 137

int sspec_readfile(int sspec, char* buffer, long offset, int
len);

DESCRIPTION

Read a file represented by the sspec index into buffer, starting at offset, and only
copying len bytes. For xmem files, this function automatically skips the first 4 bytes.
Hence, an offset of 0 marks the beginning of the file contents, not the file length.

PARAMETERS

sspec Index into the array of ServerSpec structures.

buffer The buffer to put the file contents into.

offset The offset from the start of the file, in bytes, at which copying
should begin.

len The number of bytes to copy.

RETURN VALUE

-1: Failure;
≥0: Success, number of bytes copied.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getlength, sspec_getfileloc

sspec_readfile
138 TCP/IP User’s Manual

int sspec_readvariable(int sspec, char* buffer);

DESCRIPTION

Formats the variable associated with the specified ServerSpec structure, and puts a
NULL-terminated string representation of it in buffer. The macro
SSPEC_XMEMVARLEN (default is 20) defines the size of the stack-allocated buffer
when reading a variable in xmem.

PARAMETERS

sspec Index into the array of ServerSpec structures.

buffer The buffer in which to put the variable.

RETURN VALUE

0: Success;
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getvaraddr

int sspec_remove(int sspec);

DESCRIPTION

Removes an object from the TCP/IP servers’ object list.

PARAMETERS

sspec Index into the array of ServerSpec structures.

RETURN VALUE

0: Success
-1: Failure (i.e. the index is already unused).

LIBRARY

ZSERVER.LIB

sspec_readvariable

sspec_remove
Chapter 3: Server Utility Library 139

int sspec_restore(void);

DESCRIPTION

Restores the TCP/IP servers’ object list and the TCP/IP users list (and some user-speci-
fied data if set up with sspec_setsavedata()) from the file system. This does not
restore the actual files and variables, but only the structures that reference them. If the
files are stored in flash, then the references will still be valid. Files in volatile RAM and
variables must be rebuilt through other means.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_save, sspec_setsavedata

int sspec_save(void);

DESCRIPTION

Saves the servers’ object list and server authorization list (along with some user-specified
data if set up with sspec_setsavedata()) to the file system. This does not save the
actual files and variables, but only the structures that reference them. If the files are stored
in flash, then the references will still be valid. Files in volatile RAM and variables must
be rebuilt through other means.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_restore, sspec_setsavedata

sspec_restore

sspec_save
140 TCP/IP User’s Manual

int sspec_setformepilog(int form, int function);

DESCRIPTION

Sets the user-specified function that will be called when the form has been successfully
submitted. This function can, for example, execute a cgi_redirectto to redirect to
a specific page. It should accept "HttpState* state" as an argument, return 0 when it is not
finished, and 1 when it is finished (i.e., behave like a normal CGI function).

PARAMETERS

form Index into the array of ServerSpec structures.

function Index into the array of ServerSpec structures. This is the return
value of the function sspec_addfunction().

RETURN VALUE

0 : Success.
-1 : Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfunction

sspec_setformepilog
Chapter 3: Server Utility Library 141

int sspec_setformfunction(int form, void (*fptr)());

DESCRIPTION

Sets the function that will generate the form.

PARAMETERS

form server_spec index of the form.

fptr Form generation function (NULL for the default function).

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

sspec_setformfunction
142 TCP/IP User’s Manual

int sspec_setformprolog(int form, int function);

DESCRIPTION

Allows a user-specified function to be called just before form variables are updated. This
is useful for implementing locking on the form variables (which can then be unlocked in
the epilog function), so that other code will not update the variables during form pro-
cessing. The user-specified function should accept "HttpState* state" as an argument,
return 0 when it is not finished, and 1 when it is finished (i.e., behave like a normal CGI
function).

PARAMETERS

form Index into the array of ServerSpec structures.

function Index into the array of ServerSpec structures. This is the return
value of sspec_addfunction().

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfunction

sspec_setformprolog
Chapter 3: Server Utility Library 143

int sspec_setformtitle(int form, char* title);

DESCRIPTION

Sets the title for an automatically generated form.

PARAMETERS

form server_spec index of the form.

title Title of the HTML page.

RETURN VALUE

0: Success
-1: Failure;

LIBRARY

ZSERVER.LIB

sspec_setformtitle
144 TCP/IP User’s Manual

int sspec_setfvcheck(int form, int var, int (*varcheck)());

DESCRIPTION

Sets a function that can be used to check the integrity of a variable. The function should
return 0 if there is no error, or !0 if there is an error.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

varcheck Pointer to integrity-checking function.

RETURN VALUE

>0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

sspec_setfvcheck
Chapter 3: Server Utility Library 145

int sspec_setfvdesc(int form, int var, char* desc);

DESCRIPTION

Sets the description of a variable that is displayed in the HTML form table.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

desc Description of the variable. This text will display on the html page.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

int sspec_setfventrytype(int form, int var, int entrytype);

DESCRIPTION

Sets the type of form entry element that should be used for the given variable.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

entrytype HTML_FORM_TEXT for a text box, HTML_FORM_PULLDOWN for
a pull-down menu. The default is HTML_FORM_TEXT.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

sspec_setfvdesc

sspec_setfventrytype
146 TCP/IP User’s Manual

int sspec_setfvfloatrange(int form, int var, float low, float
high);

DESCRIPTION

Sets the range of a float.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

low Minimum value of the variable.

high Maximum value of the variable.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

int sspec_setfvlen(int form, int var, int len);

DESCRIPTION

Sets the length of a form variable (the maximum length of the string representation of the
variable).

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

len Length of the variable.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

sspec_setfvfloatrange

sspec_setfvlen
Chapter 3: Server Utility Library 147

int sspec_setfvname(int form, int var, char* name);

DESCRIPTION

 Sets the name of a variable that is displayed in the HTML form table.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

name Display name of the variable.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

int sspec_setfvoptlist(int form, int var, char* list[], int
listlen);

DESCRIPTION

 Sets an enumerated list of possible values for a string variable.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

list[] Array of string values that the variable can assume.

listlen Length of the array.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

sspec_setfvname

sspec_setfvoptlist
148 TCP/IP User’s Manual

int sspec_setfvrange(int form, int var, long low, long high);

DESCRIPTION

Sets the range of an integer.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

low Minimum value of the variable.

high Maximum value of the variable.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

int sspec_setfvreadonly(int form, int var, int readonly);

DESCRIPTION

Sets the form variable to be read-only.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

readonly 0 for read/write (this is the default);
1 for read-only.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

sspec_setfvrange

sspec_setfvreadonly
Chapter 3: Server Utility Library 149

int sspec_setpreformfunction(int form, void (*fptr)());

DESCRIPTION

Sets a user function that will be called just before form generation. The user function is
not called when the form is being generated because of errors in the form input. The user
function must have the following prototype:

void userfunction(int form);

The function may not use the parameter, but it is useful if the same user function is used
for multiple forms.

PARAMETERS

form spec index of the form

fptr Pointer to user function to be called just before form generation

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getpreformfunction

sspec_setpreformfunction
150 TCP/IP User’s Manual

int sspec_setrealm(int sspec, char* realm);

DESCRIPTION

Sets the realm field of a ServerSpec structure for HTTP authentication purposes. Set-
ting this field enables authentication for the given entry in the TCP/IP servers’ object list.
Authentication can be turned off again by passing "" as the realm parameter to this func-
tion.

PARAMETERS

sspec Index into the array of ServerSpec structures.

realm Name of the realm.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getrealm

sspec_setrealm
Chapter 3: Server Utility Library 151

int sspec_setsavedata(char* data, unsigned long len, void*
fptr);

DESCRIPTION

Sets user-supplied data that will be saved in addition to the spec and user authentication
tables when sspec_save() is called.

PARAMETERS

data Pointer to location of user-supplied data.

len Length of the user-supplied data in bytes.

fptr Pointer to a function that will be called when the user-supplied data
has been restored

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_save, sspec_restore

sspec_setsavedata
152 TCP/IP User’s Manual

int sspec_setuser(int sspec, int uid);

DESCRIPTION

Sets the user (owner) of a ServerSpec structure.

PARAMETERS

sspec Index into the array of ServerSpec structures.

uid Index into the array of ServerAuth structures (identifies user).

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_adduser, sspec_getusername

sspec_setuser
Chapter 3: Server Utility Library 153

154 TCP/IP User’s Manual

4. HTTP Server

An HTTP (Hypertext Transfer Protocol) server makes HTML (Hypertext Markup Language) docu-
ments and other documents available to clients, i.e., web browsers. HTTP is implemented by
HTTP.LIB.

4.1 HTTP Server Data Structures
There are four data structures in HTTP.LIB of interest to developers of HTTP servers.

4.1.1 HttpSpec
The data structure HttpSpec contains all the files, variables, and functions the Web server has
access to. The structure ServerSpec from ZSERVER.LIB may be instead.

4.1.1.1 HttpSpec fields

type This field tells the server if the entry is a file, variable or function
(HTTPSPEC_FILE, HTTPSPEC_VARIABLE or
HTTPSPEC_FUNCTION, respectively).

name This field specifies a unique name for referring to the entry. The
Web server recognizes “/index.html” as the entity that matches
“http://someurl.com/index.html”, and delivers the en-
try’s content based on the value of type (the first field).

data The third field is the physical address of the entity.

addr The fourth field is a short pointer to the entity. Either the third field
or the fourth field is valid, not both. All files must use the physical
address, variables and functions use the short pointer.

vartype This field describes the type of variable. Supported types are : INT8
INT16, PTR16, INT32, and FLOAT.

format The format field describes the printf format specifier used to dis-
play the variable.

realm This field is the name and password required to access the entity.

typedef struct {
word type;
char name[HTTP_MAXNAME];
long data;
void* addr;
word vartype;
char* format;
HttpRealm* realm;

} HttpSpec;
Chapter 4: HTTP Server 155

4.1.2 HttpType
The structure HttpType associates a file extension with a MIME type (Multipurpose Internet Mail
Extension) and a function which handles the MIME type. Users can override HTTP_MAXNAME
(which defaults to 20 characters) in their source file.If the function pointer given is NULL, then the
default handler (which sends the content verbatim) is used.

4.1.3 HttpRealm
The structure HttpRealm holds user-ID and password pairs for partitions called realms. These
realms allow the protected resources on a server to be partitioned into a set of protection spaces, each
with its own authentication scheme and/or authorization database.

HTTP/1.0 Basic authentication is used. This scheme is not a secure method of user authentication
across an insecure network (e.g., the Internet). HTTP/1.0 does not, however, prevent additional
authentication schemes and encryption mechanisms from being employed to increase security.

In the HttpSpec structure, there is a pointer to a structure of type HttpRealm. To password-pro-
tect the entity, add the name, password, and realm desired. If you do not want to password-protect the
entity, leave the realm pointer in the HttpSpec structure NULL.

typedef struct {
 char extension[10];
 char type[HTTP_MAXNAME];
 int (*fptr)(/* HttpState* */);
} HttpType;

typedef struct {
 char username[HTTP_MAXNAME];
 char password[HTTP_MAXNAME];
 char realm[HTTP_MAXNAME];
} HttpRealm;
156 TCP/IP User’s Manual

4.1.4 HttpState
Use of this structure is necessary for CGI functions. Some of the fields are off-limits to developers.

typedef struct {
tcp_Socket s;

/* State information */
int state, substate, subsubstate, nextstate, laststate;

/* File referenced */
HttpSpecAll spec, subspec;
HttpType *type;
int (*handler)(), (*exec)();

/* rx/tx state variables */
long offset;
long length;
long filelength, subfilelength;
long pos, subpos;
long timeout, long main_timeout;
char buffer[HTTP_MAXBUFFER];
char *p;

/* http request and header info */
char method;
char url[HTTP_MAXURL];
char version;
char connection;
char content_type[40];
long content_length;
char has_form;
char finish_form;
char username[HTTP_MAXNAME];
char password[HTTP_MAXNAME];
char cookie[HTTP_MAXNAME];
int headerlen;
int headeroff;

/* other - don’t touch */
char tag[HTTP_MAXNAME];
char value[HTTP_MAXNAME];

} HttpState;
Chapter 4: HTTP Server 157

4.1.4.1 HttpState Fields
The fields discussed here are available for developers to use in their application programs.

s This is the socket associated with the given HTTP server. A devel-
oper can use this in a CGI function to output dynamic data. Any of
the TCP functions can be used.

substate
subsubstate These are intended to be used to hold the current state of a state ma-

chine for a CGI function. That is, if a CGI function relinquishes con-
trol back to the HTTP server, then the values in these variables will
be preserved for the next http_handler() call, in which the
CGI function will be called again. These variables are initialized to
0 before the CGI function is called for the first time. Hence, the first
state of a state machine using substate should be 0.

timeout This value can be used by the CGI function to implement an internal
timeout.

main_timeout This value holds the timeout that is used by the web server. The web
server checks against this timeout on every call of
http_handler(). When the web server changes states, it resets
main_timeout. When it has stayed in one state for too long, it
cancels the current processing for the server and goes back to the ini-
tial state. Hence, a CGI function may want to reset this timeout if it
needs more processing time (but care should be taken to make sure
that the server is not locked up forever). This can be achieved like
this:
state->main_timeout = set_timeout(HTTP_TIMEOUT);

HTTP_TIMEOUT is the number of seconds until the web server will
time out. It is 16 seconds by default.

buffer[] A buffer that the developer can use to put data to be transmitted over
the socket. It is of size HTTP_MAXBUFFER.

p Pointer into the buffer given above.

method This should be treated as read-only. It holds the method by which
the web request was submitted. The value is either
HTTP_METHOD_GET or HTTP_METHOD_POST, for the GET
and POST request methods, respectively.

url[] This should be treated as read-only. It holds the URL by which the
current web request was submitted. . If there is GET-style form in-
formation, then that information will follow the first NULL byte in
the url array. The form information will itself be NULL-terminated.
If the information in the url array is truncated to HTTP_MAXURL
bytes, the truncated information is also NULL-terminated.
158 TCP/IP User’s Manual

version This should be treated as read-only. This holds the version of the
HTTP request that was made. It can be HTTP_VER_09,
HTTP_VER_10, or HTTP_VER_11 for 0.9, 1.0, or 1.1 requests,
respectively.

content_type[] This should be treated as read-only. This buffer holds the value from
the Content-Type header sent by the client.

content_length This should be treated as read-only. This variable holds the length
of the content sent by the client. It matches the value of the Content-
Length header sent by the client.

has_form This should be treated as read-only. If the value is 1 there is a GET
style form, after the \0 byte in url[].

username[] Read-only buffer has username of the user making the request, if au-
thentication took place.

password[] Read-only buffer has password of the user making the request, if au-
thentication took place.

cookie[] Read-only buffer contains the value of the cookie "DCRABBIT"
(see http_setcookie() for more information).

headerlen
headeroff These variables can be used in conjunction to cause the web server

to flush data from the buffer[] array in the HttpState structure.
headerlen should be set to the amount of data in buffer[],
and headeroff should be set to 0 (to indicate the offset into the
array). The next time the CGI function is called the data in buff-
er[] will be flushed to the socket.

4.2 Configuration Macros
The following macros are available in HTTP.LIB:

HTTP_MAXNAME

This is the maximum length for a name in the HttpSpec structure. This defaults to 20 characters.
Without overriding this value, the maximum length of any name is 19 characters because one charac-
ter is used for the NULL termination.

HTTP_MAXRAMSPEC

This is the maximum number of HttpSpec entries that can be added at runtime. This macro over-
rides SSPEC_MAXSPEC.

HTTP_MAXSERVERS
This is the maximum number of HTTP servers listening on port 80. The default is two. You may
increase this value to the maximum number of independent entities on your page. For example, for a
Web page with four pictures, two of which are the same, set HTTP_MAXSERVERS to four: one for
the page, one for the duplicate images, and one for each of the other two images. By default, each
Chapter 4: HTTP Server 159

server takes 2500 bytes of RAM. This RAM usage can be changed by the macro SOCK_BUF_SIZE
(or tcp_MaxBufSize which is deprecated as of Dynamic C ver. 6.57). Another option is to use the
tcp_reserveport() function and a smaller number of sockets.

HTTP_PORT
This macro allows the user to override the default port. Define it before the line #use http.lib.

TIMEZONE

This macro specifies the distance in hours you are from Greenwich Mean Time (GMT), which is 5
hours ahead of Eastern Standard Time (EST). The default TIMEZONE is -8, which represents Pacific
Standard Time. You can use the tm_wr()function to set the clock to the correct value. If you lose
power and don’t have the battery-backup option, the time will need to be reset.

4.2.1 Customizing HTTP headers
The callback macro, HTTP_CUSTOM_HEADERS, will be called whenever HTTP headers are being
sent. To be used, it must be defined as a function with the following prototype:

void my_headers(HttpState* state, char* buffer, int bytes);

state Pointer to the state structure for the calling web server.

buffer The buffer in which the header(s) can be written.

bytes The number of bytes available in the buffer.

Typically, the macro would be defined by the user before http.lib is used, like in the following:

#define HTTP_CUSTOM_HEADERS(state, buffer, bytes) \
my_headers(state, buffer, bytes)

Then, for the above to work, the my_headers() function must be defined by the user, like the fol-
lowing:

void my_headers(HttpState* state, char* buffer, int bytes)
{

strcpy(buffer, "Fake-Header: Hello Z-World!\r\n");
printf("bytes: %d\n", bytes);

}

Of course, in the real world, the user may need to check the number of bytes available to be sure they
don't overwrite the buffer. The buffer must end with "\r\n", and be NULL-terminated.

4.3 Sample Programs
Sample programs demonstrating HTTP are in the \Samples\Tcpip\Http directory. There is a
configuration block at the beginning of each sample program. Unless you are using BOOTP/DHCP,
the macros in this block need to be changed to reflect your network settings. For most HTTP pro-
grams, you will be concerned with TIMEZONE and the IP address macros: MY_IPADDRESS,
MY_NETMASK, MY_GATEWAY.
160 TCP/IP User’s Manual

4.3.1 Serving Static Web Pages
The sample program, Static.c, initializes HTTP.LIB and then sets up a basic static web page. It
is assumed you are on the same subnet as the controller. The code for Static.c is explained in the
following pages.

From Dynamic C, compile and run the program. You will see the LNK light on the board come on
after a couple of seconds. Point your internet browser at the controller (e.g., http://10.10.6.100/). The
ACT light will flash a couple of times and your browser will display the page.

This program serves the static.html file and the rabbit1.gif file to any user contacting the
controller. If you want to change the file that is served by the controller, modify this line in
Static.c:

// Static.c

#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"
#define TIMEZONE -8

#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

#ximport "samples/tcpip/http/pages/static.html" index_html
#ximport "samples/tcpip/http/pages/rabbit1.gif" rabbit1_gif

const HttpType http_types[] =
{

{ ".html", "text/html", NULL},
{ ".gif", "image/gif", NULL}

};
const HttpSpec http_flashspec[] =
{

{HTTPSPEC_FILE, "/", index_html, NULL, 0, NULL, NULL},
{HTTPSPEC_FILE, "/index.html", index_html, NULL, 0, NULL, NULL},
{HTTPSPEC_FILE, "/rabbit1.gif", rabbit1_gif, NULL, 0, NULL, NULL},

};
main()
{

sock_init(); // Initializes the TCP/IP stack
http_init(); // Initializes the web server

tcp_reserveport(80);
while (1) {

http_handler();
}

}

#ximport "samples/tcpip/http/pages/static.html" index_html
Chapter 4: HTTP Server 161

4.3.1.1 Adding Files to Display
Adding additional files to the controller to serve as web pages is slightly more complicated. First, add
an #ximport line with the filename as the first parameter, and a symbol that references it in
Dynamic C as the second parameter.

Next, find these lines in Static.c:

Insert the name of your new file, preceded by “/”, into this structure, using the same format as the
other lines. Compile and run the program. Open up your browser to the new page (e.g.
“http://10.10.6.100/newfile.html”), and your new page will be displayed by the browser.

4.3.1.2 Adding Files with Different Extensions
If you are adding a file with an extension that is not html or gif, you will need to make an entry in the
HttpType structure for the new extension. The first field is the extension and the second field
describes the MIME type for that extension. You can find a list of MIME types at:

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types

In the media-types document located there, the text in the type column would precede the “/”, and the
subtype column would directly follow. Find the type subtype entry that matches your extension and
add it to the http_types table.

4.3.1.3 Handling of Files With No Extension
The entry “/” and files without an extension are dealt with by the handler specified in the first entry in
http_types[].

#ximport "samples/tcpip/http/pages/static.html" index_html
#ximport "samples/tcpip/http/pages/newfile.html" newfile_html

HttpSpec http_flashspec[] =
{

{HTTPSPEC_FILE, "/", index_html, NULL, 0, NULL, NULL},
{HTTPSPEC_FILE, "/index.html", index_html,NULL,0,NULL, NULL},
{HTTPSPEC_FILE, "/newfile.html", index_html, NULL,0, NULL, NULL},
{HTTPSPEC_FILE, "/rabbit1.gif", rabbit1_gif, NULL,0, NULL, NULL},

};

HttpType http_types[] =
{
 { ".html", "text/html", NULL},
 { ".gif", "image/gif", NULL}
};
162 TCP/IP User’s Manual

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types

4.3.2 Dynamic Web Pages Without HTML Forms
Serving a dynamic web page without the use of HTML forms is done by sample program Ssi.c,
shown below and located in /Samples/Tcpip/Http. This program displays four ’lights’ and
four buttons to toggle them. Users can browse to the device and change the status of the lights.

#define MY_GATEWAY "10.10.6.19"
#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"

#define SOCK_BUF_SIZE 2048
#define HTTP_MAXSERVERS 1
#define MAX_SOCKETS 1

#define REDIRECTHOST MY_IP_ADDRESS
#define REDIRECTTO "http: //" REDIRECTHOST "/index.shtml"

#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

/*
 * The source code for this program is ximported. This allows
 * us to put the line <!--#include file="ssi.c" --> in the
 * file Samples/Tcpip/Http/Pages/Showsrc.shtml.
 */

#ximport "samples/tcpip/http/pages/ssi.shtml" index_html
#ximport "samples/tcpip/http/pages/rabbit1.gif" rabbit1_gif
#ximport "samples/tcpip/http/pages/ledon.gif" ledon_gif
#ximport "samples/tcpip/http/pages/ledoff.gif" ledoff_gif
#ximport "samples/tcpip/http/pages/button.gif" button_gif
#ximport "samples/tcpip/http/pages/showsrc.shtml" showsrc_shtml
#ximport "samples/tcpip/http/ssi.c" ssi_c

/*
 * In this case the extension .shtml is the first type in
 * the type table. This causes the default (no extension)
 * to assume the shtml_handler.
 */

const HttpType http_types[] = {
 { ".shtml", "text/html", shtml_handler}, // ssi
 { ".html", "text/html", NULL}, // html
 { ".cgi", "", NULL}, // cgi
 { ".gif", "image/gif", NULL}
};
char led1[15];
char led2[15];
char led3[15];
char led4[15];
Chapter 4: HTTP Server 163

int led1toggle(HttpState* state)
{

if (strcmp(led1,"ledon.gif")==0)
strcpy(led1,"ledoff.gif");

else
strcpy(led1,"ledon.gif");

cgi_redirectto(state,REDIRECTTO);
return 0;

}
int led2toggle(HttpState* state)
{

if (strcmp(led2,"ledon.gif")==0)
strcpy(led2,"ledoff.gif");

else
strcpy(led2,"ledon.gif");

cgi_redirectto(state,REDIRECTTO);
return 0;

}
int led3toggle(HttpState* state)
{

if (strcmp(led3,"ledon.gif")==0)
strcpy(led3,"ledoff.gif");

else
strcpy(led3,"ledon.gif");

cgi_redirectto(state,REDIRECTTO);
return 0;

}
int led4toggle(HttpState* state)
{

if (strcmp(led4,"ledon.gif")==0)
strcpy(led4,"ledoff.gif");

else
strcpy(led4,"ledon.gif");

cgi_redirectto(state,REDIRECTTO);
return 0;

}

164 TCP/IP User’s Manual

When you compile and run Ssi.c, you see the LNK light on the board come on. Point your browser
at the controller (e.g., http://10.10.6.100/). The ACT light will flash a couple of times and your
browser will display the page.

This program displays pictures of LEDs. Their state is toggled by pressing the image of a BUTTON.
This program uses Server Side Includes (SSI) and the Common Gateway Interface (CGI).

const HttpSpec http_flashspec[] = {

 {HTTPSPEC_FILE, "/", index_html, NULL, 0, NULL, NULL},
 {HTTPSPEC_FILE, "/index.shtml", index_html, NULL, 0, NULL, NULL},
 {HTTPSPEC_FILE,"/showsrc.shtml", showsrc_shtml, NULL,0,NULL, NULL},
 {HTTPSPEC_FILE,"/rabbit1.gif", rabbit1_gif, NULL, 0, NULL, NULL},
 {HTTPSPEC_FILE, "/ledon.gif",ledon_gif, NULL, 0, NULL, NULL},
 {HTTPSPEC_FILE,"/ledoff.gif",ledoff_gif, NULL, 0, NULL, NULL},
 {HTTPSPEC_FILE,"/button.gif",button_gif,NULL, 0, NULL, NULL},
 {HTTPSPEC_FILE, "ssi.c", ssi_c, NULL, 0, NULL, NULL},
 {HTTPSPEC_VARIABLE, "led1", 0, led1, PTR16, "%s", NULL},
 {HTTPSPEC_VARIABLE, "led2", 0, led2, PTR16, "%s", NULL},
 {HTTPSPEC_VARIABLE, "led3", 0, led3, PTR16, "%s", NULL},
 {HTTPSPEC_VARIABLE, "led4", 0, led4, PTR16, "%s", NULL},
 {HTTPSPEC_FUNCTION, "/led1tog.cgi", 0, led1toggle, 0, NULL, NULL},
 {HTTPSPEC_FUNCTION, "/led2tog.cgi", 0, led2toggle, 0, NULL, NULL},
 {HTTPSPEC_FUNCTION, "/led3tog.cgi", 0, led3toggle, 0, NULL, NULL},
 {HTTPSPEC_FUNCTION, "/led4tog.cgi", 0, led4toggle, 0, NULL, NULL},
};

main()
{

strcpy(led1,"ledon.gif");
strcpy(led2,"ledon.gif");
strcpy(led3,"ledoff.gif");
strcpy(led4,"ledon.gif");

sock_init();
http_init();
tcp_reserveport(80);

while (1) {

http_handler();
}

}

Chapter 4: HTTP Server 165

4.3.2.1 SSI Feature
SSI commands are an extension of the HTML comment command (<!--This is a comment -->). They
allow dynamic changes to HTML files and are resolved at the server side, so the client never sees
them. HTML files that need to be parsed because they contain SSI commands, are recognized by the
HTTP server by the file extension shtml.

The supported SSI commands are:

•#echo var
•#exec cmd
•#include file

They are used by inserting the command into an HTML file:

<!--#include file=“anyfile” -->

The server replaces the command, #include file, with the contents of anyfile.

#exec cmd executes a command and replaces the SSI command with the output.

Dynamically changing a variable on a web page
The Ssi.shtml file, located in the /Samples/Tcpip/Http/Pages folder, gives an example of
dynamically changing a variable on a web page using #echo var.

In an shtml file, the “<!--#echo var="led1" -->“ is replaced by the value of the variable
led1 from the http_flashspec structure.

shtml_handler looks up led1 and replaces it with the text output from:

The led1 variable is either ledon.gif or ledoff.gif. When the browser loads the page, it
replaces

with

<img SRC="<!--#echo var="led1" -->">

HttpSpec http_flashspec[] =
{
 //...
 { HTTPSPEC_VARIABLE, "led1", 0, led1, PTR16, "%s", NULL}
 //...
};

printf("%s",(char*)led1);

<img SRC="<!--#echo var="led1"-->">

166 TCP/IP User’s Manual

or

This causes the browser to load the appropriate image file.

4.3.2.2 CGI Feature
Ssi.c also demonstrates the Common Gateway Interface. CGI is a standard for interfacing external
applications with HTTP servers. Each time a client requests an URL corresponding to a CGI pro-
gram, the server will execute the CGI program in real-time.

For increased flexibility, a CGI function is responsible for outputting its own HTTP headers. Informa-
tion about HTTP headers can be found at:

http://deesse.univ-lemans.fr:8003/Connected/RFC/1945/

In the Ssi.shtml file, this line creates the clickable button viewable from the browser.

When the user clicks on the button, the browser will request the /led1tog.cgi entity. This causes
the HTTP server to examine the contents of the http_flashspec structure looking for
/led1tog.cgi. It finds it and notices that led1toggle() needs to be called.

The led1toggle function changes the value of the led1 variable, then redirects the browser back
to the original page. When the original page is reloaded by the browser, the LED image will have
changed states to reflect the user’s action.

4.3.3 Web Pages With HTML Forms
With a web browser, HTML forms enable users to input values. With a CGI program, those values
can be sent back to the server and processed. The FORM and INPUT tags are used to create forms in
HTML.

The FORM tag specifies which elements constitute a single form and what CGI program to call when
the form is submitted. The FORM tag has an option called ACTION. This option defines what CGI
program is called when the form is submitted (when the “Submit” button is pressed). The FORM tag
also has an option called METHOD that defines the method used to return the form information to the
web server. In Section 4.3.3.1, “Sample HTML Page,” on page 168, the POST method is used, which
will be described later. All of the HTML between the <FORM> and </FORM> tags define what is
contained within a form.

The INPUT tag defines a specific form element, the individual input fields in a form. For example, a
text box in which the user may type in a value, or a pull-down menu from which the user may choose
an item. The TYPE parameter defines what type of input field is being used. In following example, in
the first two cases , it is the text input field, which is a single-line text entry box. The NAME parame-
ter defines what the name of that particular input variable is, so that when the information is returned
to the server, then the server can associate it with a particular variable. The VALUE parameter defines
the current value of the parameter. The SIZE parameter defines how long the text entry box is (in
characters).

<TD> </TD>
Chapter 4: HTTP Server 167

http://deesse.univ-lemans.fr:8003/Connected/RFC/1945/

At the end of the HTML page in our example, the Submit and Reset buttons are defined with the
INPUT tag. These use the special types “submit” and “reset”, since these buttons have special pur-
poses. When the submit button is pressed, the form is submitted by calling the CGI program
“myform”.

4.3.3.1 Sample HTML Page
An HTML page that includes a form may look like the following:

<HTML>
<HEAD><TITLE>ACME Thermostat Settings</TITLE></HEAD>
<BODY>
<H1>ACME Thermostat Settings</H1>
<FORM ACTION="myform.html" METHOD="POST">

<TABLE BORDER>
<TR>

<TD>Name</TD>
<TD>Value</TD>
<TD>Description</TD>

</TR>

<TR>
<TD>High Temp</TD>
<TD><INPUT TYPE="text" NAME="temphi" VALUE="80"

SIZE="5"></TD>
<TD>Maximum in temperature range (°F)</TD>

</TR>

<TR>
<TD>Low Temp</TD>
<TD><INPUT TYPE="text" NAME="templo" VALUE="65"

SIZE="5"></TD>
<TD>Minimum in temperature range (°F)</TD>

</TR>

</TABLE>
<P>

<INPUT TYPE="submit" VALUE="Submit">
<INPUT TYPE="reset" Value="Reset">

</FORM></BODY>
</HTML>
168 TCP/IP User’s Manual

The form might display as follows:

When the form is displayed by a browser, the user can change values in the form. But how does this
changed data get back to the HTTP server? By using the HTTP POST command. When the user
presses the “Submit” button, the browser connects to the HTTP server and makes the following
request:

POST myform HTTP/1.0
.
. (some header information)
.
Content-Length: 19

where “myform” is the CGI program that was specified in the ACTION attribute of the FORM tag
and POST is the METHOD attribute of the FORM tag. “Content-Length” defines how many bytes of
information are being sent to the server (not including the request line and the headers).

Then, the browser sends a blank line followed by the form information in the following manner:

temphi=80&templo=65

That is, it sends back name and value pairs, separated by the ‘&’ character. (There can be some fur-
ther encoding done here to represent special characters, but we will ignore that in this explanation.)
The server must read in the information, decode it, parse it, and then handle it in some fashion. It will
check the validity of the new values, and then assign them to the appropriate C variable if they are
valid.
Chapter 4: HTTP Server 169

4.3.3.2 POST-style form submission
If an HTML file specifies a POST-style form submission (i.e., METHOD="POST"), the form will still
be waiting on the socket when the CGI handler is called. Therefore, it is the job of the CGI handler to
read this data off the socket and parse it in a meaningful way. The sample files Post.c and
Post2.c in the \Samples\Tcpip\Http folder show how to do this.

The HTTP POST command can put any kind of data onto the network. There are many known encod-
ing schemes currently used, but we will only look at URL-encoded data in this document. Other
encoding schemes can be handled in a similar manner.

4.3.3.3 URL-encoded Data
URL-encoded data is of the form "name1=value1&name2=value2," and is similar to the CGI form
submission type passed in normal URLs. This has to be parsed to name=value pairs. The rest of
this section details an extensible way to do this.

This initializes two possible HTML form entries to be received, and a place to store the results.

#define MAX_FORMSIZE64
typedef struct {

char *name;
char value[MAX_FORMSIZE];

} FORMType;
FORMType FORMSpec[2];

void init_forms(void) {
FORMSpec[0].name = "user_name";
FORMSpec[1].name = "user_email";

}

170 TCP/IP User’s Manual

Reading & Storing URL-encoded Data
parse_post() reads URL-encoded data off the network. and calls parse_token() to store
the data in FORMSpec[].

// Parse one token ’foo=bar’, matching ’foo’ to the name field in
// the struct, and store ’bar’ into the value

void parse_token(HttpState* state) {
int i, len;
for(i=0; i<HTTP_MAXBUFFER; i++) {

if(state->buffer[i] == ’=’)
state->buffer[i] = ’\0’;

}
state->p = state->buffer + strlen(state->buffer) + 1;
for(i=0; i<(sizeof(FORMSpec)/sizeof(FORMType)); i++) {

if(!strcmp(FORMSpec[i].name,state->buffer)) {
len = (strlen(state->p)>MAX_FORMSIZE) ? MAX_FORMSIZE - 1:
strlen(state->p);
strncpy(FORMSpec[i].value,state->p,1+len);
FORMSpec[i].value[MAX_FORMSIZE - 1] = ’\0’;

}
}

}

// Read URL-encoded data and call parsing function to store data
int parse_post(HttpState* state) {
 int ret;
 while(sock_established((sock_type *)&state->s) ||
 sock_bytesready((sock_type *) &state->s) >= 0){
 ret = sock_fastread((sock_type *)&state->s, state->p, 1);
 if(0 == ret) {
 *state->p = ’\0’;
 parse_token(state);
 return 1;
 }
 if((*state->p==’&’) || (*state->p==’\r’) || (*state->p==’\n’))
 { /* found one token */
 *state->p = ’\0’;
 parse_token(state);
 state->p = state->buffer;
 } else {
 state->p++;
 }
 if((state->p - state->buffer) > HTTP_MAXBUFFER) {
 /* input too long */
 return 1;
 }
 }
}

Chapter 4: HTTP Server 171

4.3.3.4 Sample of a CGI Handler
This next function is the CGI handler. It is a state-machine-based handler that generates the page. It
calls parse_post() and references the structure that is now filled with the parsed data we
wanted.

/*
 * Sample submit.cgi function
 */
int submit(HttpState* state) {

int i;
if(state->length) {

 /* buffer to write out */

if(state->offset < state->length) {
state->offset += sock_fastwrite((sock_type *)&state->s,
state->buffer + (int)state->offset, (int)state->length-

(int)state->offset);
}
else
{

state->offset = 0;
state->length = 0;

}

172 TCP/IP User’s Manual

/*
 * Sample submit.cgi function continued
 */

} else {
switch(state->substate) {

case 0:
strcpy(state->buffer, "HTTP/1.0 200 OK\r\n");
break;

case 1:
/* init the FORMSpec data */
FORMSpec[0].value[0] = ’\0’;
FORMSpec[1].value[0] = ’\0’;
state->p = state->buffer;
parse_post(state);
state->substate++;
return 0;

case 2:
http_setcookie(state->buffer, FORMSpec[0].value);
break;

case 3:
strcpy(state->buffer, "\r\n\r\n<html><head>

<title>Results</title></head><body>\r\n");
break;

case 4:
sprintf(state->buffer, "<p>Username:
%s<p>\r\n<p>Email:

%s<p>\r\n",
FORMSpec[0].value, FORMSpec[1].value);
break;

case 5:
strcpy(state->buffer, "<p>Go home
</body></html>\r\n");
break;

default:
state->substate = 0;
return 1;

}
state->length = strlen(state->buffer);
state->offset = 0;
state->substate++;

}
return 0;

}

Chapter 4: HTTP Server 173

4.3.4 HTML Forms Using Zserver.lib
In this section, we will step through a complete example program that uses HTML forms. Through
this step-by-step explanation, the method of using the functions in ZSERVER.LIB will become
clearer.

These lines are part of the standard TCP/IP configuration. You must change them to whatever your
local IP address and netmask are. Contact your network administrator for these numbers.

Defining FORM_ERROR_BUF is required in order to use the HTML form functionality in
Zserver.lib. The value represents the number of bytes that will be reserved in root memory for
the buffer which will be used for form processing. This buffer must be large enough to hold the name
and value for each variable, plus four bytes for each variable. Since we are building a small form, 256
bytes is sufficient.

Since we will not be using the http_flashspec array, then we can define the following macro,
which removes some code for handling this array from the web server.

These lines are part of the standard TCP/IP configuration.

These are the declarations of the variables that will be included in the form.

#define MY_IP_ADDRESS "10.10.6.112"
#define MY_NETMASK "255.255.255.0"

#define FORM_ERROR_BUF 256

#define HTTP_NO_FLASHSPEC

#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

const HttpType http_types[] =
{
 { ".html", "text/html", NULL}
};

int temphi;
int tempnow;
int templo;
float humidity;
char fail[21];
174 TCP/IP User’s Manual

An array of type FormVar must be declared to hold information about the form variables. Be sure to
allocate enough entries in the array to hold all of the variables that will go in the form. If more forms
are needed, then more of these arrays can be allocated.

These variables will hold the indices in the TCP/IP servers’ object list for the form and the form vari-
ables.

This array holds the possible values for the fail variable. The fail variable will be used to make a pull-
down menu in the HTML form.

These lines initialize the form variables.

The next line adds a form to the TCP/IP servers’object list. The first parameter gives the name of the
form. Hence, when a browser requests the page “myform.html”, the HTML form is generated and
presented to the browser. The second parameter gives the developer-declared array in which form
information will be saved. The third parameter gives the number of entries in the myform array (this
number should match the one given in the myform declaration above). The fourth parameter indi-
cates that this form should only be accessible to the HTTP server, and not the FTP server.
SERVER_HTTP should always be given for HTML forms. The return value is the index of the newly
created form in the TCP/IP servers’ object list.

void main(void)
{

 FormVar myform[5];

int var;
int form;

const char* const fail_options[] = {
 "Email",
 "Page",
 "Email and page",
 "Nothing"
 };

temphi = 80;
tempnow = 72;
templo = 65;
humidity = 0.3;
strcpy(fail, "Page");
Chapter 4: HTTP Server 175

This line sets the title of the form. The first parameter is the form index (the return value of
sspec_addform()), and the second parameter is the form title. This title will be displayed as the
title of the HTML page and as a large heading in the HTML page.

The following line adds a variable to the TCP/IP servers’ object list. It must be added to the TCP/IP
servers’ object list before being added to the form. The first parameter is the name to be given to the
variable, the second is the address of the variable, the third is the type of variable (this can be INT8,
INT16, INT32, FLOAT32, or PTR16), the fourth is a printf-style format specifier that indicates
how the variable should be printed, and the fifth is the server for which this variable is accessible. The
return value is the index of the variable in the TCP/IP servers’ object list.

The following line adds a variable to a form. The first parameter is the index of the form to add the
variable to (the return value of sspec_addform()), and the second parameter is the index of the
variable (the return value of sspec_addvariable()). The return value is the index of the variable
within the developer-declared FormVar array, myform.

This function sets the name of a form variable that will be displayed in the first column of the form
table. If this name is not set, it defaults to the name for the variable in the TCP/IP servers’ object list
(“temphi”, in this case). The first parameter is the form in which the variable is located, the second
parameter is the variable index within the form, and the third parameter is the name for the form vari-
able.

This function sets the description of the form variable, which is displayed in the third column of the
form table.

 form = sspec_addform("myform.html", myform, 5, SERVER_HTTP);

 sspec_setformtitle(form, "ACME Thermostat Settings");

var = sspec_addvariable("temphi", &temphi, INT16, "%d", SERVER_HTTP);

var = sspec_addfv(form, var);

sspec_setfvname(form, var, "High Temp");

sspec_setfvdesc(form, var, "Maximum in temperature range
 (60 - 90 °F)");
176 TCP/IP User’s Manual

This function sets the length of the string representation of the form variable. In this case, the text box
for the form variable in the HTML form will be 5 characters long. If the user enters a value longer
than 5 characters, the extra characters will be ignored.

This function sets the range of values for the given form variable. The variable must be within the
range of 60 to 90, inclusive, or an error will be generated when the form is submitted.

This concludes setting up the first variable. The next five lines set up the second variable, which rep-
resents the current temperature.

Since the value of the second variable should not be modifiable via the HTML form (by default vari-
ables are modifiable,) the following line is necessary and makes the given form variable read-only
when the third parameter is 1. The variable will be displayed in the form table, but can not be modi-
fied within the form.

These lines set up the low temperature variable. It is set up in much the same way as the high temper-
ature variable.

sspec_setfvlen(form, var, 5);

sspec_setfvrange(form, var, 60, 90);

var = sspec_addvariable("tempnow", &tempnow, INT16, "%d",SERVER_HTTP);
var = sspec_addfv(form, var);
sspec_setfvname(form, var, "Current Temp");
sspec_setfvdesc(form, var, "Current temperature in °F");
sspec_setfvlen(form, var, 5);

sspec_setfvreadonly(form, var, 1);

var = sspec_addvariable("templo", &templo, INT16, "%d", SERVER_HTTP);
var = sspec_addfv(form, var);
sspec_setfvname(form, var, "Low Temp");
sspec_setfvdesc(form, var, "Minimum in temperature range
 (50 - 80 °F)");
sspec_setfvlen(form, var, 5);
sspec_setfvrange(form, var, 50, 80);
Chapter 4: HTTP Server 177

This code begins setting up the string variable that specifies what to do in case of air conditioning
failure. Note that the variable is of type PTR16, and that the address of the variable is not given to
sspec_addvariable(), since the variable fail already represents an address.

This line associates an option list with a form variable. The third parameter gives the developer-
defined option array, and the fourth parameter gives the length of the array. The form variable can
now only take on values listed in the option list.

This function sets the type of form element that is used to represent the variable. The default is
HTML_FORM_TEXT, which is a standard text entry box. This line sets the type to
HTML_FORM_PULLDOWN, which is a pull-down menu.

Finally, this code sets up the last variable. Note that it is a float, so FLOAT32 is given in the
sspec_addvariable() call. The last function call is sspec_setfvfloatrange()
instead of sspec_setfvrange(), since this is a floating point variable.

These calls create aliases in the TCP/IP servers’ object list for the HTML form. That is, the same
form can now be generated by requesting “index.html” or “/”. Note that
sspec_aliasspec() should be called after the form has already been set up. The aliasing is
done by creating a new entry in the TCP/IP servers’ object list and copying the original entry into the
new entry. Note that aliasing can also be done for files and other types of server objects.

var = sspec_addvariable("failure", fail, PTR16, "%s", SERVER_HTTP);
var = sspec_addfv(form, var);
sspec_setfvname(form, var, "Failure Action");
sspec_setfvdesc(form, var, "Action to take in case of air-conditioning
 failure");
sspec_setfvlen(form, var, 20);

sspec_setfvoptlist(form, var, fail_options, 4);

sspec_setfventrytype(form, var, HTML_FORM_PULLDOWN);

var = sspec_addvariable("humidity", &humidity, FLOAT32, "%.2f",
 SERVER_HTTP);
var = sspec_addfv(form, var);
sspec_setfvname(form, var, "Humidity");
sspec_setfvdesc(form, var, "Target humidity (between 0.0 and 1.0)");
sspec_setfvlen(form, var, 8);
sspec_setfvfloatrange(form, var, 0.0, 1.0);

sspec_aliasspec(form, "index.html");
sspec_aliasspec(form, "/");
178 TCP/IP User’s Manual

These lines complete the sample program. They initialize the TCP/IP stack and web server, and run
the web server.

This is the form that is generated:

 sock_init();
 http_init();
 while (1) {
 http_handler();
 }
}

Chapter 4: HTTP Server 179

4.4 Functions

void cgi_redirectto(HttpState* state, char* url);

DESCRIPTION

This utility function may be called in a CGI function to redirect the user to another page.
It sends a user to the URL stored in url. You should immediately issue a “return 0;”
after calling this function. The CGI is considered finished when you call this, and will be
in an undefined state.

PARAMETERS

state Current server struct, as received by the CGI function.

url Fully qualified URL to redirect to.

RETURN VALUE

None - sets the state, so the CGI must immediately return with a value of 0.

LIBRARY

HTTP.LIB

SEE ALSO

cgi_sendstring

cgi_redirectto
180 TCP/IP User’s Manual

void cgi_sendstring(HttpState* state, char* str);

DESCRIPTION

Sends a string to the user. You should immediately issue a “return 0;” after calling
this function. The CGI is considered finished when you call this, and will be in an unde-
fined state. This function greatly simplifies a CGI handler because it allows you to gen-
erate your page in a buffer, and then let the library handle writing it to the network.

PARAMETERS

state Current server struct, as received by the CGI function.

str String to send.

RETURN VALUE

None - sets the state, so the CGI must immediately return with a value of 0.

LIBRARY

HTTP.LIB

SEE ALSO

cgi_redirectto

int http_addfile(char* name, long location);

DESCRIPTION

Adds a file to the TCP/IP servers list.

PARAMETERS

name Name of the file (e.g., "/index.html").

location Address of the file data. (from #ximport)

RETURN VALUE

0: Success;
1: Failure.

LIBRARY

HTTP.LIB

SEE ALSO

http_delfile

cgi_sendstring

http_addfile
Chapter 4: HTTP Server 181

 char *http_contentencode(char *dest, const char *src, int len);

DESCRIPTION

Converts a string to include HTTP transfer-coding ’’tokens’’ (such as @ (decimal) for
at-sign) where appropriate. Encodes these characters: ’’<>@%#&’’

Source string is NULL-byte terminated. Destination buffer is bounded by len. This
function is reentrant.

PARAMETERS

dest Buffer where encoded string is stored.

src Buffer holding original string (not changed)

len Size of destination buffer.

RETURN VALUE

dest: There was room for all conversions.
NULL: Not enough room.

LIBRARY

HTTP.LIB

SEE ALSO

http_urldecode

http_contentencode
182 TCP/IP User’s Manual

int http_delfile(char* name);

DESCRIPTION

Deletes a file from TCP/IP servers’ object list.

PARAMETERS

name Name of the file, as passed to http_addfile.

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY

HTTP.LIB

SEE ALSO

http_addfile

char* http_finderrbuf(char* name);

DESCRIPTION

Finds the occurrence of the given variable in the HTML form error buffer, and returns its
location.

PARAMETERS

name Name of the variable.

RETURN VALUE

NULL: Failure;
!NULL: Success, location of the variable in the error buffer.

LIBRARY

HTTP.LIB

http_delfile

http_finderrbuf
Chapter 4: HTTP Server 183

void http_nextfverr(char* start, char** name, char** value,
int* error, char** next);

DESCRIPTION

Gets the information for the next variable in the HTML form error buffer. If any of the
last four parameters in the function call are NULL, then those parameters will not have a
value returned. This is useful if you are only interested in certain variable information.

PARAMETERS

start Pointer to the variable in the buffer for which we want to get infor-
mation.

name Return location for the name of the variable.

value Return location for the value of the variable.

error Return location for whether or not the variable is in error (0 if it is
not, 1 if it is).

next Return location for a pointer to the variable after this one.

LIBRARY

HTTP.LIB

void http_handler();

DESCRIPTION

This is the basic control function for the HTTP server, a tick function to run the HTTP
daemon. It must be called periodically for the daemon to work. It parses the requests and
passes control to the other handlers, either html_handler, shtml_handler, or to
the developer-defined CGI handler based on the request’s extension.

LIBRARY

HTTP.LIB

SEE ALSO

http_init

http_nextfverr

http_handler
184 TCP/IP User’s Manual

int http_init(void);

DESCRIPTION

Initializes the HTTP daemon.

RETURN VALUE

0: Success.

LIBRARY

HTTP.LIB

SEE ALSO

http_handler

int http_parseform(int form, HttpState* state);

DESCRIPTION

Parses the returned form information. It expects a POST submission. This function is use-
ful for a developer who only wants the parsing functionality and wishes to generate forms
herself. Note that the developer must still build the array of FormVars and use the
server_spec table. This function will not, however, automatically display the form
when used by itself. If all variables satisfy all integrity checks, then the variables’ values
are updated. If any variables fail, then none of the values are updated, and error informa-
tion is written into the error buffer If this function is used directly, the developer must pro-
cess errors.

PARAMETERS

form server_spec index of the form (i.e., location in TCP/IP servers’
object list).

state The HTTP server with which to parse the POSTed data.

RETURN VALUE

0 if there is more processing to do;
1 form processing has been completed.

LIBRARY

HTTP.LIB

http_init

http_parseform
Chapter 4: HTTP Server 185

void http_setcookie(char* buf, char* value);

DESCRIPTION

This utility generates a cookie on the client. This will store the text in value into a cook-
ie-generation header that will be written to buf. This will not be written out to the client,
and it is still the responsibility of the client to write out. Also, this utility will generate an
HTTP header line that must be written along with any other headers that are written be-
fore the HTML file itself is written out. When a page is requested from the client, and the
cookie is already set, the text of the cookie will be stored in state->cookie[]. This
is a char*, and state->cookie[0] will equal ’\0’ if no cookie was available.

PARAMETERS

buf Buffer to store cookie-generation header.

value Text to store in cookie-generation header.

LIBRARY

HTTP.LIB

http_setcookie
186 TCP/IP User’s Manual

char *http_urldecode(char *dest, const char *src, int len);

DESCRIPTION

Converts a string with URL-escaped ’’tokens’’ (such as %20 (hex) for space) into actual
values. Changes "+" into a space. String can be NULL terminated; it is also bounded by a
specified string length. This function is reentrant.

PARAMETERS

dest Buffer where decoded string is stored.

src Buffer holding original string (not changed).

len Maximum size of string (NULL terminated strings can be shorter).

RETURN VALUE

dest: If all conversion was good.
NULL: If some conversion had troubles.

LIBRARY

HTTP.LIB

SEE ALSO

http_contentencode

http_urldecode
Chapter 4: HTTP Server 187

int shtml_addfunction(char* name, void (*fptr()));

DESCRIPTION

Adds a CGI/SSI-exec function for making dynamic web pages to the TCP/IP servers’ ob-
ject list.

PARAMETERS

name Name of the function (e.g., "/foo.cgi").

fptr Function pointer to the handler, that must take HttpState* as an
argument. This function should return an int (0 while still pend-
ing, 1 when finished).

RETURN VALUE

0: Success;
1: Failure (no room).

LIBRARY

HTTP.LIB

SEE ALSO

shtml_delfunction

shtml_addfunction
188 TCP/IP User’s Manual

int shtml_addvariable(char* name, void* variable, word type,
char* format);

DESCRIPTION

This function adds a variable so it can be recognized by the shtml_handler.

PARAMETERS

name Name of the variable.

variable Pointer to the variable.

type Type of variable. The following types are supported: INT8,
INT16, INT32, PTR16, FLOAT32

format Standard printf format string. (e.g., "%d")

RETURN VALUE

0: Success;
1: Failure (no room).

LIBRARY

HTTP.LIB

SEE ALSO

shtml_delvariable

shtml_addvariable
Chapter 4: HTTP Server 189

int shtml_delfunction(char* name);

DESCRIPTION

Deletes a function from the TCP/IP servers’ object list.

PARAMETERS

name Name of the function as given to shtml_addfunction.

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY

HTTP.LIB

SEE ALSO

shtml_addfunction

int shtml_delvariable(char* name);

DESCRIPTION

Deletes a variable from the TCP/IP servers’ object list.

PARAMETERS

name Name of the variable, as given to shtml_addvariable.

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY

HTTP.LIB

SEE ALSO

shtml_addvariable

shtml_delfunction

shtml_delvariable
190 TCP/IP User’s Manual

5. FTP Client

The library FTP_CLIENT.LIB implements the File Transfer Protocol (FTP) for the client side of
the connection.

5.1 Configuration Macros

DTP_PORT

The port to listen on for data connections. The low byte of the port number must be 0, as we use
the next 256 ports above the one supplied. The default is 0xA00.

FTP_MODE_DOWNLOAD

Specifies downloading a file.

FTP_MODE_UPLOAD

Specifies uploading a file.

MAX_NAMELEN

Maximum length for all usernames, passwords, and filenames. The default is 64. Note that this
must contain the NULL byte, so if it is set to 64, the maximum filename length is 63 characters.
Chapter 5: FTP Client 191

5.2 Functions

int ftp_client_setup(long host, int port, char *username, char
*password, int mode, char *filename, char *dir, char
*buffer, int length);

DESCRIPTION

Sets up a FTP transfer. It is called first, then ftp_client_tick() is called until it
returns non-zero.

PARAMETERS

host Host IP address of FTP server.

port Port of FTP server, 0 for default.

username Username of account on FTP server.

password Password of account on FTP server.

mode Mode of transfer (FTP_MODE_UPLOAD or
FTP_MODE_DOWNLOAD).

filename Filename to get/put.

dir Directory file is in, NULL for default directory.

buffer Buffer to get/put the file from/to.

length On upload, length of file; on download size of buffer.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY

FTP_CLIENT.LIB

ftp_client_setup
192 TCP/IP User’s Manual

int ftp_client_tick(void);

DESCRIPTION

Tick function to run the FTP daemon. Must be called periodically.

RETURN VALUE

0: Still pending, call again;
1: Success (file transfer complete);
2: Failure (general);
3: Failure (Couldn’t connect to remote host);
4: Failure (File not found).

LIBRARY

FTP_CLIENT.LIB

int ftp_client_filesize(void);

DESCRIPTION

If a file was downloaded (mode == FTP_MODE_DOWNLOAD), when
ftp_client_tick() returns 1, this function will return the size of the fetched file.
This number will be clobbered if ftp_client_setup() is called again, so it should
be copied out and stored quickly!

RETURN VALUE

Size, in bytes.

LIBRARY

FTP_CLIENT.LIB

ftp_client_tick

ftp_client_filesize
Chapter 5: FTP Client 193

5.3 Sample FTP Transfer

#define MY_IP_ADDRESS "10.10.6.105"
#define MY_NETMASK "255.255.255.0"

#memmap xmem
#use "dcrtcp.lib"
#use "ftp_client.lib"

#define REMOTE_HOST "10.10.6.19"
#define REMOTE_PORT 0

main() {
char buf[2048];
int ret, i, j;

printf("Calling sock_init()...\n");
sock_init();

/* Set up the ftp transfer. This is to the host defined above,
 with a normal anonymous/e-mail password login info. A download
 of the file "bar" is selected to be stored in ’buf.’*/

printf("Calling ftp_client_setup()...\n");
if(ftp_client_setup(resolve(REMOTE_HOST),REMOTE_PORT,

 anonymous", "anon@anon.com",FTP_MODE_DOWNLOAD,"bar",
 NULL,buf,sizeof(buf))) {
printf("FTP setup failed.\n");
exit(0);

}
printf("Looping on ftp_client_tick()...\n");
while(0 == (ret = ftp_client_tick()))

continue;

if(1 == ret) {
printf("FTP completed successfully.\n");

 /* ftp_client_filesize() returns the size of the transfer,
senses we requested a download.*/

buf[ftp_client_filesize()] = ’\0’;
printf("Data => ’%s’\n", buf);

} else {
printf("FTP failed: status == %d\n",ret);

}
}

194 TCP/IP User’s Manual

6. FTP Server

The library FTP_SERVER.LIB implements the File Transfer Protocol for the server side of the
connection. FTP uses two TCP connections to transfer a file. The FTP server does a passive open
on well-known port 21 and then listens for a client. Anonymous login is supported.

6.1 Configuration Constants
FTP_MAXSERVERS

This is the number of simultaneous connections the FTP server can support. It is recommended
that this be set to one (the default), as each subsequent server requires a significant amount of
RAM (2500 bytes by default; this can change through SOCK_BUF_SIZE or tcp_MaxBufSize
(deprecated)).

FTP_MAXNAME

The maximum length of filenames, usernames, and passwords. (It must include a null character so,
with it’s default value of 20, filenames can be 19 characters long.)

FTP_MAXLINE

The size of the working buffer in each server. Also, this is the maximum size of each network
read/write. It needs to be a minimum of about 256 bytes for the server to function properly. You
probably don’t need to change its default of 1024 bytes.

FTP_TIMEOUT

The length of time to wait for data from the remote host, before terminating the connection. If you
have a high-latency network condition, this might need to be increased from its default of 16 sec-
onds to avoid premature closures.

6.1.1 File Options
#define O_UNUSED 0
#define O_RDONLY 1
#define O_WRONLY 2
#define O_RDWR 3
Chapter 6: FTP Server 195

6.2 File Handlers
The data structure FTPhandlers can be passed to ftp_init to redefine how files are read and
written to. It contains function pointers to all of the individual functions. The default functions are
listed below.

typedef struct {
int (*open)();
int (*read)();
int (*write)();
int (*close)();
int (*getfilesize)();

} FTPhandlers;

int open(char *name, int options, int uid);

DESCRIPTION

Opens a file.

PARAMETERS

name The file to open,

options For a read-only file the value is O_RDONLY; for a write-only file, the
value is O_WRONLY

uid The userid of the currently logged in user.

RETURN VALUE

A file descriptor should be returned, or -1 on error.

open
196 TCP/IP User’s Manual

int getfilesize(int fd);

DESCRIPTION

If a file was opened for reading (O_RDONLY), this should return the size of the file.

PARAMETERS

fd The file descriptor that was returned when the file was opened.

RETURN VALUE

The size of the file in bytes.

int read(int fd, char *buf, int len);

DESCRIPTION

Reads a buffer of length len from fd into buf.

PARAMETERS

fd The file descriptor returned from open().

buf The location to read the file into.

len The number of bytes to read.

RETURN VALUE

 The number of bytes read.

getfilesize

read
Chapter 6: FTP Server 197

int write(int fd, char *buf, int len);

DESCRIPTION

Writes a buffer of length len from buf to fd. This is not currently supported.

PARAMETERS

fd The file descriptor returned from open(). This is destination the
data will be written to

buf The source location of the data to be written

len The number of bytes to write.

RETURN VALUE

Number of bytes written.

int close(int fd);

DESCRIPTION

Closes the file, and invalidates the file descriptor.

PARAMETERS

fd The file descriptor (returned from open()) of the file to close.

RETURN VALUE

0

Please note that if you redefine any of these file handler functions, all must be
replaced.

write

close
198 TCP/IP User’s Manual

6.3 Functions

void ftp_init(FTPhandlers *handlers);

DESCRIPTION

Initializes the FTP daemon.

PARAMETERS

handlers NULL means use default internal file handlers;
!NULL means to supply a struct of pointers to the various custom
file handlers (open, read, write, close, getfilesize).

RETURN VALUE

None

LIBRARY

FTP_SERVER.LIB

void ftp_tick(void);

DESCRIPTION

Once ftp_init has been called, ftp_tick must be called periodically to run the
daemon. This function is non-blocking.

LIBRARY

FTP_SERVER.LIB

ftp_init

ftp_tick
Chapter 6: FTP Server 199

6.4 Sample FTP Server
This code demonstrates a simple FTP server. The user "anonymous" may download the file "rab-
bitA.gif", but not "rabbitF.gif". The user "foo" (with password "bar") may download "rabbitF.gif",
but not "rabbitA.gif".

The program SSTATIC2.C in SAMPLES\TCPIP\HTML provides a more advanced example
than the one shown here.

/* ftp_server.c */

#define MY_IP_ADDRESS "10.10.6.105"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"

#memmap xmem
#use "dcrtcp.lib"
#use "ftp_server.lib"

#ximport "samples/tcpip/http/pages/rabbit1.gif" rabbit1_gif

main() {
int file;
int user;
// Set up the first file and user
file = sspec_addxmemfile("rabbitA.gif", rabbit1_gif, SERVER_FTP);
user = sauth_adduser("anonymous", "", SERVER_FTP);
sspec_setuser(file, user);

// Set up the second file and user
file = sspec_addxmemfile("rabbitF.gif", rabbit1_gif, SERVER_FTP);
user = sauth_adduser("foo", "bar", SERVER_FTP);
sspec_setuser(file, user);

sock_init();
ftp_init(NULL); /* use default handlers */
tcp_reserveport(21);
while(1) {

ftp_tick();
}

}

200 TCP/IP User’s Manual

7. TFTP Client

TFTP.LIB implements the Trivial File Transfer Protocol (TFTP). This standard protocol (inter-
net RFC783) is a lightweight protocol typically used to transfer bootstrap or configuration files
from a server to a client host, such as a diskless workstation. TFTP allows data to be sent in either
direction between client and server, using UDP as the underlying transport.

This library fully implements TFTP, but as a client only.

Compared with more capable protocols such as FTP, TFTP:

• has no security or authentication

• is not as fast because of the step-by-step protocol

• uses fewer machine resources.

Because of the lack of authentication, most TFTP servers restrict the set of accessible files to a
small number of configuration files in a single directory. For uploading files, servers are usually
configured to accept only certain file names that are writable by any user. If these restrictions are
acceptable, TFTP has the advantage of requiring very little ’footprint’ in the client host.

7.0.1 BOOTP/DHCP
In conjunction with DHCP/BOOTP and appropriate server configuration, TFTP is often used to
download a kernel image to a diskless host. The target TCP/IP board does not currently support
loading the BIOS in this way, since the BIOS and application program are written to non-volatile
flash memory. However, the downloaded file does not have to be a binary executable - it can be
any reasonably small file, such as an application configuration file. TFTP and DHCP/BOOTP can
thus be used to administer the configuration of multiple targets from a central server.

Using TFTP with BOOTP/DHCP requires minimal additional effort for the programmer. Just
#define the symbol DHCP_USE_TFTP to an integer representing the maximum allowable boot
file size (1-65535). See the description of the variables _bootpsize, _bootpdata and
_bootperror on page 5 for further details.
Chapter 7: TFTP Client 201

7.0.2 Data Structure for TFTP
This data structure is used to send and receive. The tftp_state structure, which is required for
many of the API functions in TFTP.LIB, may be allocated either in root data memory or in
extended memory. This structure is approximately 155 bytes long.

 7.0.2.1 Macros for tftp_state->mode
#define TFTP_MODE_NETASCII 0 // ASCII text
#define TFTP_MODE_OCTET 1 // 8-bit binary
#define TFTP_MODE_MAIL 2 // Mail (remote file name is
 // email address e.g.
 // user@host.blob.org)

7.0.3 Function Reference
Any of the following functions will require approximately 600-800 bytes of free stack. The data
buffer for the file to put or to get is always allocated in xmem (see xalloc()).

TFTP Session
A session can be either a single download (get) or upload (put). The functions ending with ’x’ are
versions that use a data structure allocated in extended memory, for applications that are con-
strained in their use of root data memory.

typedef struct tftp_state {
byte state; // Current state. LSB indicates read(0)

 // or write(1). Other bits determine
 // state within this (see below).

long buf_addr; // Physical address of buffer
word buf_len; // Length of buffer
word buf_used; // Amount Tx or Rx from/to buffer
word next_blk; // Next expected block #, or next to Tx
word my_tid; // UDP port number used by this host
udp_Socket * sock; // UDP socket to use
longword rem_ip; // IP address of remote host
longword timeout; // ms timer value for next timeout
char retry; // retransmit retry counter
char flags; // misc flags (see below).

// Following fields not used after initial request has been
// acknowledged.

char mode; // Translation mode (see below).
char file[129]; // File name on remote host (TFTP

 // server)- NULL terminated. This
 // field will be overwritten with a
 // NULL-term error message from the
 // server if an error occurs.
};
202 TCP/IP User’s Manual

int tftp_init(struct tftp_state * ts);

DESCRIPTION

This function prepares for a TFTP session and is called to complete initialization of the
TFTP state structure. Before calling this function, some fields in the structure
tftp_state must be set up as follows:

ts->state = <0 for read, 1 for write>
ts->buf_addr = <physical address of xmem buffer>
ts->buf_len = <length of physical buffer, 0-65535>
ts->my_tid = <UDP port number. Set 0 for default>
ts->sock = <address of UDP socket (udp_Socket *),or NULL to

use DHCP/BOOTP socket>
ts->rem_ip = <IP address of TFTP server host, or zero to use

default BOOTP host>
ts->mode = <one of the following constants:

TFTP_MODE_NETASCII ASCII text
TFTP_MODE_OCTET 8-bit binary
TFTP_MODE_MAIL Mail>

strcpy(ts->file, <remote filename or mail address>)

Note that mail mode can only be used to write mail to the TFTP server, and the file name
is the e-mail address of the recipient. The e-mail message must be ASCII-encoded and
formatted with RFC822 headers. Sending e-mail via TFTP is deprecated. Use SMTP in-
stead since TFTP servers may not implement mail.

PARAMETERS

ts Pointer to tftp_state.

RETURN VALUE

0: OK
-4: Error, default socket in use.

LIBRARY

TFTP.LIB

tftp_init
Chapter 7: TFTP Client 203

http://www.faqs.org/rfcs/rfc822.html

int tftp_initx(long ts_addr);

DESCRIPTION

This function is called to complete initialization of the TFTP state structure, where the
structure is possibly stored somewhere other than in the root data space. This is a wrapper
function for tftp_init(). See that function description for details.

PARAMETERS

ts_addr Physical address of TFTP state (struct tftp_state)

RETURN VALUE

0: OK
-1: Error, default socket in use.

LIBRARY

TFTP.LIB

tftp_initx
204 TCP/IP User’s Manual

int tftp_tick(struct tftp_state * ts);

DESCRIPTION

This function is called periodically in order to take the next step in a TFTP process. Ap-
propriate use of this function allows single or multiple transfers to occur without block-
ing. For multiple concurrent transfers, there must be a unique tftp_state structure,
and a unique UDP socket, for each transfer in progress. This function calls
sock_tick().

PARAMETERS

ts Pointer to TFTP state. This must have been set up using
tftp_init(), and must be passed to each call of
tftp_tick() without alteration.

RETURN VALUE

1: OK, transfer not yet complete.
0: OK, transfer complete

-1: Error from remote side, transfer terminated. In this case, the ts_addr->file field
will be overwritten with a NULL-terminated error message from the server.

-2: Error, could not contact remote host or lost contact.
-3: Timed out, transfer terminated.
-4: (not used)
-5: Transfer complete, but truncated -- buffer too small to receive the complete file.

LIBRARY

TFTP.LIB

tftp_tick
Chapter 7: TFTP Client 205

int tftp_tickx(long ts_addr);

DESCRIPTION

This function is a wrapper for calling tftp_tick(), where the structure is possibly
stored somewhere other than in the root data space. See that function description for de-
tails.

PARAMETERS

ts_addr Physical address of TFTP state (struct tftp_state).

RETURN VALUE

1: OK, transfer not yet complete.
0: OK, transfer complete

-1: Error from remote side, transfer terminated. In this case, the ts_addr->file field
will be overwritten with a NULL-terminated error message from the server.

-2: Error, could not contact remote host or lost contact.
-3: Timed out, transfer terminated.
-4: (not used)
-5: Transfer complete, but truncated -- buffer too small to receive the complete file.

LIBRARY

TFTP.LIB

tftp_tickx
206 TCP/IP User’s Manual

int tftp_exec(char put, long buf_addr, word * len, int mode,
char * host, char * hostfile, udp_Socket * sock);

DESCRIPTION

Prepare and execute a complete TFTP session, blocking until complete.This function is a wrapper
for tftp_init() and tftp_tick(). It does not return until the complete file is transferred or
an error occurs. Note that approximately 750 bytes of free stack will be required by this function.

PARAMETERS

put 0: get file from remote host; 1: put file to host.

buf_addr Physical address of data buffer.

len Length of data buffer. This is both an input and a return parameter.
It should be initialized to the buffer length. On return, it will be set
to the actual length received (for a get), or unchanged (for a put).

mode Data representation: 0=NETASCII, 1=OCTET (binary), 2=MAIL.

host Remote host name, or NULL to use default BOOTP host.

hostfile Name of file on remote host, or e-mail address for mail.

sock UDP socket to use, or NULL to re-use BOOTP socket if available.

RETURN VALUE

0: OK, transfer complete.
-1: Error from remote side, transfer terminated. In this case, ts_addr->file

 will be overwritten with a NULL-terminated error message from the server.
-2: Error, could not contact remote host or lost contact.
-3: Timed out, transfer terminated
-4: sock parameter was NULL, but BOOTP socket was unavailable.

LIBRARY

TFTP.LIB

tftp_exec
Chapter 7: TFTP Client 207

208 TCP/IP User’s Manual

8. SMTP Mail Client

SMTP (Simple Mail Transfer Protocol) is one of the most common ways of sending e-mail. SMTP
is a simple text conversation across a TCP/IP connection. The SMTP server usually resides on
TCP port 25 waiting for clients to connect.

Sending mail with the SMTP.LIB client library is a four-step process. First, build your e-mail
message, then call smtp_sendmail(). Next, repetitively call smtp_mailtick() while it is
returning SMTP_PENDING. Finally, call smtp_status() to determine if the mail was sent suc-
cessfully. There is a sample program in Section 8.4 that outlines how to send a simple mail mes-
sage.

8.1 Sample Conversation
The following is a typical listing of mail from the controller (me@somewhere.com) to some-
one@somewhereelse.com. The mail server that the controller is talking to is mail.somehost.com.
The lines that begin with a numeric value are coming from the mail server. The other lines were
sent by the controller. More information on the exact specification of SMTP and the meanings of
the commands and responses can be found in RFC821 at http://www.ietf.org.

You can see a listing of the conversation between your controller and the mail server by defining
the SMTP_DEBUG macro at the top of your program.

Note that there must be a blank line after the line “Subject: test mail”.

220 mail.somehost.com ESMTP Service (WorldMail 1.3.122) ready
HELO 10.10.6.100

250 mail.somewhere.com
MAIL FROM: <me@somewhere.com>

250 MAIL FROM:<me@somewhere.com> OK
RCPT TO: <someone@somewhereelse.com>

250 RCPT TO:<someone@somewhereelse.com> OK
DATA

354 Start mail input; end with <CRLF>.<CRLF>
From: <me@somewhere.com>
To: <someone@somewhereelse.com>
Subject: test mail

test mail
.

250 Mail accepted
QUIT

221 mail.somehost.com QUIT
Chapter 8: SMTP Mail Client 209

http://www.ietf.org

8.2 Configuration
The SMTP client is configured by using compiler macros.

SMTP_DEBUG

This macro tells the SMTP code to log events to the STDIO window in Dynamic C. This provides
a convenient way of troubleshooting an e-mail problem.

SMTP_DOMAIN

This macro defines the text to be sent with the HELO client command. Many mail servers ignore
the information supplied with the HELO, but some e-mail servers require the fully qualified name
in this field (i.e., somemachine.somedomain.com). If you have problems with e-mail being
rejected by the server, turn on SMTP_DEBUG. If it is giving an error message after the HELO line,
talk to the administer of the machine for the appropriate value to place in SMTP_DOMAIN. If you
do not define this macro, it will default to MY_IP_ADDRESS.

#define SMTP_DOMAIN "somemachine.somedomain.com"

SMTP_SERVER

This macro defines the mail server that will relay the controller’s mail. This server must be config-
ured to relay mail for your controller. You can either place a fully qualified domain name or an IP
address in this field.

#define SMTP_SERVER "mail.mydomain.com"

or

#define SMTP_SERVER "10.10.6.19"

SMTP_TIMEOUT

This macro tells the SMTP code how long in seconds to try to send the e-mail before timing out. It
defaults to 20 seconds.

#define SMTP_TIMEOUT 10
210 TCP/IP User’s Manual

8.3 Functions

void smtp_sendmail(char* to, char* from, char* subject, char*
message);

DESCRIPTION

This function initializes the internal data structures with strings for the to e-mail address,
the from e-mail address, the subject, and the body of the message. You should not modify
these strings until smtp_mailtick no longer returns SMTP_PENDING.

PARAMETERS

to String containing the e-mail address of the destination.

from String containing the e-mail address of the source.

subject String containing the subject of the message.

message String containing the message. (This string must NOT contain the
byte sequence "\r\n.\r\n" (CRLF.CRLF), as this is used to mark the
end of the e-mail, and will be appended to the e-mail automatically.)

RETURN VALUE

None

LIBRARY

SMTP.LIB

smtp_sendmail
Chapter 8: SMTP Mail Client 211

void smtp_sendmailxmem(char* to, char* from, char* subject,
long message, long messagelen);

DESCRIPTION

This function initializes the internal data structures with strings for the to e-mail address,
the from e-mail address, the subject, and the body of the message. You should not modify
these strings until smtp_mailtick no longer returns SMTP_PENDING.

PARAMETERS

to String containing the e-mail address of the destination.

from String containing the e-mail address of the source.

subject String containing the subject of the message.

message Physical address in xmem containing the message. (The message
must NOT contain the byte sequence "\r\n.\r\n" (CRLF.CRLF), as
this is used to mark the end of the e-mail, and will be appended to
the e-mail automatically.)

messagelen Length of the message in xmem.

RETURN VALUE

None

LIBRARY

SMTP.LIB

smtp_sendmailxmem
212 TCP/IP User’s Manual

int smtp_mailtick(void);

DESCRIPTION

Repetitively call this function until e-mail is completely sent. For a small message, this
function will need to be called about 20 times to send the message. The number of times
will vary depending on the latency of you connection to the mail server and the size of
your message.

RETURN VALUE

SMTP_SUCCESS - e-mail sent.
SMTP_PENDING - e-mail not sent yet call smtp_mailtick again.
SMTP_TIME - e-mail not sent within SMTP_TIMEOUT seconds.
SMTP_UNEXPECTED - received an invalid response from SMTP server.

LIBRARY

SMTP.LIB

int smtp_status(void);

DESCRIPTION

Return the status of the last e-mail processed.

RETURN VALUE

SMTP_SUCCESS - e-mail sent.
SMTP_PENDING - e-mail not sent yet call smtp_mailtick again.
SMTP_TIME - e-mail not sent within SMTP_TIMEOUT seconds.
SMTP_UNEXPECTED - received an invalid response from SMTP server.

LIBRARY

SMTP.LIB

smtp_mailtick

smtp_status
Chapter 8: SMTP Mail Client 213

8.4 Sample Sending of an E-mail
This program, smtp.c, uses the SMTP library to send an e-mail. For an example of using
smtp_sendmailxmem(), see the sample program Samples\tcpip\smtp\Smtpxmem.c.

/* Change these macros to the appropriate values or change
 * the smtp_sendmail(...) call in main() to reference your values.
 */

#define FROM "myaddress@mydomain.com"
#define TO "myaddress@mydomain.com"
#define SUBJECT "test mail"
#define BODY "You’ve got mail!"

/* Change these values to your network settings */
#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"

/* SMTP_SERVER tells DCRTCP where your mail server is. This
 * value can be the name or the IP address. */

#define SMTP_SERVER "mymailserver.mydomain.com"

//#define SMTP_DOMAIN "mycontroller.mydomain.com"

//#define SMTP_DEBUG

#memmap xmem
#use dcrtcp.lib
#use smtp.lib

main() {
sock_init();

smtp_sendmail(FROM, TO, SUBJECT, BODY);

while(smtp_mailtick()==SMTP_PENDING)
continue;

if(smtp_status()==SMTP_SUCCESS)
printf("Message sent\n");

else
printf("Error sending message\n");

}

214 TCP/IP User’s Manual

9. POP3 Client

Post Office Protocol version 3 (POP3) is probably the most common way of retrieving e-mail
from a remote server. Most e-mail programs, such as Eudora, MS-Outlook, and Netscape’s e-mail
client, use POP3. The protocol is a fairly simple text-based chat across a TCP socket, normally
using TCP port 110.

There are two ways of using POP3.LIB. The first method provides a raw dump of the incoming
e-mail. This includes all of the header information that is sent with the e-mail, which, while some-
times useful, may be more information than is needed. The second method provides a parsed ver-
sion of the e-mail, with the sender, recipient, subject-line, and body-text separated out.

In both methods, each line of e-mail has CRLF stripped from it and ‘\0’ appended to it.

9.1 Configuration
The POP3 client can be configured through the following macros:

POP_BUFFER_SIZE

This will set the buffer size for POP_PARSE_EXTRA in bytes. These are the buffers that hold the
sender, recipient and subject of the e-mail. POP_BUFFER_SIZE defaults to 64 bytes.

POP_DEBUG

This will turn on debug information. It will show the actual conversation between the device and
the remote mail server, as well as other useful information.

POP_NODELETE

This will stop the POP3 library from removing messages from the remote server as they are read.
By default, the messages are deleted to save storage space on the remote mail server.

POP_PARSE_EXTRA

This will enable the second mode, creating a parsed version of the e-mail as mentioned above. The
POP3 library parses the incoming mail more fully to provide the Sender, Recipient, Subject, and
Body fields as separate items to the call-back function.

9.2 Three Steps to Receive E-mail.
1. pop3_init()is called to provide the POP3 library with a call-back function. This call-back

will be used to provide you the incoming data. This function is usually called once.

2. pop3_getmail() is called to start the e-mail being received, and to provide the library with
e-mail account information.

3. pop3_tick() is called as long as it returns POP_PENDING, to actually run the library. The
library will call the function you provided several times to give you the e-mail.
Chapter 9: POP3 Client 215

9.3 Call-Back Function
There are two types of call-back functions, depending on if POP_PARSE_EXTRA is defined and
will be handled separately.

9.3.1 Normal call-back
When not using POP_PARSE_EXTRA, you need to provide a function with the following proto-
type:

int storemail(int number, char *buf, int size);

number is the number of the e-mail being transferred, usually 1 for the first, 2 for the second, but
not necessarily. The numbers are only guaranteed to be unique between all e-mails transferred.

buf is the text buffer containing one line of the incoming e-mail. This must be copied out imme-
diately, as the buffer will be different when the next line comes in, and your call-back is called
again.

size is the number of bytes in buf.

See pop.c in the Dynamic C Sample folder for an example of this style of call-back.

9.3.2 POP_PARSE_EXTRA call-back
If POP_PARSE_EXTRA is defined, you need to provide a call-back function with the following
prototype:

int storemail(int number, char *to, char *from, char *subject,
char *body, int size);

number, body, and size are the same as before.

to has the e-mail address of who this e-mail was sent to.

from has the e-mail address of who sent this e-mail.

subject has the subject line of the e-mail.

These new fields should only be used the first time your call-back is called with a new number
field. In subsequent calls, these fields are not guaranteed to have accurate information.

See parse_extra.c in Section 9.5 for an example of this type of call-back.
216 TCP/IP User’s Manual

9.4 Functions

int pop3_init(int (*storemail)());

DESCRIPTION

This function must be called before any other POP3 function is called. It will set the call-
back function where the incoming e-mail will be passed to. This probably should only be
called once.

PARAMETERS

storemail A function pointer to the call-back function.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY

POP3.LIB

pop3_init
Chapter 9: POP3 Client 217

int pop3_getmail(char *username, char *password, long server);

DESCRIPTION

This function will initiate receiving e-mail (a POP3 request to a remote e-mail server).
IMPORTANT NOTE - the buffers for username and password must NOT change
until pop3_tick() returns something besides POP_PENDING. These values are not
saved internally, and depend on the buffers not changing.

PARAMETERS

username The username of the account to access.

password The password of the account to access.

server The IP address of the server to connect to, as returned from re-
solve().

RETURN VALUE

0: Success;
1: Failure.

LIBRARY

POP3.LIB

int pop3_tick(void)

DESCRIPTION

A standard tick function, to run the daemon. Continue to call it as long as it returns
POP_PENDING.

RETURN VALUE

POP_PENDING: Transfer is not done; call pop3_tick again.
POP_SUCCESS: All e-mails were received successfully.
POP_ERROR: Unknown error occurred.
POP_TIME: Session timed-out. Try again, or use POP_TIMEOUT to increase the time-
out length.

LIBRARY

POP3.LIB

pop3_getmail

pop3_tick
218 TCP/IP User’s Manual

9.5 Sample receiving of e-mail
parse_extra.c connects to a POP3 server and downloads e-mail form it.

#define MY_IP_ADDRESS "10.10.6.105" // change these configuration macros
#define MY_NETMASK "255.255.255.0" // to match your host.
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER "10.10.6.254"

#define POP_HOST mail.domain.com" //enter the name of your POP3 server

#define POP_USER "myname" //enter username for POP3 account
#define POP_PASS "secret" //enter password for POP3 account

#define POP_PARSE_EXTRA
#memmap xmem
#use "dcrtcp.lib"
#use "pop3.lib"
int n;

int storemsg(int num, char *to, char *from, char *subject, char *body, int
len){

#GLOBAL_INIT{n = -1;}
if(n != num) {

n = num;
printf("RECEIVING MESSAGE <%d>\n", n);
printf("\tFrom: %s\n", from);
printf("\tTo: %s\n", to);
printf("\tSubject: %s\n", subject);

}
printf("MSG_DATA> ’%s’\n", body);
return 0;

}
main(){

static long address;
static int ret;

sock_init();
pop3_init(storemsg); //set up call-back function

printf("Resolving name...\n");
address = resolve(POP_HOST);
printf("Calling pop3_getmail()...\n");
pop3_getmail(POP_USER, POP_PASS, address); // POP3 request to server

printf("Entering pop3_tick()...\n");
while((ret = pop3_tick()) == POP_PENDING)

continue;
if(ret == POP_SUCCESS)

printf("POP was successful!\n");
if(ret == POP_TIME)

printf("POP timed out!\n");
if(ret == POP_ERROR)

printf("POP returned a general error!\n");

printf("All done!\n");
}

Chapter 9: POP3 Client 219

9.5.1 Sample Conversation
The following is an example POP3 session from the specification in RFC1939. For more informa-
tion see:

 http://www.rfc-editor.org/rfc/std/std53.txt

In the following example, lines starting with ‘S:’ are the server’s message, and lines starting with
‘C:’ are the client’s messages.

 S: <wait for connection on TCP port 110>
 C: <open connection>
 S: +OK POP3 server ready <1896.697170952@dbc.mtview.ca.us>
 C: APOP mrose c4c9334bac560ecc979e58001b3e22fb
 S: +OK mrose’s maildrop has 2 messages (320 octets)
 C: STAT
 S: +OK 2 320
 C: LIST
 S: +OK 2 messages (320 octets)
 S: 1 120
 S: 2 200
 S: .
 C: RETR 1
 S: +OK 120 octets
 S: <the POP3 server sends message 1>
 S: .
 C: DELE 1
 S: +OK message 1 deleted
 C: RETR 2
 S: +OK 200 octets
 S: <the POP3 server sends message 2>
 S: .
 C: DELE 2
 S: +OK message 2 deleted
 C: QUIT
 S: +OK dewey POP3 server signing off (maildrop empty)
 C: <close connection>
 S: <wait for next connection>

For debugging purposes, you can observe this conversation by defining POP_DEBUG at the top of
your program.
220 TCP/IP User’s Manual

http://www.rfc-editor.org/rfc/std/std53.txt

10. Telnet

The library, Vserial.lib, implements the telecommunications network interface, known as
telnet. The implementation is a telnet-to-serial and serial-to-telnet gateway. This chapter is divided
into two parts. The first part describes the library from Dynamic C version 7.05 and later. The sec-
ond part describes the library prior to 7.05.

10.1 Telnet (Dynamic C 7.05 and later)
This implementation is more general than the previous one. Any of the four serial ports can be
used and other I/O streams can be added. Multiple connections are supported by the use of unique
gateway identifiers.

10.1.1 Setup
To use a serial port, the circular buffers must be initialized. For instance, if serial port A is used by
an application, then the following macros must be defined in the program:

#define AINBUFSIZE 31
#define AOUTBUFSIZE 31

It might be necessary to have bigger buffers for some applications.

10.1.1.1 Low-level Serial Routines
A table to hold the low-level I/O routines must be defined as type VSerialSpec.

typedef struct {
int id; // unique ID to match w/ calls to listen/open
int (*open)(); // serial port routines, or
int (*close)(); // serial port compatible routines.
int (*tick)();
int (*rdUsed)();
int (*wrFree)();
int (*read)();
int (*write)();

} VSerialSpec;

For each serial port (A, B, C and D), there is a pre-defined macro in VSERIAL.LIB:

#define VSERIAL_PORTA(id) { (id), serAopen, serAclose, NULL,
serArdUsed, serAwrFree, serAread, serAwrite }

The parameter being passed to VSERIAL_PORTA is the unique gateway identifier mentioned
earlier. This value is chosen by the developer when entries are made to the array of type
VSerialSpec (also known as the spec table).
Chapter 10: Telnet 221

10.1.1.2 Configuration Macros

VSERIAL_DEBUG

Turns on debug messages.

VSERIAL_NUM_GATEWAYS

The number of telnet sessions must be defined and must match the number of entries in the spec
table.

10.1.2 Function Reference (Dynamic C 7.05 and later)

int vserial_close(int id);

DESCRIPTION

Closes the specified gateway. This will not only terminate any network activity, but will
also close the serial port.

PARAMETERS

id ID of the gateway to change, as specified in the spec table.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY

VSERIAL.LIB

int vserial_init (void);

DESCRIPTION

Initializes the daemon and parses the spec table.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY

VSERIAL.LIB

vserial_close

vserial_init
222 TCP/IP User’s Manual

int vserial_keepalive (int id, long timeout);

DESCRIPTION

This function sets the keepalive timer to generate TCP keepalives after timeout peri-
ods of inactivity. This helps detect if the connection has gone bad.

Keepalives should be used at the application level, but if that is not possible, then
timeout should be set so as to not overload the network. The standard timeout is two
hours, and should be set sooner than that only for a Very Good Reason.

PARAMETERS

id Unique gateway identifier.

timeout Number of seconds of inactivity allowed before a TCP keepalive is
sent. A value of 0 shuts off keepalives.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY

VSERIAL.LIB

vserial_keepalive
Chapter 10: Telnet 223

int vserial_listen(int id, long baud, int port, long
remote_host, int flags);

DESCRIPTION

Listens on the specified port for a telnet connection. The gateway process is started when
a connection request is received. On disconnect, re-listen happens automatically.

PARAMETERS

id ID of the gateway to change, as specified in the spec table.

baud The parameter to send to the open() serial port command; it’s usu-
ally the baud rate.

port The local TCP port to listen on.

remote_host The remote host from whom to accept connections, or 0 to accept a
connection from anybody.

flags Option flags for this gateway. Currently the only valid bit flags are
VSERIAL_COOKED to strip out telnet control codes, or 0 to leave
it a raw data link.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY

VSERIAL.LIB

vserial_listen
224 TCP/IP User’s Manual

int vserial_open(int id, long baud, int port, long remote_host,
int flags, long retry);

DESCRIPTION

Opens a connection to a remote host and maintains it, starting the gateway process.

PARAMETERS

id ID of the gateway to change, as specified in the spec table.

baud The parameter to send to the open() serial port command; it’s usu-
ally the baud rate.

port The TCP port on the remote host to connect to.

remote_host The remote host to connect to.

flags Option flags for this gateway. Currently the only valid bit flags are
VSERIAL_COOKED to strip out telnet control codes, or 0 to leave
it a raw data link.

retry The retry timeout, in seconds. When a connection fails, or if the con-
nection was refused, we will wait this number of seconds befor re-
trying.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY

VSERIAL.LIB

vserial_open
Chapter 10: Telnet 225

int vserial_tick(void);

DESCRIPTION

Runs the telnet daemon - must be called periodically.

RETURN VALUE

0: Success;
1: Failure.

But call it periodicly no matter the return value! An error message can be seen when 1 is
returned if you #define VSERIAL_DEBUG at the top of your program.

LIBRARY

VSERIAL.LIB

10.1.3 Sample Program (Dynamic C 7.05 and later)
/**
 * vserial.c
 * This demonstrates the use of the new VSERIAL.LIB, which provides
 * a gateway between serial ports or serial-port-like devices, and
 * a telnet-style TCP socket.
 ***/

#define MY_IP_ADDRESS "10.10.6.105"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"

/*
 * Each gateway mapping must be uniquely identified with a number.
 * Macros are used for code readability.
 */
#define GATEWAY_PORTC 1

/*
 * Serial buffer sizes have to be defined any time the serial ports
 * are used, because of how RS232.LIB works.
 */

#define CINBUFSIZE 31
#define COUTBUFSIZE 31

vserial_tick
226 TCP/IP User’s Manual

/* Uncomment this to see debug messages */
//#define VSERIAL_DEBUG

/*
 * The number of gateways that will be specified. This must match the
 * number of rows in the VSerialSpecTable that is defined below.
 */
#define VSERIAL_NUM_GATEWAYS 1

#use "vserial.lib"
/*
 * This table defines the low-level serial routines used to talk to
 * the serial port hardware. Each row is one possible hardware
 * gateway. Because the built-in Rabbit serial ports will be used
 * often, shortcut-macros are defined for each of the ports, A-D.
 * They take as a parameter an identifier such that they can be
 * referenced by the vserial_* functions below.
 */
const VSerialSpec VSerialSpecTable[] = {

VSERIAL_PORTC(GATEWAY_PORTC),
};

main()
{

sock_init();

/* Initilize the vserial library (parse the above structures)*/
if(vserial_init()) {

printf("Error starting vserial library!\n");
exit(-1);

}

/* Enable our first serial->tcp mapping */
if(vserial_listen(GATEWAY_PORTC,57600,23,0L,VSERIAL_COOKED)) {

printf("Error listening!\n");
exit(-1);

}

/*
 * Force the tcp connection to be persistent. This causes
 * TCP Keepalives to be sent on the socket periodicly. It is
 * important to note that this can cause a large ammount of
 * network traffic over time.
 */
if(vserial_keepalive(GATEWAY_PORTC,30)) {

printf("Error setting keepalive!\n");
exit(-1);

}

/* run it */
for(;;) {

vserial_tick();
}

}

Chapter 10: Telnet 227

10.2 Telnet (pre-Dynamic C 7.05)

10.2.1 Configuration Macros

SERIAL_PORT_SPEED

The baud rate of the serial port. Defaults to 115,200 bps.

TELNET_COOKED

#define this to have telnet control codes stripped out of the data stream (useful if you are actu-
ally Telneting to the device from another box; should probably NOT be defined if you are using
two devices as a transparent bridge over the Ethernet).

10.2.2 Function Reference

int telnet_init(int which, longword addy, int port);

DESCRIPTION

Initializes the connection.

PARAMETERS

which Is one of the following:

TELNET_LISTEN—Listens on a port for incoming connections.

TELNET_RECONNECT—Connects to a remote host, and recon-
nects if the connection dies.

TELNET_CONNECT—Connects to a remote host, and terminates if
the connection dies.

addy IP address of the remote host, or 0 if we are listening.

port Port to bind to if we are listening, or the port of the remote host to
connect to.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY

VSERIAL.LIB

telnet_init
228 TCP/IP User’s Manual

int telnet_tick(void);

DESCRIPTION

Must be called periodically to run the daemon.

RETURN VALUE

0: Success (call it again);
1: Failure; TELNET_CONNECT died, or a fatal error occurred.

LIBRARY

VSERIAL.LIB

void telnet_close(void);

DESCRIPTION

Terminates any connections currently open, and shuts down the daemon.

LIBRARY

VSERIAL.LIB

telnet_tick

telnet_close
Chapter 10: Telnet 229

10.2.3 An Example Telnet Server

/*
 * Telnet Server: Listens on a telnet port for a connection, and
 * transparently passes data on to the serial port
 */

// Initilize the IP address/etc as usual
#define MY_IP_ADDRESS "10.10.6.105"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"
#define MY_NAMESERVER "10.10.6.19"

#define SERIAL_PORT_SPEED 115200

/*
 * We want RAW data, leaving in any telnet/etc control codes.
 * (this is a raw data port). #define this to cook the input.
 */
#undef TELNET_COOKED

#memmap xmem
#use "dcrtcp.lib"
#use "vserial.lib"

/*
 * TCP Port to listen on. 0 defaults to normal telnet port
 */
#define SERVER_PORT 0

main() {
sock_init(); // Init TCP/IP
telnet_init(TELNET_LISTEN,0,SERVER_PORT); //Init Vserial server

// Loop on telenet_tick() to run server; this is non-blocking
while(!telnet_tick())

continue;

// Error happened, close telnet connection (shouldn’t happen)
telnet_close();

}

230 TCP/IP User’s Manual

10.2.3.1 A Sample Client To Connect to the Server

// Client.c Connects to above server, at given IP address and port

#define MY_IP_ADDRESS "10.10.6.105"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"
#define MY_NAMESERVER "10.10.6.19"

// Set the speed of the serial port
#define SERIAL_PORT_SPEED 115200

#undef TELNET_COOKED
#memmap xmem
#use "dcrtcp.lib"
#use "vserial.lib"

// TCP Port to connect to. 0 defaults to normal telnet port
#define SERVER_PORT 0

// Remote IP to connect to.
#define REMOTE_HOST "10.10.6.19"

main() {
sock_init();
/*
 * Init the VSerial server to connect, and reconnect if the
 * connection is lost
 */
telnet_init(TELNET_RECONNECT,resolve(REMOTE_HOST),SERVER_PORT);

// Loop on telenet_tick() to run it; this is non-blocking
while(!telnet_tick())

continue;

// Error happened, we get here - close it (shouldn’t happen)
telnet_close();

}

Chapter 10: Telnet 231

232 TCP/IP User’s Manual

11. General Purpose Console

11.1 Introduction
The library, Zconsole.lib, implements a serial-based console that can:

• Configure a board.

• Upload and download web pages.

• Change web page variables without re-uploading the page.

• Send e-mail.

11.2 Console Features
Recognizing that embedded control systems are wide-ranging in their requirements, Zcon-
sole.lib was designed with flexibility and extensibility in mind. Designers can choose the
available functionality they want and leave the rest alone. The Console includes:

• A fail-safe backup system for configuration data.

• Default and custom Console commands.

• Default and custom error messages.

• Help text for Console commands, including custom commands

• Multiple I/O streams that can be used simultaneously.

11.2.1 Using other Dynamic C Libraries
An application program that uses the Console must include the lines

#use "FileSystem.lib" // if using the improved file system
 // that is available starting with
 // Dynamic C 7.05, substitute “fs2.lib”
 // for “FileSystem.lib”
#use "zconsole.lib"

Dynamic C TCP/IP functionality may be used by a Console application program by including the
appropriate libraries.
Chapter 11: General Purpose Console 233

11.3 Console Commands and Messages
The Console is a command-driven application. A command is issued either at the keyboard using
a terminal emulator or a command is generated and sent from an attached machine. The Console
carries out the command, and either the message “OK” \r\n is returned, or an error is returned in
the form of:

ERROR XXXX This is an error message.\r\n

Note that the carriage return and new line characters (\r\n) are always returned by the Console
whether the command completed successfully or not.

11.3.1 Console Command Data Structure
The command system is set up at compile time with an array of ConsoleCommand structures.
There is one array entry for each command recognized by the Console.

typedef struct {
char* command;
int (*cmdfunc)();
long helptext;

} ConsoleCommand

command
This field is a string like the following: “SET MAIL FROM “. That is, each word of the command
is separated by a space. The case of the command does not matter. Entering this string is how the
command is invoked.

cmdfunc
This field is a function pointer to the function that implements the command. The functions that
come with the Console are listed in Section 11.3.3.1 on page 236.

helptext
This field points to a text file. The text file contains help information for the associated command.
When HELP COMMAND is entered, this text file (the help information for COMMAND) will be
printed to the Console. The help text comes from #ximported text files.

 11.3.1.1 Help Text for General Cases
There are two cases in Zconsole.lib where help text is needed, but is not associated with a
particular command. It is still necessary to allocate a ConsoleCommand structure to access the
help text. The first case is the help overview given when HELP is entered by itself. The command
field should be ““ and the cmdfunc field should be NULL.

{ "", NULL, help_txt },

The second case is HELP SET. This is an overview of the family of SET commands, i.e. com-
mands that set configuration values. For HELP SET, the command field should be “SET” and the
cmdfunc field should be NULL.

{ "SET", NULL, help_set_txt },

This second case illustrates the general case of displaying help for a family of commands. The
family name can not be the name of a command.
234 TCP/IP User’s Manual

11.3.2 Console Command Array
An array of ConsoleCommand structures must be defined in an application program as a con-
stant global variable named console_commands[]. All commands available at the Console,
those provided in Zconsole.lib and custom commands, must have an entry in this array.

11.3.3 Console Commands
The following is a list of the commands provided by Zconsole.lib. When the command name
{i.e., the string in the command field) is received by the Console, the function pointed to in the
cmdfunc field is executed. When the Console receives the command, HELP <command name>,
the text file located at physical address helptext will be displayed.

const ConsoleCommand console_commands[] =
{
{ "HELLO WORLD", hello_world, 0 },
{ "ECHO", con_echo, help_echo_txt },
{ "HELP", con_help, help_help_txt },
{ "", NULL, help_txt },
{ "SET", NULL, help_set_txt },
{ "SET PARAM", con_set_param, 0 },
{ "SET IP", con_set_ip, help_set_txt },
{ "SET NETMASK", con_set_netmask, help_set_txt },
{ "SET GATEWAY", con_set_gateway, help_set_txt },
{ "SET NAMESERVER", con_set_nameserver, help_set_txt },
{ "SET MAIL", NULL, help_set_mail_txt },
{ "SET MAIL SERVER", con_set_mail_server, help_set_mail_server_txt },
{ "SET MAIL FROM", con_set_mail_from, help_set_mail_from_txt },
{ "SHOW", con_show, help_show_txt },
{ "PUT", con_put, help_put_txt },
{ "GET", con_get, help_get_txt },
{ "DELETE", con_delete, help_delete_txt },
{ "LIST", NULL, help_list_txt },
{ "LIST FILES", con_list_files, help_list_txt },
{ "LIST VARIABLES", con_list_variables, help_list_txt },
{ "CREATEV", con_createv, help_createv_txt },
{ "PUTV", con_putv, help_putv_txt },
{ "GETV", con_getv, help_getv_txt },
{ "MAIL", con_mail, help_mail_txt },
{ "RESET FILES", con_reset_files, 0 }
{ "RESET VARIABLES”, con_reset_variables, help_reset_variables }

};
Chapter 11: General Purpose Console 235

 11.3.3.1 Default Command Functions
The following functions are provided in Zconsole.lib. Each one takes a pointer to a Con-
soleState structure as its only parameter, following the prototype for custom functions
described in Section 11.3.3.2 on page 239. Each of these functions return 0 when it has more pro-
cessing to do (and thus will be called again), 1 for successful completion of its task, and -1 to
report an error.

Parameters needed by the commands using these functions are passed on the command line.

con_createv()
This function creates a variable that can be used with SSI commands in SHTML files. Certain SSI
commands can be replaced by the value of this variable, so that a web page can be dynamically
altered without re-uploading the entire page. Note, however, that the value of the variable is not
preserved across power cycles, although the variable entry is still preserved. That is, the value of
the variable may change after a power cycle. It can be changed again, though, with a putv com-
mand. It works in the following fashion (if the command is called “CREATEV”):

usage: "createv <varname> <vartype> <format> <value> [strlen]"

A web variable that can be referenced within web files is created.

<varname> is the name of the variable

<vartype> is the type of the variable (INT8, INT16, INT32, FLOAT32, or STRING)

<format> is the printf-style format specifier for outputting the variable (such as "%d")

<value> is the value to assign the variable.

[strlen] is only used if the variable is of type STRING. It is used to give the maximum length
of the string.

con_delete()
This function deletes a file from the file system. A command that uses this function takes one
parameter: the name of the file to delete.

con_echo()
This function turns on or off the echoing of characters on a particular I/O stream. That is, it does
not affect echoing globally, but only for the I/O stream on which it is issued. A command that uses
this function takes one parameter: ON | OFF.

con_get()
This function displays a file from the file system. It works in the following fashion (if the com-
mand is called “GET”):

• ASCII mode: usage: "get <filename>"

The file is then sent, followed by the usual OK message.

• BINARY mode: usage: "get <filename> <size in bytes>"

The message "LENGTH <len>" will be sent, indicating length of the file to be sent, and then the
file will be sent, but not more than <size in bytes> bytes.
236 TCP/IP User’s Manual

con_getv()
This function displays the value of the given variable. The variable is displayed using the printf-
style format specifier given in the createv command. A command that uses this function takes
one parameter: the name of the variable.

con_help()
This function implements the help system for the Console. A command that uses this function
takes one parameter: the name of another command. The Console outputs the associated help text
for the requested command. The help text is the text file referenced in the third field of the Con-
soleCommand structure.

con_list_files()
This function lists the files in the file system and their file sizes. A command that uses this func-
tion takes no parameters.

con_list_variables()
This function displays the names and types of all variables. A command that uses this function
takes no parameters.

con_mail()
This function sends e-mail to the server specified by con_mail_server(), with the return
address specified by set_mail_from(). A command that uses this function takes one parame-
ter: the destination e-mail address. If the command is named mail, the usage is:

 "mail destination@where.com"

The first line of the message will be used as the subject, and the other lines are the body. The body
is terminated with a ^D or ^Z (0x04 or 0x1A).

con_put()
This function creates a new file in the file system for use with the HTTP server. It works in the fol-
lowing fashion (if the command is called “PUT”):

• ASCII mode: usage: "put <filename>"
The file is then sent, terminating with a ^D or ^Z (0x04 or 0x1A).

• BINARY mode: usage: "put <filename> <size in bytes>"
The file is then sent, and must be exactly the specified number of bytes in length.

Note that ASCII mode is only useful for text files, since the Console will ignore non-displayable
characters. In binary mode, the put command will time out after CON_TIMEOUT seconds of inac-
tivity (60 by default).

con_putv()
This function updates the value of a variable. A command that uses this function takes two param-
eters: the name of the variable, and the new value for the variable.

con_reset_files
This function removes all web files.
Chapter 11: General Purpose Console 237

con_reset_variables
This function removes all web variables.

con_set_gateway()
This function changes the gateway of the board. A command that uses this function takes one
parameter: the new gateway in dotted quad notation, e.g., 192.168.1.1.

con_set_ip()
This function changes the IP address of the board. A command that uses this function takes one
parameter: the new IP address in dotted quad notation, e.g., 192.168.1.112.

con_set_param
This function sets the parameter for the current I/O device. Depending on the I/O device, this
value could be a baud rate, a port number or a channel number. A command that uses this function
takes one parameter: the value for the I/O device parameter.

con_set_mail_from
This function sets the return address for all e-mail messages. This address will be added to the out-
going e-mail and should be valid in case the e-mail needs to be returned. A command that uses this
function takes one parameter: the return address.

con_set_mail_server
This functions identifies the SMTP server to use. A command that uses this function takes one
parameter: the IP address of the SMTP server.

con_set_nameserver()
This function changes the name server for the board. A command that uses this function takes one
parameter: the IP address of the new name server in dotted quad notation, e.g., 192.168.1.1.

con_set_netmask()
This function changes the netmask of the board. A command that uses this function takes one
parameter: the new netmask in dotted quad notation, e.g., 255.255.255.0.

con_show()
This function displays the current configuration of the board (IP address, netmask, and gateway).
If the developer’s application has configuration options she would like to show other than the IP
address, netmask, and gateway, she will probably want to implement her own version of the show
command. The new show command can be modelled after con_show() in ZConsole.lib. A
command that uses this function takes no parameters.
238 TCP/IP User’s Manual

 11.3.3.2 Custom Console Commands
Developers are not limited to the default commands. A custom command is easy to add to the
Console; simply create an entry for it in console_commands[]. The three fields of this entry
were described in Section 11.3.1. The first field is the name of the command. The second field is
the function that implements the command. This function must follow this prototype:

int function_name (ConsoleState* state);

The parameter passed to the function is a structure of type ConsoleState. Some of the fields in
this structure must be manipulated by your custom command function, other fields are used by
Zconsole.lib and must not be changed by the your program.

typedef struct {
int console_number;
ConsoleIO* conio;
int state;
int laststate;

char command[CON_CMD_SIZE];
char* cmdptr;
char buffer[CON_BUF_SIZE]; // Use for reading in data.
char* bufferend; // Use for reading in data.

ConsoleCommand* cmdspec;
int sawcr;
int sawesc;
int echo; // Check if echo is enabled, or change it.
int substate;
unsigned int error;
int numparams; // Read-only: check # of parms in command.
char cmddata[CON_CMD_DATA_SIZE];
FileNumber filenum;// Use for file processing.
File file; // Use for file processing.
int spec; // Use for working with Zserver entities
long timeout; // Use for extending the timeout.

} ConsoleState;

To accomplish its tasks, the function should use state->substate for its state machine
(which will be initialized to zero before dispatching the command handler), and
state->command to read out the command buffer (to get other parameters to the command, for
instance). In case of error, the function should set state->error to the appropriate value. The
buffer at state->cmddata is available for the command to preserve data across invocations of
the command’s state machine. The size of the buffer is adjustable via the CON_CMD_DATA_SIZE
macro (set to 16 bytes by default). Generally this buffer area will be cast into a data structure
appropriate for the given command state machine.

IMPORTANT: The fields discussed in the previous paragraph and the fields that have comments in
the structure definition are the only ones that an application program should change. The other
fields must not be changed.

The function should return 0 when it has more processing to do (and thus will be called again), 1
for successful completion of its task, and -1 to report an error.
Chapter 11: General Purpose Console 239

The third and final field of the console_commands[] entry is the physical address of the help
text file for the custom command in question. This file must be #ximported, along with all of
the default command function help files that are being used.

11.3.4 Console Error Messages
The Console library provides a list of default error messages for the default Console commands.
An application program must define an array for these error messages, as well as for any custom
error messages that are desired. To include only the default error messages, the following array is
sufficient:

const ConsoleError console_errors[] = {
CON_STANDARD_ERRORS // includes all default error messages

}

 11.3.4.1 Default Error Messages
These are the error codes for the default error messages and the text that will be displayed by the
Console if the error occurs.

#define CON_ERR_TIMEOUT 1
#define CON_ERR_BADCOMMAND 2
#define CON_ERR_BADPARAMETER 3
#define CON_ERR_NAMETOOLONG 4
#define CON_ERR_DUPLICATE 5
#define CON_ERR_BADFILESIZE 6
#define CON_ERR_SAVINGFILE 7
#define CON_ERR_READINGFILE 8
#define CON_ERR_FILENOTFOUND 9
#define CON_ERR_MSGTOOLONG 10
#define CON_ERR_SMTPERROR 11
#define CON_ERR_BADPASSPHRASE 12
#define CON_ERR_CANCELRESET 13
#define CON_ERR_BADVARTYPE 14
#define CON_ERR_BADVARVALUE 15
#define CON_ERR_NOVARSPACE 16
#define CON_ERR_VARNOTFOUND 17
#define CON_ERR_STRINGTOOLONG 18
#define CON_ERR_NOTAFILE 19
#define CON_ERR_NOTAVAR 20
#define CON_ERR_COMMANDTOOLONG 21
#define CON_ERR_BADIPADDRESS 22
240 TCP/IP User’s Manual

#define CON_STANDARD_ERRORS \
{ CON_ERR_TIMEOUT, "Timed out." },\
{ CON_ERR_BADCOMMAND, "Unknown command." },\
{ CON_ERR_BADPARAMETER, "Bad or missing parameter." },\
{ CON_ERR_NAMETOOLONG, "Filename too long." },\
{ CON_ERR_DUPLICATE, "Duplicate object found." },\
{ CON_ERR_BADFILESIZE, "Bad file size." },\
{ CON_ERR_SAVINGFILE, "Error saving file." },\
{ CON_ERR_READINGFILE, "Error reading file." },\
{ CON_ERR_FILENOTFOUND, "File not found." },\
{ CON_ERR_MSGTOOLONG, "Mail message too long." },\
{ CON_ERR_SMTPERROR, "SMTP server error." },\
{ CON_ERR_BADPASSPHRASE, "Passphrases do not match!" },\
{ CON_ERR_CANCELRESET, "Reset cancelled." },\
{ CON_ERR_BADVARTYPE, "Bad variable type." },\
{ CON_ERR_BADVARVALUE, "Bad variable value." },\
{ CON_ERR_NOVARSPACE, "Out of variable space." },\
{ CON_ERR_VARNOTFOUND, "Variable not found." },\
{ CON_ERR_STRINGTOOLONG, "String too long." },\
{ CON_ERR_NOTAFILE, "Not a file." },\
{ CON_ERR_NOTAVAR, "Not a variable." },\
{ CON_ERR_COMMANDTOOLONG, "Command too long." },\
{ CON_ERR_BADIPADDRESS, "Bad IP address." }

 11.3.4.2 Custom Error Messages
Developers can create their own error messages by following the format of the default error mes-
sages. The error code numbers should be greater than 1,000 to save room for expansion of built-in
error messages.

#define NEW_ERROR 1001

const ConsoleError console_errors[] = {
CON_STANDARD_ERRORS, // includes all default error messages
{ NEW_ERROR, "Any error message I want." }

}

The default error messages should be included in console_errors[] along with any custom
error messages that are used since the commands that come with Zconsole.lib each expect
their own particular error message.
Chapter 11: General Purpose Console 241

11.4 Console I/O Interface
Multiple I/O methods are supported, as well as the ability to add custom I/O methods. An array of
ConsoleIO structures must be defined in the application program and named console_io[].
This structure holds handlers for common I/O functions for the I/O method.

typedef struct {
long param; // Baud for serial, port for telnet, etc.
int (*open) ();
void (*close)();
int (*tick) ();
int (*puts) ();
int (*rdUsed) ();
int (*wrUsed) ();
int (*wrFree) ();
int (*read) ();
int (*write) ();

} ConsoleIO;

11.4.1 How to Include an I/O Method
Each supported I/O method is determined at compile time, i.e., each supported I/O method must
have an entry in console_io[].

11.4.2 Predefined I/O Methods
Several predefined I/O methods are in Zconsole.lib. They will be included by entering their
respective macros in console_io[].

const ConsoleIO console_io[] = {
CONSOLE_IO_SERA(baud rate),
CONSOLE_IO_SERB(baud rate),
CONSOLE_IO_SERC(baud rate),
CONSOLE_IO_SERD(baud rate),
CONSOLE_IO_SP(channel number),
CONSOLE_IO_TELNET(port number),

}

The macros expand to the appropriate set of pre-defined handler functions, e.g.,

#define CONSOLE_IO_SERA(param){ param, serAopen, serAclose, NULL,
conio_serAputs, serArdUsed, serAwrUsed, serAwrFree, serAread, serAwrite}

 11.4.2.1 Serial Ports
There are predefined I/O methods for all four of the serial ports on a Rabbit board. The baud rate is
set by passing it to the macro. See above.

 11.4.2.2 Telnet
The Console runs a telnet server. The port number is passed to the macro CONSOLE_IO_TELNET.
The user telnets to the controller that is running the Console.
242 TCP/IP User’s Manual

 11.4.2.3 Slave Port
The Rabbit slave port is an 8-bit bidirectional data port. The Console runs on the slave processor.
Two drivers are needed.

 11.4.2.3.1 Slave Port Driver
The slave port driver is implemented by SLAVE_PORT.LIB. For an application to use the slave
port:

• The driver must be installed by including the library in the program.

• A call to SPinit(mode) must be made to initialize the driver.

• A function to process Console commands sent to the slave port must be provided.

The slave port has 256 channels, separate port addresses that are independent of one another. A
handler function for each channel that is used must be provided. For details on how to do this,
please see the Dynamic C User’s Manual.

A stream-based handler, SPShandler(), to process Console commands for the slave is pro-
vided in SP_STREAM.LIB. The handler is set up automatically by the Console when the slave
port I/O method is included. The macro, CONSOLE_IO_SP, expands to the I/O functions defined
in SP_STREAM.LIB.

 11.4.2.3.2 Master Connected to Rabbit Slave Port
The master controller board can be another Rabbit processor or something else.

The master also needs a driver for its end of the slave port connection. An example of the software
needed on the master is given in MASTER_SERIAL.LIB. The software on the master controller
is, of course, specific to the task at hand. In the example driver provided, most of the work is done
by the slave, making minimal changes necessary to the code on the master.

 11.4.2.4 Custom I/O Methods
To define a custom I/O method, you must add a structure of type ConsoleIO to
console_io[]. This structure holds the common handler functions for the I/O method. The
tick function may have a NULL pointer, but the rest of the function pointers must be valid pointers
to functions.

11.4.3 Multiple I/O Streams
Each I/O method has its own state machine in the Console. That means that each I/O method is
independent of the others and they can all be used simultaneously. This imposes the important
restriction that all command handlers be able to run simultaneously on different I/O streams or
support proper locking for functions that cannot be performed simultaneously.
Chapter 11: General Purpose Console 243

11.5 Console Execution
Normally, the Console will communicate over a serial link. The physical connection will differ
slightly from board to board. Basically, you will need a 3 wire (GND, RXD, TXD) serial cable. In
order to execute the Console several initialization steps must be taken at the beginning of an appli-
cation program.

11.5.1 File System Initialization
The Console depends on the file system that is included with Dynamic C. Besides including the
library and defining the macro that directs the file system to EEPROM memory:

#define FS_FLASH
#use "FileSystem.lib"

the application program must initialize the file system with a call to fs_init().

11.5.2 Serial Buffers
If the pre-defined serial I/O methods are used, the circular buffers used for I/O data can be resized
from their default values of 31 bytes by using macros. For example, if CONSOLE_IO_SERIALC
is included in console_io[], then lines similar to the following can be in the application pro-
gram:

#define CINBUFSIZE 1023
#define COUTBUFSIZE 255

In general, these buffers can be smaller for slower baud rates, but must be larger for faster baud
rates.

11.5.3 Using TCP/IP
To use the TCP/IP functionality of the Console you must have the following line in your applica-
tion program:

#use “dcrtcp.lib”

If you are serving web pages you must also include http.lib, and if you are sending e-mail you
must include smtp.lib.
244 TCP/IP User’s Manual

11.5.4 Required Console Functions
To run the Console, the following two functions are required.

int console_init(void);

DESCRIPTION

This function will initialize the Console data structures. It must be called before
console_tick() is called for the first time. This function also loads the configura-
tion information from the file system.

RETURN VALUE

0: Success;
1: No configuration information found.

<0: Indicates an error loading the configuration data;
-1 indicates an error reading the 1st set of information,
-2 the 2nd set, and so on.

void console_tick(void);

DESCRIPTION

This function needs to be called periodically in an application program to allow the Con-
sole time for processing.

11.5.5 Useful Console Function
Most of the following functions are only useful for creating custom commands.

int con_backup(void);

DESCRIPTION

This function backs up the current configuration.

RETURN VALUE

0: Success
1: Failure

SEE ALSO

con_backup_reserve, con_load_backup

console_init

console_tick

con_backup
Chapter 11: General Purpose Console 245

long con_backup_bytes(void);

DESCRIPTION

Returns the number of bytes necessary for each backup configuration file. Note that
enough space for 2 of these files needs to be reserved. This function is most useful when
ZCONSOLE.LIB is being used with FS2.LIB.

RETURN VALUE

Number of bytes needed for a backup configuration file.

SEE ALSO

con_backup_reserve

void con_backup_reserve(void);

DESCRIPTION

Reserves space for the configuration information in the file system. For more information
on the file system see the Dynamic C User’s Manual.

SEE ALSO

con_backup, con_load_backup, con_backup_bytes

int con_chk_timeout(unsigned long timeout);

DESCRIPTION

Checks whether the given timeout value has passed.

RETURN VALUE

0: Timeout has not passed
!0: Timeout has passed

SEE ALSO

con_set_timeout

con_backup_bytes

con_backup_reserve

con_chk_timeout
246 TCP/IP User’s Manual

int con_load_backup(void);

DESCRIPTION

Loads the configuration from the file system.

RETURN VALUE

0: Success
1: No configuration information found

<0: Failure
-1: error reading 1st set of information
-2: error reading 2nd set of information, and so on

SEE ALSO

con_backup, con_backup_reserve

void con_reset_io(void);

DESCRIPTION

Resets all I/O methods by calling close() and open() on each of them.

void con_set_backup_lx(FSLXnum backuplx);

DESCRIPTION

Sets the logical extent (LX) that will be used to store the backup configuration data. For more
information on the file system see the Dynamic C User’s Manual. This is only useful in conjunction
with FS2.LIB. This should be called once before console_init(). Care should be taken
that enough space is available in this logical extent for the configuration files. See
con_backup_bytes() for more information.

PARAMETER

backuplx LX number to use for backup

SEE ALSO

con_set_files_lx, con_backup_bytes

con_load_backup

con_reset_io

con_set_backup_lx
Chapter 11: General Purpose Console 247

void con_set_files_lx(FSLXnum fileslx);

DESCRIPTION

Sets the logical extent (LX) that will be used to store files. For more information on the
file system see the Dynamic C User’s Manual. This is only useful in conjunction with
FS2.LIB. This should be called once before console_init().

PARAMETER

fileslx LX number to use for files.

SEE ALSO

con_set_backup_lx

void con_set_user_idle(void (*funcptr)());

DESCRIPTION

Sets a user-defined function that will be called when the console (for a particular I/O
channel) is idle. The user-defined function should take an argument of type
ConsoleState* .

SEE ALSO

con_set_user_timeout

unsigned long con_set_timeout(unsigned int seconds);

DESCRIPTION

Returns the value that MS_TIMER should have when the number of seconds given have
elapsed.

SEE ALSO

con_chk_timeout

con_set_files_lx

con_set_user_idle

con_set_timeout
248 TCP/IP User’s Manual

void con_set_user_timeout(void (*funcptr)());

DESCRIPTION

Sets a user-defined function that will be called when a timeout event has occured. The
user-defined function should take an argument of type ConsoleState*.

SEE ALSO

con_set_user_idle

11.5.6 Console Execution Choices
The Console can be used interactively with a terminal emulator or programatically by sending
commands from a program running on a device connected to the controller that is running the
Console.

 11.5.6.1 Terminal Emulator
To manually enter Console commands from a keyboard and view results in the Stdio window you
must:

1. Run Dynamic C, version 7.05 or later.

2. Open a terminal emulator. Windows HyperTerminal comes with Windows. It does not work
with binary files, only ASCII. Tera Term, available for free download at

http://hp.vector.co.jp/authors/VA002416/teraterm.html

can handle both ASCII and binary.

Configure the terminal emulator as follows:

COM port (1 or 2) to which 3-wire serial cable is connected
Baud Rate 57,600 bps
Data Bits 8
Parity None
Stop Bits 1
Flow Control None

The terminal emulator should now accept Console commands.

To avoid losing a <LF> at the beginning of a file when using the con_put command function,
select Setup->Terminal from the Tera Term menu and set the Transmit option to CR+LF. This
option might be located elsewhere if you are using a different terminal emulator.

11.6 Backup System
The Console can save configuration parameters to the file system so that they are available across
power cycles. The backup process is done by con_backup(). Unlike the other console com-
mand functions, con_backup() does not take a parameter and it returns 0 if the backup was
successful and 1 if it was not. This function is called by several of the console command functions
that change configuration parameters, or that add or delete files or variables from the file system.
Caution is advised when calling con_backup() since it writes to flash memory.

con_set_user_timeout
Chapter 11: General Purpose Console 249

http://hp.vector.co.jp/authors/VA002416/teraterm.html

11.6.1 Data Structure for Backup System
The developer must define an array called console_backup[] of ConsoleBackup struc-
tures.

typedef struct {
void* data;
int len;
void (*postload)();
void (*presave)();

} ConsoleBackup;

data
This is a pointer to the data to be backed up.

len
This is how many bytes of data need to be backed up.

postload
This is a function pointer to a function that is called after configuration data is loaded, in case the
developer needs to do something with the newly loaded configuration data.

presave
This is a function pointer that is called just before the configuration data is saved so that the devel-
oper can fill in the data structure to be saved. The functions referenced by postload() and
presave() should have the following prototype:

void my_preload(void* dataptr);

The dataptr parameter is the address of the configuration data (the same as the data pointer in
the ConsoleBackup structure).

11.6.2 Array Definition for Backup System
const ConsoleBackup console_backup[] = {

CONSOLE_BASIC_BACKUP, // echo state, baud-rate/port number
CONSOLE_TCPIP_BACKUP,
CONSOLE_HTTP_BACKUP,
CONSOLE_SMTP_BACKUP
{ my_data, my_data_len, my_preload, my_presave }

}

CONSOLE_BASIC_BACKUP causes backup of the echo state (on or off), baud rate and port num-
ber information.

CONSOLE_TCPIP_BACKUP causes backup of the IP addresses of the controller board and the IP
address of its netmask, gateway and name server.

CONSOLE_HTTP_BACKUP causes backup of the files and variables visible to the HTTP server.

CONSOLE_SMTP_BACKUP causes backup of the mail configuration.
250 TCP/IP User’s Manual

11.7 Console Macros
Zconsole.lib offers many macros that change the behavior of the Console.

CON_BACKUP_FILE1
The file number used for the first backup file. For FS1, this number must be in the range 128-143,
so that fs_reserve_blocks() can be used to guarantee free space for the backup files.
Defaults to 128 for FS1. Defaults to 254 for FS2.

CON_BACKUP_FILE2
Same as above, except this is for the second backup file. Two files are used so that configuration
information is preserved even if the power cycles while configuration data is being saved. For
FS1, this number must be in the range 128-143. Defaults to 129 for FS1. Defaults to 255 for FS2.

CON_BUF_SIZE
Changes the size of the data buffer that is allocated for each I/O method. If the baud rate or trans-
fer speed is too great for the Console to keep up, then increasing this value may help avoid
dropped characters. It is allocated in root data space. It defaults to 1024 bytes.

CON_CMD_SIZE
Changes the size of the command buffer that is allocated for each I/O method. This limits the
length of a command line. It is allocated in root data space. Defaults to 128 bytes.

CON_CMD_DATA_SIZE
Adjusts the size of the user data area within the state structure so that user commands can preserve
arbitrary information across calls. It is allocated in root data space. Defaults to 16 bytes.

CON_HELP_VERSION
This macro should be defined if the developer wants a version message to be displayed when the
HELP command is issued with no parameters. If this macro is defined, then the macro
CON_VERSION_MESSAGE must also be defined.

CON_INIT_MESSAGE
Defines the message that is displayed on all Console I/O methods upon startup. Defaults to “Con-
sole Ready\r\n”.

CON_MAIL_BUF_SIZE
Maximum length of a mail message. Defaults to 1024.

CON_MAIL_FROM_SIZE
Maximum length of mail from address to NULL terminator. Default to 51.

CON_MAIL_SERV_SIZE
Maximum length of mail server name and NULL terminator. Defaults to 51.

CON_SP_RDBUF_SIZE
Size of the slave port read buffer. Defaults to 255.

CON_SP_WRBUF_SIZE
Size of the slave port write buffer. Defaults to 255.
Chapter 11: General Purpose Console 251

CON_TIMEOUT
Adjusts the number of seconds that the Console will wait before cancelling the current command.
The timeout can be adjusted in user code in the following manner:

state->timeout = con_set_timeout(CON_TIMEOUT);

This is useful for custom user commands so that they can indicate when something “meaningful”
has happened on the Console (such as some data being successfully transferred).

CON_VAR_BUF_SIZE
Adjusts the size of the variable buffer, in which values of variables can be stored for use with the
HTTP server. It is allocated in xmem space. Defaults to 1024 bytes.

CON_VERSION_MESSAGE
This defines the version message to display when the HELP command is issued with no parame-
ters. It is not defined by default, so has no default value.

11.8 Sample Program
/***
tcpipconsole.c
Z-World, 2001
This sample program demonstrates many of the features of ZCONSOLE.LIB.

Among the features this sample program supports is network
configuration, uploading web pages, changing variables for use with web
pages, sending mail, and access to the console through a telnet client.
**/

#define MY_IP_ADDRESS "10.10.6.112"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER "10.10.6.1"
#define SMTP_SERVER "10.10.6.1"

/*
 * Size of the buffers for serial port C. If you want to use
 * another serial port, you should change the buffer macros below
 * appropriately (and change the console_io[] array below).
 */
#define CINBUFSIZE 1023
#define COUTBUFSIZE 255

/*
 * Maximum number of connections to the web server. This indicates
 * the number of sockets that the web server will use.
 */
#define HTTP_MAXSERVERS 2
252 TCP/IP User’s Manual

/*
 * Maximum number of sockets this program can use. The web server
 * is taking two sockets (see above), the mail client uses one
 * socket, and the telnet interface uses 1 socket.
 */
#define MAX_SOCKETS 4

/*
 * All web server content is dynamic, so we do not need
 * http_flashspec[].
 */
#define HTTP_NO_FLASHSPEC

/*
 * The file system that the console uses should be located in flash.
 */
#define FS_FLASH

/*
 * Console configuration
 */

/*
 * The number of console I/O streams that this program supports. Since
 * we are supporting serial port C and telnet, there are two I/O streams.
 */
#define NUM_CONSOLES 2

/*
 * If this macro is defined, then the version message will be shown
 * with the help command (when the help command has no parameters).
 */
#define CON_HELP_VERSION

/*
 * Defines the version message that will be displayed in the help
 * command if CON_HELP_VERSION is defined.
 */
#define CON_VERSION_MESSAGE "TCP/IP Console Version 1.0\r\n"

/*
 * Defines the message that is displayed on all I/O channels when the
console starts.
 */
#define CON_INIT_MESSAGE CON_VERSION_MESSAGE
Chapter 11: General Purpose Console 253

/*
 * These ximport directives include the help texts for the
 * consolecommands. Having the help text in xmem helps save
 * root code space.
 */
#ximport "samples\zconsole\tcpipconsole_help\help.txt" help_txt
#ximport "samples\zconsole\tcpipconsole_help\help_help.txt"
help_help_txt

#ximport "samples\zconsole\tcpipconsole_help\help_echo.txt"
help_echo_txt

#ximport "samples\zconsole\tcpipconsole_help\help_set.txt"
help_set_txt

#ximport "samples\zconsole\tcpipconsole_help\help_set_param.txt"
help_set_param_txt

#ximport "samples\zconsole\tcpipconsole_help\help_set_mail.txt"
help_set_mail_txt

#ximport
"samples\zconsole\tcpipconsole_help\help_set_mail_server.txt"
help_set_mail_server_txt

#ximport "samples\zconsole\tcpipconsole_help\help_set_mail_from.txt"
help_set_mail_from_txt

#ximport "samples\zconsole\tcpipconsole_help\help_show.txt"
help_show_txt

#ximport "samples\zconsole\tcpipconsole_help\help_put.txt"
help_put_txt

#ximport "samples\zconsole\tcpipconsole_help\help_get.txt"
help_get_txt

#ximport "samples\zconsole\tcpipconsole_help\help_delete.txt"
help_delete_txt

#ximport "samples\zconsole\tcpipconsole_help\help_list.txt"
help_list_txt

#ximport "samples\zconsole\tcpipconsole_help\help_createv.txt"
help_createv_txt

#ximport "samples\zconsole\tcpipconsole_help\help_putv.txt"
help_putv_txt

#ximport "samples\zconsole\tcpipconsole_help\help_getv.txt"
help_getv_txt

#ximport "samples\zconsole\tcpipconsole_help\help_mail.txt"
help_mail_txt

#ximport "samples\zconsole\tcpipconsole_help\help_reset.txt"
help_reset_txt

#ximport "samples\zconsole\tcpipconsole_help\help_reset_files.txt"
help_reset_files_txt

#ximport
"samples\zconsole\tcpipconsole_help\help_reset_variables.txt"
help_reset_variables_txt
254 TCP/IP User’s Manual

#memmap xmem

#use "FileSystem.lib"
#use "dcrtcp.lib"
#use "http.lib"
#use "smtp.lib"

/*
 * Note that all libraries that zconsole.lib needs must be #use’d
 * before #use’ing zconsole.lib .
 */
#use "zconsole.lib"

/*
 * This function prototype is for a custom command, so it must be
 * declared before the console_command[] array.
 */
int hello_world(ConsoleState* state);

/*
 * This array defines which I/O streams for which the console will
 * be available. The streams included below are defined through
 * macros. Available macros are CONSOLE_IO_SERA, CONSOLE_IO_SERB,
 * CONSOLE_IO_SERC, CONSOLE_IO_SERD, CONSOLE_IO_TELNET, and
 * CONSOLE_IO_SP (for the slave port). The parameter for the macro
 * represents the initial baud rate for serial ports, the port
 * number for telnet, or the channel number for the slave port.
 * It is possible for the user to define her own I/O handlers and
 * include them in a ConsoleIO structure in the console_io array.
 * Remember that if you change the number of I/O streams here, you
 * should also change the NUM_CONSOLES macro above.
 */
const ConsoleIO console_io[] =
{

CONSOLE_IO_SERC(57600),
CONSOLE_IO_TELNET(23)

};
Chapter 11: General Purpose Console 255

/*
 * This array defines the commands that are available in the console.
 * The first parameter for the ConsoleCommand structure is the
 * command specification--that is, the means by which the console
 * recognizes a command. The second parameter is the function
 * to call when the command is recognized. The third parameter is
 * the location of the #ximport’ed help file for the command.
 * Note that the second parameter can be NULL, which is useful if
 * help information is needed for something that is not a command
 * (like for the "SET" command below--the help file for "SET"
 * contains a list of all of the set commands). Also note the
 * entry for the command "", which is used to set up the help text
 * that is displayed when the help command is used by itself (that
 * is, with no parameters).
 */
const ConsoleCommand console_commands[] =
{

{ "HELLO WORLD", hello_world, 0 },
{ "ECHO", con_echo, help_echo_txt },
{ "HELP", con_help, help_help_txt },
{ "", NULL, help_txt },
{ "SET", NULL, help_set_txt },
{ "SET PARAM", con_set_param, help_set_param_txt },
{ "SET IP", con_set_ip, help_set_txt },
{ "SET NETMASK", con_set_netmask, help_set_txt },
{ "SET GATEWAY", con_set_gateway, help_set_txt },
{ "SET NAMESERVER", con_set_nameserver, help_set_txt },
{ "SET MAIL", NULL, help_set_mail_txt },
{ "SET MAIL SERVER", con_set_mail_server,

help_set_mail_server_txt },
{ "SET MAIL FROM", con_set_mail_from, help_set_mail_from_txt },
{ "SHOW", con_show, help_show_txt },
{ "PUT", con_put, help_put_txt },
{ "GET", con_get, help_get_txt },
{ "DELETE", con_delete, help_delete_txt },
{ "LIST", NULL, help_list_txt },
{ "LIST FILES", con_list_files, help_list_txt },
{ "LIST VARIABLES", con_list_variables, help_list_txt },
{ "CREATEV", con_createv, help_createv_txt },
{ "PUTV", con_putv, help_putv_txt },
{ "GETV", con_getv, help_getv_txt },
{ "MAIL", con_mail, help_mail_txt },
{ "RESET", NULL, help_reset_txt },
{ "RESET FILES", con_reset_files, help_reset_files_txt },
{ "RESET VARIABLES", con_reset_variables,

help_reset_variables_txt }
};
256 TCP/IP User’s Manual

/*
 * This array sets up the error messages that can be generated.
 * CON_STANDARD_ERRORS is a macro that expands to the standard
 * errors that the built-in commands in zconsole.lib uses. Users
 * can define their own errors here, as well.
 */
const ConsoleError console_errors[] = {

CON_STANDARD_ERRORS
};
/*
 * This array defines the information (such as configuration) that
 * will be saved to the file system. Note that if, for example, the
 * HTTP or SMTP related commands are include in the console_commands
 * array above, then the backup information must be included in
 * this array. The entries below are macros that expand to the
 * appropriate entry for each set of functionality. Users can also
 * add their own information to be backed up here by adding more
 * ConsoleBackup structures.
 */
const ConsoleBackup console_backup[] =
{

CONSOLE_BASIC_BACKUP,
CONSOLE_TCP_BACKUP,
CONSOLE_HTTP_BACKUP,
CONSOLE_SMTP_BACKUP

};

/*
 * The following defines the MIME types that the web server will handle.
 */
const HttpType http_types[] =
{
 { ".shtml", "text/html", shtml_handler}, // ssi
 { ".html", "text/html", NULL}, // html
 { ".gif", "image/gif", NULL},
 { ".jpg", "image/jpeg", NULL},
 { ".jpeg", "image/jpeg", NULL},
 { ".txt", "text/plain", NULL}
};

/*
 * This is a custom command. Custom commands always take a
 * ConsoleState* as an argument (a pointer to the state structure
 * for the given I/O stream), and return an int. The return value
 * should be 0 when the command wishes to be called again on the
 * next console_tick(), 1 when the command has successfully
 * finished processing, or -1 when the command has finished due
 * to an error.
 */
int hello_world(ConsoleState* state)
{

state->conio->puts("Hello, World!\r\n");
return 1;

}

Chapter 11: General Purpose Console 257

void main(void)
{

/*
 * All initialization of TCP/IP, clients, servers, and I/O
 * must be done by the user prior to using any console functions.
 */
sock_init();
tcp_reserveport(80); // Enable SYN-queueing and disable the

// 2MSL wait for the web server (results
// in performance improvements).

http_init();

if (fs_init(0, 64)) {
printf("Filesystem not present!\n");

}

if (console_init() != 0) {
printf("Console did not initialize!\n");
fs_format(0, 64, 1);
/*
 * Anytime after the file system has been initialized or
 * formatted (after console_init() has been executed),
 * con_backup_reserve() must be called to reserve space in
 * the file system for the backup information.
 */
con_backup_reserve();
con_backup(); // Save the backup information to the console.

}

while (1) {
console_tick();
http_handler();

}
}

258 TCP/IP User’s Manual

12. PPP Driver

The PPP packet driver is a set of libraries in Dynamic C that allows the user to establish a PPP
(Point-to-Point Protocol) link over a full-duplex serial line between a Rabbit-based controller and
another system that supports PPP.

A common use of the PPP protocol is the transfer of IP packets between a remote host and an
Internet Service Provider (ISP) over a modem connection. The PPP packet driver supports the
transfer of Internet Protocol (IP) data and is compatible with all TCP/IP libraries for the Rabbit.

The PPP packet driver was derived from source code originally written by Darby Corporate Solu-
tions (DCS).

12.1 PPP Libraries
The PPP driver is in two library files.

PPPLINK.LIB contains:

• The interrupt service routine for transmitting and receiving characters over the serial link. It
also handles the insertion and detection of escape characters and CRC generation and
checking.

• PPPflowcontrolOn(), PPPflowcontrolOff(), and PPPclose()

PPP.LIB contains:

• Routines for setting up and running the PPP connection.

A third library, MODEM.LIB, contains functions for controlling an external modem through a full
RS232 link.
Chapter 12: PPP Driver 259

12.2 Operation Details
The first step is to configure whatever transport medium will be used for the PPP connection. For
directly connecting a serial line to the peer, the two serial data lines TX and RX may be adequate.
The most common situation, however, will be some sort of modem.

12.2.1 The Modem Interface
The interface between a modem and a controller is either a true RS232 interface or a variation on
RS232 that uses TTL voltage levels for all of the signals. The latter are used by board-mounted
modem modules. If an external modem is used, an RS232 transceiver chip is needed to convert
RS232 voltages to logic signals and vice versa. A full RS232 connection has 3 outputs and 5
inputs from the controllers point of view. In RS232 terminology, the controller is referred to as the
DTE (Data Terminal Equipment). Modems and other peripherals are referred to as DCE’s (Data
Communications Equipment).

The specifics of a dial-up PPP connection are dependant on the modem hardware and the ISP.

 12.2.1.1 Rabbit Pin Connections to Modem
The modem control library, MODEM.LIB, defines default connections to the Rabbit as follows:

12.2.2 Flow Control
Hardware flow control is implemented for the Rabbit PPP system. It follows the RS232 conven-
tion of using Ready To Send (RTS) and Clear To Send (CTS) lines. Flow control is usually
required for baud rates above 9600. Flow control can be enabled or disabled by PPPflowcon-
trolOn()and PPPflowcontrolOff(), respectively. Flow control is off by default.

12.2.3 Serial Port C
By default the PPP link is established using serial port C. It can be changed, but it requires some
#define changes near the top of PPPLINK.LIB in the section starting with PPP_SERDR. If a
modem is used, some rewriting of MODEM.LIB is also required.

Table 1. Modem Pin Assignments

RS232 Signal Rabbit Pin Direction

DTR PB6 out

RTS PB7 out

CTS PB0 in

DCD PB2 in

RI PB3 in

DSR PB4 in

TD PC2 out

RD PC3 in
260 TCP/IP User’s Manual

12.3 Software Implementation Overview
The first stage in dial-up PPP is to establish a modem connection with the ISP. The function
ModemInit()opens the serial port, then detects if there is a modem connected and ready. It does
this by sending “AT” to the modem a set number of times until it receives an “OK” response. This
should work with any Hayes-compatible modem, which is the standard today. At this point the
modem is ready and commands can be sent to it using ModemSend(). Remember to include a
carriage return “\r” at the end of each command sent.

The function ModemExpect() is used to wait for a character sequence to occur. Normally the
first use of this in a program is to determine that the modem has connected. When a connection
occurs, the modem will send a string along the lines of “CONNECT AT x” or something similar.
ModemExpect() can be set to listen for this. Once connected, the ISP may either attempt PPP
negotiation immediately, or request a user name and password first. In the latter case, a sequence
of ModemSend() and ModemExpect() calls are used to handle this (see See “Authentication
Sequence” on page 262).

Eventually the ISP will begin PPP negotiation. At this stage ModemClose() should be called to
shutdown normal serial operation. After calling sock_init() and doing any other necessary
TCP/IP initialization, PPPinit() is called, followed by any necessary PPP option initialization,
and finally a call to PPPstart().

Once the PPP connection is established through a successful call to PPPstart(), the user can
send packets to the peer using the TCP/IP libraries.

12.3.1 Defining Network Parameters
The following parameters must be defined at compile time:

// Sets the TCP/IP stack to use PPP. This should be “ppoe.lib” when using PPP over Ethernet.
#define PKTDRV "ppp.lib"

// In the most common case, the Rabbit will be dialing into an ISP. The ISP will usually wish to
// assign the IP address. Setting the IP address to 0.0.0.0 indicates that the Rabbit does not have a
// valid address when started. If the Rabbit has a permanent address or will be dialed into,
// MY_IP_ADDRESS should be set to a proper IP address.
#define MY_IP_ADDRESS "0.0.0.0"

// This is a parameter intended for Ethernet and other shared network schemes. Since PPP is a
// single point-to-point link, all traffic must be routed through a peer. There is no such thing as
// “local” traffic. A netmask of 255.255.255.255 causes all addresses to be routed to.
#define MY_NETMASK "255.255.255.255"

// This is the address of the host that will perform routing for the Rabbit. (With PPP this is always
// the peer.) If the ISP assigns a gateway machine to use, then define MY_GATEWAY to that. If the
// gateway is not known, defining PPP_PEERROUTE will make a gateway out of whatever
// machine you connect to, i.e. the Rabbit will use whatever address the peer uses when identifying
// itself during PPP negotiation. PPP_PEERROUTE will work under most circumstances, but a
// static gateway address may be needed for special cases.
#define MY_GATEWAY "10.1.1.1"

// This works the same as with Ethernet: it defines a host that will resolve names into IP addresses.
#define MY_NAMESERVER "10.1.1.2"
Chapter 12: PPP Driver 261

 12.3.1.1 IP Addresses
When the Rabbit and the peer are establishing a connection, they negotiate what their IP addresses
will be. When the Rabbit is connecting to an ISP, an IP address will be assigned to it by the ISP. In
some cases, such as the Rabbit acting as a dial-in ISP, IP addresses for the Rabbit and the peer
should be set by the Rabbit. This is done using PPPnegotiateIP().

12.3.2 Configuration Options
The following configuration options are supported by the Rabbit PPP system:

For more information on these options, refer to RFC 1661: The Point-to-Point Protocol (PPP) at:

 http://rfc.asuka.net/rfc/rfc1661.html

12.3.3 Authentication
The PPP library supports an optional authentication phase. Both the authentication of a peer and
being authenticated by a peer are done using Password Authentication Protocol (PAP). This is a
simple two-way handshake only done upon initial link establishment.

The most common case is when the Rabbit must authenticate itself to the ISP it is connecting to.
This is configured using PPPsetAuthenticatee(), which sets the username and password
the Rabbit will use.

A different situation arises when the Rabbit needs to authenticate a connecting peer. This is neces-
sary when the Rabbit is being dialed into. PPPsetAuthenticator() sets a name and pass-
word that will be required from the peer before a connection will be established.

 12.3.3.1 Authentication Sequence
A common situation with dial-up PPP is that an ISP will want to authenticate the dialer before PPP
negotiation. There are no real standards for doing this, so each ISP is potentially different. The
best way to develop a correct sequence of ModemSend() and ModemExpect() commands is
to connect to the ISP using a terminal program on a PC. You can then take note of the necessary
sequence to start PPP negotiation.

Table 2. Configuration Options

LCP
Configuration

Option Type Field
Meaning of Option Type

01 MRU (Maximum-Receive-Unit)

02 ACCM (Async-Control-Character-Map)

03 Auth (Authentication-Type): PAP only

05 Magic Number

07 PFC (Protocol-Field-Compression)

08 ACFC (Address-and-Control-Field-Compression)
262 TCP/IP User’s Manual

Here is a hypothetical session as seen by a terminal program. Characters typed in and sent to the
ISP or the modem are displayed in bold.

AT
OK
ATDT5554545
OK
CONNECT 28800
Welcome to someisp.com
Login?rabbit
Password:Ilikecarrots
Logging in as rabbit
Start PPP $*($}}}}}$}$#$#${@#>>}}FF}}$}

From this session we could use ModemSend() and ModemExpect() to create a dial-up func-
tion like this:

As you can see, ModemExpect() will pick up any part of the received string. Clever use of this
allows the initialization to be fairly generic, but subtle differences between ISP’s will often require
customized sequences such as this.

int myDialUp(){
if(ModemOpen(57600) == 0){

return 0;
}
if(ModemInit() == 0){

return 0;
}
ModemSend(“ATDT5554545\r”);
if (ModemExpect(“OK”, 2000) == 0)){

return 0; //something is wrong with the modem
}
if(ModemExpect(“CONNECT”, 30000) == 0){

return 0; //didn’t connect to the ISP
}
if(ModemExpect(“Login?”, 5000) == 0){

return 0;
}
ModemSend(“rabbit\r”);
if(ModemExpect(“word:”, 5000) == 0){

return 0;
}
ModemSend(“Ilikecarrots\r”);
if(ModemExpect(“PPP”, 5000) == 0){

return 0; //probably a failed login
}
ModemClose();
sock_init();
PPPinit(57600);
PPPflowcontrolOn();
return 1; //all done

}

Chapter 12: PPP Driver 263

12.3.4 Link Teardown
Tearing down the link must also be done in stages. First, a terminate request must be sent to the
peer. This is done with PPPshutdown(). PPPshutdown() will return once an acknowledge-
ment has been sent by the peer, or after a time out period. This is followed by a call to PPP-
close, which unloads the PPP serial driver. If the connection is via a modem, the modem must
then be hung up. First the regular serial driver is reopened with ModemOpen(). Modem-
Hangup() sends the hang up and reset commands to the modem. Finally, a call to Modem-
Close() shuts down the serial driver.

12.4 Functions
This section describes the functions that compose the PPP driver and the functions for modem
control.

Using Cofunctions
Establishing a PPP connection over a modem is time-consuming. Depending on the baud rate
negotiated by the modem, the whole process can take 30 seconds or more. Much of this time is
spent by the controller waiting for a response from the other end. In a practical application, where
the controller has other tasks to perform, this may be unacceptable. For this, there are cofunction
versions of all of the functions that wait for responses from the peer. There are still parts of the ini-
tialization process that create delays, but the effect is much smaller.

int CofModemExpect(char *send_string, unsigned long timeout);

DESCRIPTION

Listens for a specific string to be sent by the modem. Yields to other tasks while waiting
for input.

PARAMETERS

send_string A NULL-terminated string to listen for.

timeout Maximum wait in milliseconds for a character.

RETURN VALUE

1: The expected string was received
0: A timeout occured before receiving the string

LIBRARY

MODEM.LIB

CofModemExpect
264 TCP/IP User’s Manual

int CofModemHangup();

DESCRIPTION

Sends "ATH" and "ATZ" commands. Yields to other tasks while waiting for responses.

RETURN VALUE

1: Success
0: Modem not responding

LIBRARY

MODEM.LIB

int CofModemInit();

DESCRIPTION

Resets modem with AT, ATZ commands. Yields to other tasks while waiting for
responses.

RETURN VALUE

1: Success
0: Modem not responding

LIBRARY

MODEM.LIB

void CofModemSend(char *send_string);

DESCRIPTION

Sends a string to the modem. Yields to other tasks while sending.

PARAMETERS

send_string A NULL-terminated string to be sent to the modem.

LIBRARY

MODEM.LIB

CofModemHangup

CofModemInit

CofModemSend
Chapter 12: PPP Driver 265

int CofPPPshutdown(unsigned long timeout);

DESCRIPTION

Sends a Link Terminate Request packet. Waits for the link to be torn down.

PARAMETERS

timeout Number of milliseconds to wait before giving up on a response from
the peer. Yields to other tasks while waiting.

RETURN VALUE

1:Shutdown succeeded
0: Shutdown timed out

LIBRARY

PPP.LIB

int CofPPPstart(unsigned long timeout, int retry);

DESCRIPTION

Starts link negotiation process with a connected peer. Yields to other tasks.

PARAMETERS

timeout The number of milliseconds to wait between phases of negotiation
before starting over.

retry Number of times to retry the connection

RETURN VALUE

1: Negotiation succeeded;
0: A link could not be negotiated.

LIBRARY

PPP.LIB

CofPPPshutdown

CofPPPstart
266 TCP/IP User’s Manual

void ModemClose();

DESCRIPTION

Closes the serial driver down.

LIBRARY

MODEM.LIB

int ModemConnected();

DESCRIPTION

Returns true if the DCD line is asserted, meaning the modem is connected to a remote
carrier.

RETURN VALUE

1: DCD line is active
0: DCD inactive (nothing connected)

LIBRARY

MODEM.LIB

int ModemExpect(char *send_string, unsigned long timeout);

DESCRIPTION

Listens for a specific string to be sent by the modem.

PARAMETERS

send_string A NULL-terminated string to listen for.

timeout Maximum wait in milliseconds for a character

RETURN VALUE

1: The expected string was received
0: A timeout occured before receiving the string

LIBRARY

MODEM.LIB

ModemClose

ModemConnected

ModemExpect
Chapter 12: PPP Driver 267

int ModemHangup();

DESCRIPTION

Sends "ATH" and "ATZ" commands

RETURN VALUE

1: Success
0: Modem not responding

LIBRARY

MODEM.LIB

int ModemInit();

DESCRIPTION

Resets modem with AT, ATZ commands.

RETURN VALUE

1: Success
0: Modem not responding

LIBRARY

MODEM.LIB

int ModemOpen(unsigned long baud);

DESCRIPTION

Starts up communication with an external modem.

PARAMETERS

baud The baud rate for communicating with the modem.

RETURN VALUE

1: External modem detected
0: Not connected to external modem

LIBRARY

MODEM.LIB

ModemHangup

ModemInit

ModemOpen
268 TCP/IP User’s Manual

int ModemReady();

DESCRIPTION

Returns true if the DSR line is asserted.

RETURN VALUE

1: DSR line is active
0: DSR inactive (nothing connected)

LIBRARY

MODEM.LIB

int ModemRinging();

DESCRIPTION

Returns true if the RI line is asserted, meaning that the line is ringing.

RETURN VALUE

1: RI line is active
0: RI inactive (nothing connected)

LIBRARY

MODEM.LIB

void ModemSend(char *send_string);

DESCRIPTION

Sends a string to the modem.

PARAMETERS

send_string A NULL-terminated string to be sent to the modem.

LIBRARY

MODEM.LIB

ModemReady

ModemRinging

ModemSend
Chapter 12: PPP Driver 269

void ModemStartPPP();

DESCRIPTION

Hands control of the serial line over to the PPP driver.

LIBRARY

MODEM.LIB

void PPPclose();

DESCRIPTION

Closes the serial port and unloads the PPP interrupt service routine.

LIBRARY

PPPLINK.LIB

void PPPinit(unsigned long baud)

DESCRIPTION

Initializes the PPP driver, sets parameters. Must be called immediately following a call to
sock_init().

PARAMETERS

baud The baud rate of the serial port PPP is running on (port C by default).

LIBRARY

PPP.LIB

ModemStartPPP

PPPclose

PPPinit
270 TCP/IP User’s Manual

void PPPflowcontrolOff()

DESCRIPTION

Deactivates hardware flow control for the serial link.

LIBRARY

PPPLINK.LIB

void PPPflowcontrolOn()

DESCRIPTION

Activates hardware flow control for the serial link. The pins used for flow control are de-
fined in PPPLINK.LIB as follows:

PPP_CTSPORT: the port address for the CTS input line.
PPP_CTSPIN: the pin number of the CTS input line.
PPP_RTSPORT: the port address of the RTS output line.
PPP_RTSSHADOW: the name of the port’s shadow register.
PPP_RTSPIN: the pin number of the RTS output line.

LIBRARY

PPPLINK.LIB

PPPflowcontrolOff

PPPflowcontrolOn
Chapter 12: PPP Driver 271

int PPPstart(unsigned long timeout, int retry);

DESCRIPTION

Starts link negotiation process with a connected peer.

PARAMETERS

timeout Number of milliseconds to wait between phases of negotiation be-
fore starting over.

retry Number of times to retry the connection.

RETURN VALUE

1: Negotiation succeeded;
0: A link could not be negotiated.

LIBRARY

PPP.LIB

void PPPnegotiateIP(unsigned long local_ip, unsigned long
remote_ip);

DESCRIPTION

Sets PPP driver to negotiate IP addresses for itself and the remote peer. Otherwise, the
system will rely on the remote peer to set addresses.

PARAMETERS

local_ip IP number to use for this PPP connection.

remote_ip IP number that the remote peer should be set to.

LIBRARY

PPP.LIB

PPPstart

PPPnegotiateIP
272 TCP/IP User’s Manual

void PPPnegotiateDNS(unsigned long dns_ip);

DESCRIPTION

Sets PPP driver to configure a DNS address for the remote peer.

PARAMETERS

dns_ip IP number for the DNS server

LIBRARY

PPP.LIB

void PPPsetAuthenticatee(char *username, char *password);

DESCRIPTION

Sets the driver up to send a PAP authentication message to a peer when requested.

PARAMETERS

username The username to send to the peer. The argument string is not copied,
so the argument string must stay constant.

password The password to send to the peer. The argument string is not copied,
so the argument string must stay constant

LIBRARY

PPP.LIB

PPPnegotiateDNS

PPPsetAuthenticatee
Chapter 12: PPP Driver 273

void PPPsetAuthenticator(char *username, char *password);

DESCRIPTION

Sets the driver up to require a PAP authentication message from a peer. Negotiation will
fail unless the peer sends the specified username/password pair. This function is generally
used when the Rabbit is acting as a dial-in server.

PARAMETERS

username The user name that the peer must match for the link to proceed.

password The password that the peer must match for the link to proceed.

LIBRARY

PPP.LIB

int PPPshutdown(unsigned long timeout);

DESCRIPTION

Sends a Link Terminate Request packet. Waits for link to be torn down.

PARAMETERS

timeout Number of milliseconds to wait before giving up on a response from
the peer.

RETURN VALUE

1: Shutdown succeeded
0: Shutdown timed out

LIBRARY

PPP.LIB

PPPsetAuthenticator

PPPshutdown
274 TCP/IP User’s Manual

void ResetPPP();

DESCRIPTION

Under normal operations, this function will not be needed; the modem control functions
make it unnecessary. There are, however, conditions that may make it useful.

LIBRARY

PPP.LIB

ResetPPP
Chapter 12: PPP Driver 275

276 TCP/IP User’s Manual

Index

Numerics

2MSL92

A

Application Protocols
FTP Client191
FTP Server195
HTTP155
POP3 Client215
SMTP Client209
Telnet221
TFTP201

B

Buffer sizes8

C

Checksums59
Console233

Backup System249
circular buffers244
Commands234

action taken234
command array235
custom commands239
data structure234
default commands235
default functions236
help overview234
help text for command .234
name of command234

configuration macros251
Console Execution244

slave port243
Telnet242
terminal emulator249

Daemon245
Error Messages240

custom error messages .241
default error messages ..240

file system initialization ...244
I/O Interface242

custom I/O methods243
including an I/O method

242
multiple I/O streams243
predefined I/O methods 242

Initialization245
physical connection244
required functions245
sample program252

using TCP/IP244

D

Daemons
ftp_client_tick193
ftp_tick199
http_handler184
pop3_tick218
tcp_tick93
telnet_tick229
tftp_tick205

E

E-mail
POP3 Client

call-back function216
configuration215
receiving e-mail215
sample conversation220
sample program219

SMTP Client
configuration210
debug210
define server210
HELO command210
sample conversation209
sample program214
sending e-mail209
timeout value210

Ethernet Transmission Unit ...54

F

FTP Client191
download file191
FTP daemon193
port number191
set up file transfer192
size of downloaded file193
upload files191

FTP Server195
anonymous login195
Configuration Constants ..195

buffer size195
connection timeout195
simultaneous connections ..

195
string lengths195

file handlers196
sample program200

Function Reference
Addressing

arp_resolve23
dhcp_acquire25

dhcp_release26
getdomainname27
gethostid28
gethostname28
getpeername29
getsockname30
pd_getaddress37
psocket38
resolve39
resolve_cancel40
resolve_name_check41
resolve_name_start42
setdomainname45
sethostid46
sethostname46

CGI
cgi_redirectto180
cgi_sendstring181

Configuration
tcp_config84

Console
con_backup245
con_backup_bytes246
con_backup_reserve246
con_chk_timeout246
con_load_backup247
con_reset_io247
con_set_backup_lx247
con_set_files_lx248
con_set_timeout248
con_set_user_idle248
con_set_user_timeout ..249
console_init245
console_tick245

Cookie
http_setcookie186

Data Conversion
htonl31
htons31
http_contentencode182
http_urldecode187
inet_addr32
inet_ntoa33
ntohl35
ntohs36
paddr36
rip43

E-mail
pop3_getmail218
pop3_init217
pop3_tick218
smtp_mailtick213
smtp_sendmail211
smtp_sendmailxmem ...212
TCP/IP User’s Manual 277

smtp_status 213
FTP Client

ftp_client_filesize 193
ftp_client_setup 192
ftp_client_tick 193

FTP Server
ftp_init 199
ftp_tick 199

HTML Forms
http_finderrbuf 183
http_nextfverr 184
http_parseform 185
sspec_addfv 116
sspec_findfv 122
sspec_getformtitle 125
sspec_getfvdesc 127
sspec_getfventrytype ... 128
sspec_getfvlen 128
sspec_getfvname 129
sspec_getfvnum 129
sspec_getfvopt 130
sspec_getfvoptlistlen ... 130
sspec_getfvreadonly 131
sspec_getpreformfunction .

133
sspec_setformepilog 141
sspec_setformfunction . 142
sspec_setformprolog 143
sspec_setformtitle 144
sspec_setfvcheck 145
sspec_setfvdesc 146
sspec_setfventrytype ... 146
sspec_setfvfloatrange .. 147
sspec_setfvlen 147
sspec_setfvname 148
sspec_setfvoptlist 148
sspec_setfvrange 149
sspec_setfvreadonly 149
sspec_setpreformfunction ..

150
HTTP server

http_handler 184
http_init 185

Modem
CofModemExpect 264
CofModemHangup 265
CofModemInit 265
CofModemSend 265
ModemClose 267
ModemConnected 267
ModemExpect 267
ModemHangup 268
ModemInit 268
ModemOpen 268

ModemReady 269
ModemRinging 269
ModemSend 269

Ping
_chk_ping 24
_ping 38
_send_ping 44

PPP
CofPPPshutdown 266
CofPPPstart 266
ModemStartPPP 270
PPPclose 270
PPPflowcontrolOff 271
PPPflowcontrolOn 271
PPPinit 270
PPPnegotiateDNS 273
PPPnegotiateIP 272
PPPsetAuthenticatee 273
PPPsetAuthenticator 274
PPPshutdown 274
PPPstart 272
ResetPPP 275

Socket Configuration
sock_mode 59
tcp_clearreserve 83
tcp_reserveport 92

Socket Connection
sock_abort 47
sock_close 49
sock_established 52
tcp_keepalive 87

Socket I/O
sock_preread 60

Socket I/O Buffer
sock_rbleft 63
sock_rbsize 63
sock_rbused 64
sock_tbleft 76
sock_tbsize 77
sock_tbused 77

Socket Status
sock_bytesready 48
sock_dataready 50
sockerr 51
sockstate 75
tcp_tick 93

TCP Socket I/O
sock_fastread 53
sock_fastwrite 54
sock_flush 55
sock_flushnext 56
sock_getc 57
sock_gets 58
sock_putc 61

sock_puts 62
sock_read 65
sock_write 82
tcp_extlisten 85
tcp_extopen 86
tcp_listen 88
tcp_open 90

TCP/IP Engine
sock_init 58
tcp_tick 93

TCP/IP servers’ object list
http_addfile 181
http_delfile 183
shtml_addfunction 188
shtml_addvariable 189
shtml_delfunction 190
shtml_delvariable 190
sspec_addform 113
sspec_addfsfile 114
sspec_addfunction 115
sspec_addrootfile 117
sspec_addvariable 118
sspec_addxmemfile 119
sspec_addxmemvar 120
sspec_aliasspec 121
sspec_checkaccess 122
sspec_findname 123
sspec_findnextfile 124
sspec_getfileloc 124
sspec_getfiletype 125
sspec_getfunction 126
sspec_getfvspec 131
sspec_getlength 132
sspec_getname 132
sspec_getrealm 134
sspec_gettype 134
sspec_getusername 135
sspec_getvaraddr 135
sspec_getvarkind 136
sspec_getvartype 136
sspec_needsauthentication .

137
sspec_readfile 138
sspec_readvariable 139
sspec_remove 139
sspec_restore 140
sspec_save 140
sspec_setrealm 151
sspec_setsavedata 152
sspec_setuser 153

TCP/IP users list
sauth_adduser 108
sauth_authenticate 109
sauth_getuserid 109
278 TCP/IP User’s Manual

sauth_getusername110
sauth_getwriteaccess110
sauth_removeuser111
sauth_setpassword111
sauth_setwriteaccess112

Telnet
telnet_close229
telnet_init228
telnet_tick229
vserial_close222
vserial_init222
vserial_keepalive223
vserial_listen224
vserial_open225
vserial_tick226

TFTP Client
tftp_exec207
tftp_init203
tftp_initx204
tftp_tick205
tftp_tickx206

Timers
ip_timer_expired33
ip_timer_init35

UDP Socket I/O
udp_close93
udp_extopen94
udp_open95
udp_recv97
udp_recvfrom98
udp_send99
udp_sendto100

UDP Socket I/O (pre-DC 7.05)
sock_fastread53
sock_fastwrite54
sock_read65
sock_recv71
sock_recv_from73
sock_recv_init74
sock_write82
udp_close93
udp_open95

H

HTML Forms167
buffer allocation174
FORM tag167

ACTION option167
METHOD option167

INPUT tag167
NAME parameter167
SIZE parameter167
TYPE parameter167
VALUE parameter167

option list178
POST-style submission170
pulldown menu175
sample page168
Zserver.lib functionality ...174

HTTP Servers155
authentication156
CGI167

sample handler172
configurable constants159
Data Structures155

HttpRealm156
HttpSpec155
HttpState157
HttpType156

dynamic web pages163
file extensions156, 162
HTML Forms167
MIME type156
number of servers159
POST command170
protection spaces156
SSI166
static web pages161
URL-encoded Data170

Reading & Storing171
HTTP_PORT160

I

IP Addresses
lease4, 5
Set Dynamically3
Set Manually3

M

Macros
DISABLE_DNS101
MAX_SOCKETS101
MAX_TCP_SOCKET_BUFF

ERS101
MAX_UDP_SOCKET_BUFF

ERS101
MY_DOMAIN101
MY_GATEWAY102
MY_IP_ADDRESS102
MY_NAMESERVER102
MY_NETMASK102
SOCK_BUF_SIZE102
TCP_BUF_SIZE102
tcp_MaxBufSize103
UDP_BUF_SIZE103

Maximum Segment Size103
memmap16
MIME types162

N

Nagle algorithm59

P

Packet Processing18
POP3 Client

Configuration215
debug option215

receiving e-mail215
PPP Driver259

Flow Control260
Modem Interface260
Network Parameters261
PPP Libraries259
PPP_PEERROUTE261

R

Reset clock160

S

Server Utility Library105
configurable constants107
Data Structures105

access106
TCP/IP servers’ object list .

105
TCP/IP users list105

number of objects107
number of users107
object types106
variable types106

SMTP Client
Configuration210

debug option210
define mail server210
HELO command210
timeout value210

sending e-mail209
Socket

data structure8
default mode11
definition8
empty line vs empty buffer 48

T

TCP Socket8
Active Open9
Blocking Macros19
Control Functions10
Delay a Connection9
I/O Functions11

Blocking19
TCP/IP User’s Manual 279

Non-Blocking 18
Passive Open 9

TCP/IP 3
Configuration 3

BOOTP/DHCP 3
I/O Buffers 8
IP Addresses 3
MAC address 3
Skeleton Program 16

Initialization 17
Multitasking 20

TFTP Client 201
Data Structure 202
DHCP/BOOTP 201
stack space 202

Tick rates 18

U

UDP
Broadcast Packets 12
Performance 12

UDP Socket
Checksum 12
Functions 12
Open and Close 14
Read 14
record service 74
Write 14

URL-encoded Data 170, 171

W

Well-known Ports
FTP server 195
HTTP server 159
POP3 215
SMTP server 209
280 TCP/IP User’s Manual

TCP/IP User’s Manual 281

	Table of Contents
	�1. Introduction
	�2. TCP/IP Engine
	2.1� TCP/IP Configuration
	2.1.1� IP Addresses Set Manually
	2.1.2� IP Addresses Set Dynamically
	2.1.2.1 BOOTP/DHCP Control Macros
	2.1.2.2 BOOTP/DHCP Global Variables
	2.1.2.3 DHCP Functions
	2.1.2.4 DHCP Sample Program

	2.1.3 Sizes for TCP/IP I/O Buffers
	2.1.3.1 User-supplied Buffers

	2.2� TCP Socket Interface
	2.2.1� Number of Sockets
	2.2.2� Passive Open
	2.2.3 Active Open
	2.2.4 Delay a Connection
	2.2.5 TCP Socket Functions
	2.2.5.1 Control Functions for TCP Sockets
	2.2.5.2 Status Functions for TCP Sockets
	2.2.5.3 I/O Functions for TCP Sockets

	2.3� UDP Socket Interface
	2.3.1� Dynamic C 7.05 (and later)
	2.3.1.1 Control Functions for UDP Sockets
	2.3.1.2 I/O Functions for UDP Sockets
	2.3.1.3 Status Function for UDP Sockets

	2.3.2� UDP Interface Prior to Dynamic C 7.05
	2.3.2.1 I/O Functions for UDP Sockets
	2.3.2.2 Opening and Closing a UDP Socket
	2.3.2.3 Writing to a UDP Socket
	2.3.2.4 Reading From a UDP Socket

	2.3.3� Porting Programs from the older UDP API to the new UDP API

	2.4� DNS Lookups
	2.4.1� Configuration Macros for DNS Lookups

	2.5� Skeleton Program
	2.5.1� TCP/IP Stack Initialization
	2.5.2� Packet Processing
	2.5.3� TCP/IP Daemon Computing Time

	2.6� State-Based Program Design
	2.6.1� Blocking vs. Non-Blocking
	2.6.1.1 Non-Blocking Functions
	2.6.1.2 Blocking Functions
	2.6.1.3 Blocking Macros

	2.7� Multitasking and TCP/IP
	2.7.1� µC/OS-II
	2.7.2� Cooperative Multitasking

	2.8� Function Reference
	_arp_resolve
	_chk_ping
	dhcp_acquire
	dhcp_release
	getdomainname
	gethostid
	gethostname
	getpeername
	getsockname
	htonl
	htons
	inet_addr
	inet_ntoa
	ip_timer_expired
	ip_timer_init
	ntohl
	ntohs
	paddr
	pd_getaddress
	_ping
	psocket
	resolve
	resolve_cancel
	resolve_name_check
	resolve_name_start
	rip
	_send_ping
	setdomainname
	sethostid
	sethostname
	sock_abort
	sock_bytesready
	sock_close
	sock_dataready
	sockerr
	sock_established
	sock_fastread
	sock_fastwrite
	sock_flush
	sock_flushnext
	sock_getc
	sock_gets
	sock_init
	sock_mode
	sock_preread
	sock_putc
	sock_puts
	sock_rbleft
	sock_rbsize
	sock_rbused
	sock_read
	sock_recv
	sock_recv_from
	sock_recv_init
	sockstate
	sock_tbleft
	sock_tbsize
	sock_tbused
	sock_tick
	sock_wait_closed
	sock_wait_established
	sock_wait_input
	sock_write
	sock_yield
	tcp_clearreserve
	tcp_config
	tcp_extlisten
	tcp_extopen
	tcp_keepalive
	tcp_listen
	tcp_open
	tcp_reserveport
	tcp_tick
	udp_close
	udp_extopen
	udp_open
	udp_recv
	udp_recvfrom
	udp_send
	udp_sendto

	2.9� Macros
	DISABLE_DNS
	MAX_SOCKETS
	MAX_SOCKET_LOCKS
	MAX_TCP_SOCKET_BUFFERS
	MAX_UDP_SOCKET_BUFFERS
	MY_DOMAIN
	MY_GATEWAY
	MY_IP_ADDRESS
	MY_NAMESERVER
	MY_NETMASK
	SOCK_BUF_SIZE
	TCP_BUF_SIZE
	tcp_MaxBufSize
	UDP_BUF_SIZE

	�3. Server Utility Library
	3.1� Data Structures for Zserver.lib
	3.1.1� ServerSpec Structure
	3.1.2� ServerAuth Structure
	3.1.3� FormVar Structure

	3.2� Constants Used in Zserver.lib
	3.2.1� ServerSpec Type Field
	3.2.2� ServerSpec Vartype Field
	3.2.3� Servermask field
	3.2.4� Configurable Constants

	3.3� HTML Forms
	3.4� Functions
	sauth_adduser
	sauth_authenticate
	sauth_getuserid
	sauth_getusername
	sauth_getwriteaccess
	sauth_removeuser
	sauth_setpassword
	sauth_setwriteaccess
	sspec_addform
	sspec_addfsfile
	sspec_addfunction
	sspec_addfv
	sspec_addrootfile
	sspec_addvariable
	sspec_addxmemfile
	sspec_addxmemvar
	sspec_aliasspec
	sspec_checkaccess
	sspec_findfv
	sspec_findname
	sspec_findnextfile
	sspec_getfileloc
	sspec_getfiletype
	sspec_getformtitle
	sspec_getfunction
	sspec_getfvdesc
	sspec_getfventrytype
	sspec_getfvlen
	sspec_getfvname
	sspec_getfvnum
	sspec_getfvopt
	sspec_getfvoptlistlen
	sspec_getfvreadonly
	sspec_getfvspec
	sspec_getlength
	sspec_getname
	sspec_getpreformfunction
	sspec_getrealm
	sspec_gettype
	sspec_getusername
	sspec_getvaraddr
	sspec_getvarkind
	sspec_getvartype
	sspec_needsauthentication
	sspec_readfile
	sspec_readvariable
	sspec_remove
	sspec_restore
	sspec_save
	sspec_setformepilog
	sspec_setformfunction
	sspec_setformprolog
	sspec_setformtitle
	sspec_setfvcheck
	sspec_setfvdesc
	sspec_setfventrytype
	sspec_setfvfloatrange
	sspec_setfvlen
	sspec_setfvname
	sspec_setfvoptlist
	sspec_setfvrange
	sspec_setfvreadonly
	sspec_setpreformfunction
	sspec_setrealm
	sspec_setsavedata
	sspec_setuser

	�4. HTTP Server
	4.1� HTTP Server Data Structures
	4.1.1� HttpSpec
	4.1.1.1� HttpSpec fields

	4.1.2� HttpType
	4.1.3� HttpRealm
	4.1.4� HttpState
	4.1.4.1� HttpState Fields

	4.2� Configuration Macros
	4.2.1� Customizing HTTP headers

	4.3� Sample Programs
	4.3.1� Serving Static Web Pages
	4.3.1.1� Adding Files to Display
	4.3.1.2� Adding Files with Different Extensions
	4.3.1.3� Handling of Files With No Extension

	4.3.2� Dynamic Web Pages Without HTML Forms
	4.3.2.1� SSI Feature
	4.3.2.2� CGI Feature

	4.3.3� Web Pages With HTML Forms
	4.3.3.1� Sample HTML Page
	4.3.3.2� POST-style form submission
	4.3.3.3� URL-encoded Data
	4.3.3.4� Sample of a CGI Handler

	4.3.4� HTML Forms Using Zserver.lib

	4.4� Functions
	cgi_redirectto
	cgi_sendstring
	http_addfile
	http_contentencode
	http_delfile
	http_finderrbuf
	http_nextfverr
	http_handler
	http_init
	http_parseform
	http_setcookie
	http_urldecode
	shtml_addfunction
	shtml_addvariable
	shtml_delfunction
	shtml_delvariable

	�5. FTP Client
	5.1� Configuration Macros
	5.2� Functions
	ftp_client_setup
	ftp_client_tick
	ftp_client_filesize

	5.3� Sample FTP Transfer

	�6. FTP Server
	6.1� Configuration Constants
	6.1.1� File Options

	6.2� File Handlers
	open
	getfilesize
	read
	write
	close

	6.3� Functions
	ftp_init
	ftp_tick

	6.4� Sample FTP Server

	�7. TFTP Client
	7.0.1� BOOTP/DHCP
	7.0.2� Data Structure for TFTP
	7.0.2.1 Macros for tftp_state->mode

	7.0.3� Function Reference
	tftp_init
	tftp_initx
	tftp_tick
	tftp_tickx
	tftp_exec

	�8. SMTP Mail Client
	8.1� Sample Conversation
	8.2� Configuration
	8.3� Functions
	smtp_sendmail
	smtp_sendmailxmem
	smtp_mailtick
	smtp_status

	8.4� Sample Sending of an E-mail

	�9. POP3 Client
	9.1� Configuration
	9.2� Three Steps to Receive E-mail.
	9.3� Call-Back Function
	9.3.1� Normal call-back
	9.3.2� POP_PARSE_EXTRA call-back

	9.4� Functions
	pop3_init
	pop3_getmail
	pop3_tick

	9.5� Sample receiving of e-mail
	9.5.1� Sample Conversation

	�10. Telnet
	10.1� Telnet (Dynamic C 7.05 and later)
	10.1.1� Setup
	10.1.1.1� Low-level Serial Routines
	10.1.1.2� Configuration Macros

	10.1.2� Function Reference (Dynamic C 7.05 and later)
	vserial_close
	vserial_init
	vserial_keepalive
	vserial_listen
	vserial_open
	vserial_tick

	10.1.3� Sample Program (Dynamic C 7.05 and later)

	10.2� Telnet (pre-Dynamic C 7.05)
	10.2.1� Configuration Macros
	10.2.2� Function Reference
	telnet_init
	telnet_tick
	telnet_close

	10.2.3� An Example Telnet Server
	10.2.3.1� A Sample Client To Connect to the Server

	�11. General Purpose Console
	11.1� Introduction
	11.2� Console Features
	11.2.1� Using other Dynamic C Libraries

	11.3� Console Commands and Messages
	11.3.1� Console Command Data Structure
	11.3.1.1 Help Text for General Cases

	11.3.2� Console Command Array
	11.3.3� Console Commands
	11.3.3.1 Default Command Functions
	11.3.3.2 Custom Console Commands

	11.3.4� Console Error Messages
	11.3.4.1 Default Error Messages
	11.3.4.2 Custom Error Messages

	11.4� Console I/O Interface
	11.4.1� How to Include an I/O Method
	11.4.2� Predefined I/O Methods
	11.4.2.1 Serial Ports
	11.4.2.2 Telnet
	11.4.2.3 Slave Port
	11.4.2.4 Custom I/O Methods

	11.4.3� Multiple I/O Streams

	11.5� Console Execution
	11.5.1� File System Initialization
	11.5.2� Serial Buffers
	11.5.3� Using TCP/IP
	11.5.4� Required Console Functions
	console_init
	console_tick

	11.5.5� Useful Console Function
	con_backup
	con_backup_bytes
	con_backup_reserve
	con_chk_timeout
	con_load_backup
	con_reset_io
	con_set_backup_lx
	con_set_files_lx
	con_set_user_idle
	con_set_timeout
	con_set_user_timeout

	11.5.6� Console Execution Choices
	11.5.6.1 Terminal Emulator

	11.6� Backup System
	11.6.1� Data Structure for Backup System
	11.6.2� Array Definition for Backup System

	11.7� Console Macros
	11.8� Sample Program

	�12. PPP Driver
	12.1� PPP Libraries
	12.2� Operation Details
	12.2.1� The Modem Interface
	12.2.1.1 Rabbit Pin Connections to Modem

	12.2.2� Flow Control
	12.2.3� Serial Port C

	12.3� Software Implementation Overview
	12.3.1� Defining Network Parameters
	12.3.1.1 IP Addresses

	12.3.2� Configuration Options
	12.3.3� Authentication
	12.3.3.1 Authentication Sequence

	12.3.4� Link Teardown

	12.4� Functions
	CofModemExpect
	CofModemHangup
	CofModemInit
	CofModemSend
	CofPPPshutdown
	CofPPPstart
	ModemClose
	ModemConnected
	ModemExpect
	ModemHangup
	ModemInit
	ModemOpen
	ModemReady
	ModemRinging
	ModemSend
	ModemStartPPP
	PPPclose
	PPPinit
	PPPflowcontrolOff
	PPPflowcontrolOn
	PPPstart
	PPPnegotiateIP
	PPPnegotiateDNS
	PPPsetAuthenticatee
	PPPsetAuthenticator
	PPPshutdown
	ResetPPP

	Index

