
Getting Started
Integrated C Development System

TCP/IP Development Kit
000915 - B

Getting Started (TCP/IP Development Kit)

Part Number 019-0079 • 000915 - B • Printed in U.S.A.

Copyright

© 2000 Rabbit Semiconductor • All rights reserved.

Rabbit Semiconductor reserves the right to make changes and improvements to its prod-
ucts without providing notice.

Trademarks

• Dynamic C® is a registered trademark of Z-World, Inc.

• Windows® is a registered trademark of Microsoft Corporation

Notice to Users

When a system failure may cause serious consequences, protecting life and property
against such consequences with a backup system or safety device is essential. The buyer
agrees that protection against consequences resulting from system failure is the buyer’s
responsibility.

This device is not approved for life-support or medical systems.

All Z-World products are 100 percent functionally tested. Additional testing may include
visual quality control inspections or mechanical defects analyzer inspections. Specifica-
tions are based on characterization of tested sample units rather than testing over tempera-
ture and voltage of each unit. Rabbit Semiconductor may qualify components to operate
within a range of parameters that is different from the manufacturer’s recommended
range. This strategy is believed to be more economical and effective. Additional testing
or burn-in of an individual unit is available by special arrangement.

Company Address

Rabbit Semiconductor
2932 Spafford Street
Davis, California 95616-6800
USA

Telephone: (530) 757-8400

Facsimile: (530) 757-8402

Web site: http://www.rabbitsemiconductor.com

Table of Contents

About This Manual

1. Installing Dynamic C Premier ..1
1.1 Requirements...2

1.2 Installation...2

1.3 Desktop Icons..4

2. Introduction to Dynamic C ...5
2.1 The Nature of Dynamic C ...6

2.1.1 Speed..6

2.2 Dynamic C Libraries ...7

2.3 Using Dynamic C ..10

2.4 Upgrading Dynamic C ..11
2.4.1 Workarounds ..11
2.4.2 Upgrades ..12

3. Hardware Connections..13
3.1 Connections...14

3.2 Installing Dynamic C ..17

3.3 Starting Dynamic C ...17

3.4 PONG.C...18

3.5 Sample Programs...19
3.5.1 Running Sample Program DEMOBRD1.C ...20
3.5.2 Single-Stepping..22

3.5.2.1 Watch Expression 22
3.5.2.2 Break Point 22
3.5.2.3 Editing the Program 23
3.5.2.4 Watching Variables Dynamically 23
3.5.2.5 Summary of Features 23

3.5.3 Cooperative Multitasking ..24
3.5.4 Advantages of Cooperative Multitasking ..26

4. Running Your First TCP/IP
 Sample Program...27
4.1 Running TCP/IP Sample Programs...28

4.2 IP Addresses Explained...30

4.3 How IP Addresses are Used ..30

4.4 Dynamically Assigned Internet Addresses ...31

4.5 How to Set IP Addresses in the Demo Programs..32

4.6 How to Set Up your Computer’s IP Address For Direct Connect ..33

4.7 Run the PINGME.C Demo..34

4.8 Running More Demo Programs With Direct Connect ..34

4.9 Where Do I Go From Here?..35
Getting Started

5. Serial Ports and Digital I/O...37
5.1 Serial Communication .. 38

5.1.1 RS-232... 38
5.1.2 RS-485... 38
5.1.3 Programming Port ... 40
5.1.4 Serial Communication Software ... 40

5.1.4.1 Sample Serial Communication Programs 41

5.2 Digital I/O... 43
5.2.1 Digital Inputs... 43
5.2.2 Digital Outputs .. 43
5.2.3 Digital I/O Software .. 44
5.2.4 Sample Digital I/O Programs .. 44

Appendix A. TCP/IP
Development Board Specifications ...45
A.1 Electrical and Mechanical Specifications .. 46

Appendix B. Power Management ...49
B.1 Power Supplies... 50

B.2 Batteries and External Battery Connections .. 50
B.2.1 Battery Backup Circuit ... 51
B.2.2 Power to VRAM Switch... 52
B.2.3 Reset Generator .. 53
B.2.4 Installing/Replacing the Backup Battery Board ... 53

B.3 Chip Select Circuit ... 54

Index ..57

Schematics
TCP/IP Development Kit

About This Manual

Rabbit Semiconductor and Z-World customers develop software for their programmable
controllers using Z-World’s Dynamic C Premier development system running on an IBM-
compatible PC. Dynamic C Premier provides an interactive compiler, editor, and source-
level debugger. The controller is connected to a COM port on the PC (COM1 by default)
whose default operation is at 115,200 bps.

This manual introduces the Dynamic C Premier SE development system to write software
for a TCP/IP board based on the Rabbit microprocessor. The Rabbit 2000 microprocessor
is a new high-performance 8-bit microprocessor developed by Rabbit Semiconductor, a
company affiliated with Z-World. The Rabbit 2000 can handle C language applications of
approximately 1 megabyte (50,000+ C statements).

To view documentation included on the CD-ROM, close your browser (if already open),
then click on the “TCP IP DEV KIT DOCS” icon on your desktop. This will bring up a list
of all documentation contained on the CD-ROM. Refer to the Rabbit Semiconductor Web
site, www.rabbitsemiconductor.com, for updates to manuals and application notes.

Conventions

Table 1 lists and defines the typographic conventions that may be encountered in Dynamic C.

Table 1: Typographic Conventions

Example Description

while
Bold Courier font indicates a program, a fragment of a
program, or a Dynamic C keyword or phrase.

// IN-01… Program comments are in normal Courier font.

Italics
Courier italics indicate that something should be typed
instead of the italicized words (e.g., type a file name where
filename is shown).

Edit Bold sans serif font indicates a menu or menu selection.

…
An ellipsis indicates that (1) irrelevant program text is
omitted for brevity, or that (2) the preceding program text
may be repeated indefinitely.

[]
Square brackets in a C function’s definition or program
segment indicate that the enclosed directive is optional.

< > Angle brackets are used to enclose classes of terms.

a | b | c
A vertical bar indicates that a choice should be made from
among the items listed.
Getting Started

http://www.rabbitsemiconductor.com

About the TCP/IP Development Kit

The TCP/IP Development Kit is a more advanced kit than other Rabbit Semiconductor
development kits that demonstrate the use of the Rabbit 2000 microprocessor. You should
have some knowledge of the C programming language and microprocessor-based sys-
tems. If you don’t already have a working knowledge of how to use Dynamic C Premier,
then you should learn this first by doing the exercises in the TCP/IP Development Kit
Getting Started manual. Once you are comfortable with Dynamic C Premier, you can
begin trying out other TCP/IP sample programs.

If you are a real novice you might consider starting out with one of the easier Rabbit Semi-
conductor kits.
TCP/IP Development Kit

1. INSTALLING DYNAMIC C PREMIER
Getting Started 1

1.1 Requirements

Dynamic C software comes on CD. To install Dynamic C, your system must be running
one of the following.

• Windows 95

• Windows 98

• Windows NT

• Windows 2000

• Windows Me

Your PC should have at least one free COM port.

1.2 Installation

Insert the CD in the CD-ROM disk drive on your PC. As long as auto-install is enabled,
the CD installation will begin automatically. If not, issue the Windows Start > Run...
command and type the following, using your CD drive for <CD Drive>.

The installation program will then guide you through the installation process.

When selecting the PC COM port, the default PC COM port is COM1.
2 TCP/IP Development Kit

Before the installation is complete, the installation wizard will ask you what icons to dis-
play on your PC desktop. Separate icons are available for Dynamic C itself and for the
manuals and other documents.

Click the Finish button to end the installation. Notice that there is a check mark option to
start Dynamic C immediately once the installation is complete.
Getting Started 3

1.3 Desktop Icons

Once your installation of Dynamic C and the documentation is complete, you will have
two icons on your PC desktop: one for Dynamic C and one for the documentation.
Double-click the corresponding icon start Dynamic C or to access the documentation.

It is also possible to start Dynamic C or access the documentation by double-clicking the
corresponding launch file on the drive where you installed Dynamic C and the documenta-
tion. The default file locations for a typical installation are shown.

• C:\DCRABBIT_6...exe to start Dynamic C

• C:\DCRABBIT_6...\Docs\default to display the documentation screen.
4 TCP/IP Development Kit

2. INTRODUCTION TO DYNAMIC C

Dynamic C is an integrated development system for writing embedded software. It runs
on an IBM-compatible PC and is designed for use with Z-World controllers and other con-
trollers based on the Rabbit microprocessor.
Getting Started 5

2.1 The Nature of Dynamic C

Dynamic C integrates the following development functions

• Editing

• Compiling

• Linking

• Loading

• Debugging

into one program. In fact, compiling, linking and loading are one function. Dynamic C
has an easy-to-use built-in text editor. Programs can be executed and debugged interac-
tively at the source-code or machine-code level. Pull-down menus and keyboard shortcuts
for most commands make Dynamic C easy to use.

Dynamic C also supports assembly language programming. It is not necessary to leave C
or the development system to write assembly language code. C and assembly language
may be mixed together.

Debugging under Dynamic C includes the ability to use printf commands, watch
expressions, breakpoints and other advanced debugging features. Watch expressions can
be used to compute C expressions involving the target’s program variables or functions.
Watch expressions can be evaluated while stopped at a breakpoint or while the target is
running its program.

Dynamic C provides extensions to the C language (such as shared and protected variables,
costatements and cofunctions) that support real-world embedded system development.
Interrupt service routines may be written in C. Dynamic C supports cooperative and pre-
emptive multi-tasking.

Dynamic C comes with many function libraries, all in source code. These libraries sup-
port real-time programming, machine level I/O, and provide standard string and math
functions.

2.1.1 Speed

Dynamic C compiles directly to memory. Functions and libraries are compiled and linked
and downloaded on-the-fly. On a fast PC, Dynamic C might load 30,000 bytes of code in
5 seconds at a baud rate of 115,200 bps.
6 TCP/IP Development Kit

2.2 Dynamic C Libraries

With Dynamic C running, click File > Open, and select Lib. The following list of
Dynamic C libraries will be displayed.

Let’s examine the libraries.

• Bioslib—libraries specific to running a BIOS, applies to all controllers. Although
the functions in these libraries are required by the BIOS, they are not exclusive to the
BIOS.

• Icom—libraries specific to the TCP/IP Development Board.

• Tcpip—libraries specific to using TCP/IP with the TCP/IP Development Board.

• COFUNC.lib—enables multitasking cofunctions to be defined starting with cofunc.
Cofunctions may be nested within costatements.

• COSTATE.lib—enables multitasking costatements to be defined starting with costate.
Also contains a library of commonly used costatements.

• FFT.lib—fast Fourier transform functions.

• MATH.lib—math functions.

• PROGRAM.lib—does program initialization before calling main.

• RS232.lib—interface designed to provide users with a set of functions that send and
receive data without yielding to other tasks, and a set of single-user cofunctions that
send and receive data but yield to other tasks.

• RTCLOCK.lib—real-time clock drivers.

• SLICE.lib—library functions that allow multitasking.

• STDIO.lib—standard Dynamic C terminal window I/O functions.

• STRING.lib—string operations.
Getting Started 7

• SYS.lib—support libraries.

• VDRIVER.lib—generic virtual drivers.

• XMEM.lib—extended memory support functions.

The Bioslib folder contains libraries required by the BIOS, but not exclusive to the
BIOS.

• BIOSFSM.lib—support libraries.

• CLONE.lib—functions used to “clone” boards by copying BIOS and programs from
one board to another via a special cloning cable.

• CSUPPORT.lib—support libraries.

• DBUGKERN.lib—debugging kernel support functions.

• FLASHWR.lib—utility functions for writing to flash EPROM.

• IDBLOCK.lib—functions to access the ID block in Z-World product flash devices, also
contains general CRC checking functions.

• MUTIL.lib—integer math utility functions.

• MUTILFP.lib—floating-point math utility functions.

• STACK.lib—base data structure for maintaining stack allocation information.

• SYSIO.lib—support libraries.

• UTIL.lib—utility functions.
8 TCP/IP Development Kit

The Tcpip folder contains libraries specific to using TCP/IP with the TCP/IP Develop-
ment Board.

• ARP.lib—address resolution protocol functions.

• BOOTP.lib—bootstrap protocol functions.

• BSDNAME.lib—BSD-style socket routines.

• DCRTCP.lib—TCP/IP functions.

• FTP_CLIENT.LIB—FTP client functions.

• FTP_SERVER.LIB—FTP server functions.

• HTTP.lib—HTTP handler.

• ICMP.lib—ICMP handler.

• PKTDRV.lib—packet driver functions.

• POP3.lib—POP3 functions.

• SMTP.lib—SMTP handler.

• VSERIAL.lib—virtual Telnet functions.
Getting Started 9

2.3 Using Dynamic C

More complete information on Dynamic C is provided in the Dynamic C Premier User’s
Manual. Functions specific to the TCP/IP Development Board are described in the
TCP/IP Application Frameworks Manual and the TCP/IP Function Reference Manual.
An Introduction to TCP/IP provides background information on TCP/IP, and is included
on the CD.
10 TCP/IP Development Kit

2.4 Upgrading Dynamic C

Dynamic C upgrades and patches are available from time to time. An upgrade may either
enhance the features and libraries, or it may focus on bug fixes. Check the Web sites

www.zworld.com/support/supportcenter.html

or

www.rabbitsemiconductor.com

for the latest updates, patches, workarounds, and bug fixes.

2.4.1 Workarounds

Workarounds describe problems and recommended ways around them. The figure below
shows a typical workaround panel from one of the two Web sites.
Getting Started 11

http://www.zworld.com/support/supportcenter.html
http://www.rabbitsemiconductor.com

2.4.2 Upgrades

Upgrades are also available on the Web site, and are first downloaded to your PC. The
downloaded application is then run, much like an installation would be.

The default installation of an upgrade is to install the new release of Dynamic C in a direc-
tory (folder) different from that of the original installation. Z-World recommends using a
different directory so that you can verify the operation of the new release without over-
writing the previous release. If you have made any changes to the BIOS or to libraries, or
if you have programs in the old directory (folder), make these same changes to the BIOS
or libraries in the new directory containing the upgraded release of Dynamic C. Do not
simply copy over an entire file since you may overwrite a bug fix; of course, you may
copy over any programs you have written. Once you are sure the new release works
entirely to your satisfaction, you may retire the older release, but keep it available to han-
dle legacy applications.
12 TCP/IP Development Kit

3. HARDWARE CONNECTIONS
Getting Started 13

3.1 Connections

Before proceeding you will need to have the following items.

• If you don’t have Ethernet access, you will need at least a 10BaseT Ethernet card
(available from your favorite computer supplier) installed in a PC.

• Two RJ-45 straight through Ethernet cables and a hub, or an RJ-45 crossover Ethernet
cable.

The Ethernet cables and Ethernet hub are available from Rabbit Semiconductor in a
TCP/IP tool kit. More information is available at www.rabbitsemiconductor.com.

An AC adapter is not included with TCP/IP Development Kits sold outside North Amer-
ica. Rabbit Semiconductor recommends that an AC adpater with a minimum rating of
200 mA at 12 VDC or 100 mA at 24 VDC be used to supply power to the TCP/IP Devel-
opment Board.

1. Attach the rubber feet to the bottom corners of the TCP/IP Development Board.

2. Connect the Programming Cable to the TCP/IP Development Board.

Turn the Rabbit 2000 TCP/IP Development Board so that the Rabbit 2000 microprocessor
is facing as shown below. Connect the 10-pin connector of the programming cable to
header J4 on the TCP/IP Development Board as shown below. Connect the other end of
the programming cable to a COM port on your PC. Note that COM1 on the PC is the
default COM port used by Dynamic C.

Figure 1. Connecting Power and PC to Rabbit 2000 TCP/IP Development Board

�

�
�

���

�
�

�
��

��

�
�

	

�
�

���

�
�

���

�
��

��

�
��

���

���
��

��

��

�
�

�
��

�
�

���

��� ���
�
��

�
��

�
�

��� ��� ���

���

�
��

�
�� ���

�� ��

��
�� ��

�
�

�
�

��

��

�����

���

��

�

���

����

���
�����

��

	��

�
�

	�� 	��

	��
	��

	�

	��

�

�� ��

��

��

������

���

���

���

���

���

�
��

�
��

��

�
��

�
��

�
��

���

��

��

��

	��

�
�� ���

��

�
�

�
�

��

���
��

��

��

���

�
�

��
���

���
���

��

�

���

�� ������

��

��

���

�

���

���

�
��

�
��

	��

��

���

���

���

��

���

	���

�
��

�
��

�
�

�
��

�
�

�
��

�
��

�
��

	���
	���

	��

	���
	���

	���
	���

	���
	���

��

�
��

���

�
��

���

�
��

���

���

��

��

�
��

���

���

�
��

	���

��

��

���

�

�
��

�
��

�
��

��
��

��

	��� �
��

�
��

�
��

�
��

�
�

�
��

�
��

�
��

�
��

���
��� ��� ��� ��� ��

�
��

�
��

�
��

������

���

���

���

���

���

���

��

��� ��� ��� ��� �
��

�
��

�
��

�
��

�
��

�
�

�
�� �

��

�� �
 ��� ���

�

�
��

�
��

�
��

��
�

�
��

���

���
���

���

�
�
���������

�
�
����

����

���������		 ��

��!�
�!�	

��"�������

���

� ����

!
�

!
�

!
�

!
�

#�#�#�#��
"

	
"

 � 	

��
�

�
�
	

 ���

��"�������

��	�� �
����� �

$
��
!
%

����

����	

����

����	

����

�&'
(&)*��+,-./
	01-.2

� 3

�454,&'�6-'&
'47.

	4
 +&,.&

	4
�������84,*
14 TCP/IP Development Kit

http://www.rabbitsemiconductor.com

3. Connect Power Supply to TCP/IP Devel-
opment Board

Connect the positive lead (indicated with red
heat-shrink tubing on the AC adapter included
with the Development Kit) to the PWR con-
nector on header J7 on the TCP/IP Develop-
ment Board, and connect the negative lead to
GND on header J7 as shown in Figure 2.

Be careful to hook up the positive
and negative power leads exactly
as described. Otherwise, the
TCP/IP Development Board
will not function.

Figure 2. Power Supply Connections

�
��

�
�
���������

�
�
����

� 3
�&'

(&)*��+,-./
	01-.2
Getting Started 15

4. Ethernet Connections

If you do not have access to an Ethernet network, use a crossover Ethernet cable to connect the
TCP/IP Development Board to a PC with at least a 10BaseT Ethernet card.

If you have Ethernet access, use a straight Ethernet cable to establish an Ethernet connection to the
TCP/IP Development Board from an Ethernet hub. These connections are shown in Figure 3.

The PC running Dynamic C through the serial port need not be the same as the PC with the Ether-
net card.

Figure 3. Ethernet Connections

�

�
�

���

�
�

�
��

��

�
�

	

�
�

���

�
�

���

�
��

��

�
��

���

���
��

��

��

�
�

�
��

�
�

���

��� ���

�
��

�
��

�
�

��� ��� ���

���

�
��

�
�� ���

�� ��

��
�� ��

�
�

�
�

��

��

�����

���

��

�

���

����

���
�����

��

	��

�
�

	�� 	��

	��
	��

	�

	��

�

�� ��

��

��

������

���

���

���

���

���

�
��

�
��

��

�
��

�
��

�
��

���

��

��

��

	��

�
�� ���

��

�
�

�
�

��

���
��

��

��

���

�
�

��
���

���
���

��

�

���

�� ������

��

��

���

�

���

���

�
��

�
��

	��

��

���

���

���

��

���

	���

�
��

�
��

�
�

�
��

�
�

�
��

�
��

�
��

	���
	���

	��

	���
	���

	���
	���

	���
	���

��

�
��

���

�
��

���

�
��

���

���

��

��

�
��

���

���

�
��

	���

��

��

���

�

�
��

�
��

�
��

��
��

��

	��� �
��

�
��

�
��

�
��

�
�

�
��

�
��

�
��

�
��

���
��� ��� ��� ��� ��

�
��

�
��

�
��

������

���

���

���

���

���

���

��

��� ��� ��� ��� �
��

�
��

�
��

�
��

�
��

�
�

�
�� �

��

�� �
 ��� ���

�

�
��

�
��

�
��

��
�

�
��

���

���
���

���

�
�
���������

�
�
����

����

���������		 ��

��!�
�!�	

��"�������

���

� ����

!
�

!
�

!
�

!
�

#�#�#�#��
"

	
"

 � 	

��
�

�
�
	

 ���

��"�������

�

�
�

���

�
�

�
��

��

�
�

	

�
�

���

�
�

���

�
��

��

�
��

���

���
��

��

��
�
�

�
��

�
�

���

��� ���

�
��

�
��

�
�

��� ��� ���

���

�
��

�
�� ���

�� ��

��
�� ��

�
�

�
�

��

��

�����

���

��

�

���

����

���
�����

��

	��

�
�

	�� 	��

	��
	��

	�

	��

�

�� ��

��

��

������

���

���

���

���

���

�
��

�
��

��

�
��

�
��

�
��

���

��

��

��

	��

�
�� ���

��

�
�

�
�

��

���
��

��

��

���

�
�

��
���

���
���

��

�

���

�� ������

��

��

���

�

���

���

�
��

�
��

	��

��

���

���

���

��

���

	���

�
��

�
��

�
�

�
��

�
�

�
��

�
��

�
��

	���
	���

	��

	���
	���

	���
	���

	���
	���

��

�
��

���

�
��

���

�
��

���

���

��

��

�
��

���

���

�
��

	���

��

��

���

�

�
��

�
��

�
��

��
��

��

	��� �
��

�
��

�
��

�
��

�
�

�
��

�
��

�
��

�
��

���
��� ��� ��� ��� ��

�
��

�
��

�
��

������

���

���

���

���

���

���

��

��� ��� ��� ��� �
��

�
��

�
��

�
��

�
��

�
�

�
�� �

��

�� �
 ��� ���

�

�
��

�
��

�
��

��
�

�
��

���

���
���

���

�
�
���������

�
�
����

����

���������		 ��

��!�
�!�	

��"�������

���

� ����

!
�

!
�

!
�

!
�

#�#�#�#��
"

	
"

 � 	

��
�

�
�
	

 ���

��"�������

$
��
!
%

����

����	

����

����	

����

�&'
(&)*��+,-./
	01-.2

� 3

�454,&'�6-'&
'47. 	4

 +&,.&�9),'

	4
�������84,* ��

����
��	
��

��������
�
��

�,4664:&,
9)15&

��
���	
��
�����������
���
��������������
���

$
��
!
%

����

����	

����

����	

����

�&'
(&)*��+,-./
	01-.2

� 3

�454,&'�6-'&
'47.

	4
�������84,*

�*,)-2+*�	+,402+
9)15&6

��
���	
��
��������������
������
�����
��������
���

��������
���

��
����

��	
��

��������
�
��

	4
 +&,.&�9),'
16 TCP/IP Development Kit

5. Apply Power

Plug in the wall transformer. The TCP/IP Development Board is now ready to be used.

A hardware RESET is accomplished by unplugging the wall transformer, then
plugging it back in.

When working with the TCP/IP Development Board, the green LNK light is on when a
program is running and the board is properly connected either to an Ethernet hub or to an
active Ethernet card. The red ACT light flashes each time a packet is received.

3.2 Installing Dynamic C

If you have not yet installed Dynamic C, you may do so by inserting the CD from the
Development Kit in your PC’s CD-ROM drive. The CD will auto-install unless you have
disabled auto-install on your PC.

Chapter 1 provides detailed instructions for the installation of Dynamic C and any future
upgrades.

3.3 Starting Dynamic C

Once the Rabbit 2000 TCP/IP Development Board is connected as described above, start
Dynamic C by double-clicking on the Dynamic C icon or by double-clicking on the .exe
file associated with DcRab in the Dynamic C directory.

Dynamic C assumes, by default, that you are using serial port COM1 on your PC. If you
are using COM1, then Dynamic C should detect the TCP/IP Development Board and go
through a sequence of steps to cold-boot the TCP/IP Development Board and to compile
the BIOS. If the error message “Rabbit Processor Not Detected” appears, you have prob-
ably connected to a different PC serial port such as COM2, COM3, or COM4. You can
change the serial port used by Dynamic C with the OPTIONS menu, then try to get
Dynamic C to recognize the Rabbit 2000 TCP/IP Development Board by selecting
Recompile BIOS on the Compile menu. Try the different COM ports in the OPTIONS
menu until you find the one you are connected to. If you can’t get Dynamic C to recognize
the target on any port, then the hookup may be wrong or the COM port is not working on
your PC.

If you receive the “BIOS successfully compiled …” message after pressing <Ctrl-Y> or
starting Dynamic C, and this message is followed by “Target not responding,” it is possi-
ble that your PC cannot handle the 115,200 bps baud rate. Try changing the baud rate to
57,600 bps as follows.

1. Open the BIOS source code file named RABBITBIOS.C, which can be found in the
BIOS directory.

2. Change the line

#define USE115KBAUD 1 // set to 0 to use 57600 baud

to read as follows.

#define USE115KBAUD 0 // set to 0 to use 57600 baud

�

Getting Started 17

3. Locate the Serial options dialog in the Dynamic C Options menu. Change the baud
rate to 57,600 bps, then press <Ctrl-Y>.

When you receive the “BIOS successfully compiled …” message and do not receive a
“Target not responding” message, the target is now ready to compile a program.

3.4 PONG.C

You are now ready to test your set-up by running a sample program.

Find the file PONG.C, which is in the Dynamic C SAMPLES folder. To run the program,
open it with the File menu (if it is not still open), compile it using the Compile menu, and
then run it by selecting Run in the Run menu. The STDIO window will open and will dis-
play a small square bouncing around in a box.

This program does not test the serial ports, the I/O, or the TCP/IP part of the board, but
does ensure that the board is basically functional. The sample program in the next chapter
tests the TCP/IP portion of the board.
18 TCP/IP Development Kit

3.5 Sample Programs

Other sample programs are provided in the Dynamic C Samples folder, which is shown
below.

The various folders contain specific sample programs that illustrate the use of the corre-
sponding Dynamic C libraries. The sample program PONG.C demonstrates the output to
the STDIO window. The ICOM and TCPIP folders provide sample programs specific to
the TCP/IP Development Board. Let’s take a look at the TCPIP folder.

The various folders contain sample programs to illustrate the topics associated with the
TCP/IP Development Board. See An Introduction to TCP/IP for more information on
these topics.

Each sample program has comments that describe the purpose and function of the program.
Getting Started 19

3.5.1 Running Sample Program DEMOBRD1.C

This sample program will be used to illustrate some of the functions of Dynamic C.

Before running this sample program, you will have to connect the Demonstration Board
from the TCP/IP Development Kit to the TCP/IP Development Board. Proceed as follows.

1. Use the wires included in the TCP/IP Development Kit to connect header J1 on the
Demonstration Board to header J7 on the TCP/IP Development Board. The connec-
tions are shown in Figure 4.

2. Make sure that your TCP/IP Development Board is connected to your PC and that the
power supply is connected to the TCP/IP Development Board and plugged in as
described in Section 3.1.

Figure 4. Connections Between TCP/IP Development Board and Demonstration Board

�����������������������
��������� !

���
���
#�
#�
#�
#�
!�
!�
!�
!�

����������"��������
���������#!

��

���
���
���
���
���
� ��
� ��
� ��
� ��

�

�
�

���

�
��

��

��
��

��

�
�
���������

�
�
���� � ����

!
�

!
�

!
�

!
�

#�#�#�#��
"

	
"

 � 	

$
��
!
%

� 3
•

 B
U

Z
Z

E
R

•
 LE

D
4

•
 LE

D
3

•
 LE

D
2

•
 LE

D
1

•
 K

•
 +

5V

•
 S

W
4

•
 S

W
3

•
 S

W
2

•
 S

W
1

•
 G

N
D

BUZZER

H
1

J1

H2
• • 1-2

• • 3-4

• • 5-6

LED1 LED2 LED3 LED4

SW1 SW2 SW3 SW4

•
 •

 8-7

•
 •

 6-5

•
 •

 4-3

•
 •

 2-1

� %!��!���

	��;#���
 �!�% �	��!���
20 TCP/IP Development Kit

Now, open the file DEMOBRD1.C, which is in the SAMPLES/ICOM folder. The program
will appear in a window, as shown in Figure 5 below (minus some comments). Use the
mouse to place the cursor on the function name WrPortI in the program and type <ctrl-H>.
This will bring up a documentation box for the function WrPortI. In general, you can do
this with all functions in Dynamic C libraries, including libraries you write yourself.
Close the documentation box and continue.

Figure 5. Sample Program DEMOBRD1.C

To run the program DEMOTCP1.C, load it with the File menu, compile it using the Com-
pile menu, and then run it by selecting Run in the Run menu. LED1 and LED2 on the
Demonstration Board should start going on and off if everything went well. If this doesn’t
work, review the following points.

• The target should be ready, which is indicated by the message “BIOS successfully com-
piled...” If you did not receive this message or you get a communication error, recom-
pile the BIOS by typing <ctrl-Y> or select Recompile BIOS from the Compile menu.

• A message reports “No Rabbit Processor Detected” in cases where the wall transformer
is either not connected or is not plugged in.

main(){

 int j;

 WrPortI(PDDDR,&PDDDRShadow,0x03);
 WrPortI(PDDCR,&PDDCRShadow,0x00);

 while(1) {

 BitWrPortI(PDDR,&PDDRShadow,0xFF,0);
 BitWrPortI(PDDR,&PDDRShadow,0x00,1);

 for(j=0; j<20000; j++);

 BitWrPortI(PDDR,&PDDRShadow,0x00,0);
 BitWrPortI(PDDR,&PDDRShadow,0xFF,1);

 for(j=0; j<20000; j++);

 } // end while(1)

 } // end of main

���������	�
���
���������

������������

�����������
�����
��
��
���������

�
����������
���		�����

Note: See the Rabbit 2000 Microprocessor User’s Manual
(Software Chapter) for details on the routines that read and
write I/O ports.

�����������������������
������ ��
������

���
��
���� ��
�
���
���������

���
�������� ��
�
���
��
�����

�����������
�����
��
��
���������
Getting Started 21

• The programming cable must be connected to the TCP/IP Development Board. (The
colored wire on the programming cable is closest to pin 1 on header J4 on the TCP/IP
Development Board, as shown in Figure 1.) The other end of the programming cable
must be connected to the PC serial port. The COM port specified in the Dynamic C
Options menu must be the same as the one the programming cable is connected to.

• To check if you have the correct serial port, select Compile, then Compile BIOS, or
type <ctrl-Y>. If the “BIOS successfully compiled …” message does not display, try a
different serial port using the Dynamic C Options menu until you find the serial port
you are plugged into. Don’t change anything in this menu except the COM number.
The baud rate should be 115,200 bps and the stop bits should be 1.

3.5.2 Single-Stepping

Compile or re-compile DEMOBRD1.C by clicking the Compile button on the task bar. The
program will compile and the screen will come up with a highlighted character (green) at
the first executable statement of the program. Use the F8 key to single-step. Each time
the F8 key is pressed, the cursor will advance one statement. When you get to the
for(j=0, j< ... statement, it becomes impractical to single-step further because you
would have to press F8 thousands of times. We will use this statement to illustrate watch
expressions.

3.5.2.1 Watch Expression

Type <ctrl-W> or chose Add/Del Watch Expression in the Inspect menu. A box will
come up. Type the lower case letter j and click on add to top and close. Now continue
single-stepping with F8. Each time you step, the watch expression (j) will be evaluated
and printed in the watch window. Note how the value of j advances when the statement
j++ is executed.

3.5.2.2 Break Point

Move the cursor to the start of the statement:

 for(j=0; j<20000; j++);

To set a break point on this statement, type F2 or select Breakpoint from the Run menu.
A red highlight will appear on the first character of the statement. To get the program run-
ning at full speed, type F9 or select Run on the Run menu. The program will advance
until it hits the break point. The break point will start flashing both red and green colors.
Note that LED1 on the Demonstration Board is now solidly turned on. This is because we
have passed the statement turning on LED1.

To remove the break point, type F2 or select Toggle Breakpoint on the Run menu. To
continue program execution, type F9 or select Run from the Run menu. Now LED1
should be flashing again because the program is running at full speed.

You can set break points while the program is running by positioning the cursor to a state-
ment and using the F2 key. If the execution thread hits the break point, a break point will
take place. You can toggle the break point off with the F2 key and continue execution with
the F9 key. Try this a few times to get the feel of things.
22 TCP/IP Development Kit

3.5.2.3 Editing the Program

Click on the Edit box on the task bar. This will set Dynamic C into the edit mode so that
you can change the program. Use the Save as choice on the File menu to save the file
with a new name so as not to change the demo program. Save the file as MYTEST.C. Now
change the number 20000 in the for (.. statement to 10000. Then use the F9 key to
recompile and run the program. The LEDs will start flashing, but it will flash much faster
than before because you have changed the loop counter terminal value from 20000 to
10000.

3.5.2.4 Watching Variables Dynamically

Go back to edit mode (select edit) and load the program DEMOBRD2.C using the File menu
Open command. This program is the same as the first program, except that a variable k
has been added along with a statement to increment k each time around the endless loop.
The statement:

runwatch();

has been added. This is a debugging statement that makes it possible to view variables
while the program is running.

Use the F9 key to compile and run DEMOTCP2.C. Now type <ctrl-W> to open the watch
window and add the watch expression k to the top of the list of watch expressions. Now
type <ctrl-U>. Each time you type <ctrl-U>, you will see the current value of k, which is
incrementing about 5 times a second.

As an experiment add another expression to the watch window:

k*5

Then type <ctrl-U> several times to observe the watch expressions k and k*5.

3.5.2.5 Summary of Features

So far you have practiced using the following features of Dynamic C.

• Loading, compiling and running a program. When you load a program it appears in an
edit window. You can compile by selecting Compile on the task bar or from the Com-
pile menu. When you compile the program, it is compiled into machine language and
downloaded to the target over the serial port. The execution proceeds to the first state-
ment of main where it pauses, waiting for you to command the program to run, which
you can do with the F9 key or by selecting Run on the Run menu. If want to compile
and start the program running with one keystroke, use F9, the run command. If the pro-
gram is not already compiled, the run command will compile it first.

• Single-stepping. This is done with the F8 key. The F7 key can also be used for single-
stepping. If the F7 key is used, then descent into subroutines will take place. With the
F8 key the subroutine is executed at full speed when the statement that calls it is
stepped over.

• Setting break points. The F2 key is used to turn on or turn off (toggle) a break point at
the cursor position if the program has already been compiled. You can set a break point
if the program is paused at a break point. You can also set a break point in a program
Getting Started 23

that is running at full speed. This will cause the program to break if the execution
thread hits your break point.

• Watch expressions. A watch expression is a C expression that is evaluated on command
in the watch window. An expression is basically any type of C formula that can include
operators, variables and function calls, but not statements that require multiple lines
such as for or switch. You can have a list of watch expressions in the watch window. If
you are single-stepping, then they are all evaluated on each step. You can also com-
mand the watch expression to be evaluated by using the <ctrl-U> command. When a
watch expression is evaluated at a break point, it is evaluated as if the statement was at
the beginning of the function where you are single-stepping. If your program is running
you can also evaluate watch expressions with a <ctrl-U> if your program has a run-
watch() command that is frequently executed. In this case, only expressions involv-
ing global variables can be evaluated, and the expression is evaluated as if it were in a
separate function with no local variables.

3.5.3 Cooperative Multitasking

Cooperative multitasking is a convenient way to perform several different tasks at the
same time. An example would be to step a machine through a sequence of steps and at the
same time independently carry on a dialog with the operator via a human interface. Coop-
erative multitasking differs from a different approach called preemptive multitasking.
Dynamic C supports both types of multitasking. In cooperative multitasking each separate
task voluntarily surrenders its compute time when it does not need to perform any more
activity immediately. In preemptive multitasking control is forcibly removed from the
task via an interrupt.

Dynamic C has language extensions to support multitasking. The major C constructs are
called costatements, cofunctions, and slicing. These are described more completely in the
Dynamic C Premier User’s Manual. The example below, sample program
DEMOTCP3.C, uses costatements. A costatement is a way to perform a sequence of opera-
tions that involve pauses or waits for some external event to take place. A complete
description of costatements is in the Dynamic C Premier User’s Manual. The
DEMOTCP3.C sample program has two independent tasks. The first task flashes LED2
once a second. The second task uses button SW1 on the Demonstration Board to toggle
the logical value of a virtual switch, vswitch, and flash LED1 each time the button is
pressed. This task also debounces button SW1.

Note that the Demonstration Board has to be connected to the TCP/IP Development Board
as described in Section 3.5.1 to be able to run DEMOBRD3.C.
24 TCP/IP Development Kit

main() {
int vswitch; // state of virtual switch controlled by button S1

WrPortI(PDDDR, &PDDDRShadow, 0x03); // set port D bits 0-1 as outputs
WrPortI(PDDCR, &PDDCRShadow, 0x00); // set port D to not open drain mode
vswitch = 0; // initialize virtual switch as off

��� while (1) { // endless loop
BigLoopTop(); // begin a big endless loop

// First task will flash LED4 for 200 ms once per second.

��� costate {
BitWrPortI(PDDR, &PDDRShadow, 0xFF, 1); // turn LED on

��� waitfor(DelayMs(200)); // wait 200 ms
BitWrPortI(PDDR, &PDDRShadow, 0x00, 1); // turn LED off
waitfor(DelayMs(800)); // wait 800 ms

��� }

// Second task - debounce SW1 and toggle vswitch

costate {
��� if (!BitRdPortI(PDDR, 2)) abort; // if button not down skip out

waitfor(DelayMs(50)); // wait 50 ms
if(!BitRdPortI(PDDR, 2)) abort; // if button not still down exit

vswitch = !vswitch; // toggle since button was down 50 ms

while (1) {
waitfor(!BitRdPortI(PDDR, 2)); // wait for button to go up
waitfor(DelayMs(200)); // wait additional 200 ms
if (!BitRdPortI(PDDR, 2))

break; // if button still up break out of while loop
}

} // end of costate

// make LED1 agree with vswitch

��� BitWrPortI(PDDR, &PDDRShadow, vswitch, 0);

�	� } // end of while loop
} // end of main

The numbers in the left margin are reference indicators, and are not a part of the code.
Load and run the program. Note that LED2 flashes once per second. Push button SW1
several times and note how LED1 is toggled.

The flashing of LED2 is performed by the costatement starting at the line marked (2).
Costatements need to be executed regularly, often at least every 25 ms. To accomplish
this, the costatements are enclosed in a while loop. The term while loop is used as a
handy way to describe a style of real-time programming in which most operations are done
in one loop. The while loop starts at (1) and ends at (7). The function BigLoopTop() is
used to collect some operations that are helpful to do once on every pass through the loop.
Place the cursor on this function name BigLoopTop() and hit <ctrl-H> to learn more.
Getting Started 25

The statement at (3) waits for a time delay, in this case 200 ms. The costatement is being
executed on each pass through the big loop. When a waitfor condition is encountered
the first time, the current value of MS_TIMER is saved and then on each subsequent pass
the saved value is compared to the current value. If a waitfor condition is not encoun-
tered, then a jump is made to the end of the costatement (4), and on the next pass of the
loop, when the execution thread reaches the beginning of the costatement, execution
passes directly to the waitfor statement. Once 200 ms has passed, the statement after
the waitfor is executed. The costatement has the property that it can wait for long periods
of time, but not use a lot of execution time. Each costatement is a little program with its
own statement pointer that advances in response to conditions. On each pass through the
big loop, as little as one statement in the costatement is executed, starting at the current
position of the costatement’s statement pointer. Consult the Dynamic C Premier User’s
Manual for more details.

The second costatement in the program debounces the switch and maintains the variable
vswitch. Debouncing is performed by making sure that the switch is either on or off for
a long enough period of time to ensure that high-frequency electrical hash generated when
the switch contacts open or close does not affect the state of the switch. The abort state-
ment is illustrated at (5). If executed, the internal statement pointer is set back to the first
statement within the costatement, and a jump to the closing brace of the costatement is
made.

At (6) a use for a shadow register is illustrated. A shadow register is used to keep track of
the contents of an I/O port that is write only - it can’t be read back. If every time a write is
made to the port the same bits are set in the shadow register, then the shadow register has
the same data as the port register. In this case a test is made to see the state of the LED and
make it agree with the state of vswitch. This test is not strictly necessary, the output regis-
ter could be set every time to agree with vswitch, but it is placed here to illustrate the con-
cept of a shadow register.

To illustrate the use of snooping, use the watch window to observe vswitch while the
program is running. Add the variable vswitch to the list of watch expressions. Then
toggle vswitch and the LED. Then type <ctrl-U> to observe vswitch again.

3.5.4 Advantages of Cooperative Multitasking

Cooperative multitasking, as implemented with language extensions, has the advantage of
being intuitive. Unlike preemptive multitasking, variables can be shared between differ-
ent tasks without having to take elaborate precautions. Sharing variables between tasks is
the greatest cause of bugs in programs that use preemptive multitasking. It might seem
that the biggest problem would be response time because of the big loop time becoming
long as the program grows. Our solution for that is a device caused slicing that is further
described in the Dynamic C Premier User’s Manual.
26 TCP/IP Development Kit

4. RUNNING YOUR FIRST TCP/IP
 SAMPLE PROGRAM
Getting Started 27

4.1 Running TCP/IP Sample Programs

We have provided a number of sample programs demonstrating various uses of TCP/IP for
networking embedded systems. These programs require that the user connect his PC and
the TCP/IP Development Board together on the same network. This network can be a
local private network (preferred for initial experimentation and debugging), or a connec-
tion via the Internet.

Obtaining IP addresses to interact over an existing, operating, network can involve a num-
ber of complications, and must usually be done with cooperation from your ISP and/or
network systems administrator (if your company has one). For this reason it is suggested
that the user begin instead by using a direct connection between his PC and the TCP/IP
Development Board using an Ethernet crossover cable or a simple arrangement with a
hub. (A crossover cable can be purchased at computer stores, but should not be confused
with regular straight through cables.) The hub and a wide variety of cables can also be
purchased from a local computer store.

In order to set up this direct connection, the user will have to use a virgin computer (right
out of the box), or disconnect a computer from the corporate network, or as yet another
approach install a second Ethernet adapter and setup a separate private network attached
to the second Ethernet adapter. Disconnecting your computer from the corporate network
may be easy or nearly impossible, depending on how it is set up. Mobile computers, such
as laptops, are designed to be connected and disconnected and will present the least prob-
lem. If you computer boots from the network or is dependent on the network for some or
all of its disks, then it probably should not be disconnected. If a second Ethernet adapter is
used be aware that Windows TCP/IP will send messages to one adapter or the other
depending on the IP address and binding order in Microsoft products. Thus you should
have different ranges of IP addresses on your private network from those used on the cor-
porate network. If both networks service the same IP address then Windows may send a
packet intended for your private network to the corporate network. A similar situation will
take place if you use a dial up line to send a packet to the internet. Windows may try to
send it via the local Ethernet network if it is also valid for that network.

The following IP addresses are set aside for local networks and are not allowed on the
Internet: 10.0.0.0 to 10.255.255.255, 172.16.0.0 to 172.31.255.255, and 192.168.0.0 to
192.168.255.255.

The TCP/IP Development Board uses a 10BaseT type of Ethernet connection, which is the
most common scheme. Connectors are similar to U.S. style telephone connectors except
larger and with 8 contacts (an RJ-45 connector).

An alternative to the direct connection using a crossover cable is a direct connection using
a hub. The hub relays packets received on any port to all of the ports on the hub. Hubs are
low in cost and readily available. The TCP/IP Development Board uses 10 Mbps Ether-
net, so the hub or Ethernet adapter must be either a 10 Mbps unit or a 10/100 unit which
adapts to either 10 or 100 Mbps.
28 TCP/IP Development Kit

In a corporate setting where the Internet is brought in via a high-speed line, there are typi-
cally machines between the outside Internet and the internal network. These machines
include a combination of proxy servers and firewalls that filter and multiplex Internet traf-
fic. In the configuration below, the TCP/IP Development Board could be given a fixed
address so any of the computers on the local network would be able to contact it. It may
be possible to configure the firewall or proxy server to allow hosts on the Internet to
directly contact the controller, but it would probably be easier to place the controller
directly on the external network outside of the firewall. This avoids some of the configu-
ration complications by sacrificing some security.

If your system administrator can give you an Ethernet cable along with its IP address, the
netmask and the gateway address, then you may be able to run the demos without having
to setup a direct connection between your computer and the TCP/IP Development Board.
You will also need the IP address of the nameserver, the name or IP address of your mail
server, and your domain name for some of the demos.

Demonstration

User’s PC

Ethernet
crossover
cable

Direct Connection
(Network of 2 computers)

TCP/IP Development

Hub

Ethernet
cables

To additional
network
elements

Direct Connection Using a Hub

Board
Board

Hub(s)

Firewall
Proxy
Server

T1 in Adapter

Ethernet Ethernet

Network

TCP/IP Development
BoardTypical Corporate Network
Getting Started 29

4.2 IP Addresses Explained

IP (Internet Protocol) addresses are expressed as 4 decimal numbers separated by periods,
for example:

216.103.126.155

10.1.1.6

Each decimal number must be between 0 and 255. The total IP address is a 32 bit number
consisting of the 4 bytes expressed as shown above. A local network uses a group of adja-
cent IP addresses. There are always 2^N IP addresses in a local network. The netmask
(also called subnet mask) determines how many IP addresses belong to the local network.
The netmask is also a 32-bit address expressed in the same form as the IP address. An
example netmask is:

255.255.255.0

This netmask has 8 zero bits in the least significant portion and this means that 2^8
addresses are a part of the local network. Applied to the IP address above
(216.103.126.155), this netmask would indicate that the following IP addresses belong to
the local network:

216.103.126.0

216.103.126.1

216.103.126.2

etc.

216.103.126.254

216.103.126.255

The lowest and highest address are reserved for special purposes. The lowest address
(216.102.126.0) is used to identify the local network. The highest address
(216.102.126.255) is used as a broadcast address. Usually one other address is used for
the address of the gateway out of the network. This leaves 256 - 3 = 253 available IP
addresses for the example given.

4.3 How IP Addresses are Used

The actual hardware connection via Ethernet uses Ethernet adapter addresses (also called
MAC addresses.) These are 48 bit addresses and are unique for every Ethernet adapter
manufactured. In order to send a packet to another computer, given the IP address of the
other computer, it is first determined if the packet needs to be sent directly to the other
computer or to the gateway. In either case there is an IP address on the local network to
which the packet must be sent. A table is maintained which allows the protocol driver to
determine the MAC address corresponding to a particular IP address. If the table is empty
the MAC address is determined by sending an Ethernet broadcast packet to all devices on
the local network asking the device with the desired IP address to answer with its MAC
30 TCP/IP Development Kit

address. In this way the table entry can be filled in. If no device answers, then the device is
nonexistent or inoperative, and the packet cannot be sent.

IP addresses are arbitrary and can be allocated as desired provided that they don’t conflict
with other IP addresses. However, if they are to be used with the Internet, then they must
be numbers that are assigned to your connection by proper authorities generally by delega-
tion via your service provider.

4.4 Dynamically Assigned Internet Addresses

In many instances, IP addresses are assigned temporarily. This the normal procedure
when you use a dial up internet service provider (ISP). Your system will be provided with
an IP address which it can use to send and receive packets. This IP address will only be
valid for the duration of the call and further may not actually be a real Internet IP address.
Such an address works for browsing the Web, but cannot be used for transactions originat-
ing elsewhere since no other system has any way to know the internet address except by
first receiving a packet from you. (If you want to find the IP address assigned by a dial up
ISP run the program winipcfg while connected and look at the address for the ppp
adapter under Windows 98.)

In a typical corporate network that is isolated from the Internet by a firewall and/or proxy
server using address translation, the IP addresses are not usually actual Internet addresses
and may be statically or dynamically assigned. If they are assigned statically, you only
have to get an unused IP address and assign it to the TCP/IP Development Board. If the IP
addresses are assigned dynamically, they you will have to get an IP address that is valid
but outside of the range of IP addresses that are dynamically assigned. This will enable
you to communicate from a computer on the network to the TCP/IP Development Board.
If you want to communicate to the TCP/IP Development Board from the external Internet,
then an actual Internet IP address must be assigned to the TCP/IP Development Board. It
may be possible to setup the firewall to pass a real IP address, or it may be necessary to
connect the TCP/IP Development Board in front of the firewall to accomplish this.
Getting Started 31

4.5 How to Set IP Addresses in the Demo Programs

Most of the demo programs such as shown in the example below use macros to define the
IP address assigned to the board and the IP address of the gateway, if there is a gateway.

#define MY_IP_ADDRESS "216.112.116.155"

#define MY_NETMASK "255.255.255.248"

#define MY_GATEWAY "216.112.116.153"

In order to do a direct connection the following IP addresses can be used for the TCP/IP
Development Board:

#define MY_IP_ADDRESS "10.1.1.2"

#define MY_NETMASK "255.255.255.248"

// #define MY_GATEWAY "216.112.116.153"

In this case, the gateway is not used and is commented out. The IP address of the board is
defined to be 10.1.1.2. The IP address of you computer can be defined as 10.1.1.1.
32 TCP/IP Development Kit

4.6 How to Set Up your Computer’s IP Address For Direct Connect

When your computer is connected directly to the TCP/IP Development Board via an Eth-
ernet connection, you need to assign an IP address to your computer. To assign the com-
puter the address 10.1.1.1 with the subnetmask 255.255.255.248 under Windows 98, do
the following.

Click on Start > Settings > Control Panel to bring up the control panel, and then double-
click the network icon. In the window find the line of the form TCP/IP -> Ethernet
adapter name. Double-click on this line to bring up the TCP/IP properties dialog box.
You can edit the IP address directly and the subnet mask. (Disable “obtain an IP address
automatically.”) You may want to write down the existing values in case you have to
restore them later. It is not necessary to edit the gateway address since the gateway is not
used with direct connect.

The method of setting the IP address may differ for different versions of Windows, such as
95, NT or 2000, .

TCP/IP Development

User’s PC

Ethernet
crossover
cable

IP 10.1.1.1
Subnet mask
255.255.255.248

#define MY_IP_ADDRESS "10.1.1.2”

#define MY_NETMASK "255.255.255.248”

Direct Connection PC to TCP/IP Development Board

Board
Getting Started 33

4.7 Run the PINGME.C Demo

In order to run this program edit the IP address and netmask in the PINGME.C program
(SAMPLES\TCPIP\ICMP) to the values given above (10.1.1.2 and 255.255.255.248).
Compile the program and start it running under Dynamic C. The crossover cable is con-
nected from your computer’s Ethernet adapter to the TCP/IP Development Board’s RJ-45
Ethernet connector. When the program starts running, the green LNK light on the Devel-
opment Board should be on to indicate an Ethernet connection is made. (Note: If the LNK
light does not light, you may not have a crossover cable ,or if you are using a hub perhaps
the power is off on the hub.)

The next step is to ping the board from your computer. This can be done by bringing up the MS-
DOS window and running the pingme program:

ping 10.1.1.2

or by Start > Run

and typing the entry

ping 10.1.1.2

Notice that the red ACT light flashes on the Development Board while the ping is taking
place indicating the transfer of data. The ping routine will ping the board four times and
write a summary message on the screen describing the operation.

4.8 Running More Demo Programs With Direct Connect

The programs STATIC.C and SSI3.C (SAMPLES/TCPIP/HTTP) demonstrate how to
make the TCP/IP Development Board be a Web server. This program allows you to turn
on and off the LED's on the attached LED board from a remote Web browser. In order to
run these demos edit the IP address as for the pingme program, compile the program and
start it executing. Then bring up your Web browser and enter the following server address:
http://10.1.1.2.

This should bring up the Web page served by the demo program. The demo program
static.c is a static Web page. The demo program ssi3.c allows you to control the
TCP/IP Development Board from the Web browser, turning on and off the led indicators
on the small board attached to the main TCP/IP Development Board.

The demo program RXSAMPLE.C (SAMPLES/TELNET) allows you to communicate with
the TCP/IP Development Board using the telnet protocol. To run this program, edit the IP
address and compile it and start it running. Run the telnet program on your PC (Start >
Run telnet 10.1.1.2). Each character you type will be printed in Dynamic C's
STDIO window, indicating that the board is receiving the characters typed via TCP/IP.
34 TCP/IP Development Kit

4.9 Where Do I Go From Here?

If there are any problems at this point, call Rabbit Semiconductor Technical Support at
(530)757-8400.

If the sample programs ran fine, you are now ready to go on.

Additional sample programs are described in the TCP/IP High-Level Protocols manual

Please refer to the TCP/IP High-Level Protocols manual and the TCP/IP Function Ref-
erence manual (click the documentation icon on your PC) to develop your own applica-
tions. An Introduction to TCP/IP provides background information on TCP/IP, and is
included on the CD.
Getting Started 35

36 TCP/IP Development Kit

5. SERIAL PORTS AND DIGITAL I/O

Chapter 5 describes how to set up TCP/IP Development boards for serial communication,
and how to use the digital I/O.
Getting Started 37

The TCP/IP Development Board has 15 pins on header J7, one RJ-12 jack for RS-232 or
RS-485 serial communication, and one Ethernet jack. The pinouts are shown in Figure 6.

Figure 6. TCP/IP Development Board I/O Pinout

RJ-45 pinouts are sometimes numbered opposite to the way shown in Figure 6. Regard-
less of the numbering convention followed, the pin positions relative to the spring tab
position (located at the bottom of the RJ-45 jack in Figure 6) are always absolute, and the
RJ-45 connector will work properly with off-the-shelf Ethernet cables.

5.1 Serial Communication

In the factory-default configuration, the TCP/IP Development Board has one RS-232 (3-
wire) serial channel, one RS-485 serial channel, and one synchronous CMOS serial chan-
nel.

5.1.1 RS-232

The TCP/IP Development Board’s RS-232 serial channel is connected to an RS-232 trans-
ceiver, U11. U11 provides the voltage output, slew rate, and input voltage immunity
required to meet the RS-232 serial communication protocol. Basically, the chip translates
the Rabbit 2000’s 0 V to +Vcc signals to RS-232 signal levels. Note that the polarity is
reversed in an RS-232 circuit so that +5 V is output as approximately -10 V and 0 V is out-
put as approximately +10 V. U11 also provides the proper line loading for reliable com-
munication.

The maximum baud rate is 115,200 bps. RS-232 can be used effectively at this baud rate
for distances up to 15 m.

5.1.2 RS-485

The TCP/IP Development Board has one RS-485 serial channel, which is connected to the
Rabbit 2000 serial port D through U10, an RS-485 transceiver. U10 supports the RS-485
serial communication protocol. The chip’s slew rate limiters provide for a maximum baud rate

!�	�

!�	�

!�	�

!�	�

#��

#��

#��

#��

�"�

	"�

���

���3

����

���

���

��
��

��

��

��

��

��

�

�

�

�

�

�

�

�

�
������ 	(�� 	�����

�<�� =	>�
�<�� =	>3
�<�� =�>�
�<�� =�>3

� �

�!
������$��!%�����

�<�����
�<�����
�<������
�<�����3
�<�����
�<�����

� �

�� "��#$!%&������"��'&'

��
38 TCP/IP Development Kit

of 250,000 bps, which allows for a network of up to 300 m (or 1000 ft). The half-duplex
communication uses the Rabbit 2000’s PC0 pin to control the data enable on the commu-
nication line.

The RS-485 signals are available on pins 3 and 4 of header J7, and on J5, the RJ-12 jack.

The TCP/IP Development Board can be used in an RS-485 multidrop network. Connect
the 485+ to 485+ and 485– to 485– using single twisted-pair wires (nonstranded, tinned).

Alternatively, the RS-485 multidrop network may be hooked up using cables with RJ-12
plugs. Note that the RJ-12 jack has +RAW_485 and GND, which means that only one
Intellicom needs to be connected to an external power source via an AC adapter. When
doing so, ensure that the AC adapter has sufficient capacity for the network — a TCP/IP
Development Board nominally draws 100 mA at 12 VDC.

If you plan to connect a power supply to more than one TCP/IP Development Board
in an RS-485 network using the RJ-12 jacks, rework the RS-485 cables so they do not
connect +RAW_RS485 through the RJ-12 jack to the boards in the network.

The TCP/IP Development Board comes with a 220 Ω termination resistor and 680 Ω bias
resistors already installed, as shown in Figure 7.

Figure 7. RS-485 Termination and Bias Resistors

The load these bias and termination resistors present to the RS-485 transceiver (U10) lim-
its the number of TCP/IP Development Boards in a multidrop network to one master and
nine slaves, unless the bias and termination resistors are removed. When using more than
10 TCP/IP Development Boards in a multidrop network, leave the 680 Ω bias resistors in
place on the master TCP/IP Development Board, and leave the 220 Ω termination resistors
in place on the TCP/IP Development Board at each end of the network.

���
��

����Ω

���
����Ω

���
����Ω

����

���3

�

�
�����������

	��

	��

�
�

���

���

��(��
����

	�
�

�

�
�

���

�
�

�
��

�
�

�
��

���

��� ���

�
��

�
�
����

�
�

	

�
�

��

�

�
�
�����

��
��� ��
���

!
�

�
"

	
"

�
��

�
���
��

�
��

��

	��

	��

�
��

�
��

�
��

�
�

	��

���

���

���

��� ���

���

���
���

������ ���

�
��

�
��

�� �

�

��
�

	�

	��

	��

������������

��

�
��

���

���

����

$
��
!
%

!
�

!
�#� #� #� #� !
�

Getting Started 39

5.1.3 Programming Port

The TCP/IP Development Board has a 10-pin programming header labeled J4. The pro-
gramming port uses the Rabbit 2000’s serial port A for communication. The Rabbit 2000
startup-mode pins (SMODE0, SMODE1) are presented to the programming port so that an
externally connected device can force the Intellicom to start up in an external bootstrap
mode.

Refer to the Rabbit 2000 Microprocessor User’s Manual for more information related
to the bootstrap mode.

The programming port is used to start the TCP/IP Development Board in a mode where
the TCP/IP Development Board will download a program from the port and then execute
the program. The programming port transmits information to and from a PC while a pro-
gram is being debugged.

The TCP/IP Development Board can be reset from the programming port.

The Rabbit 2000 status pin is also presented to the programming port. The status pin is an
output that can be used to send a general digital signal.

The clock line for serial port A is presented to the programming port, which makes fast
serial communication possible.

5.1.4 Serial Communication Software

User interface to set up up serial communication lines for the Intellicom board. Call this func-
tion after serXOpen().

Parameters

mode is the defined serial port configuration of the devices installed.

Return Value

0 if correct mode, 1 if not.

See Also

serB485Tx, serB485Rx

int serMode (int mode);

Mode
Serial Port

B C

0 RS-485 RS-232, 3-wire

1 RS-232, 3-wire RS-232, 3-wire

2 RS-232, 5-wire CTS/RTS

�

40 TCP/IP Development Kit

Sets pin 3 (DE) high to disable Rx and enable Tx.

See Also

serMode, serB485Rx

Resets pin 3 (DE) low to enable Rx and disable Tx.

See Also

serMode, serB485Tx

5.1.4.1 Sample Serial Communication Programs

RS-232

1. Connect RX to TX as shown in Figure 8 below.

Figure 8. TCP/IP Development Board Setup
for RS-232 Serial Communication Demonstration

2. Connect the programming cable to header J4 on the TCP/IP Development Board.
Apply power to the TCP/IP Development Board.

3. Open the sample program SAMPLES\ICOM\ICOM232.C and press F9.

This program demonstrates a simple RS-232 loopback displayed in the STDIO window.

void serB485Tx();

void serB485Rx();

�

�
�

���

�
��

��

��
��

��

�
�
���������

�
�
���� � ����

!
�

!
�

!
�

!
�

#�#�#�#��
"

	
"

 � 	
$
��
!
%

� 3

	��;#���
 �!�% �	��!���
Getting Started 41

RS-485

1. Connect 485+ to 485+, 485– to 485–, and GND to GND as shown in Figure 9 below.
If you do not have a separate wall transformer for the other board, also connect PWR
to PWR as shown in Figure 9.

Figure 9. TCP/IP Development Board Setup
for RS-485 Serial Communication Demonstration

2. Connect the programming cable to header J4 on one TCP/IP Development Board.
This will be the slave, the other board will be the master. Apply power to the TCP/IP
Development Boards.

3. Open the sample program SAMPLES\ICOM\ICOM485.C. You will find some code
for the master, and some code for the slave. Copy and save the master and slave ver-
sions separately.

4. Open the sample slave program and press F9.

5. Connect the programming cable to header J4 on the master TCP/IP Development
Board.

6. Open the master program and press F9.

This program demonstrates a simple RS-485 transmission of lower-case letters to a slave.
The slave will send back converted upper case letters back to the master, which then dis-
plays them in the STDIO window.

�

�
�

���

�
��

��

��
��

��

�
�
���������

�
�
���� � ����

!
�

!
�

!
�

!
�

#�#�#�#��
"

	
"

 � 	

�

�
�

� ��

�
��

��

� �
� �

��

�
�
� ���� ����

�
�
� ���� ����

!
�

!
�

!
�

!
�

#� #� #� #� �
"

	
"

 � 	
$
��
!
%

�

$
��
!
%

	��;#���
 �!�% �	��!���

	��;#���
 �!�% �	��!���

3

42 TCP/IP Development Kit

5.2 Digital I/O

5.2.1 Digital Inputs

Pins 8–11 on header J7 have the four digital inputs IN0–IN3. Each of the four digital 0 V
to 5 V inputs is protected over a range of –36 V to +36 V. The TCP/IP Development
Board is factory-configured for the digital inputs to be pulled up to +5 V, but the digital
inputs can also be pulled down by moving the surface-mounted jumper at JP4. The
jumper settings and the location of JP4 are shown in Figure 10.

Figure 10. Surface-Mounted Jumper Configurations for Selecting
Pullup/Pulldown on the Digital Inputs

5.2.2 Digital Outputs

Pins 12–15 on header J7 have the four digital outputs OUT0–OUT3. Each of the four
open-collector digital outputs can sink up to 200 mA at 40 VDC.

�

�
�

���

�
�

�
��

�
�

�
��

���

��
��

�
����� ���

�
��

�
��

�
�
����

 � 	

��
�

�
�
	

 ���

�
�

	

�
�

��

�

��� ���

�
��

���

�
��

�

�
��

�
��

�
��

	���

���
���

���

�
�
�����

�
��

�
��

�
��

�
��

� ����

�
��

�
��

�
��

�
�

��
��� ��
���

!
�

�
��

�
��

�
"

	
"

�
��

�
���
��

�
��

��

	��

	��

�
��

�
��

�
��

�
�

	��

���

���

���

��� ���

���

���
���

������ ���

�
��

�
��

�� �

�

��
�

���

��

��

	�

	��

	��

������������

��

�
��

���

���

�
�����

�
�
� ����

��

�
��

�
�

$
��
!
%

������
	
��

)����
��*�+���

!
�

�
�
�

��$

!
�

��$

�
�
�

������

�

#� #� #� #� !
�

��
Getting Started 43

5.2.3 Digital I/O Software

Sets the state of a digital output.

Parameters

channel is the output channel number (0, 1, 2, or 3).

value is the output value (0 or 1).

Return Value

None.

See Also

digIn

Reads the state of a digital input.

Parameters

channel is the input channel number (0, 1, 2, or 3).

Return Value

The state of the input (0 or 1).

See Also

digOut

5.2.4 Sample Digital I/O Programs

1. Connect the programming cable to header J4 on the TCP/IP Development Board.
Apply power to the TCP/IP Development Board.

2. Open the sample program SAMPLES\ICOM\ICOMIO.C and press F9.

This program demonstrates how to turn the I/O on and off.

void digOut (int channel, int value);

int digIn (int channel);
44 TCP/IP Development Kit

APPENDIX A. TCP/IP
DEVELOPMENT BOARD SPECIFICATIONS
Getting Started 45

A.1 Electrical and Mechanical Specifications

Figure A-1 shows the mechanical dimensions for the TCP/IP Development Board.

Figure A-1. TCP/IP Development Board Dimensions
�

�
�

���

�
�

�
��

��

�
�

	

�
�

���

�
�

���

�
��

��

�
��

���

���
��

��

��

�
�

�
��

�
�

���

��� ���

�
��

�
��

�
�

��� ��� ���

���

�
��

�
�� ���

�� ��

��
�� ��

�
�

�
�

��

��

�����

���

��

�

���

����

���
�����

��

	��

�
�

	�� 	��

	��
	��

	�

	��

�

�� ��

��

��

������

���

���

���

���

���

�
��

�
��

��

�
��

�
��

�
��

���

��

��

��

	��

�
�� ���

��

�
�

�
�

��

���
��

��

��

���

�
�

��
���

���
���

��

�

���

�� ������

��

��

���

�

���

���

�
��

�
��

	��

��

���

���

���

��

���

	���

�
��

�
��

�
�

�
��

�
�

�
��

�
��

�
��

	���
	���

	��

	���
	���

	���
	���

	���
	���

��

�
��

���

�
��

���

�
��

���

���

��

��

�
��

���

���

�
��

	���

��

��

���

�

�
��

�
��

�
��

��
��

��

	��� �
��

�
��

�
��

�
��

�
�

�
��

�
��

�
��

�
��

���
��� ��� ��� ��� ��

�
��

�
��

�
��

������

���

���

���

���

���

���

��

��� ��� ��� ��� �
��

�
��

�
��

�
��

�
��

�
�

�
�� �

��

�� �
 ��� ���
�

�
��

�
��

�
��

��
�

�
��

���

���
���

���

�
�
���������

�
�
����

����

���������		 ��

��!�
�!�	

��"�������

���

� ����

!
�

!
�

!
�

!
�

#�#�#�#��
"

	
"

 � 	

��
�

�
�
	

 ���

��"�������

$
��
!
%

����

����	

����

����	

����

�<
��

?�
�

@

�<
��

?�
��
@

�<��
?���@

�<���
?���<�@
46 TCP/IP Development Kit

Table A-1 lists the electrical, mechanical, and environmental specifications for the TCP/IP
Development Board.

Table A-1. TCP/IP Development Board Specifications

Parameter Specification

Board Size (with backup
battery board)

4.30" × 4.71" × 0.79"
(109 mm × 120 mm × 20 mm)

Connectors 15 screw terminals, 1 RJ-12, and 1 RJ-45

Operating Temperature –20°C to +70°C

Humidity 5% to 95%, noncondensing

Input Voltage 9 V to 40 V DC

Current 100 mA @ 12 VDC

Ethernet Interface
Direct connection to 10BaseT Ethernet networks via
RJ-45 connection

Digital Inputs
4 protected, 0 V to 5 V DC
(protection from –36 V to + 36 VDC max.)

Digital Outputs 4 open collector, sinking (200 mA, 40 V DC max.)

Microprocessor Rabbit 2000™

Clock 18.432 MHz

SRAM 128K, surface mount (supports 32K–512K)

Flash EPROM
256K for program and data plus 256K for file storage
(supports 128K–512K)

Timers 7 eight-bit timers available

Serial Ports

• 1 RS-232 (3-wire), 1 RS-485, and 1 RS-232
programming port

• RS-232 (3-wire) and RS-485 may be reconfig-
ured for 1 RS-232 (5-wire) or 2 RS-232
(3-wire)

Serial Rate
Maximum asynchronous 115,200 bps for both serial
ports

Watchdog/Supervisor Yes

Time/Date Clock Yes

Backup Battery On backup battery board (not included)
Getting Started 47

48 TCP/IP Development Kit

APPENDIX B. POWER MANAGEMENT
Getting Started 49

B.1 Power Supplies

Power is supplied to the TCP/IP Development Board from an external source either
through header J7 or from another TCP/IP Development Board through header J5, the
RJ-12 jack.

The TCP/IP Development Board itself is protected against reverse polarity by Shottky
diodes at D6 and D7 as shown in Figure B-1. The Shottky diode has a low forward volt-
age drop, 0.3 V, which keeps the minimum DCIN required to power the TCP/IP Develop-
ment Board lower than a normal silicon diode would allow.

Figure B-1. TCP/IP Development Board Power Supply Schematic

Capacitor C28 provides surge current protection for the voltage regulator, and allows the
external power supply to be located some distance away from the TCP/IP Development
Board. A switching power regulator is used. The input voltage range is from 9 V to 40 V.

B.2 Batteries and External Battery Connections

A battery board with a 1000 mA·h lithium coin cell is available to provide power to the
real-time clock and SRAM when external power is removed from the circuit. This allows
the TCP/IP Development Board to continue to keep track of time and preserves the SRAM
memory contents.

Figure B-2 shows the battery board circuit.

Figure B-2. Battery Board Circuit

The drain on the battery is typically less than 20 µA when there is no external power
applied. The battery can last more than 5 years:

�
!
�

�

#�

��

���AB ����AB

�%����
��

����
99

��

������
����A(

�

�

��

��
�����

��

��
�

�

��

�

��

��

��

�

�

�

�

��#	�(#����!� ��� ����	!�

	
��

��#�

����=�����

��

#�

���

�

�

�

�

��	
��	

��

�

�

�

�

�'

#�

���
50 TCP/IP Development Kit

The drain on the battery is typically less than 4 µA when external power is applied. The
battery can last for its full shelf life:

Since the shelf life of the battery is 10 years, the battery can last for its full shelf life when
external power is applied to the TCP/IP Development Board.

B.2.1 Battery Backup Circuit

The battery-backup circuit serves two purposes:

• It reduces the battery voltage to the real-time clock, thereby reducing the current con-
sumed by the real-time clock and lengthening the battery life.

• It ensures that current can flow only out of the battery to prevent charging the battery.

Figure B-3 shows the TCP/IP Development Board battery backup circuitry on the TCP/IP
Development Board.

Figure B-3. TCP/IP Development Board Battery Backup Circuit

1000 mA·h
20 µA

--------------------------- 5.7 years.=

1000 mA·h
4 µA

--------------------------- 28.5 years (shelf life = 10 years).=

%%�	�����	�
��

���

���

���

��	
��

��

��

��

���
��Ω

���
��Ω

���
��Ω

��%

��Ω

�<��%Ω

��%Ω

����/Ω

���
����.B
Getting Started 51

Resistor R41, shown in Figure B-3, is typically not stuffed on the TCP/IP Development
Board. VRAM and Vcc are nearly equal (<100 mV, typically 10 mV) when power is sup-
plied to the TCP/IP Development Board. R14 on the backup battery board prevents any
catastrophic failure of Q8 by limiting current from the battery.

Resistors R35 and R39 make up a voltage divider between the battery voltage and the tem-
perature-compensation voltage at the anode of diode D2. This voltage divider biases the
base of Q8 to about 0.9 × VBAT. VBE on Q8 is about 0.55 V. Therefore, VRAM is about 0.9
× VBAT - 0.55 V, or about 2.15 V for a 3 V battery.

These voltages vary with temperature. VRAM varies the least because temperature-com-
pensation diodes D2–D4 will offset the variation with temperature of Q8’s VBE. R36–R38

may be stuffed instead of the corresponding D2–D4 to provide the optimum temperature
compensation.

Resistor R40 provides a minimum load to the regulator circuit.

VRAM is also available on pin 34 of header J2 to facilitate battery backup of the external
circuit. Note that the recommended minimum resistive load at VRAM is 100 kΩ, and new
battery life calculations should be done to take external loading into account.

B.2.2 Power to VRAM Switch

The VRAM switch, shown in Figure B-4, allows the battery backup to provide power
when the external power goes off. The switch provides an isolation between Vcc and the
battery when Vcc goes low. This prevents the Vcc line from draining the battery.

Figure B-4. VRAM Switch

Transistor Q3 is needed to provide a very small voltage drop between Vcc and VRAM
(<100 mV, typically 10 mV) so that the processor lines powered by Vcc will not have a
significantly different voltage than VRAM.

B�
����
��

���

���

���

��%
��

��
%%�	�
�����/Ω

��Ω

;� �

���/Ω
52 TCP/IP Development Kit

When the TCP/IP Development Board is not resetting (pin 2 on U4 is high), the /RES line
will be high. This turns on Q4, causing its collector to go low. This turns on Q3, allowing
VRAM to nearly equal Vcc.

When the TCP/IP Development Board is resetting, the /RES line will go low. This turns
off Q3 and Q4, providing an isolation between Vcc and VRAM.

The battery backup circuit keeps VRAM from dropping below 2 V.

B.2.3 Reset Generator

The TCP/IP Development Board uses a reset generator, U2, to reset the Rabbit 2000
microprocessor when the voltage drops below the voltage necessary for reliable operation.
The reset occurs between 4.50 V and 4.75 V, typically 4.63 V.

B.2.4 Installing/Replacing the Backup Battery Board

An optional pluggable backup battery board is available from Z-World.

To install the backup battery board, align the battery board over the outline as shown in
Figure B-5, and plug it in. Be careful to align the connectors and the backup battery
board. Fasten the backup board using a 4-40 × 3/16 screw and lockwasher.

Before replacing the backup battery board, make sure that the TCP/IP Development
Board is receiving power from the standard power supply. This makes sure that data in
RAM are not lost when the battery backup board is removed temporarily.

To replace the backup battery board, remove the screw and unplug the old battery board.
Then install a replacement backup battery board.

Figure B-5. Installing Backup Battery Board

Do not attempt to recharge the old battery and do not dispose of it in regular trash to avoid
any risk of explosion or fire. You may either return the old backup battery board to
Z-World for recycling or send the battery yourself to an approved recycling facility.

���

���
��

��

��

�
�

�
��

�
�

���

��� ���

�
��

�
��

�
�

��� ��� ���

���

�
��

�
�� ���

�� ��

��
�� ��

��

�����

���

��

�

���

���
�����

��

	��

��

	��

�
��

��

�
�

��

���
��

���

��

����

���������		 ��

�)**&,C

�����D��;��
69,&7;549/7)6+&,< �5-2.�94..&9*4,6<

�

Getting Started 53

B.3 Chip Select Circuit

Figure B-6 shows a schematic of the chip select circuit.

Figure B-6. Chip Select Circuit

The current drain on the battery in a battery-backed circuit must be kept at a minimum.
When the TCP/IP Development Board is not powered, the battery keeps the SRAM mem-
ory contents and the real-time clock (RTC) going. The SRAM has a powerdown mode
that greatly reduces power consumption. This powerdown mode is activated by raising
the chip select (CS) signal line. Normally the SRAM requires Vcc to operate. However,
only 2 V is required for data retention in powerdown mode. Thus, when power is
removed from the circuit, the battery voltage needs to be provided to both the SRAM
power pin and to the CS signal line. The CS control circuit accomplishes this task for the
CS signal line.

In a powered-up condition, the CS control circuit must allow the processor’s chip select
signal /CS1 to control the SRAM’s CS signal /CSRAM. So, with power applied,
/CSRAM must be the same signal as /CS1, and with power removed, /CSRAM must be
held high (but only needs to be battery voltage high). Q5 and Q6 are MOSFET transistors
with opposing polarity. They are both turned on when power is applied to the circuit.
They allow the CS signal to pass from the processor to the SRAM so that the processor
can periodically access the SRAM. When power is removed from the circuit, the transis-
tors will turn off and isolate /CSRAM from the processor. The isolated /CSRAM line has
a 100 kΩ pullup resistor to VRAM (R29). This pullup resistor keeps /CSRAM at the
VRAM voltage level (which under no power condition is the backup battery’s regulated
voltage at a little more than 2 V).

;���

;����%

;� � ��

��

��

��
��� ���

���

���

���

��

��%

��%

���/Ω

����/Ω

����/Ω

���/Ω

�����8B
54 TCP/IP Development Kit

Transistors Q5 and Q6 are of opposite polarity so that a rail-to-rail voltage can be passed.
When the /CS1 voltage is low, Q5 will conduct. When the /CS1 voltage is high, Q6 will
conduct. It takes time for the transistors to turn on, creating a propagation delay. This
delay is typically very small, about 10 ns to 15 ns.

The signal that turns the transistors on is a high on the processor’s reset line, /RES. When
the TCP/IP Development Board is not in reset, the reset line will be high, turning on n-
channel Q5 and Q7. Q7 is a simple inverter needed to turn on Q6, a p-channel MOSFET.
When a reset occurs, the /RES line will go low. This will cause C14 to discharge through
R32 and R34. This small delay (about 160 µs) ensures that there is adequate time for the
processor to write any last byte pending to the SRAM before the processor puts itself into
a reset state. When coming out of reset, CS will be enabled very quickly because D1 con-
ducts to charge capacitor C14.
Getting Started 55

56 TCP/IP Development Kit

Index
A

AC adapter14, 15

B

backup battery board53
installing53

battery backup circuit51
battery connections50
battery life51

C

chip select circuit54
connections

Demonstration Board20
Ethernet connections16
power supply15
programming cable14

D

Demonstration Board
hookup instructions20

digital inputs43
pullup/pulldown configuration

43
digital outputs43

sinking43
dimensions

TCP/IP Development Board ..
46

documentation
launcing default page from CD

without icons4
Dynamic C Premier

break point22
changing programming baud

rate in BIOS17
description6
desktop icons4
editing the program23
features6, 23
installing1, 2, 17

default COM port2
launching without icons4
libraries7

ARP.LIB9
BIOSFSM.LIB8
Bioslib7
BOOTP.LIB9

Dynamic C Premier
libraries (continued)

BSDNAME.LIB9
CLONE.LIB8
COFUNC.LIB7
COSTATE.LIB7
CSUPPORT.LIB8
DBUGKERN.LIB8
DCRTCP.LIB9
FFT.LIB7
FLASHWR.LIB8
FTP_CLIENT.LIB9
FTP_SERVER.LIB9
HTTP.LIB9
ICMP.LIB9
Icom7
IDBLOCK.LIB8
MATH.LIB7
MUTIL.LIB8
MUTILFP.LIB8
PKTDRV.LIB9
POP3.LIB9
PROGRAM.LIB7
RS232.LIB7
RTCLOCK.LIB7
SLICE.LIB7
SMTP.LIB9
STACK.LIB8
STDIO.LIB7
STRING.LIB7
SYS.LIB8
SYSIO.LIB8
Tcpip7
UTIL.LIB8
VDRIVER.LIB8
VSERIAL.LIB9
XMEM.LIB8

multitasking24, 26
single-stepping22
speed6
starting17
system requirements2
watch expression22
watching variables dynamical-

ly23

E

Ethernet connections16

I

I/O pinout38
IP addresses30, 31, 33

how to set32
how to set PC IP address ...33

P

power management49
power supplies50

battery backup50
battery backup circuit51
battery life51
chip select circuit54
VRAM switch52

power supply
requirements14

programming
programming cable14
programming port40

R

reset17, 40
reset generator53

RS-23238
RS-48538

termination and bias resistors
39

running TCP/IP sample pro-
grams28

S

sample programs19
DEMOBRD1.C22
DEMOBRD3.C24
Demonstration Board connec-

tions20
DEMOTCP1.C20
how to run27
how to set IP address32
PINGME.C34
PONG.C18
running TCP/IP sample pro-

grams28
RXSAMPLE.C34
SSI3.C34
STATIC.C34
TCP/IP28
Getting Started 57

serial communication 38
programming port 40
RS-232 description 38
RS-485 description 38
RS-485 network 39

common power supply .. 39
RS-485 termination and bias

resistors 39
serial communication pinout . 38
software

digital I/O
digIn 44
digOut 44
sample program 44

other manuals 10
serial communication

sample programs 41, 42
serB485Rx 41
serB485Tx 41
serMode 40

specifications 45
electrical 47
mechanical dimensions 46
temperature 47

T

TCP/IP connections 29
10BaseT 28
additional resources 35
Ethernet cables 28
IP addresses 28, 30
58 TCP/IP Development Kit

SCHEMATICS
Getting Started

	Getting Started
	About This Manual
	1. Installing Dynamic C Premier
	1.1 Requirements
	1.2 Installation
	1.3 Desktop Icons

	2. Introduction to Dynamic C
	2.1 The Nature of Dynamic C
	2.1.1 Speed

	2.2 Dynamic C Libraries
	2.3 Using Dynamic C
	2.4 Upgrading Dynamic C
	2.4.1 Workarounds
	2.4.2 Upgrades

	3. Hardware Connections
	3.1 Connections
	3.2 Installing Dynamic C
	3.3 Starting Dynamic C
	3.4 PONG.C
	3.5 Sample Programs
	3.5.1 Running Sample Program DEMOBRD1.C
	3.5.2 Single-Stepping
	3.5.3 Cooperative Multitasking
	3.5.4 Advantages of Cooperative Multitasking

	4. Running Your First TCP/IP Sample Program
	4.1 Running TCP/IP Sample Programs
	4.2 IP Addresses Explained
	4.3 How IP Addresses are Used
	4.4 Dynamically Assigned Internet Addresses
	4.5 How to Set IP Addresses in the Demo Programs
	4.6 How to Set Up your Computer’s IP Address For Direct Connect
	4.7 Run the PINGME.C Demo
	4.8 Running More Demo Programs With Direct Connect
	4.9 Where Do I Go From Here?

	5. Serial Ports and Digital I/O
	5.1 Serial Communication
	5.1.1 RS-232
	5.1.2 RS-485
	5.1.3 Programming Port
	5.1.4 Serial Communication Software
	int serMode (int mode);
	void serB485Tx();
	void serB485Rx();

	5.2 Digital I/O
	5.2.1 Digital Inputs
	5.2.2 Digital Outputs
	5.2.3 Digital I/O Software
	void digOut (int channel, int value);
	int digIn (int channel);

	5.2.4 Sample Digital I/O Programs

	Appendix A. TCP/IP Development Board Specifications
	A.1 Electrical and Mechanical Specifications

	Appendix B. Power Management
	B.1 Power Supplies
	B.2 Batteries and External Battery Connections
	B.2.1 Battery Backup Circuit
	B.2.2 Power to VRAM Switch
	B.2.3 Reset Generator
	B.2.4 Installing/Replacing the Backup Battery Board

	B.3 Chip Select Circuit

	Index
	Schematics

