Y

vwORLD

An I ntroduction to TCP/IP

For Embedded System Designers

010809-F

An Introduction to TCP/IP

Part Number 019-0074 « 010809-F
Printed in U.S.A.

Copyright
© 2001 Z-World, Inc. « All rights reserved.

» The TCP/IP software used in the Rabbit 2000 TCP/IP Development Kit is designed for
use only with Rabbit Semiconductor chips, and is used under licence from Erick
Engelke.

Z-World, Inc. reserves the right to make changes and improvements to its products with-
out providing notice.

Trademarks
e Dynamic C®isa registered trademark of Z-World, Inc.

« Windows® isa registered trademark of Microsoft Corporation.

Notice to Users

When a system failure may cause serious consequences, protecting life and property
against such consequences with a backup system or safety device is essential. The buyer
agrees that protection against consequences resulting from system failure is the buyer’s
responsibility.

Thisdeviceis not approved for life-support or medical systems.

All Z-World products are 100 percent functionally tested. Additional testing may include
visual quality control inspections or mechanical defects analyzer inspections. Specifica-
tions are based on characterization of tested sample units rather than testing over tempera-
ture and voltage of each unit. Rabbit Semiconductor may qualify components to operate
within arange of parameters that is different from the manufacturer’s recommended
range. This strategy is believed to be more economical and effective. Additional testing or
burn-in of an individual unit is available by special arrangement.

Company Address
Z-World, Inc.

2900 Spafford Street
Davis, California 95616-6800
USA

Telephone: (530) 757-3737
Facsimile: (530) 753-5141
Web site: http://www.zworld.com

Table of Contents

I 11100 [Tox 1 o o T 1
A 1 0= TS R = F S T ot 3
2.1 EHNErNE AQArESSo ettt ettt et et s be e sae e e s aeeabebeenbeebeesesbeensesaeenneenis 3

2.2 PhySiCal COMNECLIONSc.eieeieeeieteeerie ettt et b e se et sbe e et e e ae e e ebesaebesbe b e nbenes 3
A T O o =3O 3

2.3 FAIMES ..ottt e et e et e e e e bt e e e ettt e e eaeeeeetbeeaaabesaeassee e sbee e ataeeanaeaeabeaeaaneeesasanesanteeaanns 4
2.3 1 COllISIONS ...ttt ettt ettt e st e s be et e s be e e b e e saeeebeesaseeareesbeeeseesseesn 4

G T (1< 10 TR 5
50 11 ST 5
3.1.1 Repeaters and BriAgEScoo ettt st b e e 5

3.2 WA Lottt ettt ettt st e st e e e et e eb e e b e ebe e beehe e beeabesheeeesheeReeshe e bebe e benbeeareereenreeaeenreeres 6

3.2.1 PaCKEL SWITCHES ..ottt ettt s be e b b saeeaaesbesnbenns 6

3.2.2 FOrwarding @aPaCkeLcccovieviiieieieeee et 6

G TV OSSOSO 7

3.4 NEIWOITK DEVICES.......cccueecteiitiectee et e st et ettt e et e st e e s teeeaeeesbesebeeebeesabeasbeesaeeesaeesnseenbessbesensennseesn 7
B4 L ROULEIS... .ottt ettt ettt e ettt e e et et e e atee s easee e s beeeaaseeesaseeaesbbeeaeasesesnnsesannrennan 7

B2 FITEBWAIIS.... .ottt et e te et st e et e e ebe e e be e s aeeeare e beeereenaaean 7

4.3 GBLEWAYS.e ettt ettt ettt ettt bt st e bt s b e sae et e ehe e b e e he e et e aeeeeee e ebeeae e saenaeesreenrenes 8

3.5 NEWOrK ATCHITECIUNE......veeveceeete ettt ettt st s e e b e e e e sbesbeesbesbeesbesabenbesaeenneenis 8
3.5.1 Client/Server NEIWOIKS.........ccoi ittt ettt se e sba e st ebaesresaeenns 8

3.5.1.1 POt NUMDBELS ...ttt ettt e eaie 9

4. NetWOrk ProtOCOl LAYEN'S......c.cciieiieiiieiiee ettt sttt sneeeree s 11
o R = Y= g oo 1Y/ oo L= 1 OSSR 11

4.2 TCP/IP ProtoCOl SEACKvecviiietiitiecti ettt ettt ste ettt et ae e sre s e sre s e sbeebeesbeeabesbesanenreenne 12

T IO | o (00 oo £ 13
LS00 1 TR 14
B.LL TP AGAIESS.oveviceiite ettt sttt ettt e st b e b e st et e ebesbeesassasennesaeentesbeetesbeeas 14

B.1.2 1P AQOrESS CIASSES.......ceiiteeiieieieectee et ettt steesteessteesteebe e taesaseesbessbessessabesnbessnnesnnes 14

B.1.3 NEIMASKS.....ccviitiiitiitie ettt ettt ste e st s e et e et e be et e st aebeesbeessabesabesbeenessaesnnesananeens 14

B5.1.4 SUDNEL AQAIESScveeeee ettt ettt e re e sbe e e ebe e beesabeesreesaneesans 15

5.1.5 Directed BroadCast AQArESS.........ceeeiuieiieiieeiee ettt ere st sseeebe e sreeebe e sreas 15

5.1.6 Limited BroadCast AQArESS..........ccoueeeeieiieieieieectee ettt sttt see e e be e saneeere e 15

L3 1 = 010111 o 15

B.3 ARP .. b ettt et e b she e she e she e bebe et e b eeareebeeareereentesaeearenaean 16

5.4 The TranSPOrt LBYENcc.oiuieiieeeieee ettt sttt be bt bbb e e e se e s et e e e e eneeaes 16
L L U1 1 = TSR 16

L 2 = SRRSO 16

5.4.2.1 TCP CoNNECLION/SOCKELcccveeeriiiiiieiiectiectee ettt eree e 17

B5.4.2.2 TCP HEAEN ...covoiveeieitictietiecte ittt sttt st sns st see e 17

L T 10 1 =TSR 19

LRI I (=W AN o] o] o= 1o g I Y= 19
BU5.1 DINS ettt sttt a e bbb be e beebeeaeesaeeanesaeetesre e benreens 19

5.5.1.1 DCRTCP.LIB Implementation of DNScccccovverereeienerrecereeeenens 20

6. Dynamic C TCP/IP Implementalion...........ccooeiiereerenee e 21
6.1 TCP/IP Configuration MaCIOSccuiiiiiiiiiii s s 21

An Introduction to TCP/IP i

6.1.1 IP AdAresses Set ManUEITYcccoeiiiiiiiieieeee e e 21

6.1.2 IP Addresses Set DYNamMIiCallYcoeiiiiieniereeerieee e e e 22

6.1.3 Default BUFfEr SIZE......ccoiiieeeieeeee sttt e 22

6.1.4 Delay @ CONNECHIONceiueeerieeiiriesie et sae st be bbb se et se e e ebesbe e e neas 22

6.1.5 RUNtIME CONfIQUIELION........civiieiiiieeeeeee et s 23

LSS = 1 (o I = oo =T o 23
L O s ot TSP 24
B.3.1 PASSIVE OPEN ...ttt et b e bbb bbb et e e et eb e be e sre e 24

6.3.1.1 Example of PassiVe OpENccccceeeriereeiinieienesese s e 25

B.3.2 ACIVE OPBN....eoeieeietieeete ettt et b e bbb bbb et se et et eb e b e b neas 26

6.3.3 TCP SOCKEL FUNCLIONS......cceiuiiuiriiiie ettt e eb e s see e e 27

6.3.3.1 Control COMMANGSccoeririiriirieie et e e 27

6.3.3.2 StAtUS COMMBNGScouveuerueereriirieeiesie et e e see b e e e 28

6.3.3.3 /O FUNCLIONS ..ottt s e 29

6.4 UDP INEEITACE ... ettt er bbbt nenas 29
6.4.1 Opening aNd ClOSING......cccerueirirrsiereseseesieeeseeeseeeereesesese e sseseesaeseessenseseeseesenses 30

LAY 1 1 oo RS 30

LG I == o 1 o 30

B.4.4 CNECKSUMIS ...ttt sttt st st sttt st st sttt e bbbt bbb ne b et ees 31

Lo oo =0 0101 o o 31
6.5.1 State-Based Program DESIGN........ccereriereerreeesiese st sesieseeeesiee e eses e e sresseseeseeneas 31

6.5.2 Blocking vs. NON-BIOCKING.......ccueiueieeeicse s 31

6.5.3 BIOCKING MACIOSceiieeiciiriecisesieseestee s ettt seese e se e ene e e eneenenns 32

6.6 MUItItasking @NA TCP/IPceo ettt e b e 32
7. Oter REFEIEINCES.......ceiiiieieite ettt bbb b nreenes 33

An Introduction to TCP/IP

1. INTRODUCTION

This manual isintended for embedded systems engineers and support professionals who are not
familiar with basic networking concepts. An overview of an Ethernet network and the TCP/IP
suite of protocols used to communicate across the network will be given.

The Rabbit Semiconductor TCP/IP Development Kit includes a TCP/IP devel opment board with a
10Base-T Ethernet interface. The software that implements the TCP/IP suite of protocolsis dis-
cussed in detail in the Dynamic C TCP/IP User’s Manual.

The implementation detail s that are discussed here, in this manual, pertain to versions of Dynamic
C prior to 7.05. Improvements and additions to the TCP/IP suite of protocols are fully documented
in the Dynamic C TCP/IP User’'s Manual.

An Introduction to TCP/IP 1

An Introduction to TCP/IP

2. ETHERNET BASICS

TCP/IP (Transmission Control Protocol/Internet Protocol) is a set of protocols independent of the
physical medium used to transmit data, but the Rabbit Semiconductor TCP/IP Development Board
uses an Ethernet interface to communicate with other computers. The Ethernet can use either abus
or star topology. A bus topology attaches all devices in sequence on asingle cable. In a star topol-
ogy all devices are wired directly to a central hub. 10Base-T uses a combination called a star-
shaped bus topology because while the attached devices can share all data coming in on the cable,
the actual wiring isin a star shape.

The access method used by the Ethernet is called Carrier Sense Multiple Access with Collision
Detect (CSMA/CD). Thisisacontention protocol, meaning it isaset of rulesto follow when there
is competition for shared resources.

2.1 Ethernet Address

All Ethernet interfaces have a unique 48-bit address that is supplied by the manufacturer. Itis
called the Ethernet address (also known as the MAC address, for Media Access Control). The
TCP/IP Development Board stores this value in Flash Memory (EEPROM) that is programmed at
the factory. If you need unique Ethernet addresses for some product you are making, you can
obtain them from the | EEE Registration Authority.

To read the MAC address of a TCP/IP Development Board, run the utility program

di spl ay_MAC. c. Itislocated on the Technical Support Sample Program Web page:
http://www.rabbitsemiconductor.com/support_center/rab20_support.html. It isalso
included with Dynamic C, version 7.04 and above.

2.2 Physical Connections

The TCP/IP Development Board uses a Realtek RTL8019 10Base-T interface chip to provide a 10
Mbps Ethernet connection. This port can be connected directly to an Ethernet network.

By using hubs and routers, a network can include a large number of computers. A network might

include all the computersin a particular building. A local network can be connected to the Internet
by means of a gateway. The gateway is a computer that is connected both to the local network and
to the Internet. Data that must be sent out over the Internet are sent to the local network interface

of the gateway, and then the gateway sends them on to the Internet for routing to some other com-
puter in the world. Data coming in from the Internet are directed to the gateway, which then sends
them to the correct recipient on the local network.

An Introduction to TCP/IP 3

http://www.rabbitsemiconductor.com/support_center/rab20_support.html
http://standards.ieee.org/regauth/

2.2.1 Cables

Ethernet cables are similar to U.S. telephone plug cables, except they have eight connectors. For
our purposes, there are two types of cables—crossover and straight-through. In most instances, the
straight-through cables are used. It is necessary to use a crossover cable when two computers are
connected directly without a hub (for example, if you want to connect your PC's Ethernet directly
to the Rabbit Semiconductor TCP/IP Development Board.) Some hubs have one input that can
accept either a straight-through or crossover cable depending on the position of a switch. In this
case make sure that the switch position and cable type agree.

HUB
To Internet
cables \ / \ Gateway |a—>

Local Network Computers

Figure 1. Ethernet Network

2.3 Frames

Bits flowing across the Ethernet are grouped into structures called frames. A frame must be
between 46 and 1500 bytesin size. An Ethernet frame has four parts:

1.A Preamble of 8 bytes that helps synchronize the circuitry, thus allowing small bit
rate differences between sender and receiver.

2.A Header of 14 bytesthat contains a6 byte destination address, 6 byte source address
and a 2 byte typefield.

3.A Data area of variable length that, along with the header, is passed to the IP layer
(ak.a the Network layer).

4.A Trailer of 4 bytesthat contains a CRC to guard against corrupted frames.

If the destination addressis al 1 bits, it defines a broadcast frame and all systems on the local net-
work process the frame. There are also multicast frames. A subset of systems can form a*“multi-
cast” group that has an address that does not match any other system on the network. All systems
in a particular subset process a packet with a destination address that matches their subset. A sys-
tem can belong to any number of subsets.

A system may put its interface(s) into promiscuous mode and process all frames sent across its
Ethernet. Thisis known as "sniffing the ether." It is used for network debugging and spying.

2.3.1 Collisions

In a star-shaped bus topology, al systems have access to the network at any time. Before sending
data, a system must determineif the network isfree or if it isalready sending aframe. If aframeis
aready being sent, a system will wait. Two systems can “listen” on the network and “hear” silence
and then proceed to send data at the same time. Thisis called a collision. Ethernet hardware has
collision detection sensors to take care of this problem. Thisisthe Collision Detect (CD) part of
CSMA/CD. The colliding datais ignored, and the systems involved will wait arandom amount of
time before resending their data.

4 An Introduction to TCP/IP

3. NETWORKS

A network is asystem of hardware and software, put together for the purpose of communication
and resource sharing. A network includes transmission hardware, devices to interconnect trans-
mission media and to control transmissions, and software to decode and format data, as well as to
detect and correct problems.

There are several types of networksin use today. This chapter will focus on three of them:
* LAN - Loca AreaNetwork

* WAN - Wide Area Network
* VPN - Virtua Private Network

3.1 LAN

The most widely deployed type of network, LANs were designed as an aternative to the more
expensive point-to-point connection. A LAN has high throughput for relatively low cost. LANS
often rely on shared media, usually a cable, for connecting many computers. This reduces cost.
The computers take turns using the cable to send data.

3.1.1 Repeaters and Bridges

LANSstypically connect computers located in close physical proximity, i.e., al the computersin a
building. Repeaters are used to join network segments when the distance spanned causes electrical
signals to weaken. Repeaters are basically amplifiers that work at the bit level; they do not
actively modify datathat is amplified and sent to the next segment.

Like repeaters, bridges are used to connect two LANSs together. Unlike repeaters, bridges work at
the framelevel. Thisis useful, allowing bridges to detect and discard corrupted frames. They can
aso perform frame filtering, only forwarding a frame when necessary. Both of these capabilities
decrease network congestion.

Bridged LANSs can span arbitrary distances when using a satellite channel for the bridge. The
resulting network is still considered aLAN and not a WAN.

An Introduction to TCP/IP 5

3.2 WAN

To be considered a WAN, a network must be able to connect an arbitrary number of sites across an
arbitrary distance, with an arbitrary number of computers at each site. In addition, it must have
reasonable performance (no long delays) and allow al of the computers connected to it to commu-
nicate simultaneoudly. Thisis accomplished with packet switches.

T~ e7s

Switch - Switch
at Site 1 at Site 2
LI LI LI
High-speed
Connection
| O ,L 0o 0
Switch Switch
at Site 3 at Site 4

5 5 7§

Figure 2. WAN with 4 switches.

3.2.1 Packet Switches

Packet switches are small computers with CPUs, memory and /O devices. They move complete
packets, using atechnique called Store and Forward. An incoming packet is stored in a memory
buffer and the CPU isinterrupted. The processor examines the packet and forwards it to the appro-
priate place. This strategy allows the switch to accept multiple packets simultaneously.

Asthe figure aboveillustrates, WANSs currently do not need to be symmetric.

3.2.2 Forwarding a Packet

A data structure contains the information that tells the switch where to send the packet next. This
is called arouting table. The destination address in the packet header determines the routing table
entry that is used to forward the packet. It could be forwarded to a computer attached to the switch
that is examining the packet or it could be to another switch in the WAN.

6 An Introduction to TCP/IP

3.3 VPN

VPNs are built on top of a publicly-accessible infrastructure, such as the Internet or the public
telephone network. They use some form of encryption and have strong user authentication. Essen-
tially aVPN isaform of WAN; the difference istheir ability to use public networks rather than
private leased lines. A VPN supports the same intranet services as atraditional WAN, but also
supports remote access service. Thisis good for telecommuting, as leased lines don’t usually
extend to private homes and travel destinations.

A remote VPN user can connect viaan Internet Service Provider (I1SP) in the usual way. This
eliminates long-distance charges. The user can then initiate atunnel request to the destination
server. The server authenticates the user and creates the other end of the tunnel. VPN software
encrypts the data, packagesit in an | P packet (for compatibility with the Internet) and sends it
through the tunnel, whereiit is decrypted at the other end.

There are severa tunneling protocols available: 1P security (IPsec), Point-to-Point Tunneling Pro-
tocol (PPTP) and Layer 2 Tunneling Protocol (L2TP).

3.4 Network Devices

Some network devices (repeaters, bridges and switches) were discussed in the previous sections.
These are al dedicated hardware devices. Network devices can also be non-dedicated systems
running network software.

3.4.1 Routers

A router isa hardware device that connects two or more networks. Routers are the primary back-
bone device of the Internet, connecting different network technologies into a seamless whole.
Each router is assigned two or more | P addresses because each | P address contains a prefix that
specifies aphysical network.

Before a packet is passed to the routing software, it is examined. If it is corrupted, it is discarded.
If it is not corrupted, arouting table is consulted to determine where to send it next. By defaullt,
routers do not propagate broadcast packets (see “ Directed Broadcast Address’ on page 15). A
router can be configured to pass certain types of broadcasts.

3.4.2 Firewalls

A firewall is a computer, router, or some other communications device that controls data flow
between networks. Generally, afirewall is afirst-line defense against attacks from the outside
world. A firewall can be hardware-based or software-based. A hardware-based firewall is a spe-
cial router with additional filter and management capabilities. A software-based firewall runs on
top of the operating system and turns a PC into afirewall.

Conceptually, firewalls can be categorized as Network layer (aka Data Link layer) or Application
layer. Network layer firewalls tend to be very fast. They control traffic based on the source and
destination addresses and port numbers, using this information to decide whether to pass the data
on or discard it.

Application layer firewalls do not allow traffic to flow directly between networks. They are typi-
cally hosts running proxy servers. Proxy servers can implement protocol specific security because
they understand the application protocol being used. For instance, an application layer firewall can
be configured to alow only e-mail into and out of the local network it protects.

An Introduction to TCP/IP 7

3.4.3 Gateways

A gateway performs routing functions. The term default gateway is used to identify the router that
connectsaLAN to an internet. A gateway can do more than arouter; it also performs protocol
conversions from one network to another.

3.5 Network Architecture

There are two network architectures widely used today: peer-to-peer and client/server. In peer-to-
peer networks each workstation has the same capabilities and responsibilities. These networks are
usually less expensive and simpler to design than client/server networks, but they do not offer the
same performance with heavy traffic.

3.5.1 Client/Server Networks

The client/server paradigm requires some computers to be dedicated to serving other computers. A
server application waits for aclient application to initiate contact.

Table 1. Summary of Differences between Client and Server Software

Client Software Server Software

An arbitrary application program that becomes a A specia-purpose, privileged program dedicated to

client when aremote service is desired. It also providing one service. It can handle multiple remote
performs other local computations. clients at the sametime.
Actively initiates contact. Passively waits for contact.

Invoked when the system boots and executes

Invoked by a user and executes for one session. .
through many sessions.

Capabl e of accessing multiple services as needed,
but actively contacts only one remote server at a
time.

Accepts contact from an arbitrary number of clients,
but offers asingle service or afixed set of services.

Can require powerful hardware and a sophisticated
operating system, depending on how many clients
are being served.

Does not require special hardware or a sophisticated
operating system.

8 An Introduction to TCP/IP

3.5.1.1 Port Numbers

Port numbers are the mechanism for identifying particular client and server applications. Servers
select aport to wait for a connection. Most services have well-known port numbers. For example,
HTTP uses port 80. When aweb browser (the client) requests aweb page it specifies port 80 when
contacting the server. Clients usually have ephemeral port numbers since they exist only aslong as
the session lasts.

Some of the common well-known TCP port numbers are listed in the table bel ow.

Port

Number Listening Application

7 Echo request

20/ 21 File Transfer Protocol (FTP)

23 Telnet

25 Simple Mail Transfer Protocol (SMTP)
53 Domain Name Server

80 HTTP Server

An Introduction to TCP/IP 9

10

An Introduction to TCP/IP

4. NETWORK PROTOCOL LAYERS

Computers on a network communicate in agreed upon ways called protocols. The complexity of
networking protocol software calls for the problem to be divided into smaller pieces. A layering
model aids this division and provides the conceptual basis for understanding how software proto-
cols together with hardware devices provide a powerful communication system.

4.1 Layering Models

In the early days of networking, before the rise of the ubiquitous Internet, the International Orga-
nization for Standardization (1SO) devel oped alayering model whose terminology persists today.

Table 2. 1SO 7-Layer Reference Model

Name of Layer Purpose of Layer

Layer 7 Application Specifies how a particular application uses a network.

Layer 6 Presentation Specifies how to represent data.

Layer 5 Session Specifies how to establish communication with aremote
system.

Layer 4 Transport Specifies how to reliably handle data transfer.

Layer 3 Network Specifies addressing assignments and how packets are
forwarded.

Layer 2 Data L ink Specifies the organization of datainto frames and how to send
frames over a network.

Layer 1 Physical Specifies the basic network hardware.

The 7-layer model has been revised to the 5-layer TCP/IP reference model to meet the current
needs of protocol designers.

Table 3. TCP/IP 5-Layer Reference Model

Name of Layer

Purpose of Layer

Layer 5 Application Specifies how a particular application uses a network.
Layer 4 Transport Specifies how to ensure reliable transport of data.
Layer 3 Internet Specifies packet format and routing.

Layer 2 Network Specifies frame organization and transmittal.

Layer1 Physical Specifies the basic network hardware.

An Introduction to TCP/IP

11

4.2 TCP/IP Protocol Stack

TCP/IP isthe protocol suite upon which all Internet communication is based. Different vendors
have developed other networking protocols, but even most network operating systems with their
own protocols, such as Netware, support TCP/IP. It has become the de facto standard.

Protocols are sometimes referred to as protocol stacks or protocol suites. A protocol stack isan
appropriate term because it indicates the layered approach used to design the networking software

Sender Receiver
Virtual

Application | Connection | Application

]

Identical Message

Transport Transport
%

Identical Message

Network Network

'y
Identical Message

>
»

A

A

Data Link Data Link

< Identical Message

Hardware / Physical Connection Hardware

Figure 3. Flow of data between two computers using TCP/IP stacks.

Each host or router in the internet must run a protocol stack. The details of the underlying physical
connections are hidden by the software. The sending software at each layer communicates with
the corresponding layer at the receiving side through information stored in headers. Each layer
adds its header to the front of the message from the next higher layer. The header is removed by
the corresponding layer on the receiving side.

12 An Introduction to TCP/IP

5. TCP/IP PrRoOTOCOLS

This chapter discusses the protocols available in the TCP/IP protocol suite. The following figure
shows how they correspond to the 5-layer TCP/IP Reference Model. Thisis not a perfect one-to-
one correspondence; for instance, Internet Protocol (1P) uses the Address Resolution Protocol
(ARP), but is shown here at the same layer in the stack.

Ethernet

Data Link
ARP IP

Network
TCP UDP ICMP

Transport
— HTTP — DNS — PING
— SMTP — TFTP
— FTP —{ BOOTP

DHCP
Application

Figure 4. TCP/IP Protocol Flow

An Introduction to TCP/IP 13

5.1 IP

I P provides communication between hosts on different kinds of networks (i.e., different data-link
implementations such as Ethenet and Token Ring). It is a connectionless, unreliable packet deliv-
ery service. Connectionless means that there is no handshaking, each packet is independent of any
other packet. It is unreliable because there is no guarantee that a packet gets delivered; higher-
level protocols must deal with that.

5.1.1 IP Address

I P defines an addressing scheme that isindependent of the underlying physical address (e.g, 48-bit
MAC address). | P specifies a unique 32-bit number for each host on a network. This number is
known as the Internet Protocol Address, the IP Address or the Internet Address. These terms are
interchangeable. Each packet sent across the internet contains the IP address of the source of the
packet and the IP address of its destination.

For routing efficiency, the IP address is considered in two parts: the prefix which identifies the
physical network, and the suffix which identifies a computer on the network. A unique prefix is
needed for each network in an internet. For the global Internet, network numbers are obtained
from Internet Service Providers (1SPs). | SPs coordinate with a central organization called the
Internet Assigned Number Authority.

5.1.2 IP Address Classes

Thefirst four bits of an | P address determine the class of the network. The class specifies how
many of the remaining bits belong to the prefix (aka Network 1D) and to the suffix (akaHost ID).
The first three classes, A, B and C, are the primary network classes.

NUMBER OF MAX # OF NUMBER OF MAX # OF
CLASS| FIRST 4 BITS PREFIX BITS | NETWORKS | SUFFIX BITS HNOE§I'-\I;\§OPREI§
A OXxx 7 128 24 16,777,216
B 10xx 14 16,384 16 65,536
C 110x 21 2,097,152 8 256
D 1110 Multicast
E 1111 Reserved for future use.

When interacting with mere humans, software uses dotted decimal notation; each 8 bitsis treated
as an unsigned binary integer separated by periods. | P reserves host address 0 to denote a network.
140.211.0.0 denotes the network that was assigned the class B prefix 140.211.

5.1.3 Netmasks

Netmasks are used to identify which part of the addressis the Network ID and which part is the
Host ID. Thisis done by alogical bitwise-AND of the IP address and the netmask. For class A
networks the netmask is always 255.0.0.0; for class B networksit is 255.255.0.0 and for class C
networks the netmask is 255.255.255.0.

14 An Introduction to TCP/IP

5.1.4 Subnet Address

All hosts are required to support subnet addressing. While the | P address classes are the conven-
tion, IP addresses are typically subnetted to smaller address sets that do not match the class sys-
tem. The suffix bits are divided into a subnet ID and ahost ID. This makes sensefor class A and B
networks, since no one attaches as many hosts to these networks as is allowed. Whether to subnet
and how many bits to use for the subnet ID is determined by the local network administrator of
each network.

If subnetting is used, then the netmask will have to reflect this fact. On a class B network with
subnetting, the netmask would not be 255.255.0.0. The bits of the Host ID that were used for the
subnet would need to be set in the netmask.

5.1.5 Directed Broadcast Address

IP defines adirected broadcast address for each physical network as al onesin the host ID part of
the address. The network 1D and the subnet ID must be valid network and subnet values. When a
packet is sent to a network’s broadcast address, a single copy travelsto the network, and then the
packet is sent to every host on that network or subnetwork.

5.1.6 Limited Broadcast Address
If the IP addressis all ones (255.255.255.255), thisis alimited broadcast address; the packet is

addressed to all hosts on the current (sub)network. A router will not forward this type of broadcast
to other (sub)networks.

5.2 IP Routing

Each |P datagram travels from its source to its destination by means of routers. All hosts and rout-
ers on an internet contain I P protocol software and use a routing table to determine where to send
a packet next. The destination | P address in the IP header contains the ultimate destination of the
IP datagram, but it might go through several other |P addresses (routers) before reaching that des-
tination.

Routing table entries are created when TCP/IP initializes. The entries can be updated manually by
anetwork administrator or automatically by employing a routing protocol such as Routing Infor-
mation Protocol (RIP). Routing table entries provide needed information to each local host regard-
ing how to communicate with remote networks and hosts.

When | P receives a packet from a higher-level protocol, like TCP or UDP, the routing table is
searched for the route that is the closest match to the destination I1P address. The most specific to
the least specific route is in the following order:

* A route that matches the destination | P address (host route).
* A route that matches the network ID of the destination |P address (network route).
* The default route.

If amatching route is not found, | P discards the datagram.

An Introduction to TCP/IP 15

IP provides several other services.

* Fragmentation. | P packets may be divided into smaller packets. This permits a
large packet to travel across a network which only accepts smaller packets. | P frag-
ments and reassembl es packets transparent to the higher layers.

e Timeouts. Each IP packet hasaTime To Live (TTL) field, that is decremented
every time a packet moves through arouter. If TTL reaches zero, the packet isdis-
carded.

* Options. IP allows a packet’s sender to set requirements on the path the packet takes
through the network (source route); the route taken by a packet may be traced
(record route), and packets may be labeled with security features.

5.3 ARP

The Address Resolution Protocol is used to trandate virtual addresses to physical ones. The net-
work hardware does not understand the software-maintained | P addresses. | P uses ARP to trans-
late the 32-bit | P address to a physical address that matches the addressing scheme of the
underlying hardware (for Ethernet, the 48-bit MAC address).

There are three general addressing strategies:

1. Tablelookup
2. Trandation performed by a mathematical function
3.Message exchange

TCP/IP can use any of the three. ARP employs the third strategy, message exchange. ARP defines
arequest and aresponse. A request message is placed in a hardware frame (e.g., an Ethernet
frame), and broadcast to all computers on the network. Only the computer whose | P address
matches the request sends a response.

5.4 The Transport Layer

There are two primary transport layer protocols. Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP). They provide end-to-end communication services for applications.

5.4.1 UDP

Thisisaminimal service over IP, adding only optional checksumming of data and multiplexing by
port number. UDP is often used by applications that need multicast or broadcast delivery, services
not offered by TCP. Like IP, UDP is connectionless and works with datagrams.

5.4.2 TCP

TCP is aconnection-oriented transport service; it provides end-to-end reliability, resequencing,
and flow control. TCP enables two hosts to establish a connection and exchange streams of data,
which are treated in bytes. The delivery of datain the proper order is guaranteed.

TCP can detect errors or lost data and can trigger retransmission until the data is received, com-
plete and without errors.

16 An Introduction to TCP/IP

5.4.2.1 TCP Connection/Socket

A TCP connection is done with a 3-way handshake between aclient and a server. Thefollowingis
asimplified explanation of this process.

* Theclient asksfor aconnection by sending a TCP segment with the SYN control bit
Set.

* The server responds with its own SY N segment that includes identifying informa-
tion that was sent by the client in the initial SY N segment.

* The client acknowledges the server’'s SYN segment.

The connection is then established and is uniquely identified by a 4-tuple called a socket or socket
pair:

(destination | P address, destination port number)
(source IP address, source port number)

During the connection setup phase, these values are entered in atable and saved for the duration
of the connection.

An Introduction to TCP/IP 17

5.4.2.2 TCP Header

Every TCP segment has a header. The header comprises all necessary information for reliable,
complete delivery of data. Among other things, such as IP addresses, the header contains the fol-
lowing fields:

Sequence Number - This 32-bit number contains either the sequence number of the first byte
of datain this particular segment or the Initial Sequence Number (1SN) that identifies the first
byte of datathat will be sent for this particular connection.

The ISN is sent during the connection setup phase by setting the SYN control bit. AnISN is
chosen by both client and server. Thefirst byte of data sent by either side will be identified by
the sequence number ISN + 1 because the SYN control bit consumes a sequence number. The
following figureillustrates the three-way handshake.

Host A Host B
(Client) SYN Segment (Server)
ISN=A, ACK=0

SYN/ACK Segment
ISN=B, ACK=A+1

ACK Segment
Seq # =A+1, ACK=B+1

Figure 5. Synchronizing Sequence Numbers for TCP Connection

The sequence number is used to ensure the datais reassembled in the proper order before being
passed to an application protocol.

Acknowledgement Number - This 32-bit number is the other host’s sequence number + 1 of
the last successfully received byte of data. It is the sequence number of the next expected byte
of data. Thisfield is only valid when the ACK contral bit is set. Since sending an ACK costs
nothing, (because it and the Acknowledgement Number field are part of the header) the ACK
control bit is always set after a connection has been established.

The Acknowledgement Number ensures that the TCP segment arrived at its destination.

18 An Introduction to TCP/IP

Control Bits - This 6-hit field comprises the following 1-bit flags (Ieft to right):
* URG - Makes the Urgent Pointer field significant.
¢ ACK - Makesthe Acknowledgement Number field significant.
e PSH - The Push Function causes TCP to promptly deliver data.
* RST - Reset the connection.
e SYN - Synchronize sequence numbers.
* FIN - No more data from sender, but can still recieve data.

Window Size - This 16-bit number states how much data the receiving end of the TCP connec-
tion will allow. The sending end of the TCP connection must stop and wait for an acknowledge-
ment after it has sent the amount of data allowed.

Checksum - This 16-bit number is the one’s complement of the one’s complement sum of all
bytes in the TCP header, any datathat isin the segment and part of the IP packet. A checksum
can only detect some errors, not all, and cannot correct any.

5.4.3 ICMP

Internet Control Message Protocol is a set of messages that communicate errors and other condi-
tions that require attention. ICMP messages, delivered in |P datagrams, are usually acted on by
either IP, TCP or UDP. Some ICMP messages are returned to application protocols.

A common use of ICMPis*“pinging” ahost. The Ping command (Packet INternet Groper) isa
utility that determines whether a specific |P address is accessible. It sends an ICMP echo request
and waits for areply. Ping can be used to transmit a series of packets to measure average round-
trip times and packet l0ss percentages.

5.5 The Application Layer

There are many applications available in the TCP/IP suite of protocols. Some of the most useful
ones are for sending mail (SMTP), transferring files (FTP), and displaying web pages (HTTP).
These applications are discussed in detail in the TCP/IP User’'s Manual.

Another important application layer protocol is the Domain Name System (DNS). Domain hames
are significant because they guide usersto where they want to go on the Internet.

5.5.1 DNS

The Domain Name System is adistributed database of domain name and IP address bindings. A
domain nameis simply an a phanumeric character string separated into segments by periods. It
represents a specific and unique place in the “domain name space.” DNS makes it possible for us
to useidentifiers such as zworld.com to refer to an I P address on the Internet. Name servers con-
tain information on some segment of the DNS and make that information available to clients who
are called resolvers.

An Introduction to TCP/IP 19

5.5.1.1 DCRTCP.LIB Implementation of DNS

Ther esol ve functionin DCRTCP. LI B immediately converts a dotted decimal |1P address to
its corresponding binary |P address and returns this value.

If r esol ve is passed adomain name, a series of queries take place between the computer that
calledr esol ve and computers running name server software. For example, to resolve the
domain name www.rabbitsemiconductor.com, the following code (available in SAM

PLES\ TCP\ DNS. C) can be used.

#defi ne My_| P_ADDRESS "10. 10. 6. 101"
#defi ne MY_NETMASK "255. 255. 255. 0"
#defi ne MY_GATEWAY "10. 10. 6. 19"

#defi ne MY_NAMESERVER "209. 233. 102. 12"

#memmap Xxmem
#use dcrtcp.lib

mai n() {
| ongword i p;
char buffer[20];

sock_init();

i p=r esol ve("wwmv. r abbi t sem conduct or. cont') ;
i f(ip==0)
printf("couldn’t find wwv rabbitsemn conductor.comn");
el se
printf("% is wwvrabbitsem conductors address.\n”,
i net_ntoa(buffer,ip));
}

Your local name server is specified by the configuration macro MY_ NAMESERVER. Chances are
that your local name server does not have the requested information, so it queriesthe root server.
The root server will not know the IP address either, but it will know where to find the name server
that contains authoritative information for the .com zone. Thisinformation is returned to your
local name server, which then sends a query to the name server for the .com zone. Again, this
name server does not know the requested | P address, but does know the local name server that
handl es rabbitsemiconductor.com. This information is sent back to your local name server, who
sends afinal query to the local name server of rabbitsemiconductor.com. Thislocal name server
returns the requested | P address of www.rabbitsemiconductor.com to your local name server, who
then passes it to your computer.

20 An Introduction to TCP/IP

6. DYNAMIC C TCP/IP IMPLEMENTATION

The Dynamic C TCP/IP protocol suite is contained in a number of Dynamic C libraries. The main
library fileis DCRTCP. LI B. IP version 4 is supported, not version 6. This chapter will describe
the configuration macros and the functions used to initialize and drive TCP/IP.

The implementation details that are discussed here pertain to versions of Dynamic C prior to 7.05.
Improvements and additions to the TCP/IP suite of protocols are fully documented in the
Dynamic C TCP/IP User’s Manual.

Physical Connections

The TCP/IP Development Board can be connected to your computer using a hub and standard
cable or directly to the computer using a cross-over cable. The Development Board can also be a
host connected directly to an Ethernet network. For details on the physical connections, please
refer to the TCP/IP Getting Sarted Manual.

6.1 TCP/IP Configuration Macros

TCP/IP can be configured by defining configuration macros at compile time, by using the

t cp_conf i g function (and other functions) at runtime or by using the Dynamic Host Configura-
tion Protocol (DHCP). Some | SPs require that the user provide them with a MAC address from
the controller. Run the utility program, di spl ay_mac. ¢ to display the MAC address.

6.1.1 IP Addresses Set Manually
Four pieces of information are needed by any host on a network:

1. The IP address of the host (e.g., the TCP/IP Development Board).

2.The part of the I P address that distinguishes machines on the host’s network from
machines on other networks (the netmask).

3.The |P address of the router that connects the host’s network to the rest of the world
(the default gateway).

4.The IP address of the local DNS server for the host’s network. Thisis only necessary
iIf DNS backups are needed.

MY_I P_ADDRESS, MY_NETMASK, MY_GATEWAY and MY_NAMESERVER respectively corre-
spond to these four critical addresses.

An Introduction to TCP/IP 21

6.1.2 IP Addresses Set Dynamically

The macro USE_DHCP enables the Dynamic Host Configuration Protocol (DHCP). If this option
is enabled, aDHCP client (e.g., TCP/IP Development Board) contacts a DHCP server for the val-
ues of MY_| P_ADDRESS, MY_NETMASK, MY_GATEWAY and MY_NAMESERVER

DHCP servers are usually centrally located on alocal network and operated by the network
administrator.

6.1.3 Default Buffer Size

There are two macros used to define the size of the buffer that is used for UDP datagram reads and
TCP packet reads and writes: t cp_MaxBuf Si ze and SOCK_BUF_SI ZE.

t cp_MaxBuf Si ze isdeprecated in Dynamic C version 6.57 and higher and is being kept for
backwards compatibility. It has been replaced by SOCK_BUF_SI ZE.

If SOCK_BUF_SI ZE is 4096 bytes, the UDP buffer is 4096 bytes, the TCP read buffer is 2048
bytes and the TCP write buffer is 2048 bytes.

In Dynamic C versions 6.56 and earlier, t cp_MaxBuf Si ze determines the size of the input and
output buffersfor TCP/IP sockets. Thesi zeof (t cp_Socket) will be about 200 bytes more
than doublet cp_MaxBuf Si ze. The optimum value for local Ethernet connections is greater
than the Maximum Segment Size (MSS). The MSSis 1460 bytes. You may want to lower

t cp_MaxBuf Si ze, which defaults to 2048 bytes, to reduce RAM usage. It can be reduced to as
little as 600 bytes.

t cp_MaxBuf Si ze will work slightly differently in Dynamic C versions 6.57 and higher. In
these later versions the buffer for the UDP socket will bet cp_MaxBuf Si ze * 2, whichis
twice aslarge as before.

6.1.4 Delay a Connection

Sometimes it is appropriate to accept a connection request when the resources to do so are not
available. This happens with web servers when web pages have several graphic images, each
requiring a separate socket.

The macro USE_RESERVEPORTS is defined by default. It allows the use of the function
tcp_reserveport (port nunber) . When aconnection to the port specified in
tcp_reserveport isattempted, the 3-way handshaking is done even if thereis not yet a
socket available. Thisis done by setting the window parameter in the TCP header to zero, mean-
ing, “I can take 0 bytes of data at thistime.” The other side of the connection will wait until the
value in the window parameter indicates that data can be sent.

Whenusingt cp_reserveport,the2MSL (for Maximum Segment Lifetime) waiting period
for closing a socket is avoided.

Using the companion function, t cp_cl earreserve(port nunber), causesthe connection
to the port to be done in the conventional way.

22 An Introduction to TCP/IP

6.1.5 Runtime Configuration

Functions are provided to change configuration values at runtime. The most general oneis
tcp_confi g. It takestwo strings. The first string is the setting to be changed and the second
string is the value to change it to. The configuration macros MY_| P_ADDRESS, MY_NETMASK,
MY _GATEWAY, and MY_NAMESERVER can al be overridden by this function.

tcp_confi g("MY_I P_ADDRESS", "10. 10. 6. 101") ;

Some of thet cp_confi g functionality is duplicated by other Dynamic C TCP/IP functions.
t cp_confi g can override the macro MY_I P_ADDRESS, and so cantheset host i d function.

6.2 Skeleton Program

The following program is ageneral outline for a Dynamic C TCP/IP program. The first couple of
defines set up the default I P configuration information. The “memmap” line causes the program to
compile as much code as it can in the extended code window. The “use” line causes the compiler

to compile in the Dynamic C TCP/IP code using the configuration data provided aboveit.

#define MY_| P_ADDRESS "10. 10. 6. 101"
#defi ne MY_NETMASK "255. 255, 255. 0"
#def i ne MY_GATEWAY "10. 10. 6. 19"
#memrap Xxmem

#use dcrtcp.lib

mai n() {
sock_init();

for (53) {
tep_tick(NULL);
}

}
To run this program, start Dynamic C and open the SAMPLES\ TCPI P\ Pl NGVE. Cfile. Edit the
MY_| P_ADDRESS, MY _NETMASK, and MY_GATEWAY macros to reflect the appropriate values
for your device. Run the program and try to run pi ng 10. 10. 6. 101 from acommand line on
acomputer on the same physical network, replacing 10. 10. 6. 101 with your value for
MY_I| P_ADDRESS.

Themai n() function first initializes the DCRTCP. LI B TCP/IP stack with acall to

sock_i nit.Thiscal initializes internal data structures and enables the Ethernet chip, which
will take a couple of seconds with the Real Tek chip. At this point, DCRTCP. LI Bisready to han-
dle incoming packets.

DCRTCP. LI B processes incoming packetsonly whent cp_ti ck iscalled. Internaly, the func-
tionst cp_open,udp_open,sock_read,sock wite,sock _cl ose,andsock _abort
dlcaltcp_tick.Itisagood practiceto makesurethatt cp_ti ck iscalled periodically in
your program to insure that the system has had a chance to process packets.

When you ping your device, the Ethernet chip temporarily stores the packet, waiting for
DCRTCP. LI Bto processit. DCRTCP. LI B removes the packet the nexttimet cp_t i ck gets
called, and responds appropriately.

A rule of thumbistocall t cp_ti ck around 10 times per second, although slower or faster call
rates should also work. The Ethernet interface chip has alarge buffer memory, and TCP/IPis
adaptive to the data rates that both end of the connection can handle; thus the system will gener-
ally keep working over awide variety of tick rates.

An Introduction to TCP/IP 23

A more difficult question is how much computing time is consumed by each call tot cp_ti ck.
Rough numbers are less than amillisecond if there is nothing to do, 10s of milliseconds for typical
packet processing, and 100s of milliseconds under exceptional circumstances.

6.3 TCP Socket

For Dynamic C version 6.57 and above, each socket must have an associatedt cp_Socket of
145 bytesor audp_Socket of 62 bytes. The I/O buffers are in extended memory.

For earlier versions of Dynamic C, each socket must have at cp_Socket data structure that
holds the socket state and I/O buffers. These structures are, by default, around 4200 bytes each.
The majority of this space is used by the input and output buffers.

There are two ways to open a TCP socket: passive or active.

6.3.1 Passive Open

To wait for someone to contact your device, open asocket witht cp_| i st en. Thistype of open
iscommonly used for Internet serversthat listen on awell-known port, like 80 for HTTP. You sup-
plytcp_listenwithapointertoat cp_Socket datastructure, thelocal port number others
will be contacting on your device, and the | P address and port number that are valid for the device.
If you want to be able to accept connections from any |P address or any port number, set one or
both to zero.

To handle multiple simultaneous connections, each new connection will require its own
tcp_Socket and aseparatecalltot cp_| i st en, but using the same local port number
(I port vaue)

Thetcp_| i st en call will immediately return, and you must poll for the incoming connection.
You canusethesock _wait _est abl i shed macro, whichwill call t cp_t i ck and block
until the connection is established or you can manually poll the socket using

sock_est abl i shed.

24 An Introduction to TCP/IP

6.3.1.1 Example of Passive Open

The following example waits for a connection on port 7, and echoes back each line as you enter it.
To test this program, change the configuration information and start it running. From a connected
PC, TELNET to the device port 7.

#define My_| P_ADDRESS "10. 10. 6. 101"
#def i ne MY_NETMASK "255. 255. 255. 0"
#def i ne MY_GATEWAY "10. 10. 6. 19"

#memrap xmem
#use "dcrtcp.lib"

#defi ne PORT 7
t cp_Socket echosock;

mai n() {
char buffer[2048];
int status;

sock_init();

while(l) {
tcp_listen(&echosock, PORT, 0, 0, NULL, 0);
sock_wai t _est abl i shed(&chosock, 0, NULL, &st at us);

printf("Receiving incom ng connection\n");
sock_node(& chosock, TCP_MODE_ASCI |) ;

whil e(tcp_tick(&echosock)) {
sock_wai t _i nput (&echosock, 0, NULL, &st at us) ;
i f(sock_get s(&echosock, buffer, 2048))
sock_put s(&echosock, buffer);

}

sock_err:

switch(status) {
case 1: /* foreign host closed */
printf("User closed session\n");
br eak;

case -1: /* timeout */
printf("\nConnection timed out\n");
br eak;

An Introduction to TCP/IP 25

6.3.2 Active Open

When your Web browser retrieves a page, it is actively opening one or more connections to the
Web server’s passively opened sockets. To actively open a connection, you usethet cp_open
call, which uses parameters that are similar tothet cp_| i st en call. It isnecessary to supply
exact parametersfori na and port , but thel port parameter can be zero, which tells

DCRTCP. LI B to select an unused port between 1024 and 65536.

When you call t cp_open, Dynamic C tries to contact the other device to establish the connec-
tion. Thet cp_open function will fail and return a zero if the connection could not be opened
due to routing difficulties, such as an inability to resolve the remote computer’s hardware address

with ARP.

#def i ne My_I P_ADDRESS "10. 10. 6. 101"
#def i ne MY_NETMASK "255. 255. 255. 0"
#def i ne MY_GATEWAY "10. 10. 6. 19"
#define MY_NAMESERVER "209. 233. 102. 12"

#def i ne VEBSI TE " www. zweng. cont
#define FILE "/"
#define PORT 80

#memrap xmem
#use "dcrtcp.lib"

main() {

i nt status;
tcp_Socket s;
char buffer[2048];
| ongword i p;

sock_init();

i p=resol ve(\EEBSI TE) ;
tcp_open(&s, 0, ip, PORT, NULL) ;

sock_wai t _establ i shed(&s, 0, NULL, &st at us);

sock_node(&s, TCP_MODE_ASCI |) ;

sprintf(buffer,"GET %\r\n", FILE);
sock_put s(&s, buffer);

while(tcp_tick(&s)) {
sock_wai t _i nput (&s, 0, NULL, &st at us);
i f(sock_gets(&s, buffer, 2048))
printf("%\n", buffer);

}

return O;

26

An Introduction to TCP/IP

sock_err:

switch(status) {
case 1: /* foreign host closed */
printf("User closed session\n");
br eak;

case -1: /* timeout */
printf("\nConnection tinmed out\n");
br eak;

}
}

6.3.3 TCP Socket Functions

There are many functions that can be applied to an open TCP socket. They fall into three main cat-
egories. control, status, and I/O. Each function is explained in the Dynamic C TCP/IP User’s
Manual.

6.3.3.1 Control Functions

tcp_open
sock cl ose
sock abort
sock flush
sock fl ushnext

Thet cp_open andt cp_I| i st en commands have already been explained in the active and pas-
sive sections. Thesock_cl ose command should be called when you want to end a connection.

Thesock_cl ose command may not immediately close the connection because it may take
some time to send the request to end the connection and receive the acknowledgements. If you
want to be sure that the connection is completely closed before continuing your program, you can
call t cp_ti ck withthe socket's address. Whent cp_t i ck returns zero, then the socket is com-
pletely closed. Please note that if there is data left to be read on the socket, the socket will not
completely close.

There may be some reason that you want to cancel an open connection. In this case, you can call
sock_abort . Thisfunction will cause a TCP reset to be sent to the other end, and other future
packets sent on this connection will be ignored.

For performance reasons, data may not be immediately sent from a socket to its destination. If
your application requires the data to be sent immediately, you can call thesock_f | ush com-
mand. This function will cause DCRTCP. LI B to try sending any pending dataimmediately. If
you know ahead of time that data will need to be sent immediately, call thesock_f | ushnext
function on the socket. This function will cause the next set of data written to the socket to be sent
immediately, and is more efficient than sock_f 1 ush.

An Introduction to TCP/IP 27

6.3.3.2 Status Functions

tcp_tick

sock _tbsize

sock _rbsize
sock _t bused

sock rbused

sock thbleft

sock rbleft
sock_byt esready
sock establi shed

When you supply t cp_ti ck with apointer to a TCP socket, it will first process the packets and
then check to see if the socket has an established connection. It returns a zero if the socket is no
longer open because of an error condition or if the socket has been closed. You can use this func-
tionality after calling sock _cl ose on the socket to determine whether the socket is completely
closed.

sock_cl ose(&my_socket);
whil e(tcp_tick(&ry_socket)) {
/1l check tinmeout, do idle work...

}
These functions can be used to avoid blocking when using sock_wr i t e and some of the other
I/0 functions. The following blocks of code illustrate away of using the buffer management and
socket management functions to avoid blocking. The first block of code checks to make sure that
there is enough room in the buffer before adding data with a blocking function. The second makes
sure that there is a string terminated with a new line in the buffer, or that the buffer is full before
callingsock_gets.

i f(sock_tbleft(&my_socket, size)) {
sock_write(&my_socket, buffer, size);

}
or:

sock_node(&my_socket, TCP_MODE_ASCI |) ;

i f(sock_bytesready(&ry_socket) !'= -1) {
sock_get s(buf f er, MAX_BUFFER) ;

}

28 An Introduction to TCP/IP

6.3.3.3 I/O Functions

sock read

sock fastread
sock_preread
sock_ wite
sock fastwite
sock getc
sock_gets
sock_putc
sock_puts

There are two modes of reading and writing to TCP sockets: ASCII and binary. By default, a socket
is opened in binary mode, but you can change that with acall to sock_node.

When a socket isin ASCII mode, DCRTCP. LI B assumes that the datais an ASCI| stream with
record boundaries on the newline characters for some of the functions. This behavior means
sock_byt esr eady will return >=0 only when a complete newline-terminated string isin the
buffer or the buffer isfull. Thesock_put s function will automatically place a newline character
at the end of astring, and the sock_get s function will strip the newline character.

When in binary mode, do not usethesock_scanf (currently not implemented) or the
sock_get s functions.

6.4 UDP Interface

udp_open

sock read
sock_ wite
sock fastread
sock fastwite
sock_gets
sock_puts

sock getc

sock putc
sock_recv_init
sock recv

sock recv_from

The UDP protocol is useful when sending messages where either alost message does not cause a
system failure or is handled by the application. Since UDP is a simple protocol and you have con-
trol over the retransmissions, you can decide if you can trade low latency for high reliability.
Another advantage of UDP is the ability to broadcast packets to a number of computers on the
same network. When done properly, broadcasts can reduce overall network traffic because infor-
mation does not have to be duplicated when there are multiple destinations.

An Introduction to TCP/IP 29

6.4.1 Opening and Closing

Theudp_open function takes a remote | P address and port number. If they are set to a specific
value, all incoming and outgoing packets are filtered on that value (i.e., you talk only to the one
socket).

If the remote IP addressis set to -1, it receives any packet, and outgoing packets are broadcast. If
the remote | P address is set to 0, no outgoing packets may be sent until a packet has been received.
Thisfirst packet completes the socket, filling in the remote | P address and port number with the
return address of the incoming packet. Multiple sockets can be opened on the same local port,
with the remote address set to 0, to accept multiple incoming connections from separate remote
hosts. When you are done communicating on a socket that was started with a0 | P address, you can
closeit withsock _cl ose and reopen to make it ready for another source.

6.4.2 Writing

The normal socket functions you used for writing to a TCP socket will work for a UDP socket, but
since UDP isasignificantly different service, the result could be different. Each atomic write—
sock_putc,sock puts,sock write,orsock fastwite—placesitsdataintoasingle
UDP packet. Since UDP does not guarantee delivery or ordering of packets, the data received may
be different either in order or content than the data sent.

6.4.3 Reading

There are two ways to read packets using DCRTCP. LI B. The first method uses the normal

sock _getc,sock_gets,sock _read,andsock_fast read functions. These functions
will read the data as it came into the socket, which is not necessarily the data that was written to
the socket.

The second mode of operation for reading usesthesock_recv_init,sock_recv, and
sock_recv_fromfunctions. Thesock _recv_i nit functioningtals alarge buffer areathat
gets divided into smaller buffers. Whenever a datagram arrives, DCRTCP. LI B stuffs that data-
gram into one of these new buffers. Thesock _recv andsock_recv_f r omfunctions scan
these buffers. After callingsock_recv_i nit onthe socket, you should not use sock_get c,
sock_read,orsock fastread.

Thesock_r ecv function scans the buffers for any datagrams received by that socket. If thereis
adatagram, the length is returned and the user buffer isfilled, otherwise it returns zero.

Thesock_recv_fromfunctionworkslikesock_recv, but it allowsyou to record the IP
address where the datagram originated. If you want to reply, you can open anew UDP socket with
the IP address modified by sock_r ecv_from Thereisno way to send UDP packets without a
socket.

30 An Introduction to TCP/IP

6.4.4 Checksums

Thereisan optional checksumfield inside the UDP header. Thisfield verifies only the header
portion of the packet and doesn't cover any part of the data. This feature can be disabled on areli-
able network where the application has the ability to detect transmission errors. Disabling the
UDP checksumcan increase the performance of UDP packets moving through DCRTCP. LI B.
Thisfeature can be modified by:

sock_node(s, UDP_MODE_CHK) ; /1 enabl e checksuns
sock_node(s, UDP_MODE_NOCHK); // disable checksums

6.5 Program Design

When designing your program, you must place some thought into how it will be structured. If you
plan on using the state-based approach, you need to select the appropriate functions.

6.5.1 State-Based Program Design

One strategy for designing your program with Dynamic C isto create a state machine within a
function where you pass it the socket. This method allows you to handle multiple sockets without
the services of a multitasking kernel. Thisisthe way the HTTP. LI B functions are organized (see
HTTP in the Dynamic C TCP/IP User’'s Manual). The general states are waiting to be initialized,
waiting for a connection, a bunch of connected states, and waiting for the socket to be closed.
Many of the common Internet protocols fit well into this state machine model. An example of
state-based programming is SAMPLES\ TCPI P\ STATE. C. This program is a basic Web server
that should work with most browsers. It allows a single connection at atime, but could easily be
extended to allow multiple connections.

6.5.2 Blocking vs. Non-Blocking

Thesock_fastreadandsock_ preread functions read as much data asis available in the
buffers, and return immediately. Similarly, the sock_f ast wri t e function fills the buffers and
returns the number of charactersthat were written. When using these functions, it is your respon-
sibility to ensure that all of the data were written compl etely.

of f set =0;
whi | e(of f set <l ength) {
bytes_written=sock_fastwite(&socket, buffer+offset,|enght-offset);
if(bytes_witten<0) {
/1 error handling

}

of fset +=bytes_written;
}
The other functions do not return until they have completed or there isan error. If it isimportant to
avoid blocking, you can check the conditions of an operation to insure that it will not block.

sock_node(socket, TCP_MXDE_ASCI |) ;

...

i f (sock_bytesready(&nmy_socket) I'= -1){
sock_get s(buf f er, MAX_BUFFER) ;

}

Inthiscase sock _get s will not block because it will be called only when there is a complete
new line terminated record to read.

An Introduction to TCP/IP 31

6.5.3 Blocking Macros

To block at a certain point and wait for a condition, DCRTCP. LI B provides some macros to make
thistask easier. In this program fragment, sock_wai t _est abl i shed isused to block the pro-
gram until a connection is established. Notice the timeout (second parameter) value of zero. This
tells Dynamic C to never timeout. Associated with these macrosisasock _err label to jump to
when thereis an error. If you supply a pointer to a statusinteger, it will set the status to an error
code. Valid error codes are -1 for timeout and 1 for areset connection.

tcp_open(&s, 0, ip, PORT, NULL) ;
sock_wai t _established(&s, 0, NULL, &st at us) ;

...

sock _err:

switch(status) {
case 1: /* foreign host closed */
printf("User closed session\n");
br eak;

case -1: /* tinmeout */
printf("\nConnection tined out\n");
br eak;

}

6.6 Multitasking and TCP/IP

The TCP/IP engine may be used with the uC/OS rea-time kernel. The line
#use ucos2.1ib

must appear before the line

#use dcrtcp.lib

32 An Introduction to TCP/IP

/. OTHER REFERENCES

1.A two-part article, Introduction to TCP/I P, in Embedded Systems Programming dis-
cusses issues related to programming embedded systems.

http://www.embedded.com/internet/9912/9912ial.htm

2.Ethereal isagood, free program for viewing network traffic. It works under various
Unix operatings systems and under Windows.

http://www.ethereal .com/

3.Computer Networks and | nternets, Douglas E. Comer. Published by Prentice Hall.
ISBN 0-13-239070-1. This book gives an excellent high-level description of net-
works and their interfaces.

4. TCP/IP Illustrated, Volume 1 The Protocols, W. Richard Stevens. Published by
Addison-Wesley. ISBN 0-20-163346-9. This book gives many useful low-level
details about TCP/IP, UDP, and ICMP.

An Introduction to TCP/IP 33

http://www.embedded.com/internet/9912/9912ia1.htm
http://www.ethereal.com/

34

An Introduction to TCP/IP

	1. Introduction
	2. Ethernet Basics
	2.1 Ethernet Address
	2.2 Physical Connections
	2.2.1 Cables

	2.3 Frames
	2.3.1 Collisions

	3. Networks
	3.1 LAN
	3.1.1 Repeaters and Bridges

	3.2 WAN
	3.2.1 Packet Switches
	3.2.2 Forwarding a Packet

	3.3 VPN
	3.4 Network Devices
	3.4.1 Routers
	3.4.2 Firewalls
	3.4.3 Gateways

	3.5 Network Architecture
	3.5.1 Client/Server Networks
	3.5.1.1 Port Numbers

	4. Network Protocol Layers
	4.1 Layering Models
	4.2 TCP/IP Protocol Stack

	5. TCP/IP Protocols
	5.1 IP
	5.1.1 IP Address
	5.1.2 IP Address Classes
	5.1.3 Netmasks
	5.1.4 Subnet Address
	5.1.5 Directed Broadcast Address
	5.1.6 Limited Broadcast Address

	5.2 IP Routing
	5.3 ARP
	5.4 The Transport Layer
	5.4.1 UDP
	5.4.2 TCP
	5.4.2.1 TCP Connection/Socket
	5.4.2.2 TCP Header

	5.4.3 ICMP

	5.5 The Application Layer
	5.5.1 DNS
	5.5.1.1 DCRTCP.LIB Implementation of DNS

	6. Dynamic C TCP/IP Implementation
	6.1 TCP/IP Configuration Macros
	6.1.1 IP Addresses Set Manually
	6.1.2 IP Addresses Set Dynamically
	6.1.3 Default Buffer Size
	6.1.4 Delay a Connection
	6.1.5 Runtime Configuration

	6.2 Skeleton Program
	6.3 TCP Socket
	6.3.1 Passive Open
	6.3.1.1 Example of Passive Open

	6.3.2 Active Open
	6.3.3 TCP Socket Functions
	6.3.3.1 Control Functions
	6.3.3.2 Status Functions
	6.3.3.3 I/O Functions

	6.4 UDP Interface
	6.4.1 Opening and Closing
	6.4.2 Writing
	6.4.3 Reading
	6.4.4 Checksums

	6.5 Program Design
	6.5.1 State-Based Program Design
	6.5.2 Blocking vs. Non-Blocking
	6.5.3 Blocking Macros

	6.6 Multitasking and TCP/IP

	7. Other References

