

Arca Microprocessor Technical Documentation Suite

A
Instruction S

Referen

rca
et Architecture

ce Manual
V2

方舟科技有限公司
ARCA Technology Corporation

Arca
Instruction Set Architecture Reference Manual – V2

Copyright © ARCA Technology Corporation. 2003.

Third party brands, logos and names are the property of those respective third parties.

Release history

Date Revision Change
Jul 2001 V1 ISA Version 1
Jan 2003 V2 ISA Version 2

Disclaimer

This documentation is provided for use with ARCA Technology Corporation products. No
license to ARCA Technology Corporation property rights is granted. ARCA Technology
Corporation assumes no liability, provides no warranty either expressed or implied relating to
the usage, or intellectual property right infringement except as provided for by the ARCA
Technology Corporation Terms and Conditions of Sale.

ARCA Technology Corporation products are not designed for and should not be used in any
medical or life sustaining or supporting equipment.

All information in this document should be treated as preliminary. ARCA Technology
Corporation may make changes to this document without notice. Anyone relying on this
documentation should contact ARCA Technology Corporation for the current documentation
and errata.

ARCA Technology Corporation

5th Floor, Jade Palace Building,
76 Zhichun Rd, Haidian,
Beijing, P. R. China
Tel: 86-10-62638192
Fax:86-10-62638348
Http: www.arca.com.cn

zhangjin
Arca1 ISA

zhangjin
Merged Louis modified version (at V2-r1 on Sep-2002), and remove MUL

 Table of Contents

 Table of Contents

1 OVERVIEW... 1

1.1 INTRODUCTION .. 1
1.2 ARCA REGISTERS ... 2
1.3 ARCA EXCEPTIONS... 2
1.4 ARCA CORE CONFIGURATION ... 2
1.5 ARCA INSTRUCTIONS ... 3

2 PROGRAMMING MODEL ... 4
2.1 DATA TYPES AND ORGANIZATION ... 4

2.1.1 Data Organization In Register .. 4
2.1.2 Data Organization in Memory .. 4

2.2 PROCESSOR MODES ... 6
2.3 REGISTERS ... 7

2.3.1 General Purpose Registers.. 7
2.3.2 Program Counter (PC).. 8
2.3.3 Control Registers .. 8

2.4 EXCEPTIONS... 10
2.4.1 Exception Types .. 10
2.4.2 Exception Priorities .. 10
2.4.3 Exception Vectors.. 11
2.4.4 Base address for Exception Vector Table ... 11

3 INSTRUCTION SET... 12
3.1 INSTRUCTION FORMAT... 12

3.1.1 Operator field.. 12
3.1.2 Operand field .. 12
3.1.3 Instructions and format summary.. 14

3.2 INSTRUCTION DESCRIPTION ... 15
3.2.1 Immediate load instruction.. 15
3.2.2 Jump Instructions .. 17
3.2.3 Branch Instructions ... 20
3.2.4 Arithmetic Instructions.. 26

3.3 COMPARISON INSTRUCTIONS ... 31
3.3.1 Bitwise Instructions... 34
3.3.2 Shift Instructions ... 38
3.3.3 Load and Store Instructions .. 41
3.3.4 Miscellaneous Instructions.. 63
3.3.5 System Control Instructions .. 69

3.4 INSTRUCTION ENCODING ... 82
4 APPLICATION BINARY INTERFACE... 12

4.1 REGISTER USAGE CONVENTIONS ... 12
4.2 STACK LAYOUT ... 13
4.3 FRAME LAYOUT... 14
4.4 TYPE MAPPING .. 15

4.4.1 Scalar Types .. 15
4.4.2 Aggregate Types.. 15

4.5 BIT-FIELDS... 16
4.6 RETURN VALUES (FUNCTION RESULTS) .. 17
4.7 ARGUMENT PASSING AND MAPPING .. 18

 ARCA Technology Corporation i

Table of Contents

5 ASSEMBLER MACROS AND OPERATORS ... 93

LIST OF FIGURES .. 24

LIST OF TABLES .. 35

 ARCA Technology Corporation ii

 Overview

1 Overview

1.1 Introduction
Arca is a new RISC architecture designed from scratch to address the application requirements
and challenges for next generation embedded and information appliance markets. The
instruction set was designed to allow a very small with very low power consumption, yet high-
performance implementation.

As a RISC architecture, Arca incorporates the typical RISC architecture features:

A large uniform register file. •

•

•

•

A load and store architecture, where data processing only operate on register contents, not

directly on memory contents.

Simple address mode, with all load/store addressing being determined from register

contents and instruction field only.

Uniform and fix-length instruction field, to simplify instruction decoding.

Table 1-1 lists the key features of this architecture.

Table 1-1 Arca Features

Feature Description
Architecture 32-bit load/store RISC architecture
General Register 32 x 32-bits general purpose register file
Control Registers 5 control registers and 1 PC register provided
Instruction Set 32-bit length
Address Space 4 Gbytes address space available
Exception There are 6 types: reset; illegal instruction; memory access fault; trap;

interrupt and debug

 ARCA Technology Corporation 1

Overview

1.2 Arca registers
Arca has a very simple register model. Only 37 registers including system control registers are
provided.

z General purpose registers: 32 in total, each 32 bits wide, no register banking
z Program Counter: 1, 32 bits wide
z Control registers: 5 in total, each 32 bits wide. Only accessible in supervisor mode

1.3 Arca exceptions

Arca has two processing modes: user mode and supervisor mode. The system resources that
can be accessed in user mode are restricted, while in supervisor mode, all the system
resources can be accessed. Only exception can make the processor switches from user mode
to supervisor mode. And only RTE (return from exception) instruction can make the processor
switches from supervisor mode to user mode.

Arca supports 6 types of exception:

Reset: includes power-on reset, manual reset and debug bootstrap •
•
•
•
•
•

Illegal Instruction
Memory Access Fault: includes Data Access Fault and Instruction Access Fault
Trap
Interrupt
Debug Break: includes instruction break, data break, software break and debug interrupt

When an exception occurs, Arca switches to supervisor mode. All the 32 general-purpose
registers and control registers and system resources can be accessed in supervisor mode.

When an exception occurs, the current processor state and PC are saved to the related control
registers. The processor halts execution of the current program flow and begins execution at the
address that store in one of a number of fixed addresses in memory, known as the exception
vectors. Each exception type was assigned to one exception vector.

1.4 Arca core configuration

Besides the Integer Unit which implements Arca instruction set, a typical Arca CPU Core
includes modules such as MMU (Memory Management Unit), data and instruction cache, debug
and performance monitoring module, etc. Arca provides a convenient and extensible way to
exchange values between these modules and GRF, and to expand module specific operations.

 ARCA Technology Corporation 2

 Overview

1.5 Arca instructions

The Arca instruction set can be divided into 9 classes of instruction:

1) Immediate-load instruction: load an immediate operand to a general purpose register.

2) Jump instruction: unconditional branch to the target address: PC-relative address or

absolute address, with recording a return link address in a general register.

3) Branch instruction: PC-relative conditional branch. The branch condition include: equal, not

equal, less than, greater than or equal, unsigned less than, unsigned greater than or equal.

4) Arithmetic instruction: include addition, subtraction, multiplication and comparison

arithmetic instruction.

5) Shift instruction: there are three kinds of shift operations: logical left, logical right and

arithmetical right, support immediate operand.

6) Bitwise instruction: performance bitwise operation that include: AND, ANDN, OR, and

XOR, support immediate operand except ANDN.

7) Load and store instruction: transfer data between the memory system and the general

purpose registers in the CPU. There are separate instructions for different purposes:
transferring various sized fields, treating loaded data as signed or unsigned integers.

8) Miscellaneous instruction: include conditional move instructions, count sign bits

instructions and swap the register contents with memory contents instruction.

9) System control instruction: these instructions are used for system management such as

read/write control register, return from exception handler and etc.

 ARCA Technology Corporation 3

Programming Model

2 Programming Model

This section describes the organization of data in registers and in memory, the available user
mode and supervisor mode registers and the exception model.

2.1 Data Types and Organization

Table 2-1 lists Arca supported data types and operations performed on these types.

Table 2-1 Data Type and Operation

Data Type Supported Operations Note
8-bits integer, signed Load, Store Byte
8-bits integer, unsigned Load, Store

16-bits integer, signed Load, Store Halfword 16-bits integer, unsigned Load, Store
Must be aligned to
two-byte boundaries

Word 32-bits integer Load, Store, Arithmetic Must be aligned to
four-byte boundaries

All data types are standard 2’s complement representation. Only load/store instructions operate
on 8-bits and 16-bits data type, automatically zero-extending or sign-extending as they are
loaded. All the other instructions operate on all the 32 bits of the data.

2.1.1 Data Organization In Register

Figure 2-1 summarizes the data organization in registers. Register bit 0 contains the least
significant bit of the data, while register bit 31,15 and 7 contains the most significant bit for 32
bits, 16 bits and 8bits data respectively.

31 8 7 0

31 8 7 0

31 16 15 0

31 16 15 0

31 0

32-bit data

unsigned 16 bits16-bit dataZeros

16-bit dataSign extension of bit 15

8-bit dataZeros

8-bit dataSign extension of bit 7

32 bits

unsigned 8 bits

signed 16 bits

signed 8 bits

Figure 2-1 Data Organization in Register

2.1.2 Data Organization in Memory

Data organized in memory is either in big-endian format or in little-endian format:

 ARCA Technology Corporation 4

 Programming Model

When Arca is configured as big-endian memory: •

•

− byte 0 or halfword 0 at a word-aligned address is the most significant byte or halfword
within the word at that address.

− byte 0 at a halfword-aligned address is the most significant byte within the halfword at
that address.

When Arca is configured as little-endian memory:
− byte 0 or halfword 0 at a word-aligned address is the least significant byte or halfword

within the word at that address..
− byte 0 at a halfword-aligned address is the least significant byte within the halfword at

that address..

Figure 2-2 and Figure 2-3 describes the data organization in big-endian and little-endian
memory system. For a word-aligned address A, the figures show how the word at address A,
the halfword at address A and A+2, and the byte at address A, A+1, A+2 and A+3 map on to
each other for each endianness.

 31 24 23 16 15 8 7 0

Byte at address A Byte at address A+1 Byte at address A+2

Halfword at address A

Word at address A

Halfword at address A+2

Byte at address A+3

Figure 2-2 Big-endian Memory System

 31 24 23 16 15 8 7 0

Byte at address AByte at address A+1Byte at address A+2

Halfword at address A

Word at address A

Halfword at address A+2

Byte at address A+3

Figure 2-3 Little-endian Memory System

Note: it is IMPLEMENTATION DEFINED whether an Arca implementation supports little-endian

memory system, big-endian memory system, or both.

If an Arca implementation is configured for a memory system of one endianness but is actually
attached to a memory system of the opposite endianness, only word-sized instruction fetches,
data loads and data stores can be relied upon. Other memory accesses have unpredictable
result.

 ARCA Technology Corporation 5

Programming Model

2.2 Processor Modes

The Arca architecture supports two processor modes:

User mode •
• Supervisor mode

Mode changes can be made under software control, or can be caused by external interrupts or
exception processing.

Most application programs execute in user mode. While the processor is in user mode, the
program being executed is unable to access some protected system resources or to change
mode, other than by causing an exception to occur. This allows a suitably written operation
system to control the use of system resources.

When the processor is in supervisor mode, the programs have full access to system resources
and can change mode freely. And the system control instructions can only be executed in
supervisor mode.

 ARCA Technology Corporation 6

 Programming Model

2.3 Registers

Arca has the following registers:

32 general purpose registers •
•
•

5 control registers (SR, ESR, DSR, EPC, DPC)
1 PC (Program Counter)

In supervisor mode, all the registers can be accessed, while in user mode, only a subset of the
registers can be accessed, as shown in Figure 2-4.

R0
R1
R2
•
•
•
•
•
•
•
•
•

R30
R31

PC

User mode registers

R0
R1
R2
•

Figure 2-4

2.3.1 General Purpose Registers

Arca provides 32 general purpose registe
address information.

In these registers, R0 is always reading a
make any register operand take a zero va
constant. R0 can also be used as the des

 ARCA Techno
•
•
•
•
•
•
•
•

R30
R31

PC

SR

ESR
DSR
EPC
DPC

Supervisor mode registers

 Arca Registers

rs (R0~R31) which contain instruction operands and

s 0 and writing to it is ignored. This can be used to
lue. It is very useful for zero is a particularly common
tination register to discard the result of an instruction.

logy Corporation 7

Programming Model

2.3.2 Program Counter (PC)

PC contains the address of the instruction in execution. PC is updated automatically when
instruction execution. When an exception occurred, PC is replaced with a new value that points
to the exception handler.

PC is invisible to software. However, the instruction of J could be used to trace the value of PC.

2.3.3 Control Registers

Arca provides 5 control registers for tasks like processor control. All of these registers are only
visible in supervisor mode (SR.SM=1). Two instructions RCR and WCR are used for
exchanging data between control registers and general purpose registers.

RCR and WCR are supervisor instructions, executing these two instructions in user mode will
cause an illegal instruction exception.

Table 2-2 lists the initial value of these registers after power on reset.

Table 2-2 Control Registers Initial Value After Power On Reset

Register Power Reset
R1~R31 0

SR H’00000008
ESR Undefined
EPC Undefined
DSR Undefined
DPC Undefined

2.3.3.1 SR: Status Register

This is the main control register of Arca. It contains the current processor mode, interrupt enable
bit, and other status and control information. The value of this register will be saved to DSR
when debug exception or debug bootstrap occurs, or saved to ESR when other exception
occurs.

Bit: 31 7 6 5 4 3 2 1 0
Read:
Write:

VB SM DS DE IE

Reset: 0 0 0 0 1 0 0 0

Bits 31~7 reserved, these bits are always read as 0 and written are ignored.

− IE (Interrupt Enable): When it is cleared, interrupt is disabled.

− DE (Debug Enable): When it is cleared, no debug exceptions are to be accepted. It doesn’t

influence Debug bootstrap.

− DS (Debug State): 1 indicates an debug exception or debug bootstrap occurs, 0 indicates a

non-debug exception occurs. RTE restore PC/SR register from DPC/DSR when DS is 1,
and from EPC/ESR when this bit is 0.

 ARCA Technology Corporation 8

 Programming Model

− SM (Supervisor Mode): 1 for Supervisor mode, 0 for User mode. Write to this bit by WCR
instruction is ignored. Program can use RTE to switch from supervise mode to user mode
by first clear corresponding bit in ESR or DSR register.

− VB (Vector Base): form bit 28~26 of the starting address of Vector Table (the highest 3 bits

are 100, pointing to P1 area).

2.3.3.2 EPC: Saved PC for Non-Debug Exception

EPC is used for saving the current PC when a non-debug exception and non-debug bootstrap
occurs.

2.3.3.3 ESR: Saved SR for Non-Debug Exception

ESR is used for saving the current SR when a non-debug exception and non-debug bootstrap
occurs.

2.3.3.4 DPC: Saved PC for Debug Exception

DPC is used for saving the current PC when a debug exception or debug bootstrap occurs.

2.3.3.5 DSR: Saved SR for Debug Exception

DSR is used for saving the current SR when a debug exception or debug bootstrap occurs.

 ARCA Technology Corporation 9

Programming Model

2.4 Exceptions

Exceptional events such as TLB miss, Interrupt and etc. may arise during normal execution of
the current program flow. When Arca CPU verifies an exception request, it halts the normal
execution temporarily, preserves the current processor status and program counter and then
switches to the exception routine. After the exception is serviced, Arca CPU restores the normal
execution.

2.4.1 Exception Types

Arca processor can handle exceptions such as RESET, DFAULT, ILLINS, TRAP, IFAULT, INT and
debug-related types as IBRK, DBRK, SBRK and DBOOT.
• RESET: Reset exception was caused by power-on reset, manual reset or debug bootstrap

(DBOOT). Power-on reset, manual reset can be induced by an external input pin or
watchdog time-out. DBOOT is induced by debug module.

• Memory Access Fault: Memory access fault exception occurs when a memory access
issued from CPU couldn’t be satisfied because of events TLB miss, address error and etc.
Memory access fault exceptions include data access fault (DFAULT) and instruction fetch
fault (IFAULT).

• ILLINS: Illegal instruction exception, caused by executing a reserved instruction or executing
a privileged instruction in user mode.

• TRAP: Trap exception was caused by a trap instruction.
• Debug Break: Debug break exception includes IBRK, DBRK and SBRK. IBRK is caused by

instruction breakpoint match or debug interrupt. DBRK is caused by data breakpoint match.
SBRK is caused by SBRK instruction when SR.DE = 1.

• INT: Interrupt exception.

2.4.2 Exception Priorities

When two or more exceptions occur simultaneously, the highest-priority one will be accepted.
The exception priorities among those exception types are fixed as illustrated by the table below:

 Table 2-3 Arca Exception Priorities

Exception
 Types Exception Events

Exception
 Priorities

Debug Bootstrap 0 (highest)
RESET

Power-on/Manual Reset 1
DFAULT Data Access Fault 2

DBRK Debug Data Breakpoint 3

ILLINS Reserved Instruction or Privilege Violation 4

TRAP/SBRK TRAP or SBRK Instruction 5

IBRK Debug Instruction Breakpoint 6

IFAULT Instruction Fetch Fault 7

INT Interrupt 8 (lowest)

 ARCA Technology Corporation 10

 Programming Model

2.4.3 Exception Vectors
By providing an 8-entry vector table with each exception type corresponding to one vector entry,
Arca processor can switch to the top exception routine conveniently and efficiently. The top
exception routine may consult the exception cause register to further determine the specific
exception service.

Table 2-4 Arca Exception Vector Table

Vector Number Vector Offset Exception Type
0 H’00 RESET, DBOOT

1 H’04 ILLINS

2 H’08 IBRK, DBRK, SBRK

3 H’0c Reserved

4 H’10 INT

5 H’14 TRAP

6 H’18 DFAULT, IFAULT

7 H’1c Reserved

Since the processing for DFAULT and IFAULT is similar, only one vector entry is assigned for
them.

2.4.4 Base address for Exception Vector Table

When Arca is in debugging and the debugger is set to host mode by host machine, exception
vector table base is fixed at H’EC000000. In addition, vector table base for DBOOT exception is
always at H’EC000000.

For other cases, exception vector table is placed on the boundary of 64M memory page of P1
area, which is decided by SR.VB bits (refer to Status Register description).

Base address = {3B’100, SR.VB, 26B’0}

Since SR.VB is initialized to 3B’000, so the base address for power-on reset without DBOOT is
always H’80000000.

 ARCA Technology Corporation 11

Instruction Set

3 Instruction set

Arca architecture has 78 instructions, and they are divided into 6 types of major instruction
format. This section specifies the instruction set architecture, includes instruction format,
detailed description of each instruction, and instruction encoding.

3.1 Instruction Format

 31 26 25 21 20 16 15 10 9 5 4 0

Format 1 OP1 R R OP2 R R

Format 2 OP1 R R OP2 --- R

Format 3 OP1 R R OP2 0 I5

Format 4 OP1 R R/I5 OP2 I10

Format 5 OP1 R R I16

Format 6 OP1 R I21

Figure 3-1 Instruction Format

There are 6 major format types as show in Figure 3-1. The instruction format was composed
through operator fields and operand fields.

3.1.1 Operator field
Operator is defined as major operator OP1 and minor operator OP2. Bits [31:26] of a
instruction defines OP1 and bits [15:10] of a instruction defines OP2. Every instruction has it
major OP field and most of them also have a minor OP field. Some instructions have no minor
OP field, its major OP field uniquely specify its operation. In this case, minor OP is generally
taken as part of an operand.

3.1.2 Operand field
There are two kinds of operands, register operand and immediate number operand. For register
operand, the instruction encode a 5 bits register number; for immediate operand, there are 4
kinds of immediate number according to the encoding length.

R: there are 4 register field in the instruction encoding, bits [25..21], bits [20..16], bits [9..5]
and bits [4..0]. These fields contains the register numbers which index into GRF.

•

•

•

•

I5: 5 bits length immediate number, encoded in bits[4..0] and bits[20..16]. Some instructions
interpret the 5 bits immediate number as a signed number, denoted as S5, while some
instructions interpret the 5 bits immediate number as an unsigned number, denoted as U5;

I10: 10 bits length immediate number, encoded in bits[9..0]. Some instructions interpret the
10 bits immediate number as a signed number, denoted as S10, while some instructions
interpret the 10 bits immediate number as an unsigned number, denoted as U10.

I16: 16 bits length immediate number, encoded in bits[15..0]. Only logical instructions use
this field and it is interpreted as signed number in this case, denoted as S16.

 ARCA Technology Corporation 12

 Instruction Set

I21: 21 bits length immediate number, encoded in bits[20..0]. Some instructions interpret the
21 bits immediate number as a signed number, denoted as S21, while some instructions
interpret the 21 bits immediate number as an unsigned number, denoted as U21.

•

The formats of some system control instructions don’t strictly follow the above conventions. For
example, RTE/SLEEP/SBRK have no operand; ITLB/DTLB/ICACHE/DCACHE instructions take
bits[25..21] as an immediate operands.

 ARCA Technology Corporation 13

Instruction Set

3.1.3 Instructions and format summary
Table 3-1 gives a summary of all Arca instructions. OP1 and OP2 are merged to a instruction
mnemonic such as ADD. Operands follow the notation described in the above section.

Table 3-1 Arca instructions and format

Class Instruction format Class Instruction format
Imm Load LHI R, U21

Jump J R, S21
JA R, R, U10

Branch

BEQ R, R, S10
BNE R, R, S10

BLT R, R, S10
BGE R, R, S10
BLTU R, R, S10
BGEU R, R, S10

BEQI R, S5, S10
BNEI R, S5, S10
BLTI R, S5, S10
BGEI R, S5, S10

BEQIU R, S5, S10
BNEIU R, S5, S10
BLTIU R, S5, S10
BGEIU R, S5, S10

Arithmetic

MULU R, R, R,
 R
ADD R, R, R
SUB R, R, R
ADDI R, R, S10

Load
Store

LD8 R, R, S10
LR8 R, R, R
LD8U R, R, S10
LR8U R, R, R

LD16 R, R, S10
LR16 R, R, R
LX16 R, R, R

LD16U R, R, S10
LR16U R, R, R
LX16U R, R, R

LD32 R, R, S10
LR32 R, R, R
LX32 R, R, R

SD8 R, R, S10
SR8 R, R, R
SD16 R, R, S10
SR16 R, R, R
SX16 R, R, R

SD32 R, R, S10
SR32 R, R, R
SX32 R, R, R

Compare

SEQ R, R, R
SNE R, R, R
SLT R, R, R
SGE R, R, R
SLTU R, R, R
SGEU R, R, R

Misc

MVZ R, R, R
MVNZ R, R, R
CSB R, R
BREV R, R
SWAP R, R, S10

Logical

AND R, R, R
OR R, R, R
XOR R, R, R
ANDN R, R, R
ANDI R, R, S16
ORI R, R, S16
XORI R, R, S16

Shift

SLL R, R, R
SLR R, R, R
SAR R, R, R
SLLI R, R, U5
SLRI R, R, U5
SARI R, R, U5

System

SLEEP
SBRK
RTE
TRAP R, U10
RCR R, U5
WCR R, U5

CLD R, U5, U10
CST R, U5, U10
ITLB U5, R
DTLB U5, R
Icache U5, R, S10
Dcache U5, R, S10

 ARCA Technology Corporation 14

 Instruction Set

3.2 Instruction Description

3.2.1 Immediate load instruction

Immediate operands are very common in typical programs. Many instructions encode the
immediate operand as one source operand to allow a range of constant values to be operated
directly. But if the required constant value does not fit the range, then the immediate operand
must be loaded separately. Some instructions do not admit an immediate operand, and the
immediate operand also must be loaded into register before the operation.

Only one instruction LHI is provided for loading a large immediate operand, because loading the
little one can be implemented by ORI instruction. ORI permit a 16-bit immediate operand as its
source operand, or the immediate with register R0 to the destination register, just means
loading the 16-bit immediate to the destination:

OORRII RRaa,, RR00,, 112288 !! llooaadd 1166 bbiittss iimmmmeeddiiaattee ttoo RRaa

If the immediate has 32 bits, LHI is used to load the high 21 bits of the immediate to the
destination register, and other bits can be loaded by ORI instruction:

 LLHHII RRaa,, 11000000 !! llooaadd hhiigghh 2211 bbiittss ttoo RRaa
 OORRII RRaa,, RRaa,, 112266 !! llooaadd llooww 1111 bbiittss ttoo RRaa

R0 is used to denote a register that always reads as zero and ignores writes. This can be used
to make any register operand take a zero value. It is very useful for zero is a particularly
common constant. R0 can also be used as the destination register to discard the result of an
instruction.

 ARCA Technology Corporation 15

Instruction Set

LHI

Op: 001001 Ra U21

Syntax:
LHI Ra, U21

Operation:

Ra = U21 << 11

Description:

Load the 21 bits unsigned immediate into the high 21 bits of register Ra. The low 11 bits
of Ra are filled with Zero.

Example:

LLHHII RR11,, 00xx112233445566

Before execution: R1= 0xffffffff
After execution: R1= 0x91a2b000

 ARCA Technology Corporation 16

 Instruction Set

3.2.2 Jump Instructions

There are two jump instructions J and JA provided. J jumps to PC relative to its immediate
operand as the target address, allows a jump forwards or backwards up to 4MB. And JA
absolutely jumps to the target address generated by adding the contents held in the source
register operand with the immediately constant operand, then provides a way to jump anywhere
in the 4GB address space.

Both of them save the following instruction address to their destination register, this is a link
mechanism, since it allows the target instruction sequence to return control back to the
instruction sequence that invoked it. It is typically used to implement standard call and return
mechanisms. The choice of link register is not fixed by the 32-bit instruction set.

The write to the destination register can be defeated using R0:

JJ RR00,, 00xx112233 !! jjuummpp ttoo PPCC ++ 44 ++ 00xx112233 wwiitthhoouutt lliinnkk
JJAA RR00,, RRaa,, 00 !! jjuummpp ttoo RRaa wwiitthhoouutt lliinnkk

These can be used to achieve an unconditional branch and a return without a link.

 ARCA Technology Corporation 17

Instruction Set

J

Op: 000101 Ra S21

Syntax:
J Ra, S21

Operation:

Ra = PC + 4
temp = PC + 4 + (S21 << 2)
PC = temp

Description:

PC is the address of the jump instruction. The address of the instruction following it is
saved in register Ra. The immediate S21 is left shifted two bits, sign extended to 32 bits
then added to the address of the instruction following it, and the result is set to PC.

Example:

1):
JJ RR11,, 00xx11223344

Before execution: PC= 0x00001234, R1= 0xffffffff
After execution: PC= 0x00005b08, R1= 0x00001238

2):

JJ RR11,, 00xx11ffeeddcccc

Before execution: PC= 0x00008a90, R1= 0xffffffff
After execution: PC= 0x000041c4, R1= 0x00008a94

 ARCA Technology Corporation 18

 Instruction Set

JA

Op: 000000 Ra Rb Ext: 000010 U10

Syntax:
JA Ra, Rb, U10

Operation:

temp = PC + 4
PC = Rb | (U10 << 2)
Ra = temp

Description:

PC is the address of the jump instruction. The address of the instruction following it is
saved in register Ra. The immediate U10 is left shifted two bits, unsigned extended to 32
bits then or to the address held in Rb, and the result is set to PC.

Example:

JJAA RR00,, RR11,, 00xxff00

Before execution: PC= 0x00001000, R1= 0x00056ac8
After execution: PC= 0x00056af8, R1= 0x00056ac8

 ARCA Technology Corporation 19

Instruction Set

3.2.3 Branch Instructions

Branch instructions perform the operation of two operands and decide whether to replace PC
according to the result. If the result is true, PC will be assigned by the target address that is
computed with their immediate operand, else the control flow just falls through to the following
instruction. They are classify to two classes were present at the following.

3.2.3.1 Reg-Reg-Compare-Branch instructions

This class Branch instructions perform the comparison of two source register operands and
decide whether to replace PC according to the comparison result. If the result is true, PC will be
assigned by the target address that is computed with their immediate operand, else the control
flow just falls through to the following instruction

There are six instructions BEQ, BNE, BLT, BGE, BLTU and BGEU in this instruction class that
has the same instruction formats. They perform different comparisons separately: equal, not
equal, less than, greater than or equal, unsigned less than, unsigned greater than or equal.
Other kinds of comparison can be implemented by swapping the two source register operands.

 greater than: i > j is same as j < i
 less than or equal: i <= j is same as j >= i

 ARCA Technology Corporation 20

 Instruction Set

BEQ BNE BLT BGE BLTU BGEU
BEQ:

Op: 000110 Ra Rb Ext: 000110 S10
BNE:

Op: 000110 Ra Rb Ext: 000010 S10
BLT:

Op: 000110 Ra Rb Ext: 000100 S10
BLTU:

Op: 000110 Ra Rb Ext: 001100 S10
BGE:

Op: 000110 Ra Rb Ext: 000000 S10
BGEU:

Op: 000110 Ra Rb Ext: 001000 S10

Syntax:
BEQ Rb, Ra, S10
BNE Rb, Ra, S10
BLT Rb, Ra, S10
BLTU Rb, Ra, S10
BGE Rb, Ra, S10
BGEU Rb, Ra, S10

Operation:

target = PC + 4 + (S10 << 2)
following = PC + 4
If (Rb op Ra) {

PC = target
}
else {

PC = following
}

Description:

PC is the address of this branch instruction. The immediate S10 is left shifted by 2, sign
extended to 32 bits and added the address of the instruction following it, and the result is
the target address of the branch. If registers Ra and Rb satisfy the compare condition,
the new PC is the address of the branch target, else the new PC is the address of the
following instruction.

 ARCA Technology Corporation 21

Instruction Set

Example:

1):
BBEEQQ RR11,, RR22,, 00xx4400

Before execution: PC= 0x00001234, R1= 0x0000a213, R2= 0x0000a213
After execution: PC= 0x00001338, R1= 0x0000a213, R2= 0x0000a213

2):

BBEEQQ RR11,, RR22,, 00xx4400

Before execution: PC= 0x00001234, R1= 0xffff458b, R2= 0x0000a213
After execution: PC= 0x00001238, R1= 0xffff458b, R2= 0x0000a213

3):

BBLLTT RR11,, RR22,, 00xx8800

Before execution: PC= 0x00001234, R1= 0x0000a213, R2= 0xffff45b80
After execution: PC= 0x00001238, R1= 0x0000a213, R2= 0xffff45b8

4):

BBLLTTUU RR11,, RR22,, 00xx8800

Before execution: PC= 0x00001234, R1= 0x0000a213, R2= 0xffff45b80
After execution: PC= 0x00001438, R1= 0x0000a213, R2= 0xffff45b80

 ARCA Technology Corporation 22

 Instruction Set

3.2.3.2 Reg-Imm-Compare-Branch instructions

This class Branch instructions perform the comparison of the register operand and the first
immediate operand, then decide whether to replace PC according to the comparison result. If
the result is true, PC will be assigned by the target address that is computed with the second
immediate operand, else the control flow just falls through to the following instruction.

There are such instructions as BEQI, BNEI, BEQUI, BNEUI, BLTI, BGEI, BLTUI, BGEUI in this
instruction class that has the same instruction formats. They perform different comparisons
separately: equal, not equal, less than, greater than or equal, unsigned less than, unsigned
greater than or equal. Other kinds of comparison can be implemented by decrease and
increase the first immediate operand by 1.

 greater than: i > imm is same as i >= imm + 1
 less than or equal: i <= imm is same as i < imm + 1

Note unsigned flag ‘U’ is meaningful for EQ/NQ comparison: when U=1, the unsigned number
{0 ~ 31} is compared with Rb; when U=0, signed number {-16, 15} is compared.

 ARCA Technology Corporation 23

Instruction Set

BEQI BNEI BEQUI BNEUI BLTI BGEI
BLTUI BGEUI

BEQI:
Op: 000100 S5 Rb Ext: 000110 S10

BNEI:
Op: 000100 S5 Rb Ext: 000010 S10

BEQUI:
Op: 000100 U5 Rb Ext: 001110 S10

BNEUI:
Op: 000100 U5 Rb Ext: 001010 S10

BLTI:
Op: 000100 S5 Rb Ext: 000100 S10

BLTUI:
Op: 000100 U5 Rb Ext: 001100 S10

BGEI:
Op: 000100 S5 Rb Ext: 000000 S10

BGEUI:
Op: 000100 U5 Rb Ext: 001000 S10

Syntax:
BEQI Rb, S5, S10
BNEI Rb, S5, S10
BEQUI Rb, U5, S10
BNEUI Rb, U5, S10
BLTI Rb, S5, S10
BLTUI Rb, U5, S10
BGEI Rb, S5, S10
BGEUI Rb, U5, S10

Operation:

If (U == 1)
imm = U5;

else
imm = S5

target = PC + 4 + (S10 << 2)
following = PC + 4
If (Rb op imm) {

PC = target
}
else {

PC = following
}

Description:

 ARCA Technology Corporation 24

 Instruction Set

PC is the address of this branch instruction. The immediate S10 is left shifted by 2, sign
extended to 32 bits and added the address of following instruction, and the result is the
target address of the branch. If Rb and Imm satisfy the compare condition, the new PC is
the address of the branch target, else the new PC is the address of the following
instruction.

Example:

1):
BBEEQQII RR11,, 00xx33,, 00xx4400

Before execution: PC= 0x00001234, R1= 0x00000003
After execution: PC= 0x00001338, R1= 0x00000003

2):

BBEEQQII RR11,, 00xx11,, 00xx4400

Before execution: PC= 0x00001234, R1= 0x00000003
After execution: PC= 0x00001238, R1= 0x00000003

3):

BBLLTTII RR11,, --11,, 00xx8800

Before execution: PC= 0x00001234, R1= 0x00000003
After execution: PC= 0x00001238, R1= 0x00000003

4):

BBLLTTUUII RR11,, 3311,, 00xx8800

Before execution: PC= 0x00001234, R1= 0x00000003
After execution: PC= 0x00001438, R1= 0x00000003

 ARCA Technology Corporation 25

Instruction Set

3.2.4 Arithmetic Instructions

Arithmetic operation addition, subtraction and multiplication are supported in arithmetic
instructions. Division, remainder and other arithmetic operations should be implemented by
software.

Instruction ADD performs an addition of two register operands, and ADDI admit an immediate
operand as its source operand.

Only one instruction SUB is supported for subtraction between two registers, because subtract
an immediate operand can be achieved by adding the negation of this immediate. If R0 is used
as the minuend, SUB can achieve the register negation:

 SSUUBB RRaa,, RR00,, RRbb !! nneeggaattiioonn ooff RRbb iinnttoo RRaa

Instruction MULU is provided for unsigned 32-bit to 64-bit multiplication. It is 4-register-operand
instruction, accomplishing multiplication in one or more cycles with the 64-bit result putting to
two destination registers.

 ARCA Technology Corporation 26

zhangjin
and MUL is the signed one. They are … instructions

 Instruction Set

ADD

Op: 000010 Rc Rb Ext: 000000 Don’t care Ra

Syntax:
ADD Ra, Rb, Rc

Operation:

Ra = Rb + Rc

Description:

Register Rc is added to register Rb, and store the result in the destination register Ra.

Example:

AADDDD RR33,, RR11,, RR22

Before execution: R1= 0x0000a213, R2= 0xff451bc0, R3= 0xffffffff
After execution: R1= 0x0000a213, R2= 0xff451bc0, R3= 0xff45bdd3

 ARCA Technology Corporation 27

Instruction Set

ADDI

Op: 000000 Ra Rb Ext: 000000 S10

Syntax:
ADDI Ra, Rb, S10

Operation:

Ra = Rb + SignExtend (S10)

Description:

Immediate S10 is sign-extended and added to register Rb, the result is written into
register Ra.

Example:

1):
AADDDDII RR33,, RR11,, 00xx3344

Before execution: R1= 0x0000a213, R3= 0xffffffff
After execution: R1= 0x0000a213, R3= 0x0000a247

2):

AADDDDII RR33,, RR11,, 00xx333344

Before execution: R1= 0x0000a213, R3= 0xffffffff
After execution: R1= 0x0000a213, R3= 0x0000a147

 ARCA Technology Corporation 28

 Instruction Set

SUB

Op: 000010 Rc Rb Ext: 100000 Don’t care Ra

Syntax:
SUB Ra, Rb, Rc

Operation:

Ra = Rb – Rc

Description:

Register Rc is subtracted from register Rb, and store the result in the destination register
Ra.

Example:

1):
SSUUBB RR33,, RR11,, RR22

Before execution: R1= 0x0000a213, R2= 0xff451bc0, R3= 0xffffffff
After execution: R1= 0x0000a213, R2= 0xff451bc0, R3= 0x00bb8653

2):

SSUUBB RR11,, RR00,, RR22 !! nneeggaattiioonn ooff RR22 iinnttoo RR11

Before execution: R1= 0x0000a213, R2= 0xff451bc0
After execution: R1= 0x000bae440, R2= 0xff451bc0

 ARCA Technology Corporation 29

Instruction Set

MULU

Op: 000010 Rc Rb Ext: 010001 Rh Ra

Syntax:
MULU Rh, Ra, Rb, Rc

Operation:

Rh:Ra = (Unsigned)Rb * (Unsigned)Rc

Description:

Multiply the two 32-bit unsigned data in register Rb and Rc, and put the 64-bit result into
Rh:Ra. Especially, if R0 acts as Rh, the higher 32-bit result will be discarded, the lower
32-bit result is put to Ra.

Example:

1):
MMUULLUU RR33,, RR44,, RR11,, RR22

Before execution: R1= 0x0000a213, R2= 0xff451bc0,

R3= 0x00000000, R4= 0x00000000
After execution: R1= 0x0000a213, R2= 0xff451bc0,

R3= 0x0000a19c, R4= 0xadb08f40

 ARCA Technology Corporation 30

 Instruction Set

3.3 Comparison Instructions

Comparison instructions perform the comparison of their two source register operands, and
store the comparison result to the destination register. Here the comparison result is a boolean
value: 1 indicates the condition of comparison is satisfied, and 0 means the condition is not
satisfied.

There are six instructions SEQ, SNE, SLT, SGE, SLTU and SGEU in this instruction class that
has the same instruction formats. They perform different comparisons separately: equal, not
equal, less than, greater than or equal, unsigned less than, unsigned greater than or equal.
Other kinds of comparison can be implemented by swapping the two source register operands.

 greater than: i > j is same as j < i
 less than or equal: i <= j is same as j >= i

Immediate comparison is not supported, so the immediate operand must be loaded into register
separately. But for the comparison with zero, R0 can be used as one source register operand
and only one single comparison instruction is needed.

 ARCA Technology Corporation 31

Instruction Set

SEQ SNE SLT SGE SLTU SGEU
SEQ:

Op: 000010 Rc Rb Ext: 010110 Don’t care Ra
SNE:

Op: 000010 Rc Rb Ext: 010010 Don’t care Ra
SLT:

Op: 000010 Rc Rb Ext: 010100 Don’t care Ra
SLTU:

Op: 000010 Rc Rb Ext: 011100 Don’t care Ra
SGE:

Op: 000010 Rc Rb Ext: 010000 Don’t care Ra
SGEU:

Op: 000010 Rc Rb Ext: 011000 Don’t care Ra

Syntax:
SEQ Ra, Rb, Rc
SNE Ra, Rb, Rc
SLT Ra, Rb, Rc
SLTU Ra, Rb, Rc
SGE Ra, Rb, Rc
SGEU Ra, Rb, Rc

Operation:

If (Rb op Rc) {
Ra = 1

}
else {

Ra = 0
}

Description:

Register Rb is compared with Rc. 1 is written to register Ra if the compare condition is
satisfied. Otherwise 0 is written to register Ra.

 ARCA Technology Corporation 32

 Instruction Set

Example:

1):
SSEEQQ RR33,, RR11,, RR22

Before execution: R1= 0x0000a213, R2= 0x0000a213, R3= 0xffffffff
After execution: R1= 0x0000a213, R2= 0x0000a213, R3= 0x00000001

2):

SSNNEE RR33,, RR11,, RR22

Before execution: R1= 0xffff458b, R2= 0x00000000, R3= 0x0000a213
After execution: R1= 0xffff458b, R2= 0x00000000, R3= 0x00000001

3):

SSLLTT RR11,, RR33,, RR00
SSLLTTUU RR55,, RR66,, RR77

Before execution: R1= 0xffffffff, R3= 0xffff4a80,

R5= 0x00001234, R6= 0xffff45b8, R7= 0x00004000
After execution: R1= 0x00000001, R3= 0xffff4a80,

R5= 0x00000000, R6= 0xffff45b8, R7= 0x00004000

3.3.1

 ARCA Technology Corporation 33

Instruction Set

3.3.2 Bitwise Instructions

Bitwise instructions AND, OR, XOR, ANDN perform the bitwise operation and, or, exclusive-or,
and not with two register source operands. The corresponding instructions ANDI, ORI, XORI
have an immediate operand as one source operand, they are also supported because this kind
of bitwise operations often occur in the programs. Bitwise operation not is not provided directly,
but it can be achieved by using immediate –1 as one source operand of XORI instruction:

 XXOORRII RRaa,, RRbb,, --11 !! bbiittwwiissee nnoott ooff RRbb iinnttoo RRaa

Other bitwise instructions can be implemented by combining the above bitwise instructions.

To copy a register’s content to another register, OR instruction with R0 as its source operand
can be used:

 OORR RRaa,, RR00,, RRbb !! ccooppyy RRbb ttoo RRaa

Instruction ORI can perform a constant loading when uses R0 as its source operand.

 ARCA Technology Corporation 34

 Instruction Set

AND OR XOR ANDN
AND:

Op: 000010 Rc Rb Ext: 000001 Don’t care Ra
OR:

Op: 000010 Rc Rb Ext: 000010 Don’t care Ra
XOR:

Op: 000010 Rc Rb Ext: 000011 Don’t care Ra
ANDN:

Op: 000010 Rc Rb Ext: 100001 Don’t care Ra

Syntax:
AND Ra, Rb, Rc
OR Ra, Rb, Rc
XOR Ra, Rb, Rc
ANDN Ra, Rb, Rc

Operation:

Ra = Rb & Rc ! AND Ra, Rb, Rc
Ra = Rb | Rc ! OR Ra, Rb, Rc
Ra = Rb ^ Rc ! XOR Ra, Rb, Rc
Ra = Rb & ~Rc ! ANDN Ra, Rb, Rc

Description:

Register Rb is {AND, OR, XOR, AND NOT} with Register Rc, the result is written to the
destination register Ra.

 ARCA Technology Corporation 35

Instruction Set

Example:

1):
AANNDD RR33,, RR11,, RR22

Before execution: R1= 0x12345678, R2= 0xff451bc0, R3= 0xffffffff
After execution: R1= 0x12345678, R2= 0xff451bc0, R3= 0x12041240

2):

OORR RR33,, RR11,, RR22

Before execution: R1= 0x12345678, R2= 0xff451bc0, R3= 0xffffffff
After execution: R1= 0x12345678, R2= 0xff451bc0, R3= 0xff755ff8

3):

OORR RR11,, RR00,, RR22 !! ccooppyy RR22 ttoo RR11

Before execution: R1= 0x0000a213, R2= 0xff451bc0
After execution: R1= 0xff451bc0, R2= 0xff451bc0

4):

XXOORR RR33,, RR11,, RR22

Before execution: R1= 0x12345678, R2= 0xff451bc0, R3= 0xffffffff
After execution: R1= 0x12345678, R2= 0xff451bc0, R3= 0xed714db8

5):

AANNDDNN RR33,, RR11,, RR22

Before execution: R1= 0x12345678, R2= 0xff451bc0, R3= 0xffffffff
After execution: R1= 0x12345678, R2= 0xff451bc0, R3= 0x304438

 ARCA Technology Corporation 36

 Instruction Set

ANDI ORI XORI
ANDI:

Op: 001100 Ra Rb S16
ORI:

Op: 010100 Ra Rb S16
XORI:

Op: 011000 Ra Rb S16

Syntax:
ANDI Ra, Rb, S16
ORI Ra, Rb, S16
XORI Ra, Rb, S16

Operation:

Ra = Rb & SignExtend (S16) ! ANDI Ra, Rb, S16
Ra = Rb | SignExtend (S16) ! ORI Ra, Rb, S16
Ra = Rb ^ SignExtend (S16) ! XORI Ra, Rb, S16

Description:

Immediate S16 is sign-extended and then {AND, OR, XOR} with register Rb, the result is
written to the destination register Ra.

Example:

1):
AANNDDII RR11,, RR22,, 00xxff33

Before execution: R1= 0x12345678, R2= 0xff451bc0
After execution: R1= 0x000000c0, R2= 0x ff451bc0

2):

OORRII RR11,, RR22,, 00xxff44

Before execution: R1= 0x12345678, R2= 0xff451bc0
After execution: R1= 0xff451bf4, R2= 0xff451bc0

3):

OORRII RR33,, RR00,, 00xxff223344 !! llooaadd iimmmmeeddiiaattee ttoo RR33

Before execution: R3= 0xffffffff
After execution: R3= 0xfffff234

4):

XXOORRII RR11,, RR22,, 00xxffff66aa

Before execution: R1= 0x12345678, R2= 0xff451bc0
After execution: R1= 0x12345678, R2= 0x00bae4aa

 ARCA Technology Corporation 37

Instruction Set

3.3.3 Shift Instructions

There are three types of shift operations: logical left, logical right and arithmetical right.
Arithmetical left operation is not necessary because it does the same operation with logical left
shift. The instruction set supports these three operations directly:

SLL/SLLI: perform logical left shift operation, shift the source operand left and insert zero
bits to the least significant bits.

•

•

•

SLR/SLRI: perform logical right shift operation, shift the source operand right and insert
zero bits to the most significant bits.

SAR/SARI: perform arithmetic right shift operation, shift the source operand right and insert
sign bits to the most significant bits, so that the sign of the destination is the same as the
source.

For SLLI/SLRI/SARI, the shift amount is specified by the immediate operand. And for
SLL/SLR/SAR, the shift amount is specified by another source register.

Because the shifted operand is a register, it only has 32 bits, the shift amount should be less
than or equal to this number, and the negative shift amount is meaningless. For this reason, the
immediate operand is a 5 bits unsigned number to specify the shift amount in instructions
SLLI/SLRI/SARI. And only the low 5 bits of shift amount register operand are recognized in
instructions SLL/SLR/SAR. The high 27 bits are simply ignored.

 ARCA Technology Corporation 38

 Instruction Set

SLL SLR SAR
SLL:

Op: 000010 Rc Rb Ext: 000100 Don’t care Ra
SLR:

Op: 000010 Rc Rb Ext: 001000 Don’t care Ra
SAR:

Op: 000010 Rc Rb Ext: 001100 Don’t care Ra

Syntax:
SLL Ra, Rb, Rc
SLR Ra, Rb, Rc
SAR Ra, Rb, Rc

Operation:

Ra = Rb << (Rc & 0x1F) ! SLL Ra, Rb, Rc
Ra = Rb >> (Rc & 0x1F) (logical) ! SLR Ra, Rb, Rc
Ra = Rb >> (Rc & 0x1F) (arithmetical) ! SAR Ra, Rb, Rc

Description:

Register Rb is shifted {logical left, logical right, arithmetical right} by register Rc (the value
of 0-4 bits), the result is stored in the destination register Ra.

Example:

1):
SSLLLL RR33,, RR11,, RR22

Before execution: R1= 0x12345678, R2= 0x00000004, R3= 0xffffffff
After execution: R1= 0x12345678, R2= 0x00000004, R3= 0x23456780

2):

SSLLRR RR33,, RR11,, RR22

Before execution: R1= 0x87654321, R2= 0x00000008, R3= 0xffffffff
After execution: R1= 0x87654321, R2= 0x00000008, R3= 0x00876543

3):

SSAARR RR33,, RR11,, RR22

Before execution: R1= 0x87654321, R2= 0x00000008, R3= 0xffffffff
After execution: R1= 0x87654321, R2= 0x00000008, R3= 0xff876543

 ARCA Technology Corporation 39

Instruction Set

SLLI SLRI SARI
SLLI:

Op: 000000 Ra Rb Ext: 000100 0 U5
SLRI:

Op: 000000 Ra Rb Ext: 001000 0 U5
SARI:

Op: 000000 Ra Rb Ext: 001100 0 U5

Syntax
SLLI Ra, Rb, U5
SLRI Ra, Rb, U5
SARI Ra, Rb, U5

Operation:

Ra = Rb << U5 ! SLLI Ra, Rb, U5
Ra = Rb >> U5 (logical) ! SLRI Ra, Rb, U5
Ra = Rb >> U5 (arithmetical) ! SARI Ra, Rb, U5

Description:

Register Rb is shifted {logical left, logical right, arithmetical right} by unsigned immediate
U5, the result is stored in the destination register Ra.

Example:

1):
SSLLLLII RR33,, RR11,, 55

Before execution: R1= 0x12345678, R3= 0xffffffff
After execution: R1= 0x12345678, R3= 0x468acf00

2):

SSLLRRII RR33,, RR11,, 88

Before execution: R1= 0x87654321, R3= 0xffffffff
After execution: R1= 0x87654321, R3= 0x00876543

3):

SSAARRII RR33,, RR11,, 77

Before execution: R1= 0x87654321, R3= 0x00000000
After execution: R1= 0x87654321, R3= 0xff0eca86

 ARCA Technology Corporation 40

 Instruction Set

3.3.4 Load and Store Instructions

Load and store instructions transfer data between register and memory. This class of instruction
has 21 instructions.

Table 3-2 lists all the load and store instructions with three address modes:

R + R: the effective address is formed by adding two source registers. This register offsets
are useful for accessing arrays or blocks of data.

•

•

•

R + R << (1, 2): The effective address is formed by adding one register with the value of
another register shifting by 1 or 2. This register offsets are useful for accessing arrays.

R + Imm: the effective address is formed by adding one source register with a 16 bits
signed value. This immediate offset addressing is useful for accessing data elements that
are a fixed distance from the start of the data object, such as structure fields, stack offsets
and input/output registers.

Table 3-2 Load and Store Instructions

 Address Mode Signed
Byte

Unsigned
Byte

Signed
Halfword

Unsigned
Halfword Word

R+R LR8 LR8U LR16 LR16U LR32
R+(R << (1,2)) LX16 LX16U LX32 Load

R+Imm LD8 LD8U LD16 LD16U LD32
R+R SR8 SR16 SR32

R+(R << (1,2)) SX16 SX32 Store
R+Imm SD8 SD16 SD32

For loading a byte or a halfword from memory, we need to distinguish the signe of the value to
perform the correct extension into the destination register. When the loaded value is a signed
value, the value is loaded from the effective address and sign extended to the destination
register. And when the loaded value is an unsigned value, the value is loaded from the effective
address and zero extended to the destination register.

Word and halfword addresses must be aligned on word (two LSBs are 0) and halfword (LSB is
0) boundaries, respectively.

 ARCA Technology Corporation 41

Instruction Set

LR8

Op: 001010 Rc Rb Ext: 000110 Don’t care Ra

Syntax:
LR8 Ra, Rb, Rc

Operation:

Ra = SignExtend (Mem [Rb + Rc])

Description:

Load a byte from the effective address formed by adding registers Rb and Rc. The byte is
sign-extended into the destination register Ra.

Example:

1):
LLRR88 RR33,, RR11,, RR22

Before execution: R1= 0x20005678, R2= 0x00000010, R3= 0xffffffff
 Mem[20005688]= 0x78
After execution: R1= 0x20005678, R2= 0x00000010, R3= 0x00000078

2):

LLRR88 RR33,, RR11,, RR22

Before execution: R1= 0x20005679, R2= 0x00000010, R3= 0xffffffff
 Mem[20005689]= 0x87
After execution: R1= 0x20005679, R2= 0x00000010, R3= 0xffffff87

 ARCA Technology Corporation 42

 Instruction Set

LR8U

Op: 001010 Rc Rb Ext: 001110 Don’t care Ra

Syntax:
LR8U Ra, Rb, Rc

Operation:

Ra = ZeroExtend (Mem [Rb + Rc])

Description:

Load a byte from the effective address formed by adding registers Rb and Rc. The byte is
zero-extended into the destination register Ra.

Example:

1):
LLRR88UU RR33,, RR11,, RR22

Before execution: R1= 0x20005678, R2= 0x00000010, R3= 0xffffffff
 Mem[20005688]= 0x78
After execution: R1= 0x20005678, R2= 0x00000010, R3= 0x00000078

2):

LLRR88UU RR33,, RR11,, RR22

Before execution: R1= 0x20005679, R2= 0x00000010, R3= 0xffffffff
 Mem[20005689]= 0x87
After execution: R1= 0x20005679, R2= 0x00000010, R3= 0x00000087

 ARCA Technology Corporation 43

Instruction Set

LR16

Op: 001010 Rc Rb Ext: 000010 Don’t care Ra

Syntax:
LR16 Ra, Rb, Rc

Operation:

Ra = SignExtend (Mem [Rb + Rc])

Description:

Load a halfword from the effective address formed by adding registers Rb and Rc. The
halfword is sign-extended into the destination register Ra.

Example:

1):
LLRR1166 RR33,, RR11,, RR22

Before execution: R1= 0x2000567a, R2= 0x00000010, R3= 0xffffffff
 Mem[2000568a]= 0xabcd
After execution: R1= 0x2000567a, R2= 0x00000010, R3= 0xffffabcd

2):

LLRR1166 RR33,, RR11,, RR22

Before execution: R1= 0x2000567c, R2= 0x00000010, R3= 0xffffffff
 Mem[2000568c]= 0x1234
After execution: R1= 0x2000567c, R2= 0x00000010, R3= 0x00001234

 ARCA Technology Corporation 44

 Instruction Set

LR16U

Op: 001010 Rc Rb Ext: 001010 Don’t care Ra

Syntax:
LR16U Ra, Rb, Rc

Operation:

Ra = ZeroExtend (Mem [Rb + Rc])

Description:

Load a halfword from the effective address formed by adding registers Rb and Rc. The
halfword is zero-extended into the result register Ra.

Example:

1):
LLRR1166UU RR33,, RR11,, RR22

Before execution: R1= 0x2000567a, R2= 0x00000010, R3= 0xffffffff
 Mem[2000568a]= 0xabcd
After execution: R1= 0x2000567a, R2= 0x00000010, R3= 0x0000abcd

2):

LLRR1166UU RR33,, RR11,, RR22

Before execution: R1= 0x2000567c, R2= 0x00000010, R3= 0xffffffff
 Mem[2000568c]= 0x1234
After execution: R1= 0x2000567c, R2= 0x00000010, R3= 0x00001234

 ARCA Technology Corporation 45

Instruction Set

LR32

Op: 001010 Rc Rb Ext: 000000 Don’t care Ra

Syntax:
LR32 Ra, Rb, Rc

Operation:

Ra = Mem [Rb + Rc]

Description:

Load a word from the effective address formed by adding registers Rb and Rc, and store
the word into the destination register Ra.

Example:

LLRR88 RR33,, RR11,, RR22

Before execution: R1= 0x20005678, R2= 0x00000010, R3= 0xffffffff
 Mem[20005688]= 0x7887abcd
After execution: R1= 0x20005678, R2= 0x00000010, R3= 0x7887abcd

 ARCA Technology Corporation 46

 Instruction Set

LX16

Op: 001010 Rc Rb Ext: 010010 Don’t care Ra

Syntax:
LX16 Ra, Rb, Rc

Operation:

Ra = SignExtend (Mem [Rb + (Rc << 1)])

Description:

Load a halfword from the effective address formed by adding registers Rb and the value
of register Rc shifting by 1. The halfword is sign-extended into the destination register Ra.

Example:

1):
LLXX1166 RR33,, RR11,, RR22

Before execution: R1= 0x2000567a, R2= 0x00000008, R3= 0xffffffff
 Mem[2000568a]= 0xabcd
After execution: R1= 0x2000567a, R2= 0x00000008, R3= 0xffffabcd

2):

LLXX1166 RR33,, RR11,, RR22

Before execution: R1= 0x2000567c, R2= 0x00000008, R3= 0xffffffff
 Mem[2000568c]= 0x1234
After execution: R1= 0x2000567c, R2= 0x00000008, R3= 0x00001234

 ARCA Technology Corporation 47

Instruction Set

LX16U

Op: 001010 Rc Rb Ext: 011010 Don’t care Ra

Syntax:
LX16U Ra, Rb, Rc

Operation:

Ra = ZeroExtend (Mem [Rb + (Rc << 1)])

Description:

Load a halfword from the effective address formed by adding registers Rb and the value
of Rc shifting by 1. The halfword is zero-extended into the result register Ra.

Example:

1):
LLXX1166UU RR33,, RR11,, RR22

Before execution: R1= 0x2000567a, R2= 0x00000008, R3= 0xffffffff
 Mem[2000568a]= 0xabcd
After execution: R1= 0x2000567a, R2= 0x00000008, R3= 0x0000abcd

2):

LLXX1166UU RR33,, RR11,, RR22

Before execution: R1= 0x2000567c, R2= 0x00000008, R3= 0xffffffff
 Mem[2000568c]= 0x1234
After execution: R1= 0x2000567c, R2= 0x00000008, R3= 0x00001234

 ARCA Technology Corporation 48

 Instruction Set

LX32

Op: 001010 Rc Rb Ext: 010000 Don’t care Ra

Syntax:
LX32 Ra, Rb, Rc

Operation:

Ra = Mem [Rb + (Rc << 2)]

Description:

Load a word from the effective address formed by adding registers Rb and the value of
Rc shifting by 2, and store the word into the destination register Ra.

Example:

LLXX3322 RR33,, RR11,, RR22

Before execution: R1= 0x20005678, R2= 0x00000004, R3= 0xffffffff
 Mem[20005688]= 0x7887abcd
After execution: R1= 0x20005678, R2= 0x00000004, R3= 0x7887abcd

 ARCA Technology Corporation 49

Instruction Set

LD8

Op: 001000 Ra Rb Ext: 000110 S10

Syntax:
LD8 Ra, Rb, S10

Operation:

Ra = SignExtend (Mem [Rb + SignExtend (S10)])

Description:

Load a byte from the effective address formed by adding register Rb to the 10-bit signed
immediate S10. The byte is sign-extended into the register Ra.

Example:

1):
LLDD88 RR33,, RR11,, 00xx33ff00

Before execution: R1= 0x20005698, R3= 0xffffffff
 Mem[20005688]= 0x78
After execution: R1= 0x20005698, R3= 0x00000078

2):

LLDD88 RR33,, RR11,, 00xx33ff00

Before execution: R1= 0x20005699, R3= 0x00000000
 Mem[20005689]= 0x87
After execution: R1= 0x20005698, R3= 0xffffff87

 ARCA Technology Corporation 50

 Instruction Set

LD8U

Op: 001000 Ra Rb Ext: 001110 S10

Syntax:
LD8U Ra, Rb, S10

Operation:

Ra = ZeroExtend (Mem [Rb + SignExtend (S10)])

Description:

Load a byte from the effective address formed by adding register Rb to the 10-bit signed
immediate S10. The byte is zero-extended into the register Ra.

Example:

1):
LLDD88UU RR33,, RR11,, 00xx33ff00

Before execution: R1= 0x20005698, R3= 0xffffffff
 Mem[20005688]= 0x78
After execution: R1= 0x20005698, R3= 0x00000078

2):

LLDD88UU RR33,, RR11,, 00xx33ff00

Before execution: R1= 0x20005699, R3= 0x00000000
 Mem[20005689]= 0x87
After execution: R1= 0x20005699, R3= 0x00000087

 ARCA Technology Corporation 51

Instruction Set

LD16

Op: 001000 Ra Rb Ext: 000010 S10

Syntax:
LD16 Ra, Rb, S10

Operation:

Ra = SignExtend (Mem [Rb + SignExtend (S10 << 1)])

Description:

Load a halfword from the effective address formed by adding register Rb to the 10-bit
signed immediate S10 after shifting it left by 1. The halfword is sign-extended into the
destination register Ra.

Example:

1):
LLDD1166 RR33,, RR11,, 00xx88

Before execution: R1= 0x2000567a, R3= 0xffffffff
 Mem[2000568a]= 0xabcd
After execution: R1= 0x2000567a, R3= 0xffffabcd

2):

LLDD1166 RR33,, RR11,, 00xx88

Before execution: R1= 0x2000567c, R3= 0xffffffff
 Mem[2000568c]= 0x1234
After execution: R1= 0x2000567c, R3= 0x00001234

 ARCA Technology Corporation 52

 Instruction Set

LD16U

Op: 001000 Ra Rb Ext: 001010 S10

Syntax:
LD16U Ra, Rb, S10

Operation:

Ra = ZeroExtend (Mem [Rb + SignExtend (S10 << 1)])

Description:

Load a halfword from the effective address formed by adding register Rb to the 10-bit
signed immediate S10 after shifting it left by 1. The halfword is zero-extended into the
destination register Ra.

Note:

The LSB of immediate S16 must be 1, else the result is unpredictable.

Example:

1):
LLDD1166UU RR33,, RR11,, 00xxffffee00

Before execution: R1= 0x200056aa, R3= 0xffffffff
 Mem[2000568a]= 0xabcd
After execution: R1= 0x200056aa, R3= 0x0000abcd

2):

LLDD1166UU RR33,, RR11,, 00xxffffee00

Before execution: R1= 0x200056ac, R2= 0x00000010, R3= 0xffffffff
 Mem[2000568c]= 0x1234
After execution: R1= 0x200056ac, R2= 0x00000010, R3= 0x00001234

 ARCA Technology Corporation 53

Instruction Set

LD32

Op: 001000 Ra Rb Ext: 000000 S10

Syntax:
LD32 Ra, Rb, S10

Operation:

Ra = Mem [Rb + SignExtend (S10 << 2)]

Description:

Load a word from the effective address formed by adding register Rb to the 10-bit signed
immediate S10 after shifting it by 2. Put the word into the destination register Ra.

Example:

LLDD3322 RR33,, RR11,, 00xx0044

Before execution: R1= 0x20005678, R3= 0xffffffff
 Mem[20005688]= 0x7887abcd
After execution: R1= 0x20005678, R3= 0x7887abcd

 ARCA Technology Corporation 54

 Instruction Set

SR8

Op: 001010 Rc Rb Ext: 000111 Don’t care Ra

Syntax:
SR8 Ra, Rb, Rc

Operation:

Mem [Rb + Rc] = Ra

Description:

Store a byte from register Ra to the effective address formed by adding registers Rb and
Rc.

Example:

SSRR88 RR33,, RR11,, RR22

Before execution: R1= 0x20005678, R2= 0x00000010, R3= 0x1234abcd
 Mem[20005688]= 0x78
After execution: R1= 0x20005678, R2= 0x00000010, R3= 0xffffffff
 Mem[20005688]= 0xcd

 ARCA Technology Corporation 55

Instruction Set

SR16

Op: 001010 Rc Rb Ext: 000011 Don’t care Ra

Syntax:
SR16 Ra, Rb, Rc

Operation:

Mem [Rb + Rc] = Ra

Description:

Store a halfword from register Ra to the effective address formed by adding registers Rb
and Rc.

Example:

SSRR1166 RR33,, RR11,, RR22

Before execution: R1= 0x20005678, R2= 0x00000010, R3= 0x1234abcd
 Mem[20005688]= 0x0000
After execution: R1= 0x20005678, R2= 0x00000010, R3= 0x1234abcd
 Mem[20005688]= 0xabcd

 ARCA Technology Corporation 56

 Instruction Set

SR32

Op: 001010 Rc Rb Ext: 000001 Don’t care Ra

Syntax:
SR32 Ra, Rb, Rc

Operation:

Mem [Rb + Rc] = Ra

Description:

Store a word from register Ra to the effective address formed by adding registers Rb and
Rc.

Example:

SSRR3322 RR33,, RR11,, RR22

Before execution: R1= 0x20005678, R2= 0x00000010, R3= 0x1234abcd
 Mem[20005688]= 0x0000ffff
After execution: R1= 0x20005678, R2= 0x00000010, R3= 0x1234abcd
 Mem[20005688]= 0x1234abcd

 ARCA Technology Corporation 57

Instruction Set

SX16

Op: 001010 Rc Rb Ext: 010011 Don’t care Ra

Syntax:
SX16 Ra, Rb, Rc

Operation:

Mem [Rb + (Rc << 1)] = Ra

Description:

Store a halfword from register Ra to the effective address formed by adding registers Rb
and the value of Rc shifting by 1.

Example:

SSXX1166 RR33,, RR11,, RR22

Before execution: R1= 0x20005678, R2= 0x00000008, R3= 0x1234abcd
 Mem[20005688]= 0x0000
After execution: R1= 0x20005678, R2= 0x00000008, R3= 0x1234abcd
 Mem[20005688]= 0xabcd

 ARCA Technology Corporation 58

 Instruction Set

SX32

Op: 001010 Rc Rb Ext: 010001 Don’t care Ra

Syntax:
SX32 Ra, Rb, Rc

Operation:

Mem [Rb + (Rc << 2)] = Ra

Description:

Store a word from register Ra to the effective address formed by adding registers Rb and
the value of Rc shifting by 2.

Example:

SSXX3322 RR33,, RR11,, RR22

Before execution: R1= 0x20005678, R2= 0x00000004, R3= 0x1234abcd
 Mem[20005688]= 0x0000ffff
After execution: R1= 0x20005678, R2= 0x00000004, R3= 0x1234abcd
 Mem[20005688]= 0x1234abcd

 ARCA Technology Corporation 59

Instruction Set

SD8

Op: 001000 Ra Rb Ext: 000111 S10

Syntax:
SD8 Ra, Rb, S10

Operation:

Mem [Rb + SignExtend (S10)] = Ra

Description:

Store a byte from register Ra to the effective address formed by adding register Rb to the
10 bits signed immediate S10.

Example:

SSDD88 RR33,, RR11,, 00xx33ff00

Before execution: R1= 0x20005698, R3= 0x1234abcd
 Mem[20005688]= 0x78
After execution: R1= 0x20005698, R3= 0x1234abcd
 Mem[20005688]= 0xcd

 ARCA Technology Corporation 60

 Instruction Set

SD16

Op: 001000 Ra Rb Ext: 000011 S10

Syntax:
SD16 Ra, Rb, S10

Operation:

Mem [Rb + SignExtend (S10 << 1)] = Ra

Description:

Store a halfword from register Ra to the effective address formed by adding register Rb
to the 10 bits signed immediate S10 after shifting it left by 1.

Example:

SSDD1166 RR33,, RR11,, 00xx33ee00

Before execution: R1= 0x200056a8, R3= 0x1234abcd
 Mem[20005688]= 0x0000
After execution: R1= 0x200056a8, R3= 0x1234abcd
 Mem[20005688]= 0xabcd

 ARCA Technology Corporation 61

Instruction Set

SD32

Op: 001000 Ra Rb Ext: 000001 S10

Syntax:
SD32 Ra, Rb, S10

Operation:

Mem [Rb + SignExtend (S10 << 2)] = Ra

Description:

Store a word from register Ra to the effective address formed by adding register Rb to
the 10 bits signed immediate S10 after shifting it left by 2.

Example:

SSDD3322 RR33,, RR11,, 00xx33ee00

Before execution: R1= 0x200056a8, R3= 0x1234abcd
 Mem[20005688]= 0x00000000
After execution: R1= 0x200056a8, R3= 0x1234abcd
 Mem[20005688]= 0x1234abcd

 ARCA Technology Corporation 62

 Instruction Set

3.3.5 Miscellaneous Instructions

This part includes conditional move instructions MVZ and MVNZ, count sign bits instruction
CSB, byte reverse instruction BREV and swap the register contents with memory contents
instruction SWAP.

Conditional move instruction MVZ copies the source register to the destination register if the
value of another source operand is zero, and MVNZ copies the source register to the
destination register if the value of another source operand is not zero. They are useful to
eliminate some branch instructions. For example, the following instruction sequence evaluate
the minimum of two registers:

 SSLLTT RRtt,, RRaa,, RRbb !! RRtt == RRaa << RRbb
 MMVVZZ RRaa,, RRtt,, RRbb !! RRaa == RRaa << RRbb?? RRaa :: RRbb

As the same reason, to evaluate the maximum of two registers, use:

 SSLLTT RRtt,, RRaa,, RRbb !! RRtt == RRaa << RRbb
 MMVVNNZZ RRaa,, RRtt,, RRbb !! RRaa == RRbb >> RRaa?? RRbb :: RRaa

 ARCA Technology Corporation 63

Instruction Set

MVZ

Op: 000010 Rc Rb Ext: 001001 Don’t care Ra

Syntax:
MVZ Ra, Rb, Rc

Operation:

If (Rb == 0) {
Ra = Rc

}
else {

Ra = Ra
}

Description:

Copy the content of register Rc to Ra if Rb is zero, otherwise leave Ra unchanged.

Example:

1):
MMVVZZ RR33,, RR22,, RR11

Before execution: R1= 0x2000567a, R2= 0x00000010, R3= 0xffffffff
After execution: R1= 0x2000567a, R2= 0x00000010, R3= 0xffffffff

2):

MMVVZZ RR33,, RR22,, RR11

Before execution: R1= 0x2000567c, R2= 0x00000000, R3= 0xffffffff
After execution: R1= 0x2000567c, R2= 0x00000000, R3= 0x2000567c

 ARCA Technology Corporation 64

 Instruction Set

MVNZ

Op: 000010 Rc Rb Ext: 001101 Don’t care Ra

Syntax:
MVNZ Ra, Rb, Rc

Operation:

If (Rb != 0) {
Ra = Rc

}
else {

Ra = Ra
}

Description:

Copy the content of register Rc to Ra if Rb is not zero, otherwise leave Ra unchanged.

Example:

1):
MMVVNNZZ RR33,, RR22,, RR11

Before execution: R1= 0x2000567a, R2= 0x00000010, R3= 0xffffffff
After execution: R1= 0x2000567a, R2= 0x00000010, R3= 0x2000567a

2):

MMVVNNZZ RR33,, RR22,, RR11

Before execution: R1= 0x2000567c, R2= 0x00000000, R3= 0xffffffff
After execution: R1= 0x2000567c, R2= 0x00000000, R3= 0xffffffff

 ARCA Technology Corporation 65

Instruction Set

CSB

Op: 000000 Ra Rb Ext: 010100 Don’t care

Syntax:
CSB Ra, Rb

Operation:

result=0; sign=Rb[31];
for (i = 30; i != 0; i--)
{if (Rb[i] !=sign) break; else result++;}
Ra = result;

Description:

Count the number of sign bits in Rb then minus 1, put the result (0 ~ 31) into Ra.

Example:

1):
CCSSBB RR33,, RR11

Before execution: R1= 0x2000567a, R3= 0x00000000
After execution: R1= 0x2000567a, R3= 0x00000001

2):

CCSSBB RR33,, RR00

Before execution: R3= 0x00000000
After execution: R3= 0x0000001f

3):

CCSSBB RR33,, RR11

Before execution: R1= 0x80000000, R3= 0xffffffff
After execution: R1= 0x80000000, R3= 0x00000000

 ARCA Technology Corporation 66

 Instruction Set

BREV

Op: 000000 Ra Rb Ext: 011000 Don’t care

Syntax:
BREV Ra, Rb

Operation:

tmp0 = Rb[7:0];
tmp1 = Rb[15:8];
tmp2 = Rb[23:16];
tmp3 = Rb[31:24];
Ra[7:0] = tmp3;
Ra[15:8] = tmp2;
Ra[23:16] = tmp1;
Ra[31:24] = tmp0;

Description:

Reverse the 4 bytes of Rb, put the result into Ra.

Example:

1):
BBRREEVV RR33,, RR11

Before execution: R1= 0x04030201, R3= 0x00000000
After execution: R1= 0x04030201, R3= 0x01020304

2):

BBRREEVV RR11,, RR11

Before execution: R1= 0x0a0b0c0d
After execution: R1= 0x0d0c0b0a

 ARCA Technology Corporation 67

Instruction Set

SWAP

Op: 001000 Ra Rb Ext: 001111 S10

Syntax:
SWAP Ra, Rb, S10

Operation:

tmp = ZeroExtend(Mem [Rb + SignExtend (S10 << 2)])
Mem [Rb + SignExtend (S10 << 2)] = Ra
Ra = tmp

Description:

Swap the 32-bits contents of register Ra with the 32-bits contents loading from the
effective address formed by adding register Rb to the 10 bits signed immediate S10 after
shifting it left by 2.

Example:

SSWWAAPP RR33,, RR11,, 11

Before execution: R1= 0x00001000, R3= 1
 Mem[00001004]= 0
After execution: R1= 0x00001000, R3= 0
 Mem[00001004]= 1

 ARCA Technology Corporation 68

 Instruction Set

3.3.6 System Control Instructions

This class includes 12 instructions: CLD, CST, RCR, WCR, TRAP, SBRK, RTE, SLEEP, ITLB,
DTLB, ICACHE and DCACHE. Some of them are privilege instructions.

CLD and CST are used to exchange data between module control register and general register.

RCR and WCR are used to move data between GPR (General Purpose Register) and CRs
(Control Registers include SR, ESR, DSR, EPC, DPC)

TRAP is a software interrupt instruction.

SBRK is a software debug interrupt instruction.

RTE are used to return from exception handlers.

SLEEP is used to put machine into sleep, standby or pause mode for power saving.

ITLB, DTLB, ICACHE and DCACHE: these instructions are used for special operations applied
on Arca embedded RAM.

Instructions RCR and WCR read and write the control registers of Arca, in their instruction
encoding the filed CR represents the index number of these control registers that lists in.

Control Register Index Number
SR 0

ESR 1
EPC 2
DSR 5
DPC 6

 ARCA Technology Corporation 69

Instruction Set

CLD

Op: 011001 Ra 00ID Ext: 001000 S10

Syntax:
CLD Ra, ID, S10

Operation:

Ra = Module_Control_Register (S10)

Description:

Put the content of the module control register into general register Ra. The module is
specified by ID and the control register number is specified by S10, which must be in the
range of 0 ~ 511.

Example:

CCLLDD RR11,, 00,, 00 !! RR11 == MMCCRR

 ARCA Technology Corporation 70

 Instruction Set

CST

Op: 011001 Ra 00ID Ext: 001001 S10

Syntax:
CST Ra, ID, S10

Operation:

Module_Control_Register = Ra

Description:

Put the content of general register Ra into the module control register. The module is
specified by ID and the control register number is specified by S10, which must be in the
range of 0 ~ 511.

Example:

CCSSTT RR11,, 00,, 00 !! MMCCRR == RR11

 ARCA Technology Corporation 71

Instruction Set

RCR

Op: 011001 Ra Don’t care Ext: 000100 Don’t care CR

Syntax:
RCR Ra, CR

Operation:

Ra = CR

Description:

Put the content of CPU control register CR into general register Ra. This is a privilege
instruction.

Example:

1):
RRCCRR RR11,, 00

Before execution: R1= 0x2000567a, SR= 0x00000008
After execution: R1= 0x00000008, SR= 0x00000008

2):

RRCCRR RR22,, 11

Before execution: R2= 0x0000567a, ESR= 0x0000000f
After execution: R2= 0x0000000f, ESR= 0x0000000f

 ARCA Technology Corporation 72

 Instruction Set

WCR

Op: 011001 Ra Don’t care Ext: 000101 Don’t care CR

Syntax:
WCR Ra, CR

Operation:

CR = Ra

Description:

Put the content of general register Ra into CPU control register CR. This is a privilege
instruction.

Example:

1):
WWCCRR RR11,, 00

Before execution: R1= 0x00000003, SR= 0x00000008
After execution: R1= 0x00000003, SR= 0x0000000b (write to SR.MD is ignored)

2):

WWCCRR RR22,, 22

Before execution: R2= 0x80000000, EPC= 0x00000000
After execution: R2= 0x80000000, EPC= 0x80000000

 ARCA Technology Corporation 73

Instruction Set

TRAP

Op: 011001 Ra Don’t care Ext: 000000 S10

Syntax:
TRAP Ra, S10

Operation:

Ra = S10
ESR = SR
EPC = PC + 4
SR.IE = 0
SR.DS = 0
SR.SM = 1
vector_addr = vector_table_base + H’14
PC = Mem[vector_addr]

Description:

TRAP instruction causes a software trap, CPU puts S10 immediate operand into Ra,
which can be the entry parameter of trap subroutine, then transfers the control to trap
handler whose address is stored in vector table. vector_table_base is formed according
to the rule described in 2.4.4. PC is the address of this TRAP.

 ARCA Technology Corporation 74

 Instruction Set

SBRK

Op: 011001 Don’t care Ext: 010011 Don’t care

Syntax:
SBRK

Operation:

if (SR.DE == 1)
{

DSR = SR
DPC = PC + 4
SR.DE = 0
SR.DS = 1
vector_addr = vector_table_base + H’08

}
else
{

ESR = SR
EPC = PC
SR.DS = 0
vector_addr = vector_table_base + H’04

}
SR.IE = 0
SR.SM = 1
PC = Mem[vector_addr]

Description:

When SR.DE = 1, SBRK instruction causes a debug exception. When SR.DE = 0, SBRK
is take as an illegal instruction which causes an illegal instruction exception.
vector_table_base is formed according to the rule described in 2.4.4. PC is the address
of this SBRK.

 ARCA Technology Corporation 75

Instruction Set

RTE

Op: 011001 Don’t care Ext: 000001 Don’t care

Syntax:
RTE

Operation:

if (SR.DS == 1)
{

SR = DSR
PC = DPC

}
else
{

SR = ESR
PC = EPC

}

Description:

Return from Exception Routine, i.e., restore Status Register (SR) and jump back to the
break point to continue execution of previous program flow. This is a privilege instruction.
This is the only way to change CPU from supervisor mode to user mode.

 ARCA Technology Corporation 76

 Instruction Set

SLEEP

Op: 011001 Don’t care Ext: 000011 Don’t care

Syntax:
SLEEP

Operation:

Set CPU to power down mode

Description:

SLEEP is used to put machine into sleep, standby or pause mode for power saving. This
is a privilege instruction.

If the machine is put into sleep or standby mode, it is waken up by an interrupt and
acknowledge this interrupt. If the machine is put into pause mode, after the pause time
expires the instruction following SLEEP is to be executed. In pause mode, interrupt is
ignored. Some implementation may not support SLEEP pause mode.

 ARCA Technology Corporation 77

Instruction Set

ITLB

Op: 000000 0CMD Rb Ext: 001101 Don’t care

Syntax:
ITLB CMD, Rb

Operation:

Send CMD and virtual address Rb to ITLB

Description:

Cause special operation on ITLB, the operation type is specified by CMD and the
operation object is specified by Rb. This is a privilege instruction.

 ARCA Technology Corporation 78

 Instruction Set

DTLB

Op: 000000 0CMD Rb Ext: 001001 Don’t care

Syntax:
DTLB CMD, Rb

Operation:

Send CMD and virtual address Rb to DTLB

Description:

Cause special operation on DTLB, the operation type is specified by CMD and the
operation object is specified by Rb. This is a privilege instruction.

 ARCA Technology Corporation 79

Instruction Set

ICACHE

Op: 000000 0CMD Rb Ext: 000101 S10

Syntax:
ICACHE CMD, Rb, S10

Operation:

Send CMD and virtual address Rb + (S10 << 2) to ICACHE

Description:

Cause special operation on ICACHE, the operation type is specified by CMD and the
operation object is specified by (Rb + (S10 << 2)). This is a privilege instruction for some
of CMD.

 ARCA Technology Corporation 80

 Instruction Set

DCACHE

Op: 000000 0CMD Rb Ext: 000001 S10

Syntax:
DCACHE CMD, Rb, S10

Operation:

Send CMD and virtual address Rb + (S10 << 2) to DCACHE

Description:

Cause special operation on DCACHE, the operation type is specified by CMD and the
operation object is specified by (Rb + (S10 << 2)). This is a privilege instruction for same
of the CMD.

 ARCA Technology Corporation 81

Instruction Set

3.4 Instruction Encoding

This section gives the instruction encoding. Table 3-3 presents the encoding map of major
opcode of Arca instruction set.

Table 3-3 Instructions Encoding Map

Op 000 001 010 011 100 101 110 111

000

ADDI, SLLI,
SLRI, SARI,
JA, BREV,
CSB, ITLB,

DTLB,
ICACHE,
DCACHE

ADD, SUB,
SLL, SLR,

SAR, MVZ,
MVNZ, AND,

OR, XOR,
ANDN, SCC,

MULU

 BCCI J BCC

001
Load/Store

Swap
(R+Imm)

LHI
Load/Store

 (R+R;
R+(R<<BN))

 ANDI

010 ORI

011 XORI

RTE, SLEEP,
TRAP, SBRK,

CLD, CST,
RCR, WCR

100
101
110
111

 ARCA Technology Corporation 82

zhangjin
, MUL

 Instruction Set

Table 3-4 lists the encoding for each instruction.

Table 3-4 Instructions Code

Classify Instruction OPcode EXTcode
LD8 001000 000110
LD8U 001000 001110
LD16 001000 000010
LD16U 001000 001010
LD32 001000 000000
SD8 001000 000111
SD16 001000 000011
SD32 001000 000001
LR8 001010 000110
LR8U 001010 001110
LR16 001010 000010
LR16U 001010 001010
LR32 001010 000000
LX16 001010 010010
LX16U 001010 011010
LX32 001010 010000
SR8 001010 000111
SR16 001010 000011
SR32 001010 000001
SX16 001010 010011

Load and store

SX32 001010 010001
SEQ 000010 010110
SNE 000010 010010
SLT 000010 010100
SLTU 000010 011100
SGE 000010 010000

Compare

SGEU 000010 011000
ADDI 000000 000000
ADD 000010 000000
SUB 000010 100000
MULU 000010 010001

Arithmetic

MUL 000010 110001
ANDI 001100
ORI 010100
XORI 011000
AND 000010 000001
OR 000010 000010
XOR 000010 000011

Bitwise

ANDN 000010 100001
SLLI 000000 000100
SLRI 000000 001000
SARI 000000 001100
SLL 000010 000100
SLR 000010 001000

Shift

SAR 000010 001100

 ARCA Technology Corporation 83

Instruction Set

Table 3-5 Instructions Code (continue)

Classify Instruction OPcode EXTcode
J 000101 Jump
JA 000000 000010
BEQ 000110 000110
BNE 000110 000010
BLT 000110 000100
BLTU 000110 001100
BGE 000110 000000
BGEU 000110 001000
BEQI 000100 000110
BNEI 000100 000010
BEQUI 000100 001110
BNEUI 000100 001010
BLTI 000100 000100
BLTUI 000100 001100
BGEI 000100 000000

Branch

BGEUI 000100 001000
Constant Load LHI 001001

MVZ 000010 001001
MVNZ 000010 001101
CSB 000000 010100
BREV 000000 011000

Miscellaneous

SWAP 001000 001111
CLD 011001 001000
CST 011001 001001
RCR 011001 000100
WCR 011001 000101
TRAP 011001 000000
SBRK 011001 010011
RTE 011001 000001
SLEEP 011001 000011
ITLB 000000 001101
DTLB 000000 001001
ICACHE 000000 000101

System control

DCACHE 000000 000001

 ARCA Technology Corporation 84

Instruction Set

4 Application Binary Interface

ABI(Application Binary Interface) is a set of rules to specify the conventions to use system
resources like registers and stack. Object codes developed conforming a same ABI can
interoperate with each other. This section presents a generic ABI convention developed by
ARCA Technology Corporation. Arca Linux is developed with this ABI.

4.1 Register Usage Conventions mount

Arca architecture provides 32 general purpose registers (GPR) for application programs, R0 ~
R31, each 32 bits wide. Their usage is given in Table 4-1. In the talbe:

Caller save register: A register is caller save if its value is not guaranteed to be preserved
across function calls. Such register is also called scratch since the caller will have to save
and restore the register around function calls.

•

•

•

Callee save register: A register is callee save if its value is guaranteed to be preserved
across function calls.

R19 is the reserve scratch register. In assembler, it is used to split on branch instruction to
more when the target address is too long. In the compiler, It used to a scratch register in
the basic blocks.

Table 4-1 Registers Usage

Register Name Usage
r0 Read as ZERO, write is ignored
r1 Stack pointer, SP, Callee save
r2 Return value, caller save
r2 ~ r7 Parameter passing, caller save
r8 ~ r15 Callee save
r16 Frame pointer, FP, callee save
r17 PIC register, callee save
r18 Linkage register, caller save
r19 Reserved for assembler handling long branch, used for linux

system call (trap insn)
r20 Static chain register, caller save, syscall number for linux

system calls
r20 ~ r21 Caller save
r22 ~ r27 Callee save
r28 ~ r31 Caller save (or reserved for linux)

 ARCA Technology Corporation 12

 Application Binary Interface

4.2 Stack Layout

Stack has the follow features:

Direction: the stack grows for high address to low address. •

•

•

Stack Top: the top of stack is always reference by SP (r1) register and is the address of the
last used word on the stack. That is to say, SP + 0 is a valid address.

Alignment: the stack pointer must be aligned to a 4 byte boundary on entry to a function.

Compilers use the stack by pushing and popping frame to represent the local data of a function,
usually referred to as a frame. Each called function creates and deletes its own frame.

The topmost frame is the frame of the currently executing function. The stack growth is shown
in Figure 4-1.

 Direction of stack growth

Current function frame

…

Func1 frame

Func0 frame

SP

Figure 4-1 Overview of Stack

 ARCA Technology Corporation 13

Instruction Set

4.3 Frame Layout

The frame layout is shown in Figure 4-2. In the frame:

PRSA (Parameter Register Save Area): This area is needed only when the called routine
needs a memory copy of its parameters, which are otherwise passed in registers, such as
variable length arguments.

•

•

•

•

•

RSA (Register Save Area): This area is used to save and restore the callee save registers
for this function.

LVA (Local Variable Area): This area is used for the local variable needing memory
location and for any compiler temporary. The objects in this area are accessed by positive
offsets from SP or FP.

DVA (Dynamic Variable Area): This area is used for any objects that are allocated by
extending the stack frame of current routine.

AA (Argument Area): The area contains the remaining elements of the argument list after
all the parameter registers have been used.

DVA:
Dynamic Variable Area-1

Direction of stack frowth

AA:
Argument Area-1 (for calls)

LVA:
Local Variable Area-1

RSA:
Register Save Area-1

PRSA:
Parameter Register Save Area-1

 Previous SP (4-byte aligned)

 4-byte aligned

 FP or SP (4-byte aligned)

4-byte aligned

 SP (4-byte aligned)

Figure 4-2 Frame Layout

An addition frame pointer register (FP) may be allocated for a frame that addresses the local
variable area of the stack frame. An FP is only required when a frame has a dynamic variable
area which is dynamically allocated since SP can no longer be used to address the local
variable area.

 ARCA Technology Corporation 14

 Application Binary Interface

4.4 Type Mapping

4.4.1 Scalar Types

The scalar types definition is as the following:

Table 4-2 Mapping of ANSI C Data Types

TYPES BYTE ALIGNMENT Size
Char
signed char
unsigned char

1
1 bytes
1 bytes
1 bytes

short int (signed)
unsigned Short int 2 2 bytes

2 bytes
int (signed)
unsigned int
enum

4
4 bytes
4 bytes
4 bytes

long int (signed)
unsigned long int 4 4 bytes

4 bytes
long long int (signed)
unsigned long long int 8 8 bytes

8 bytes
Float 4 4 bytes
Double
long double 8 8 bytes

8 bytes
Pointer 4 4 bytes

4.4.2 Aggregate Types

Array type: Array will have the alignment of the components. The size of an array is always
a multiple of the element alignment.

•

•

Structures and Unions: Structures and Unions have the alignment of the most strictly
aligned component, and to maintain the alignment of internal components, padding is
inserted by the compiler. The contents of any padding is undefined.

The size of a structure is always a multiple of its alignment and this may require tail padding.
The address of a structure or union is its lowest (smallest) address and the structure fields are
allocated in declarative order from lowest address to highest address.

 ARCA Technology Corporation 15

Instruction Set

4.5 Bit-fields

Bit-fields are associated with and underlying integral type (char, short, int, long or long long).
The associated type is the type used in the bit-field definition. Bit-fields obey the same size and
alignment rules as other structure members, with the following addtions:

A bit-filed never crosses a storage boundary whose alignment is same as the alignment of
the underlying type of the bit-field.

•

•

•

•

A bit-field shares a storage unit with the previous structure member if and only if the size of
the type of the previous member is same as that of the bit-filed and there is sufficient space
within the storage unit.

Bit-fields are allocated from right to left (least significant to most significant) on little-endian
implementations and from left to right (most signification to least signification) on big-endian
implementations.

The effect of a zero-length bit-field is to force the alignment of the next bit-field to the
alignment of the underlying type of the bit-field.

 ARCA Technology Corporation 16

 Application Binary Interface

4.6 Return Values (Function Results)

Following table shows how function values that are scale type are returned from called functions.

Table 4-3 Return Values

Return Values Type
char, signed char, unsigned char,
short int (signed), unigned short int,
int (signed), unsigned int, enum
long int (signed), unsigned long int

Return in general register R2

long long int (signed),
unsigned long long int

Return in general registers R2, R3
Big endian: R2 (high part), R3 (low part)
Little endian: R2 (low part), R3 (high part)

Float Return in general register R2
double, long double Return in general registers R2, R3

Big endian: R2 (high part), R3 (low part)
Little endian: R2 (low part), R3 (high part)

Pointer Return in general register R2

Function results of structure types are returned by address. The caller function passes the
address of the result destination as an implicit extra parameter in register R2. The called
function stores the result in this area and return the address of the area as its result in register
R2.

 ARCA Technology Corporation 17

Instruction Set

4.7 Argument Passing and Mapping

Passing Argument •

•

The Arca uses six general registers (r2-r7) to pass the first six words of arguments from the
caller to the called rountine. If additional argument space is required, the caller is
responsible for allocating this space on the stack.

− Scalar Arguments

Arguments are passed using register r2 through r7, with no more than one argument
assigned per register. Argument values that are smaller than a 32-bit register occupy a
full register. Small signed arguments are sign extended; small unsigned arguments are
zero extended.

Arguments larger than a register must be assigned to multiple argument registers as
long as there are argument registers available.

Once all the argument register are used, or if there are not enough register left to hold a
large argument, the argument was put on the stack. (first word in sp + 0, second word in
sp + 4, and so on)

− Structure Argument

Structure arguments that are smaller than 32 bits have their value right justified within
the argument register. The unused upper bits within the register are undefined.

Structure arguments that are larger than 32 bits are packed into consecutive registers.
When the size of structure parameter is not a multiple of 4 bytes, the value of the
padding is undefined. The padding depends on target endianness: for little-endian
targets the element is padded at the most significant end, for big-endian targets the
element is padded at the least significant end.

If there are not enough register left, the rest part of the structure will be put on the satck
(first word in sp + 0, second word in sp + 4, and so on).

Handling Of Variable-arguments Function By The Callee

When the call is to a function with a variable number of arguments, the caller will pass the
arguments in accordance with the rules outlined above. The called routine will allocate
space and copy the registers R2-R7 to its own stack space (PRSA). Because the function
cannot tell in advance how many of the machine registers may be in use, it must save all
the potential parameter registers to the stack.

The implementation of the variable argument manipulation macros will use the memory
copies of the parameters. The va_arg macro will address the parameters as an array
indexed by the implicit counter to va_arg. The va_start macro is implemented by initializing
the variable argument pointer with the address of the argument in the argument list that is
the first variant argument. This is the address of the first parameter available through
va_arg. Consequently, va_arg is implemented as returning the value at this pointer
followed by an increase to address the next parameter in the variable argument list.

va_arg must take into account padding inserted when the parameter is not an exact
multiple of 4 bytes in length. All arguments smaller than 4 bytes are padded at the most
significant end, and arguments larger than 4 bytes are padded in the last argument element.

 ARCA Technology Corporation 18

 Application Binary Interface

va_end serves no purpose except to make the variable argument unusable as a legal
pointer

 ARCA Technology Corporation 19

 Table of Contents

5 ASSEMBLER MACROS AND OPERATORS

To simplify assembly coding, this section defines some assembly language macro instructions
and operators. Macro instructions are synthesized version from machine instructions.
Operators are used to extract a specific number from a constant operand.

operator:

@h21 means: Get the high 21 bits of the 32-bit symbol or the integer value.
 Instruction: lhi
 Example: lhi R2, sym1@h21 (means: lhi R2, (sym1 >> 11))

 lhi R2, 0xFFFFF800@h21 (means: lhi R2, 0x1FFFFF)
 @l11 means: Get the lowe 11 bits of the 32-bit symbol or the integer value.
 Instructions: ori, andi, xori
 Example: ori R2, sym1@l11 (means: ori R2, (sym1 & 0x7ff))
 ori R2, 0xFFFFF9FF@l11 (means: ori R2, 0x1FF)

@eh21 means: Get the high 21 bits of the 32-bit symbol or the integer value by added
the 10th bit.

 Instruction: lhi
 Example: lhi R2, sym1@eh21

(means: lhi R2, ((sym1 + sym1 & 0x400) >> 11)
 lhi R2, 0xFFFFFC00@l11 (means: lhi R2, 0x0)

@o11 means: Get the low 11 bits of the 32-bit symbol or the integer value and then
logic right shifted by 2.

 Instructions: ld32, sd32, swap
 Example: ld32 R2, [R3, sym1@o11]

(means: ld32 R2, [R3, (sym1 & 0x7FF) >> 2]
 ld32 R2, [R3, 0xFFFFFC00@o11]

(means: ld32 R2, [R3, 0x100])

@ho11 means: Get the low 11 bits of the 32-bit symbol or the integer value and then
arith right shifted by 1.

 Instructions: ld16, sd16
 Example: ld16 R2, [R3, sym1@ho11]

(means: ld16 R2, [R3, ((int)sym1 << 21) >> 22]
 ld16 R2, [R3, 0xFFFFFC00@o11]

(means: ld16 R2, [R3, -512])

macro instructions:

mov Ra, Rb means: or Ra, Rb, R0
movi Ra, imm means: ori Ra, Rb, imm
mova Ra, sym means: lhi Ra, sym@h21
 ori Ra, Ra, sym@l11
movhi Ra, sym means: lhi Ra, sym@h21
movlo Ra, sym means: ori Ra, sym@l11
nop means: or R0, R0, R0

 ARCA Technology Corporation

mailto:sym1@h21
mailto:0xFFFFF800@h21
mailto:sym1@l11
mailto:0xFFFFF9FF@l11
mailto:sym1@eh21
mailto:0xFFFFFC00@l11
mailto:0xFFFFFC00@o11
mailto:0xFFFFFC00@o11
mailto:sym@h21
mailto:sym@l11
mailto:sym@h21
mailto:sym@l11

Application Binary Interface

 List of Figures

FIGURE 2-1 DATA ORGANIZATION IN REGISTER.. 4
FIGURE 2-2 BIG-ENDIAN MEMORY SYSTEM .. 5
FIGURE 2-3 LITTLE-ENDIAN MEMORY SYSTEM ... 5
FIGURE 2-4 ARCA REGISTERS.. 7
FIGURE 3-1 INSTRUCTION FORMAT.. 12
FIGURE 4-1 OVERVIEW OF STACK ... 13
FIGURE 4-2 FRAME LAYOUT.. 14

 ARCA Technology Corporation 2

 List of Figures

 List of Tables

TABLE 1-1 ARCA FEATURES.. 1
TABLE 2-1 DATA TYPE AND OPERATION ... 4
TABLE 2-2 CONTROL REGISTERS INITIAL VALUE AFTER POWER ON RESET ... 8
TABLE 2-3 ARCA EXCEPTION PRIORITIES .. 10
TABLE 2-4 ARCA EXCEPTION VECTOR TABLE... 11
TABLE 3-1 ARCA INSTRUCTIONS AND FORMAT .. 14
TABLE 3-2 LOAD AND STORE INSTRUCTIONS .. 41
TABLE 3-3 INSTRUCTIONS ENCODING MAP ... 82
TABLE 3-4 INSTRUCTIONS CODE ... 83
TABLE 3-5 INSTRUCTIONS CODE (CONTINUE).. 84
TABLE 4-1 REGISTERS USAGE ... 12
TABLE 4-2 MAPPING OF ANSI C DATA TYPES.. 15
TABLE 4-3 RETURN VALUES ... 17

 ARCA Technology Corporation 3

	Overview
	Introduction
	Arca registers
	Arca exceptions
	Arca core configuration
	Arca instructions

	Programming Model
	Data Types and Organization
	Data Organization In Register
	Data Organization in Memory

	Processor Modes
	Registers
	General Purpose Registers
	Program Counter (PC)
	Control Registers
	SR: Status Register
	EPC: Saved PC for Non-Debug Exception
	ESR: Saved SR for Non-Debug Exception
	DPC: Saved PC for Debug Exception
	DSR: Saved SR for Debug Exception

	Exceptions
	Exception Types
	Exception Priorities
	Exception Vectors
	Base address for Exception Vector Table

	Instruction set
	Instruction Format
	Operator field
	Operand field
	Instructions and format summary

	Instruction Description
	Immediate load instruction
	Jump Instructions
	Branch Instructions
	Reg-Reg-Compare-Branch instructions
	Reg-Imm-Compare-Branch instructions

	Arithmetic Instructions

	Comparison Instructions
	Bitwise Instructions
	Shift Instructions
	Load and Store Instructions
	Miscellaneous Instructions
	System Control Instructions

	Instruction Encoding

	Application Binary Interface
	Register Usage Conventions mount
	Stack Layout
	Frame Layout
	Type Mapping
	Scalar Types
	Aggregate Types

	Bit-fields
	Return Values (Function Results)
	Argument Passing and Mapping

	ASSEMBLER MACROS AND OPERATORS
	
	
	
	
	
	List of Figures
	List of Tables

