
 

Arca2 CPU Core 
 

Reference Manual 
 
 

Revision: 1.0 
 

Jan. 2003 
 

 
 
 

Arca Microprocessor Technical Documentation Suite 

方舟科技有限公司 
ARCA Technology Corporation 





Arca2 
CPU Core Reference Manual  
 
Copyright © ARCA Technology Corporation. 2003.  
 
Third party brands, logos and names are the property of those respective third parties. 
 
 
Release history 
 

Date Revision Change 
Feb 2003 V1.0  

 
 
 
Disclaimer 
 
This documentation is provided for use with ARCA Technology Corporation products. No 
license to ARCA Technology Corporation property rights is granted. ARCA Technology 
Corporation assumes no liability, provides no warranty either expressed or implied relating to 
the usage, or intellectual property right infringement except as provided for by the ARCA 
Technology Corporation Terms and Conditions of Sale. 
 
ARCA Technology Corporation products are not designed for and should not be used in any 
medical or life sustaining or supporting equipment. 
 
All information in this document should be treated as preliminary. ARCA Technology 
Corporation may make changes to this document without notice. Anyone relying on this 
documentation should contact ARCA Technology Corporation for the current documentation 
and errata. 
 
 
ARCA Technology Corporation  
 
5th Floor, Jade Palace Building,  
76 Zhichun Rd, Haidian,  
Beijing, P. R. China 
Tel: 86-10-62638192 
Fax:86-10-62638348 
Http: www.arca.com.cn 
 
 

 





  Table of Contents 

  
 ARCA Technology Corporation i

Table of Contents 
1 OVERVIEW .................................................................................................................................................................... 1 

1.1 INTRODUCTION..........................................................................................................................................................1 
1.2 BLOCK DIAGRAM......................................................................................................................................................2 
1.3 FEATURES...................................................................................................................................................................3 

2 ARCA2 CPU.................................................................................................................................................................... 4 

2.1 OVERVIEW..................................................................................................................................................................4 
2.2 PIPELINE FOR ONE-PASS AND MULTI-PASS INSTRUCTIONS ...............................................................................5 

2.2.1 MULU with high 32-bit result.............................................................................................................................. 5 
2.2.2 ITLB/ICACHE......................................................................................................................................................... 5 
2.2.3 SLEEP ...................................................................................................................................................................... 5 

2.3 HAZARD & FORWARDING........................................................................................................................................6 
2.3.1 Forwarding method............................................................................................................................................... 6 
2.3.2 Hazard...................................................................................................................................................................... 6 

2.4 CYCLES FOR ARCA2 INSTRUCTION EXECUTIONS AND STALLS...........................................................................9 

3 EXCEPTION MODEL ...............................................................................................................................................10 

3.1 OVERVIEW................................................................................................................................................................10 
3.2 EXCEPTION TYPES...................................................................................................................................................10 
3.3 EXCEPTION PRIORITIES..........................................................................................................................................12 
3.4 EXCEPTION VECTOR TABLE..................................................................................................................................13 
3.5 EXCEPTION CAUSE..................................................................................................................................................14 
3.6 CONTROL REGISTER...............................................................................................................................................15 

3.6.1 Status Register (SR) .............................................................................................................................................15 
3.6.2 Spot-saving Register............................................................................................................................................15 

3.7 EXCEPTION ACKNOWLEDGEMENT PROCESS .......................................................................................................16 
3.8 RETURN FROM EXCEPTION ROUTINE ...................................................................................................................16 

4 CORE CONFIGURATION ......................................................................................................................................17 

4.1 OVERVIEW................................................................................................................................................................17 
4.2 CONFIGURATION INSTRUCTIONS...........................................................................................................................18 

4.2.1 CLD/CST instruction...........................................................................................................................................18 
4.2.2 ITLB/DTLB/ICACHE/DCACHE instructions.................................................................................................19 
4.2.3 CMD in ITLB/DTLB/ICACHE/DCACHE ........................................................................................................19 

5 MEMORY MANAGE UNIT ....................................................................................................................................21 

5.1 OVERVIEW................................................................................................................................................................21 
5.1.1 Features.................................................................................................................................................................21 

5.2 REGISTER CONFIGURATION...................................................................................................................................22 
5.2.1 Register Descriptions..........................................................................................................................................23 

5.3 MEMORY SPACE......................................................................................................................................................26 
5.3.1 Direct Map Virtual Address Space...................................................................................................................26 
5.3.2 Virtual Address Space In Paging System.........................................................................................................28 

5.4 CONFIGURATION OF THE TLB...............................................................................................................................30 
5.5 ADDRESS TRANSLATION METHOD .......................................................................................................................32 
5.6 CONFIGURE OPERATION.........................................................................................................................................34 

5.6.1 MMU Function .....................................................................................................................................................34 
5.6.2 MMU Interface Format.......................................................................................................................................34 
5.6.3 Code Examples.....................................................................................................................................................35 

5.7 MMU EXCEPTION...................................................................................................................................................37 
5.7.1 Illegal configure exception.................................................................................................................................37 
5.7.2 Address Error .......................................................................................................................................................37 
5.7.3 TLB  Miss...............................................................................................................................................................38 
5.7.4 Initial Page Write.................................................................................................................................................38 



Table of Contents 

 
 ARCA Technology Corporation  ii 

6 CACHE...........................................................................................................................................................................39 

6.1 OVERVIEW................................................................................................................................................................39 
6.1.1 Cache Feature......................................................................................................................................................39 

6.2 REGISTER CONFIGURATION...................................................................................................................................40 
6.3 DATA CACHE AND WRITE BUFFER.......................................................................................................................41 

6.3.1 D-cache Structure................................................................................................................................................42 
6.3.2 Cacheable Access Operation.............................................................................................................................42 
6.3.3 Non-cacheable Access Operation.....................................................................................................................44 
6.3.4 Write Buffer ...........................................................................................................................................................44 

6.4 INSTRUCTION CACHE..............................................................................................................................................45 
6.4.1 Fetch Operation...................................................................................................................................................45 

6.5 PREFETCH OPERATION...........................................................................................................................................46 
6.6 SWAP OPERATION.................................................................................................................................................47 
6.7 ALIAS SOLUTION.....................................................................................................................................................48 
6.8 COHERENCY BETWEEN CACHE AND EXTERNAL  MEMORY.............................................................................49 
6.9 CACHE REPLACEMENT AND LOCK FUNCTION......................................................................................................50 
6.10 CACHE CONFIGURATION........................................................................................................................................51 

6.10.1 Operation List.....................................................................................................................................................51 
6.10.2 Code Examples...................................................................................................................................................53 

7 DEBUG AND JTAG ...................................................................................................................................................56 

7.1 OVERVIEW................................................................................................................................................................56 
7.1.1 Debug Features....................................................................................................................................................57 
7.1.2 Extended JTAG Feature......................................................................................................................................57 
7.1.3 Debugging Pattern...............................................................................................................................................57 
7.1.4 Debug & JTAG Solution Diagram....................................................................................................................58 

7.2 EXTENDED JTAG....................................................................................................................................................59 
7.2.1 Overview................................................................................................................................................................59 
7.2.2 Standard & Extended Private Instructions......................................................................................................60 
7.2.3 Extended Data Registers.....................................................................................................................................61 
7.2.4 Endian Adjustment...............................................................................................................................................62 
7.2.5 JTAG Memory Space...........................................................................................................................................62 
7.2.6 Miscellaneous Constraints .................................................................................................................................62 

7.3 DEBUG MODULE......................................................................................................................................................64 
7.4 DEBUG REGISTER CONFIGURATION .....................................................................................................................65 

7.4.1 Register Descriptions..........................................................................................................................................65 
7.5 DEBUG OPERATION.................................................................................................................................................70 

7.5.1 Overview................................................................................................................................................................70 
7.5.2 Fetch Breakpoint Operation...............................................................................................................................71 
7.5.3 Data Access Breakpoint Operation...................................................................................................................71 
7.5.4 Asynchronous Break/Boot Operation...............................................................................................................73 

7.6 DEBUG EXCEPTION OPERATION............................................................................................................................74 
7.6.1 Fetch Breakpoint Debug Exception..................................................................................................................75 
7.6.2 Data Access Breakpoint Debug Exception......................................................................................................75 
7.6.3 Software Breakpoint  Debug Exception...........................................................................................................76 
7.6.4 Asynchronous Break Debug Exception ............................................................................................................76 
7.6.5 Asynchronous Boot Debug Exception..............................................................................................................77 

7.7 EXAMPLE FOR APPLICATION.................................................................................................................................78 
7.7.1 Single step execution...........................................................................................................................................78 
7.7.2 Combinatorial Break Condition Capture ........................................................................................................79 
7.7.3 Data transfer between target and host .............................................................................................................80 
7.7.4 How To Access JTAG Memory Space ..............................................................................................................81 
7.7.5 How To Implement Burst Access from JTAG memory (burst read 8 words / burst write 4 words).......87 
7.7.6 How To Boot System From JTAG Memory .....................................................................................................87 

8 PERFORMANCE MONITOR.................................................................................................................................89 



  Table of Contents 

  
 ARCA Technology Corporation iii 

8.1 OVERVIEW................................................................................................................................................................89 
8.2 REGISTER CONFIGURATION...................................................................................................................................90 

8.2.1 Performance Monitor Control Register (PMC)..............................................................................................90 
8.2.2 Clock Cycle Time Register (CTR) .....................................................................................................................91 
8.2.3 Monitor Object Counter Register 0 (MOR0)...................................................................................................91 
8.2.4 Monitor Object Counter Register 1 (MOR1)...................................................................................................92 

8.3 MONITORING EVENT...............................................................................................................................................93 
8.4 MONITORING FLOW.................................................................................................................................................95 

LIST OF FIGURES.................................................................................................................. 96 

LIST OF TABLES.................................................................................................................... 97 

 





  Overview 

  
 ARCA Technology Corporation 1

1 Overview 
 

1.1 Introduction 
 
Arca2 CPU core is a high performance and low power microprocessor core which implements 
version 2 of Arca Instruction Set Architecture. Refer the document “Arca Instruction Set Architecture 
Reference Manual-V2”  for ISA details.  
 
The CPU core is not intended to be delivered as a stand alone product but as a building block 
for an application processor with embedded markets such as thin client, handheld devices, 
networking, storage, remote access servers, etc. 
 
Arca2 CPU core is a Harvard cache architecture that is targeted at multiprogramming 
applications where full memory management, high performance and low power consumption 
are all important. In addition to the five-stage pipeline CPU, the core integrates a full featured 
MMU with separated 32 entry instruction TLB and data TLB, separated virtual tag instruction 
cache and data cache each with 8KBytes size, and a write buffer which greatly alleviate the 
memory latency. 
 
Arca2 CPU core includes a debug module which provides a powerful mechanism for both 
hardware and software debugging. Hardware instruction and data breakpoints are provided. 
Through a JTAG interface, a software debugger could connect to the target processor without 
the need for extra hardware like serial or ethernet port. 
 
Arca2 CPU core also integrates a performance monitor that could monitor a variety of 
performance events. This provides an efficient way for application performance tuning, 
benchmark evaluation and compiler optimization. 
 
Arca2 CPU core interfaces to the rest of system through a unified Bus Interface Unit (BIU). The 
BIU could easily be connected to some on chip SOC bus, for example, the OCS(On Chip 
System) bus designed by ARCA Technology Corporation, or AMBA AHB bus by ARM. 



Overview 

 
 ARCA Technology Corporation  2

1.2 Block Diagram 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-1 Arca2 CPU core Block Diagram 

 
The block diagram of Arca2 CPU core is shown in Figure 1-1. 
 

 
 
 
 
 

Arca2  
CPU 

Data  
Cache 

Arca2 CPU Core  

 
 
 
 
B 
I 
U 

DTLB 

MMU 

IVA 

IPA 

DPA 

PA 
TAG 

WBB 

Insn 
Cache 

ITLB 

DVA 



  Overview 

  
 ARCA Technology Corporation 3

1.3 Features 
 
The key features of Arca2 CPU core are listed in Table 1-1. 
 

Table 1-1 Arca2 CPU Core Features 

Item Features 
Arca2 CPU • Arca version 2 architecture, 32-bit Arca instruction set. 

• 32 32-bit general registers 
• 5-stage pipeline 
• Interlocked implementation 
• Virtual address space: 4 G-Bytes 

Memory Manager 
Unit (MMU) 

• 4 G-Bytes of address space, divided into 5 partition spaces 
• Full associative 32-entry instruction TLB (ITLB) and 32-entry data 

TLB (DTLB), with round robin replacement algorithm 
• Four different page size: 4KB, 16KB, 1MB and 16MB in any entry 
• Support entry lock 
• Translate 32-bit virtual address to 32-bit physical address 
• Space identifier ASID: 8 bits, 256 virtual address spaces 

Data Cache • 8K-Byte, physically-indexed, virtually-tagged 
• Hardware resolve alias issue 
• 32-way set associative: 8 sets with each set containing 32 ways 
• Each way contains 32 bytes (one cache line) 
• Round robin replacement algorithm 
• Write-back, write-through 
• 4-word deep write buffer 
• Support lock, allocate operations 

Instruction Cache • 8K-Byte, physically-indexed, virtually-tagged 
• 32-way set associative: 8 sets with each set containing 32 ways 
• Each way contains 32 bytes (one cache line) 
• Round robin replacement algorithm 
• Support lock operation 

Debug • JTAG interface to host machine 
• ASID match 
• Two instruction or one maskable instruction address breakpoint 
• Two data or one maskable data address breakpoint 
• One data store result breakpoint 
• Software break 
• Asynchronous break from host machine 
• Asynchronous boot from host machine 

Performance Monitor 
(PMON) 

• One 32-bits internal clock counter 
• Two 32-bits signal counter, each of which can be set to count 1 of 

15 signals 
• Count overflow interrupt 



Arca2 CPU 

 
 ARCA Technology Corporation  4

2 Arca2 CPU 
 

2.1 Overview 
 
Arca2 implementation uses a 5-stage pipeline design. The five stages are: 
 
IF - instruction fetch, fetch instruction from ICache or External Memory 
ID - instruction decode and GRF (general register file) read  
EX - instruction execution like addition, shift or the first part of multiply 
MA - memory access or the second part of multiply 
WB - write back result to GRF 
 
Figure 2-1 shows general pipeline. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-1 General pipeline 

 
Arca2 pipeline will automatically interlock when a data dependence is detected by pipeline 
control.  The interlocked implementation allows software to function identically across different 
implementations without concern for pipeline effects. 
 
 

IF ID EX MA WB 
IF ID EX MA WB 

IF ID EX MA WB 
IF ID EX MA WB 

IF ID EX MA WB 



  Arca2 CPU 

  
 ARCA Technology Corporation 5

2.2 Pipeline for One-Pass and Multi-Pass Instructions 
 
Most of Arca instructions are implemented to occupy one pipeline pass. For these instructions it 
seems that one instruction is executed within one cycle, which ensures high performance. It is 
illustrated by figure blow, where all I1, I2, I3 and I4 instructions occupied one pipeline pass. 
 
 
 
 
 
 
 
 
Besides, a few Arca instructions are implemented to occupy more than one pipeline pass, and 
thus multiple cycles are needed to be executed, such as MULU with high 32-bit result, ITLB, 
ICACHE and SLEEP. 
 

2.2.1 MULU with high 32-bit result  
 
MULU (MULU Rh:Ra,Rb,Rc) is special in that the execution could be 1 or 2 pipeline passes. If 
Rh is R0, i.e., the higher 32-bit result is not required, one pass is needed, otherwise it needs 
another pass to write the higher 32-bit result. The figure below illustrates the execution process 
of MULU with Rh not equal to R0: 
   

 
 
 
 

 
 
 

2.2.2 ITLB/ICACHE  
 
ITLB is implemented as a two-pass instruction and ICACHE instruction is a four-pass one. 
 

2.2.3 SLEEP 
 
SLEEP is implemented as an ‘infinite’ pass instruction and the next instruction will not be 
executed until an interrupt or a wakeup signal breaks the execution of the SLEEP 
 
 
 
 
   
 
 

I1 IF ID EX MA WB 
IF ID EX MA WB 

IF ID EX MA WB 
IF ID EX MA WB 

I2 

I3 
I4 

pass 1: accomplish multiply and write Ra 

MULU pass 2 
I1: MULU instruction 

I2: next instruction 

Cycle:            C1   C2   C3   C4   C5 

IF ID EX MA WB 
IF ID EX MA WB 

if ID EX MA WB 

pass 2: write Rh 

I2 is executed 

IF ID - - - I1: sleep  
if ID - - - sleep  

if ID - - - sleep  
if ID - - - sleep 

if ID - - - …  …   



Arca2 CPU 

 
 ARCA Technology Corporation  6

2.3 Hazard & Forwarding 
 

2.3.1 Forwarding method 
 
Most Arca instructions carry out an operation with such a pattern: Ra = Rb op Rc. In each cycle, 
there may be five instructions executed in the pipeline. If an operand that the current instruction 
needs to read is just the one that a preceding instruction will write, we called WR relation for 
short, the data dependency hazard occurs. Bypass or forwarding technique is used to solve this 
kind of hazard. 
 
When WR occurs, a result data of previous instruction is needed by current instruction before 
the data is written to GRF. With forwarding technique, the data is forwarded directly to current 
instruction when it is on the way to GRF, instead of waiting it write to GRF then read from GRF. 
So the forwarding technique prevents a big lost in CPU performance. Arca2 CPU employs this 
technique in all possible circumstance that solves most of the data dependency hazard. 
 

2.3.2 Hazard 
 
Arca has 3 kinds of hazard. The first one is control hazard caused by branch instruction or 
exception acknowledgement. The second one is data hazard caused by WR relationship. The 
last one is structure hazard caused by multiplier resource contention.  
 

2.3.2.1 Control hazard 
 
1. Jump and branch instruction 
When jump or branch instruction executed, there is always one bubble between the 
jump/branch instruction and the next one. That is to say, there always exists 1 cycle penalty for 
Arca2 CPU to execute a jump or a branch instruction (refer to the figure below). 
 
    

 
 
  
 
 

 
Note that for BCC/BCCI instructions, there is only 1 cycle penalty no matter whether the branch 
is taken or not. 
 
2. RTE instruction 
When RTE instruction is executed, there are always two bubbles between RTE and the next 
instruction T1, which is in the instruction flow before exception happen. 
 
     

 
 
 
 

 
 

 
 

branch insn 

Cycle:           C1   C2   C3   C4   C5 

IF ID EX MA WB 
IF ID - - - 

IF ID EX MA WB 
bubble 

next insn 

I1: RTE 

Cycle:            C1   C2   C3   C4   C5 

IF ID EX MA WB 
if ID - - - 

IF ID EX MA WB 

if ID - - - 
bubble 

T1: return point
bubble 



  Arca2 CPU 

  
 ARCA Technology Corporation 7

3. Exception 
All kinds of exception could cause control hazards, see Figure 2-2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-2 Exception hazard 

 
Note that the deep gray area in above figure means that instruction could flow forward without 
any effect from exception, while the dash area denotes that these instructions’ pipeline should 
be cut down. 
 

2.3.2.2 Data hazard (Stall) 
 
Data hazard is generally caused by WR relationship between two adjacent instructions. If the 
first instruction produces a data in a later stage and the next instruction uses it in an earlier 
stage, the data consumer has to wait till the data is available. The instruction execution pipeline 
is then stalled. The data hazard caused by the different type instruction will be discussed in the 
following: 
 
1. Read after Load  
Since the result of a load instruction is ready at the end of MA stage, 1 stall is needed for the 
next instruction if it is one of the store, SWAP, CST or WCR instruction that uses the result as 
the data to be stored. 2 stalls are needed for the next instruction if it is one of other instructions 
that uses the result or other using cases. 
 
 
 
 
 
 
                                                                     
 
 
 
 
 

IF 
ID 

EX 
MA 
WB 

IF 
ID 

EX 
MA 
WB 

IF 
ID 

EX 
MA 
WB 

IF 
ID 

EX 
MA 
WB 

IF 
ID 

EX 
MA 
WB insn1 

insn2 

insn3 

insn4 

insn5 

TRAP 
SBRK 
IFAULT 
IBRK 
DINT 

ILLINS 
INT 

DBRK DFAULT DBOOT 
RESET 

I2: Sn/STn/SWAP/CST/WCR

I1: Ln/LXn/CLD/SWAP data available at WB 

I2 need data at EX 

stall
IF ID EX MA WB 

IF ID - - - 
if ID EX MA WB 

I2: Other cases 

I1: Ln/LXn/CLD/SWAP data available at WB 

I2 need data at ID 

stall
IF ID EX MA WB 

IF ID - - - 

if EX ID MA WB 
stall if ID - - - 



Arca2 CPU 

 
 ARCA Technology Corporation  8

2. Read after MULU 
Similar to a load instruction, MULU gets its result (ml for low 32-bit and mh for high 32-bit) at the 
end of MA stage and is available at WB stage. The stall case when ‘mh’ is not required is just 
the same as read after load. When the higher 32-bit result (mh) is required, MULU lasts two 
pipeline passes, where ml is available at WB stage of pass 1, and mh is of pass 2. The stalls 
needed between mh producing and using is also the same as the read after load case. The 
figures below illustrates the pipeline sequence for two-pass MULU and its following instruction 
that using MULU”s ml: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3.2.3 Structure hazard 
 
Structure hazard in Arca is caused by multiplier resource contention. One MULU instruction will 
occupy multiplier resource for two or three consecutive cycles, when a MULU immediately 
followed by another MULU, the resource contention occurs, which requires one bubble being 
inserted between two consecutive MULU instructions. The figure below explains multiplier 
resource contention: 
 
       
 
 
 
 
 
 
 
 
       
 
 
 
 
 
 
 
 
 
 
 
 
Notes: structure hazards caused by cache/memory resource contention are described in 
“Chapter 6 Cache” 
 

I2: Sn/STn/SWAP/CST/WCR 

I1: MULU with a valid Rh WB: ml available 

I2 need ml at EX 
(no stall is needed) 

MULU pass2
IF ID EX MA WB 

IF ID 
if ID EX MA WB 

EX MA WB 

I1: MULU with a valid Rh WB: ml available 
MULU pass2 EX MA WB 

I2: Other cases I2 need ml at ID 

IF ID EX MA WB 
IF ID 

if EX ID MA WB 
stall if ID - - - 

WB: mh available 

I1: MULU R0,Ra,Rb,Rc I1 occupies multiplier in C2 and C3 

I2: MULU ... I2 can use multiplier in C4 …  

IF ID 

ID 

WB MUL 

if WB 

stall IF ID - - - 
MUL 

MUL MUL 

Cycle:            C1   C2   C3   C4   C5 

I1 uses 
MUL 

I2 uses 
MUL 

I1: MULU R0,Ra,Rb,Rc
  Where Rh is not R0 

I1 occupies multiplier in C2, C3 and C4 

WB 

I2: MULU ... I2 can use multiplier in C5 …  

IF ID 

ID 

WB MUL 
IF ID 

if WB 

stall if ID - - - 
I1 pass2 

MUL 

MUL MUL 

I1 uses 
MUL 

I2 uses 
MUL 

Cycle:            C1   C2   C3   C4   C5 

MUL MUL 



  Arca2 CPU 

  
 ARCA Technology Corporation 9

2.4 Cycles for Arca2 instruction executions and stalls 
 
Table 2-1 summarizes static cycle consumption for all instructions and IU states and Table 2-2 
summarizes dynamic cycle consumption for all cases that cause stall. 
 

Table 2-1 Instruction and special IU states cycles 

IU state Instruction Cycles Description 
Power-on 
RESET 

- 32 
1. Wait peripheral devices to be initialized 
2. Clear GRF 

Exception - 5 
When an exception/interrupt is detected and 
accepted, 5 extra cycles are needed before execute 
the first instruction in exception/interrupt routine 

SLEEP SLEEP - 
SLEEP instruction will be repeatedly executed until 
an interrupt or a wake up signal 

ICACHE 4  
ITLB 2  

MULU Rh,Ra,Rb,Rc 2 When Rh is not R0 
NORMAL 
STATE 

Others 1  
 

Table 2-2 Stall conditions and cycles 

Instruction 
May Cause Stalls 

Stall Condition 
Stall 

Cycles 
BEQ BNE BLT BLTU BGE BGEU 
BEQI BNEI BEQUI BNEUI BLTI 
BLTUI BGEI BGEUI J JA 

Always 1 

RTE Always 2 
The loaded data is used as a stored data(1) in next 
instruction 

1 

The loaded data is used by next instruction as other 
than a stored data 

2 
L8 L8U L16 L16U L32 LX8 
LX8U LX16 LX16U LX32 LX16S 
LX16SU LX32S CLD SWAP The next instruction consume one cycle and the 

loaded data is used by the next of the next 
instruction as other than a stored data 

1 

MULU R0,Ra,Rb,Rc Same as the load instruction cases, just replace the 
“loaded data” by “multiply result” 

1/2 

Rh data dependence is just like above, just replace 
the “multiply result” by “multiply high 32-bit result” 

1/2 MULU Rh,Ra,Rb,Rc 
(where Rh is not R0) The multiply low 32-bit result is used by the next 

instruction as other than a stored data 
1 

MULU If next instruction is a MULU again 1 
 
Note 
(1) “stored data” means the data to be stored (or Ra) of the instruction CST SWAP WCR S8 

S16 S32 SX8 SX16 SX32 SX16S SX32S. 
 
Please note when there are multiple stall conditions meet simultaneously, the longest stall takes 
place.



Exception Model 

 
 ARCA Technology Corporation  10 

3 Exception Model 
 

3.1 Overview 
 
Arca2 CPU core provides a simple and efficient way to organize and handle exceptions. By 
providing an 8-entry vector table with each entry corresponding to one or more exception types, 
Arca2 can switch to the top exception routine conveniently and efficiently. The top exception 
routine may consult the exception cause register to further determine the specific exception 
service. 
 

3.2 Exception Types 
 
There is a variety of resources that can trigger an exception to CPU. Figure 3-1 illustrates the 
various resources that will request exception services from CPU.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-1  Exceptions and Exception Resources 

 
Debug and MMU are modules inside the CPU core, they will issue exceptions to CPU for debug 
and memory access event. Eve nts such as reset and hardware interrupt are issued by modules 
outside the CPU core such as an interrupt or system controller. CPU itself will generate 
exceptions when executing a special instruction. 
 
There are total 10 types of exceptions supported by Arca2 CPU Core as illustrated in Figure 3-1: 
 
• RESET: Reset exception request by a system controller outside of the CPU core.  Reset 

exception can be induced by a power-on reset and manual reset from external input pin or a 
watchdog time-out reset. 

 
• INT: Interrupt exception issued by an interrupt controller outside of the CPU core. 

 
• Dfault: Data access fault exception occurred when a data access request by CPU couldn’t 

be satisfied by memory subsystem. 
 

Arca2 

CPU 

trap 
illins 
sbrk 

Debug Module MMU Interrupt System 

dfault ifault 

dbrk 
ibrk 

dboot 

int 

reset 



  Exception Model 

  
 ARCA Technology Corporation 11 

• Ifault: Instruction fetch fault occurred when an instruction access request by CPU couldn’t 
be satisfied by memory subsystem. 

 
• Illins: Illegal instruction caused by executing a reserved instruction or there is a privilege 

violation in executing the instruction. 
 

• Trap: the OS trap mechanism caused by executing a trap instruction. 
 

• Sbrk: a software breakpoint instruction caused by executing a SBRK instruction when 
debug module support is enabled by SR.DE bit. 

 
• ASYNBRK: Debug asynchronous break from host machine. 
 
• IBRK: Instruction break caused when an instruction fetch address appeared in the 

instruction address bus matches the set in the debug module’s instruction breakpoint 
register. The asynchronous  

 
• DBRK: Data break caused when a data access address appeared in the data address bus 

or a stored data in data bus matches the set in debug module’s data breakpoint register. 
 
• DBOOT: Debug Bootstrap. Issued by the debug module when it receives a command from 

the extended JTAG ports by the host machine debugger. 
 
The exceptions supported by Arca2 CPU core can be classified into 2 categories: normal 
exceptions and debug exceptions. Normal exceptions include Reset, Dfault, Ifault, Illins, Trap, 
INT, and debug exceptions include DBOOT, IBRK, DBRK, SBRK and ASYNBRK. CPU uses ESR, 
EPC for normal exception and DSR, DPC for debug exception.  



Exception Model 

 
 ARCA Technology Corporation  12 

3.3 Exception Priorities 
 
More than one exception could request CPU’s attention simultaneously. When this situation 
occurs, the exception that has the highest priority will be accepted by CPU. The exception 
priorities are fixed as illustrated by the table below: 
 

     Table 3-1 Arca Exception Priorities 

Exception 
Kinds Exception Events 

Exception 
 Priorities 

DBoot Debug Bootstrap 0 (highest) 

Reset Power-on/Manual Reset 1 

DFAULT Data Access Fault 2 

DBRK Debug Data Breakpoint 3 

ILLINS Reserved Instruction or Privilege Violation 4 

TRAP/SBRK TRAP or SBRK Instruction 5 

IBRK/ 
ASYNBRK 

Debug Instruction Breakpoint or 
asynchronous break from host machine 

6 

IFAULT Instruction Fetch Fault 7 

INT Interrupt 8 (lowest) 

 
 
 



  Exception Model 

  
 ARCA Technology Corporation 13 

3.4 Exception Vector Table 
 
Arca2 CPU core uses 8-word memory space to hold exception vectors. The vector table is 
shown in Table 3-2: 
 

Table 3-2 Arca Exception Vector Table 

Vector Number Vector Offset Exceptions 

0 H’00 RESET, DBOOT 

1 H’04 ILLINS 

2 H’08 
IBRK, DBRK, 

SBRK,  ASYNBRK 

3 H’0c Reserved 

4 H’10 INT 

5 H’14 TRAP 

6 H’18 DFAULT, IFAULT 

7 H’1c Reserved 

 
The base address of the vector table base for DBOOT exception is always at H’EC000000. 
 
When Arca2 CPU core is set to host mode by a debugger running in a host machine, the 
exception vector table base is fixed at H’EC000000.  
 
For other cases, exception vector table is placed on the boundary of 64M memory page of P1 
area, which is decided by SR.VB bits (refer to Status Register description). 
 

Base address = {3B’100, SR.VB, 26B’0} 
 
Since SR.VR is initialized to 3B’000, so the base address for power-on reset without DBOOT is 
always H’80000000. 
 



Exception Model 

 
 ARCA Technology Corporation  14 

3.5 Exception Cause  
 
In Table 3-2, there are several vector numbers that contain more than one exception type. 
Vector number 0 is the exception handler entry address for RESET and DBOOT; vector number 
2 is the exception handler entry address for IBRK, DBRK, SBRK and ASYNBRK; vector 
number 6 is the exception handler entry address for DFAULT and IFAULT. This arrangement 
limits the vector table size to an 8 words size. A small vector table could be locked into data 
cache line, thereby improve the performance for exception handling. 
 
Since more than one exception types share one exception vector table entry, a mechanism is 
needed for differentiate the exception type by the exception handler routine. The cause register 
of MMU and Debug module serves this purpose. The interrupt controller outside the CPU core 
will provide a similar register. The immediate number operand in TRAP instruction provides 
more information for its exception handler. 
 

Table 3-3 Exception Cause  

Exception 
Type 

Exception 
Cause Register  

Cause Register 
Set by 

Instruction to Read 
 Cause Register 

TRAP 
General 
Register 

The trap number can be passed to a general 
register via TRAP instruction 

DFAULT 
IFAULT 

MCR.cause MMU CLD Ra,#MMU,#MCR 

INT A register in INTC INTC 
load from the memory-

mapped location 
IBRK DBRK 

SBRK 
ASYNBRK 

DCR.cause DEBUG CLD Ra,#DEBUG,#DCR 



  Exception Model 

  
 ARCA Technology Corporation 15 

3.6 Control Register 
 
The SR, ESR, EPC, DSR and DPC are control registers of IU. They play the key roles of the 
exception model. Here we give the detailed description. 
 

3.6.1 Status Register (SR) 
 

Bit: 31  6 5 4 3 2 1 0 
Read:  
Write:  

VB SM DS DE IE 

Reset: 0 0 0 0 1 0 0 0 
 
Bits 31~7 reserved, these bits are always read as 0 and written are ignored. 
 
− IE (Interrupt Enable): When it is cleared, interrupt is disabled. 
 
− DE (Debug Enable): When it is cleared, no Debug Exceptions are to be accepted 

exception DBOOT. Debug bootstrap can’t be disabled by this bit. 
 
− DS (Debug State): 1 indicates an exception is a debug exception (which include debug 

bootstrap), 0 for other exceptions. RTE restore PC/SR register from DPC/DSR when it is 1, 
from EPC/ESR when it is 0. 

 
− SM (Supervisor Mode): 1 for Supervisor mode, 0 for User mode. Write to this bit by WCR 

instruction is ignored. Program should use RTE to switch from supervise mode to user 
mode by first clear corresponding bit in ESR or DSR register. 

 
− VB (Vector Base): form bit 28~26 of the base address of Vector Table (the highest 3 bits 

are 100, pointing to P1 area), when it is neither a DBOOT exception nor in host mode. 
 

3.6.2 Spot-saving Register 
 
• ESR: used to save the current status register for none debug exceptions 
 

Bit: 31  6 5 4 3 2 1 0 
Read:  
Write:  

VB SM DS DE IE 

Reset: 0 undefined 
 
• EPC: used to save none debug exception return address. 
 

Bit: 31  2 1 0 
Read: 0 0 
Write: 

PC[31:2] 
  

Reset: undefined 0 0 
 
• DSR: used to save the current status register for debug exceptions 
 

Bit: 31  6 5 4 3 2 1 0 
Read:  
Write:  

VB SM DS DE IE 



Exception Model 

 
 ARCA Technology Corporation  16 

Reset: 0 undefined 
 
• DPC: used to save debug exception return address. 
 

Bit: 31  2 1 0 
Read: 0 0 
Write: 

PC[31:2] 
  

Reset: undefined 0 0 
 

3.7 Exception Acknowledgement Process 
 
It takes several cycles for Arca2 CPU to switch from the current program flow to the exception 
routine. 
 
The CPU exception acknowledgement process fulfills the following jobs: 
 
• Save the Status Register (SR) to ESR for none debug exception or to DSR for debug 

exception. 
 
• Compute the return address and save it to EPC for none debug exception or to DPC for 

debug exception. 
 
• Form the vector entry address based on the exception type and vector base. Load the 

exception handler start address from the vector entry. Fetch the first exception handler 
instruction from the loaded exception handler start address. 

 
If the process is in SLEEP state, put it into normal state. 
 
• Enter into privilege mode by setting SR.SM 
 
• Clearing SR.IE to disable interrupt exceptions 
 
• For debug exceptions, clearing SR.DE to disable additional debug exceptions. 
 
• Set SR.DS to 0 for none debug exceptions, or set SR.DS to 1 for debug exception. 
 

3.8 Return from Exception Routine 
 
Return from exception routine is implemented by the instruction RTE, which runs in privilege 
mode and fulfills the following jobs: 
 
• Restore previous system status by copying ESR if SR.DS is 0, or DSR if SR.DS is 1, into SR. 
 
• Restore execution of previous program by jumping to the return address stored in EPC if 

SR.DS is 0, or DPC if SR.DS is 1. 
 
To ensure no interrupt exception is acknowledged and thus clobber the content in ESR/EPC, 
SR.IE must be cleared before execution of RTE if SR.DS is 0. Similar, for not clobbering DSR/DPC, 
SR.DE must be cleared before execution of RTE if SR.DS is 1. 
 



  Core Configuration 

  
 ARCA Technology Corporation 17 

4 Core Configuration 
 

4.1 Overview 
 
In addition to CPU, Arca2 CPU core includes other modules such as MMU, data TLB (DTLB), 
instruction TLB (ITLB), data cache, instruction cache, debug module and performance monitor 
(PMON). Later versions of the CPU core may add more modules to expand functionality. Arca 
architecture provides a uniform and extensible way to manage these modules with the 
instructions listed below. These instructions provide a consistent way to exchange values 
between CPU register file and control registers of a specific module, and to expand module 
specific operations. 
 
CLD     Ra, ID, S10 
CST     Ra, ID, S10 
ITLB    CMD, Rb 
DTLB    CMD, Rb 
ICACHE  CMD, Rb, S10 
DCACHE  CMD, Rb, S10 
 



Core Configuration 

 
 ARCA Technology Corporation  18 

4.2 Configuration Instructions 
 

4.2.1 CLD/CST instruction 
 
 
CLD     Ra, ID, S10 

Op: 011001 Ra 00ID Ext: 001000 S10 
 
CST     Ra, ID, S10 

Op: 011001 Ra 00ID Ext: 001001 S10 

 
 

These two instructions exchange data between CPU register file and a module’s control register.  
CLD loads a 32 bits data into CPU register Ra from the control register specified by S10 field in 
the module specified by ID field.  CST writes the data in Ra to the control register specified by S10 
field in the module specified by ID field. 
 
l Ra: CPU register. For CLD instruction, this is the destination register. For CST instruction, 

this is the source register. 
 
l ID: module indenti fy code. Arca2 CPU core defines 3 module as illustrated in the following 

table: 
 

Table 4-1 Module Identification Number 

Module Name MMU PMON DEBUG 
ID 000 001 011 

 
l S10: The control register number inside module ID. The control number can be 0 ~ 511. The 

access right to a specific control register is defined by the module itself. For example, MCR 
and CCR register in MMU module can’t be accessed in user mode. When the access right 
violation happens, a dfault exception will be induced to CPU by MMU module. 

 
The control registers defined in module MMU are as below. See section 5 for the detailed 
description of these control registers. 
 

Table 4-2 Control Registers in Module MMU 

CR Name MCR TTB MEA CED ASI CCR 
Number 000 001 010 100 011 101 

 
The control registers defined in module Debug are as below. See section 7 for the detailed 
description of these control registers. 
 

Table 4-3 CR in Module Debug 

CR Name DBG_CR DBG_IA0 DBG_IA1 DBG_DA0 DBG_DA1 DBG_DD0 DBG_ASID 
Number 000 001 010 011 100 101 110 

 
The control registers defined in module PMON are as below. See section 8 for the detailed 
description of these control registers. 
 



  Core Configuration 

  
 ARCA Technology Corporation 19 

Table 4-4 Control registers in Module PMON 

CR Name PMC CTR MOR0 MOR1 
Number 000 001 010 011 

 

4.2.2 ITLB/DTLB/ICACHE/DCACHE instructions 
 
ITLB    CMD, Rb 

Op: 000000 0CMD Rb Ext: 001101 Don’t care 

 
DTLB    CMD, Rb 

Op: 000000 0CMD Rb Ext: 001001 Don’t care 

 
ICACHE  CMD, Rb, S10 

Op: 000000 0CMD Rb Ext: 000101 S10 
 
DCACHE  CMD, Rb, S10 

Op: 000000 0CMD Rb Ext: 000001 S10 

 
These instructions are used for special operations applied on Arca embedded memory. The 
specific position on RAM is defined by the virtual address: [Rb+S10<<2] while the specific 
operation is defined by each kind of RAM’s through ‘CMD’. Note some of CMDs may be executed 
in User Mode while some of them may not. When executing a privileged CMD in User Mode or the 
CMD does not exist, a dfault exception request will be asserted.   

 

4.2.3 CMD in ITLB/DTLB/ICACHE/DCACHE 
 

The module CMD (4-bits) is defined as below: 
 

Table 4-5 Module CMD Definitions 

RAM Name CMD 
Number ITLB DTLB ICache DCache 

0000   Prefetch Prefetch 
0001 Discard Discard Discard Discard 
0010 Read Read  Write-back 
0011 Write Write  Flush 
0100    Allocate 
0101     
0110    ALock 
0111 PLock PLock PLock PLock 
1000     
1001    Flush-buffer 
1010     
1011     
1100     
1101     
1110 Unlock Unlock Unlock Unlock 
1111 Invalidate Invalidate Invalidate Invalidate 

 
Notes 



Core Configuration 

 
 ARCA Technology Corporation  20 

(1) For DTLB/ITLB all operations are only valid in privileged mode, for ICache/DCache, CMD[2:1] 
specifies the access right, i.e., ‘11’ for privileged mode only, others for both modes,  

(2) For flush-buffer, invalidate and unlock commands, the address specified by the instruction is 
ignored. CMD[3]=1 specifies this 

 
The commands are explained as below: 
• Prefetch: prefetch data or instructions into cache line, during prefetch process, 

ICache/DCache should not freeze the IU-pipeline. 
• Discard: clear V-bit of the specified TLB entry or cache line for the specified TLB or cache. 
• Write-back: write back data of the specified cache line if D-bit is set, then clear D-bit. 
• Flush: this is the combination of discard and write-back, that is, write back the cache line if it 

is dirty and clear D and V bits. 
• Read: read the specified TLB entry, put the PPN and attribute bits into CED register 
• Write : write a TLB entry, PPN and attribute bits from CED register, VPN from the specified 

address 
• Allocate: allocate a cache line for the virtual address, that is, only fill the TAG into a cache line 

but does not care the data. 
• Flush-buffer: flush the write back buffer in DCache. 
• ALock: for DCache only, allocate and lock a cache line. 
• PLock: for ITLB/DTLB, load and lock an entry, for ICache/DCache, load and lock a cache line. 
• Unlock: unlock all locked TLB entry or cache line for the specified TLB or cache. 
• Invalidate : clear V-bits for entries those not been locked in the specified TLB or cache. 



Memory Manage Unit 

  
 ARCA Technology Corporation 21 

5 Memory Manage Unit 
 

5.1 Overview 
 
MMU serves as a powerful manager to make efficient use of physical memory. To accelerate 
translating virtual memory to physical memory, Arca2 CPU core uses both an instruction 
Translation Look-aside Buffer (ITLB) and a data Translation Look-aside Buffer (DTLB) to cache 
the latest translation. Arca2 CPU core supports four page sizes: 4KB, 16KB, 1MB, and 16MB. 
MMU also controls virtual memory access permission for different processor mode: privileged 
mode and user mode. 
 

5.1.1 Features 
 
• MMU equips Translation Look-aside Buffer (TLB) for both instruction fetch and data access 

to accelerate virtual to physical address translation. Each TLB holds 32 entries and is full 
associative. 

 
• Use round-robin replacement method and support lock function to lock critical entries in 

DTLB or ITLB. 
 
• Virtual Address translation uses the paging system and supports four page sizes: 4KB, 

16KB, 1MB and 16MB bytes.  
 
• Virtual Address map to physical address space directly when disable paging system. 
 
• MMU checks the memory access permission in different processor modes to provide 

access protection. 
 
• MMU issues the exception request to CPU when the instruction fetch or data access 

encounters a fault. It also saves spot information such as fault address and fault cause to 
be referenced by the exception routine.  

 



Memory Manage Unit 

 
 ARCA Technology Corporation  22 

5.2 Register Configuration 
 
The Arca2 CPU core provides several 32-bit MMU and cache control registers, which determine 
the operation of MMU and Cache. A brief description of the registers is provided below. 
  
Data is written to and read from the MMU registers using the Arca2 CST/CLD instructions. 
 
The MMU Control Register holds the control signal bits and exception cause bits, which 
determine the operation of MMU. 
 
The Translation Table Base Register holds the base physical address of the translation table 
maintained in main memory.  
 
The MMU Exception Address Register holds the virtual address where the exceptions occur.  
 
The Address Space Identifier Register holds process ID number. 
 
The Configure Exchange Data Register holds the data for read, write or lock TLB operation.  
 
The Cache Control Register holds control signal bits that determine the operation of Cache. 
The detail description is in Cache spec. 
 

Table 5-1 MMU Registers 

Name Full Name R/W 
Initial value 

when power on 
Access 
Size 

#ID #CR 

MCR MMU Control Register R/W H’00000000 32 000 000 
TTB Translation Table Base Register R/W Undefined 32 000 001 
MEA MMU Exception Address Register R/W Undefined 32 000 010 
CED Configure Exchange Data Register R/W Undefined 32 000 100 
ASI Address Space Identifier Register R/W Undefined 32 000 011 
CCR Cache Control Register R/W H’00000000 32 000 101 
 



Memory Manage Unit 

  
 ARCA Technology Corporation 23 

5.2.1 Register Descriptions  
 

5.2.1.1 MMU Control Register (MCR) 
 

#ID=000  #CR=000 
 

Bit: 31 30 29 28 27 26 25 24 
Read:  
Write: 

CAUSE 
 

Reset: 0 0 0 0 0 0 0 0 
 

Bit: 23 22 21 20 19 18 17 16 
Read:         
Write:         
Reset: 0 0 0 0 0 0 0 0 

 
Bit: 15 14 13 12 11 10 9 8 

Read:         
Write:         
Reset: 0 0 0 0 0 0 0 0 

 
Bit: 7 6 5 4 3 2 1 0 

Read:        
Write:        

ATE 

Reset: 0 0 0 0 0 0 0 0 
 
Bit 24 ~ 1: Reserved bits, ignored in write operation, always 0 in read operation. 
 
− ATE: address translation enabled/disabled bit. 

0: address translation disabled. 
1: address translation enabled. 

 
− CAUSE: Exception causes bits. 

Bit31: TLB miss or not. 
Bit30: Address error. 
Bit29: Reserved bit, ignored in write operation, always 0 in read operation. 
Bit28: Initial write. 
Bit27: Exception occurs in instruction fetch or data access 0: data; 1:instruction. 
Bit26: Exception occurs in LOAD or STORE operations. 0: LOAD, 1: STORE(include swap 
operation). 
Bit25: Exception occurs in core configure instruction. 
 

The valid cause patterns are listed in following table. 
 

CAUSE Description 
1000_100  ITLB miss when fetch instruction. 
1000_101  ITLB miss when use I-cache instruction. 
0100_100  address error when fetch instruction. 
0100_101  address error when use I-cache or ITLB instruction. 
0000_101  illegal I-cache or ITLB operation. 
1000_000  DTLB miss when read access 
1000_010  DTLB miss when store or swap access 



Memory Manage Unit 

 
 ARCA Technology Corporation  24 

CAUSE Description 
1000_001  DTLB miss when D-cache instruction 
0100_000  address error when read access 
0100_010  address error when store or swap access 
0100_001  address error when use D-cache or DTLB instruction 
0001_010  initial write when store or swap access 
0000_001  illegal cache or TLB configure operation or CLD/CST 

operation. 
0000_000  no exception, initial value when power-on reset. 

 

5.2.1.2 Translation Table Base (TTB) 
 
Point to the base address of current page table. This register is managed by software. 
 

#ID=000  #CR=001 
 

Bit: 31 … … … … … … … …  4 3 2 1 0 
Read: 
Write: 

Base address of the currently used page table 

Reset: 0 0 0 0 0 0 0 
 

5.2.1.3 MMU Exception Address (MEA)  
 
When MMU exception occurs, the virtual address that induces exception is set into this register 
by hardware. The contents of this register can be changed by software. 
 

#ID=000  #CR=010 
 

Bit: 31 … … … … … … … …  4 3 2 1 0 
Read: 
Write: 

Virtual address causing data access or instruction fetch fault 

Reset: 0 0 0 0 0 0 0 
 

5.2.1.4 Address Space Identifier (ASI) 
 

#ID=000  #CR=011 
 

Bit: 31 … … … … … … … …  12 11 10 9 8 
Read:        
Write:        
Reset: 0 0 0 0 0 0 0 

 
Bit: 7 6 5 4 3 2 1 0 

Read: 
Write: 

ASID 

Reset: 0 0 0 0 0 0 0 0 
 
Bit 31 ~ Bit 8: Reserved bits, ignored in write operation, always 0 in read operation. 
 
– ASID: Address space identifier. ASID indicates current process, which is regarded as 

expansion of virtual memory. 



Memory Manage Unit 

  
 ARCA Technology Corporation 25 

5.2.1.5 Configure Exchange Data Register (CED) 
 

#ID=000 # CR =100 
 

Bit: 31 30 29 28 27 26 25 24 
Read: 
Write: 

PPN 

Reset: 0 0 0 0 0 0 0 0 
 

Bit: 23 22 21 20 19 18 17 16 
Read: 
Write: 

PPN 

Reset: 0 0 0 0 0 0 0 0 
 

Bit: 15 14 13 12 11 10 9 8 
Read:     
Write: 

PPN 
    

Reset: 0 0 0 0 0 0 0 0 
 

Bit: 7 6 5 4 3 2 1 0 
Read:   
Write:   

SZ D B C M 

Reset: 0 0 0 0 0 0 0 0 
 

Bit 11 ~ Bit6: Reserved bits, ignored in write operation, always 0 in read operation. 
 
– PPN: Physical page number. 
 
– SZ: 2 page size bits. 

00: 4KB page size 
01: 16KB page size 
10: 1MB page size 
11: 16MB page size 

 
– D: Dirty bit. 

Used only in DTLB. Ignored when write ITLB, undefined when read ITLB. 
 
– B: Bufferable bit. 

Used only in DTLB. Ignored when write ITLB, undefined when read ITLB. 
 

– C: Cacheable bit. 
 
– M:  Read ITLB/DTLB miss bit. 

Ignored when write ITLB/DTLB, set 1 when read ITLB/DTLB miss, clear 0 when read 
ITLB/DTLB hit. When M is 1 after read ITLB/DTLB, the other bits’ value is undefined. 
 
 



Memory Manage Unit 

 
 ARCA Technology Corporation  26 

5.3 Memory Space 
 
Arca2 CPU core supports a 32-bit physical address space, and can access a 4-Gbyte space, 
and use virtual memory system to logically expand the physical memory space of the processor, 
by translating addresses composed in a large virtual address space into the physical address 
space of the system. Arca2 CPU core has two modes to translate virtual address: paging 
system mode, and direct map mode. 
 

5.3.1 Direct Map Virtual Address Space 
 
When the MCR.ATE bit is reset to 0, the MMU address translation is in direct map mode. The 
virtual address space mapping is shown in Figure 5-1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5-1 Direct Virtual Physical Address translation (MCR.ATE=0) 

 
• A0 Area: The A0 areas can be accessed using the cache. When use cache, the write 

policy can be programmed to copy-back(cb) or write-through(wt). This area is always 
translated to linear 2GB region of the physical addres space (from ‘H20000000 to 
‘H9FFFFFFFF) . 

 

0.5
G 

H’8000000

H’0000000

H’A000000

H’C000000

H’E000000

H’FFFFFFF

      PHYSICAL 
      

VIRTUAL 
      

 
 
 

A0 (2G byte) 
Cacheable (cb/wt) 

 

A1 (0.5G byte) 
Cacheable (cb/wt) 

A2 (0.5G byte) 
Non-cacheable 

 

A3 (0.5G byte) 
Non-cacheable/ 

Cacheable (cb/wt) 
 

A4 (0.5G byte) 
Non-cacheable 

 

0.5
G 

0.5G byte 
 

 
 
 
 
 

2G byte 

0.5G byte 
Reserved 

0.5G byte 
 

0.5G byte 
 



Memory Manage Unit 

  
 ARCA Technology Corporation 27 

• A1 Area: The A1 area can be accessed using the cache, When use cache, the write 
policy can be programmed to copy-back(cb) or write-through(wt). This area is always 
translated to a linear 512MB region of the  physical address space starting at physical 
address 0. 

 
• A2 Area: The A2 area cannot be accessed using the cache. The write can be 

programmed to bufferable or unbufferable. This area is always translated to a linear 
512MB region of the  physical address space starting at physical address 0. 

 
• A3 Area: The cacheable attribute of A3 area can be programmable (see cache spec), 

default is uncacheable. When use cache, the write policy can be programmed to copy-
back(cb) or write-through(wt). When doesn’t use cache, the write can be programmed to 
bufferable or unbufferable. This area is always translated to a linear  512MB region of 
physical address (from H’C0000000 to H’DFFFFFFF). 

 
• A4 Area: This area cannot be accessed using the cache. The write is unbufferable. Some 

A4 area is mapped to on-chip I/O registers channels and some is mapped to JTAG 
memory. This area is always translated to a linear 512M region of physical address( from 
H’E0000000 to H’FFFFFFFF). 

 
In user mode, the 2Gbyte of virtual address space from H’00000000 to H’7FFFFFFF(area A0) 
can be accessed. The 2 Gbytes of virtual address space from H’80000000 to H’FFFFFFFF 
cannot be accessed in user mode. Attempting to do so creates an exception named address 
error. 
 
 



Memory Manage Unit 

 
 ARCA Technology Corporation  28 

5.3.2 Virtual Address Space In Paging System 
 
When the MCR.ATE bit is set to 1, MMU is in paging system mode. Arca2 CPU core uses 32-bit 
virtual addresses to accesss 4-Gbyte virtual address space that is divided into several areas. 
Address space mapping is shown in Figure 5-2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-2 Paging Virtual Physical Address translation (MCR.ATE=1) 

 
Setting the MCR.ATE bit to 1 enables the A0, and A3 areas of the address space in the Arca2 
CPU core to be mapped onto any external memory space. By using 8-bit ASID address 
identifier, the A0 can be increased to a maximum of 256. A3 is a global area, all processes 
share it. This is called the virtual address space. Mapping from virtual address space to 32-bit 
physical memory space is carried out using the TLB.  
 

256 

       PHYSICAL VIRTUAL 

 
 
 
 
 

P0 (2G-byte) 
Mapped 

Cacheable 
(cb/wt) 

H’8000000

H’0000000

H’A000000

H’C000000

H’E000000

H’FFFFFFF

A2 (0.5G byte) 
Unmapped 

Non-cacheable 

A3 (0.5G byte) 
Mapped 

Cacheable 

A4 (0.5G byte) 
Unmapped 

Non-cacheable 

 
 
 
 
 

A0 (2G-byte) 
Mapped 

Cacheable (cb/wt) 

A1 (0.5G byte) 
Unmapped 

Cacheable (cb/wt) 
 

 
0.5G byte 

 
0.5G byte 

 
 
 
 
 
 
 
 
 
 

3.0G byte 



Memory Manage Unit 

  
 ARCA Technology Corporation 29 

• A0,A3 areas: These areas are mapped onto physical address space in page unites. In 
accordance with TLB information and CCR, these areas can be cacheable or noncacheable, 
bufferable or unbufferable. 

 
• A1 area: This area is fixed to 512 MB physical address space starting from physical address 0, 

this area can be cached. When use cache, the write policy can be programmed to copy-
back(cb) or write-through(wt). 

 
• A2 area: This area is fixed to 512 MB physical address space starting from physical address 0, 

this area cannot be cached. The write can be programmed to bufferable or unbufferable. 
 

• The A1 and A2 areas are not mapped by the address translation table, so the TLB is not used 
and no TLB exceptions like TLB misses occur. Initialization of MMU-related registers, 
exception process handling, and the like codes can be located in the A1 and A2 areas. 
Because the A1 area is cached, handlers that require high-speed processing are placed 
there. 

 
• A4 Area: This area cannot be accessed using the cache. The write is unbufferable. Some A4 

area is mapped to on-chip I/O registers channels and some is mapped to JTAG memory. 
This area is always translated to a linear 512M region of physical address( from 
H’E0000000 to H’FFFFFFFF). 

 
In user mode, the 2Gbyte of virtual address space from H’00000000 to H’7FFFFFFF(A0) can be 
accessed. The 2 Gbytes of virtual address space from H’80000000 to H’FFFFFFFF cannot be 
accessed in user mode. Attempting to do so creates an address error. 

 



Memory Manage Unit 

 
 ARCA Technology Corporation  30 

5.4 Configuration of the TLB 
 
The TLB caches address translation table information located in external memory. Figure 5-3 
shows the DTLB and ITLB configuration. Both DTLB and ITLB are full associative with 32 
entries. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-3 Configuration of TLB 

 
• VPN: Virtual page number 

4Kbyte page:  VPN bits [31:12] are valid. 
16Kbyte page:  VPN bits [31:14] are valid. 
1Mbyte page:  VPN bits [31:20] are valid 
16Mbyte page:  VPN bits [31:24] are valid 
 

• ASID: Address space identifier.  
 
• V: Validity bit. 
 Indicates whether the entry is valid or not. 
 0: Invalid 
 1: Valid 
 
• SZ[2:0]: page size bits. 

Indicates the page size of this page. Only following 4 patterns are valid, other patterns will 
cause ITLB/DTLB search result unpredictable.  
000: 4KB page size 
001: 16KB page size 

1 

2 

CAM DATA 

3 

V C 

CAM DATA 

VPN [31:12] ASID [7:0] PPN [31:12] 
  

31 

0 

DTLB 
32x(32+23) 

ASID [7:0] V PPN [31:12] C

  

31 

0 
VPN [31:12] 

ITLB 
32x(32+21) 

 C  V  D  B  SZ[2:0] 

 SZ[2:0] 



Memory Manage Unit 

  
 ARCA Technology Corporation 31 

011: 1MB page size 
111: 16MB page size 
 

• PPN: Physical page number 
 Upper 20 bits of physical address 
 4Kbyte page:  PPN bits [31:12] are valid physical page number. 
 16Kbyte page:  PPN bits [31:14] are valid physical page number. 
 1Mbyte page:  PPN bits [31:20] are valid physical page number. 
 16Mbyte page:  PPN bits [31:24] are valid physical page number. 
 
• D: dirty bit 
 Indicates whether a write has been performed to the page. 
 0: written has not been performed 
 1: written has been performed 
 
• B: bufferable bit 
 Indicates whether a page is bufferable or not. 
 0: not bufferable.  
 1: bufferable 
 
• C: cacheable bit 
 Indicates whether a page is cacheable, effective for mapped virtual memory space. 
 0: not cacheable  
 1: cacheable 
 
Arca2 CPU core support four page sizes at the same time, if a big page overlaps with a little 
page, then the translation result of ITLB/DTLB is unpredictable. 
 
Both ITLB and DTLB use round-robin replacement method. When write a new entry to 
ITLB/DTLB, overwrite the entry specified by round-robin pointer, and round-robin pointer add 1 
to next line. If the pointer is 31 now, then the next is 0 in no ITLB/DTLB locked case.  
 
Arca2 CPU core support ITLB/DTLB lock instruction to lock critical ITLB/DTLB entries, the 
locked entries are not overwritten by other virtual address nor invalidated by ITLB/DTLB 
invalidate instruction. Hardware will ignore the lock command if software is trying to lock the last 
entry of TLB, i.e. entry 31 can never be locked. When this happens, the entry will still be written 
into the ITLB/DTLB but the lock will be ignored. 
 
Locked entries in ITLB/DTLB can be discarded by ITLB/DTLB discard configure operation, but 
the entries connot be overwritten until all ITLB/DTLB is unlocked. If a write ITLB/DTLB 
instruction hit a locked entry, then the new physical address and page attributes will be written 
to the hit entry. 
 
 



Memory Manage Unit 

 
 ARCA Technology Corporation  32 

5.5 Address Translation Method 
 
Figure 5-4 and  
Figure 5-5 show flowcharts of memory accesses using the DTLB and ITLB respective. 
 
 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5-4 Flowchart of Data Access Using DTLB 

 
 

Data access  
address_error 

                      Virtual address of data access (VA) 

VA is in 
A4 area 

VA is in 
A2 area 

VA is in A0, 
A3 area 

On-chip I/O or 
JTAG access 

0 

VA is in 
A1 area 

CCR.DCE? 
0 

1 
   VPN and ASID 

    match and V=1? 
 

 DTLB miss  
   exception 

Initial write 
exception 

    Memory access 

D-cache access 

1 

MCR.ATE? 

0 

read/write? 

D? 
0 

1 

Write Read 

Date access command 

C=1 and 
CCR.DCE? 

0 

1 

(1) 

(2) 

A3? 

VPN match  
and V=1? 

 

1 

1 

0 0 

 



Memory Manage Unit 

  
 ARCA Technology Corporation 33 

 
 
 
 
 
 

 

 

 

 

 

 
 
   
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 5-5 Flowchart of Instruction Fetch Using ITLB 

 
Note: 

(1) When instruction or data access, MMU always check address error first (refer to 5.7.2) 
and send address error exception if address error is detected. 

(2) Since Arca2 CPU core uses virtual address D-cache and read access needn’t page 
write protection check, so we will ignore DTLB miss exception when read access hit 
D-cache.  

(3) Since Arca2 CPU core uses virtual address I-cache and fetch instruction needn’t page 
write protection check, we will ignore ITLB miss when fetch hit I-cache. 

 

                          Virtual address of instruction fetch (VA) 

VA is in
A2, A4 area 

VA is in 
A0, A3 area  

0 

1

 

Memory access 

I-cache access 

N 

VA is in 
A1 area  

CCR.ICE? 

0 

1

Fetch insn 
address error 

1 

MCR.ATE? 

0 
C=1 and 

CCR.ICE? 

(1) 

(3) 

   VPN and ASID 
    match and V=1? 

 

0 A3? 

   VPN match  
   and V=1? 

1 

1 

0 0 

ITLB miss 
exception 



Memory Manage Unit 

 
 ARCA Technology Corporation  34 

5.6 Configure Operation 
 

5.6.1 MMU Function 
 
Arca2 CPU core provides configuration interface between MMU and CPU to control MMU 
operation as listed below. All these instructions can be used in privileged mode only. ITLB 
instruction must be placed in unmapped area and at least 4 instructions following it cannot jump 
to mapped area. The first instruction following DTLB instruction cannot access mapped area for 
the consideration of that it may be depend on the result of these instructions.  
 
• Discard TLB: clear V bit of hit entry in ITLB/DTLB. 
• Invalidate TLB: clear all unlocked V bits of ITLB/DTLB. 
• Read/Write TLB: read or write ITLB/DTLB. 
• Lock TLB: write ITLB/DTLB and lock it if the address missed and there are at least two 

unlocked entries. 
• Unlock TLB: unlocked all locked entries in ITLB/DTLB. 
• CST/CLD: Read or write MMU control registers. 
 

5.6.2 MMU Interface Format 
 
The following table lists the detailed format and function of MMU configuration instructions. 
 

Table 5-2 MMU configuration instruction 

  Operation  Code format Function description 
Discard ITLB ITLB #discard, Rb  Search virtual address Rb in ITLB. If hit, clear the hit entry 

as invalid, else do nothing. 

Invalidate ITLB  ITLB #inv, Rb Invalid all unlocked ITLB entries, Rb is ignored. 

Read ITLB  ITLB #read, Rb Read ITLB data to CED: Search virtual address Rb in 
ITLB, if hit, clear 0 to CED.M bit, write the read data (PPN, 
SZ, C) to CED field respective, and CED.D,B bits 
undefined, else, set 1 to CED.M, and other bits undefined. 
 

Write ITLB ITLB #write, Rb Store data reside in CED register to ITLB. Search virtual 
address Rb in ITLB, if hit, fill the full item of ITLB: 
VPN[31:12] from Rb, ASID from ASI register, PPN[31:12], 
SZ, C from CED register, and set 1 to V bit to hit entry, 
else fill them to replaced entry.  
 

Lock ITLB ITLB #lock, Rb Search virtual address Rb in ITLB, if hit, do nothing; if 
miss, fill the full item of ITLB: VPN[31:12] from Rb, ASID 
from ASI register, PPN[31:12], SZ, C from CED register, 
and set 1 to V bit to replaced entry, and lock the entry. 



Memory Manage Unit 

  
 ARCA Technology Corporation 35 

  Operation  Code format Function description 
Unlock ITLB ITLB #unlock, Rb Unlock all locked entries in ITLB. Rb is ignored. 

Discard DTLB  DTLB #discard, Rb Search virtual address Rb in DTLB. If hit, clear the hit 
entry as invalid, else, do nothing. 
 

Invalidate 
DTLB  

DTLB #inv, Rb Invalid all unlocked DTLB entries. Rb is ignored. 

Read DTLB DTLB #read, Rb Read data to CED: search virtual address Rb in DTLB, if 
hit read the physical information (PPN,SZ, D,B,C) to 
register CED, and clear 0 to CED.M bit, else set 1 to 
CED.M bit, other bits is undefined.   
 

Write DTLB DTLB #write, Rb Store data reside in CED register to DTLB: search virtual 
address Rb in DTLB, if hit, write VPN (Rb[31:12]), ASID 
(register ASI), PPN, SZ, D, B, C (register CED), set 1 to V 
bit to the hit entry, else write to replaced entry in DTLB.  

Lock DTLB DTLB #lock, Rb Search virtual address Rb in DTLB, if hit, do nothing; if 
miss, write VPN (Rb[31:12]), ASID (register ASI) valid, 
PPN, SZ, D, B, C (register CED), set 1 to V bit to the 
replaced entry in DTLB, and lock the entry. 

Unlock DTLB DTLB #unlock, Rb Unlocked all locked entries in DTLB. Rb is ignored. 

MMU Configure 
register load 

CLD Ra, #MMU, #CR Read data from MMU registers to Ra. CR holds control 
register’s index number (refer to Table 5-1). 

MMU Configure 
register store 

CST Ra, #MMU, #CR Write data of Ra to MMU registers. CR holds control 
register’s index number (refer to Table 5-1). 

 
Notes: 

1. If the address is unmapped in “Discard”, “Read”, “Write”, and “lock” TLB 
instruction or MCR.ATE is zero, nothing is done. 

2. If MCR.ATE is zero, “invalidate” instruction does nothing. 
 

5.6.3  Code Examples 
 

1. Fill or update a TLB entry is implemented by 2 instructions: 
CCSSTT  RRaa,,  ##MMMMUU,,  ##CCEEDD  !!  RReeccoorrdd  ssoouurrccee  ddaattaa  ((PPPPNN  aanndd  aattttrriibbuutteess))  

!!  iinnttoo  CCEEDD  rreeggiisstteerr  iinn  MMMMUU..  
DDTTLLBB  ##wwrriittee,,  RRbb  !!  RReeaadd  ddaattaa  ffrroomm  CCEEDD  rreeggiisstteerr  aanndd  wwrriittee    



Memory Manage Unit 

 
 ARCA Technology Corporation  36 

!!  ttoo  DDTTLLBB  eennttrryy  ssppeecciiffiieedd  bbyy  RRbb..    
 
2. Read an entry of TLB to check is implemented by 2 instructions: 
  
DDTTLLBB  ##rreeaadd,,  RRbb  !!  RReeaadd  ddaattaa  ffrroomm  DDTTLLBB  lliinnee  ssppeecciiffiieedd  bbyy  RRbb,,  

!!  aanndd  wwrriittee  iinnttoo  CCEEDD  rreeggiisstteerr..    
CCLLDD  RRaa,,  ##MMMMUU,,  ##CCEEDD  !!  rreeaadd  ddaattaa  ffrroomm  CCEEDD  rreeggiisstteerr..  
 
3. lock an entry to DTLB. In order to lock success, discard the entry or invalidate DTLB first. 
 
CCSSTT  RRaa,,  ##MMMMUU,,  ##CCEEDD  !!  RReeccoorrdd  ssoouurrccee  ddaattaa  ((PPPPNN  aanndd  aattttrriibbuutteess))    

!!  iinnttoo  CCEEDD  rreeggiisstteerr  iinn  MMMMUU..  
DDTTLLBB  ##ddiissccaarrdd,,  RRbb  !!  ddiissccaarrdd  tthhee  eexxiisstt  eennttrryy..    
DDTTLLBB  ##lloocckk,,  RRbb  !!  wwrriittee  CCEEDD  rreeggiisstteerr  aanndd  vviirrttuuaall  ppaaggee  nnuummbbeerr  

!!  ttoo  DDTTLLBB  aanndd  lloocckk  tthhiiss  eennttrryy..  
 



Memory Manage Unit 

  
 ARCA Technology Corporation 37 

5.7 MMU exception  
 
There are two kinds of exception in MMU: Data access Fault (D-fault) and Instruction fetch Fault 
(I-fault). The causes for D-fault and I-fault are explained in below: 
 
Data access Fault may be induced by the following causes with priority from high to low:  
• Illegal configure operation 
• Data address error  
• Data TLB miss 
• Data TLB initial page write 
 
Instruction fetch Fault may be induced by the following causes with priority from high to low: 
• Instruction address error  
• Instruction TLB miss  
 
The priority of D-fault causes is higher than that of I-fault causes. When D-fault and I-fault occur 
at the same cycle, only the spot information corresponding to the exception cause with the 
highest priority will be recorded:   
• Store the fault trigger address in MEA. 
• Put the fault cause code into MCR.cause. 
 
The D-fault and I-fault handlers share a common entry in the exception vector table. The 
exception routine needs to consult MCR.cause to further determine the exception service for the 
specific fault cause. There is a one bit (bit 31) in MCR.cause used to distinguish TLB miss or 
not so that the routine may use only two instructions to jump to the service handling TLB miss: 
 
  CLD Ra,  #MMU, #MCR  ; read control register number 0 in DTLB, i.e., MCR 
  BLT Ra, R0, label  ; Ra < 0 means bit 31 of MCR == 1, i.e., TLB miss 
 
The descriptions in below give further explanation for the fault causes. 
 

5.7.1 Illegal configure exception 
 
MMU checks the operation of configure instructions. If the operation is illegal, generates an 
illegal configure exception. Following configure cases are illegal:  
 
• Use privileged CLD/CST command on MMU module in user mode. 
• Use CLD/CST command on unknown module. 
• Use CLD/CST command on unknown control register of MMU module. 
• Use unknown command of ITLB, DTLB, I-cache, and D-cache.  
• Use ITLB, DTLB instruction in user mode. 
• Use I-cache, D-cache invalid, lock and unlock command in user mode. 

 

5.7.2 Address Error 
 
An address error for a fetch or data access occurs in the following cases: 
 
• Instruction fetch address not located on word boundary. 
• Instruction fetch address is other than A0 area in user mode 
• Instruction (load, store, and swap) access address is misalign, that is, accessing a 

word/half-word not located on word/half-word boundary. 



Memory Manage Unit 

 
 ARCA Technology Corporation  38 

• Instruction (load, store, swap, I-cache discard, prefetch instruction, all D-cache user used 
instructions) access memory space other than A0 area in user mode.  

 

5.7.3 TLB  Miss  
 
An ITLB miss occurs when the translation information of instruction fetch address cannot be 
found in the ITLB. A DTLB miss occurs when the translation information of data access address 
cannot be found in the DTLB. 
 
Except normal load, store, and swap accessing, following D-cache instructions may occur DTLB 
miss too, if the address translation information cannot be found in DTLB: 
• D-cache prefetch (only when D-cache miss first) 
• D-cache allocation (only when D-cache miss first) 
• D-cache p-lock (only when D-cache miss first) 
• D-cache a-lock (only when D-cache miss first) 
 
Except normal instruction fetch, I-cache prefetch and p-lock instruction will occur ITLB miss too, 
if the address missed in I-cache and translation information cannot be found in ITLB. 
 

5.7.4 Initial Page Write 
 
Initial page write is an exception of store (swap) access only. An initial page write for a store 
(swap) access occurs when, even though a DTLB entry contains the required address 
translation information, but the page attribute D is 0, which means no write has been performed 
to the current page.  



  Cache 

  
 ARCA Technology Corporation 39 

 

6 Cache 
 

6.1 Overview 
 
Arca2 CPU core supports a Harvard structural one level cache (a respective instruction cache 
and data cache). Each has 8K bytes capacitance, and the cache line size is 8-word (32 bytes). 
Each line of the data cache has two dirty bits to specify the dirty situation of the datum in the 
upper and lower half line respectively. This document delineates the detail common 
specifications and especial features of the cache embedded in Arca2 CPU core. Please note 
that in Arca2 technical documents, data cache is abbreviated to D-cache, and instruction cache 
is abbreviated to I-cache. 
 
To further reduce the memory access latency, Arca2 CPU core provides a 4-line X 4-word/line 
write buffer. 
 

6.1.1 Cache Feature 
 

Table 6-1 Cache Feature 

Item Features 
Capacity 8 kilo bytes for I-cache and 8 kilo bytes for D-cache 
Structure 32-way set associative 
Line Size 32 bytes per line 
Sets 8 sets 
Write policy Programmable WB (write back) and WT (write through) in D-cache 
Write buffer 4 lines, 4 word per line in D-cache. 
Hit algorithm  Virtual tag comparison 
Replace method Round-robin 
Lock Support lock and unlock function 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Cache 

 
 ARCA Technology Corporation  40 

6.2 Register Configuration 
 
There is one control register named CCR to control the functional option of cache. Software can 
use CLD/CST instruction to access the register. The configuration of CCR shows in following 
figure. 
 

#ID=000  #CR=101 
 

Bit: 31 … … … … … … … …  12 11 10 9 8 
Read:        
Write:        
Reset: 0 0 0 0 0 0 0 

 
Bit: 7 6 5 4 3 2 1 0 

Read:  
Write:  

ICE DCE A3C A3B A2B A1B A0B 

Reset: 0 0 0 0 0 0 0 0 
 
Bit 31 ~ 7: Reserved bits, ignored in write operation, always 0 in read operation. 
 
– Bit 0 A0B: Bufferable bit for A0 areas. 1: bufferable  0: unbufferable. 
 
– Bit 1 A1B: Bufferable bit for A1 area. 1: bufferable  0: unbufferable. 
 
– Bit 2 A2B: Bufferable bit for A2 area. 1: bufferable  0: unbufferable. 

 
– Bit 3 A3B: Bufferable bit for A3 area. 1: bufferable  0: unbufferable. 
 
– Bit 4 A3C: Cacheable bit for A3 area in direct map mode. 0: Uncacheable, 1: Cacheable 
 
– Bit 5 DCE: D-cache enable. 0: Disable D-cache, 1: Enable D-cache 
 
– Bit 6 ICE: I-cache enable. 0: Disable I-cache, 1: Enable I-cache  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  Cache 

  
 ARCA Technology Corporation 41 

6.3 Data Cache and Write Buffer 
 
Arca2 CPU core has one virtual tagged D-cache and one write buffer tightly combined with D-
cache. Manipulation of D-cache and write buffer are controlled by the C (cacheable) and B 
(bufferable) fields of page table item resided in the DTLB, or by CCR.DCE and CCR.AxB, bits 
for direct map mode (MMU.ATE=0). Please refer to the MMU specification for address space 
partition definition, page table attribute specification and the CCR (Cache Control Register) 
contents description. 
 
Combination cases of C and B attributes of page table item are listed in the below:  
 

Table 6-2 Cacheable and Bufferable attribute of one page 

                      Virtual address area MCR.ATE    Attribute 

A1 A2 A3 A0 A4  

Cacheable CCR.DCE 0 
CCR.DCE& 
PT.C *1 

CCR.DCE
& PT.C *1 

0 
1 

Bufferable CCR.A1B CCR.A2B PT.B *1 PT.B *1 0 

Cacheable CCR.DCE 0 
CCR.DCE & 
CCR.A3C 

CCR.DCE 0 
0 

Bufferable CCR.A1B CCR.A2B CCR.A3B  CCR.A0B  0 

 
Note: *1 PT.C and PT.B represents the C and B attributes of page table item. 

In above table, value 1 represnts active state, while value 0 repsents inactive state. 
 
Table 6-3 describes D-cache and write buffer manipulation policy for cacheable and bufferable 
attribute of accessed address. From cache viewpoint, page attribute is invisible, cache only 
cares the attribute of the accessed address. 
 

Table 6-3 D-cache and Write Buffer Policy 

Cacheable Bufferable Policy 
0 0 Non-cached, and non-buffered 
0 1 Non-cached, and write data are buffered 
1 0 Cached in write through(WT) policy, the write datum is buffered 
1 1 Cached in write back(WB) policy, the replaced data are buffered 

 
Notes: 
1. when A3C, A3B, A1B, or A0B of CCR are modified, all instructions that are loacated in the 

affected areas should be DISCARDED, and all data that are loacated in the affected areas 
should be DISCARDed or FLUSHed from DCACHE.  

2. When PPN, C-bit  of an ITLB entry is changed, all instructions  that are loacated in the page 
should be DISCARDed.  

3. When PPN, C-bit, D-bit or B-bit of an DTLB entry is changed, all data that are loacated in 
the page should be DISCARDed or FLUSHed. 

Otherwise, unpredictable results may occur.  
 



Cache 

 
 ARCA Technology Corporation  42 

6.3.1 D-cache Structure 
 
The data cache is a 8-Kbyte, 32-way set associative cache. Following figure shows the 
structure of D-cache: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-1 Data Cache Structure 

 
The Figure 6-1 shows that there are 8 sets with each set containing 32 ways. Each way of a set 
contains 32 bytes (one cache line) and one valid bit. There also exist two dirty bits for every line, 
one for the lower 16 bytes and the other one for the upper 16 bytes. When a store hits the 
cache in write-back mode, one of the dirty bits associated with the hit line is set. The 
replacement policy is a round-robin algorithm. 
 
Figure 6-1 shows the cache organization and how the data address is used to access the cache. 
 

6.3.2 Cacheable Access Operation 
 
After power-on reset, D-cache is disabled and all lines are invalid, it cannot be used until system 
initializes it. Set value 1 to CCR.DCE can enable D-cache. Please note that the write buffer 
cannot be disabled and serves only for bufferable or cacheable address areas. Refer to Table 
6-2 and Table 6-3 for detail definition about address B (bufferable) and C (cacheable) attributes. 

way0 32 bytes (cache line) 
way1  

 
 

CAM 

 
 

DATA 

way31  

V 
V 

V 

D[1:0] 

D[1:0] 

D[1:0

way0 32 bytes (cache line) 
way1  

 
 

CAM 

 
 

DATA 

way31  

V 
V 

V 

D[1:0] 

D[1:0] 

D[1:0

Set 0 

Set 1 

Set 7 

Set Index 

Set 0 is selected 
in this example 
by set index. 

ASID + Tag 

Byte alignment 
 

0

ASID: address 
space identifier. 

Set in ASI register 
of MMU 

Word 
select 

Byte select 

CAM: Content Addressable 
Memory 

Data address (virtual) 

Tag Set Index Word Byte 

2 1458931 
Data word 

way0 32 bytes (cache line) 
way1  

 
 

CAM 

 
 

DATA 

way31  

V 
V 

V 

D[1:0] 

D[1:0] 

D[1:0] 



  Cache 

  
 ARCA Technology Corporation 43 

In later chapters, acronyms NB, NC, B and C are used to represents non-bufferable, non-
cacheable, bufferable and cacheable. When D-cache is enabled, access cacheable memory 
may hit or miss D-cache. Following sections describe D-cache access hit/miss operation. 
Please note that Arca2 CPU core D-cache cache-line fill operation needs an 8-word (32 
continuous bytes) wraparound burst read, while the cache write-back operation needs a 4-word 
(16 continuous bytes) wraparound burst write.  
 

6.3.2.1  Read Access 
 
Read Hit: When read access hits D-cache, the hit datum is transported from D-cache to CPU. 
 
Read Miss: When reading D-cache misses, the write buffer should be searched first.  
If the missed physical address (ignore the lowest 5 bits) hits the write buffer, the expected 
cache-line fill operation has to wait until the write buffer drains the hit line. Then the missed line 
aligned at 8-word boundary that contains the missed datum can be burst read from external 
memory and filled into D-cache.  
As a contrast, failed search in the write buffer incurs an external memory burst read access 
immediately.  
Moreover, if the replaced line calculated by round-robin algorithm contains dirty data, the dirty 
half line or all line will be backup to the write buffer, which is called WBB (write back to buffer). 
After D-cache completes the fill process, the final write back operation mandated by the write 
buffer due to preceding WBB (if exist) will be manipulated implicitly.  
Please note that the leadoff datum (word granularity) returned from external memory must be 
the one that triggers the miss operation and expected by CPU, and the other data filling in the 
background of CPU if no memory access or core configure instruction during the duration 
 

6.3.2.2 Write Access 
 
Arca2 CPU core data cache supplies the write without allocate  strategy for WT access, and 
write with allocate  strategy for WB access. Write operation needs at least two cycles (hit D-
cache or miss in WT mode), but if no memory access or core configure instruction following it, 
the write finished in backend to CPU. 
 
Write Hit (WB policy): the hit datum is only written to D-cache, no external memory access 
request is asserted. Value 1 should be set to the correlative dirty bit that represents the dirty 
situation of the correlative half line (upper or lower according to the accessed address). 
 
Write Hit (WT policy): the hit datum is written to D-cache, meanwhile it is written to the write 
buffer, and the datum buffered in the write buffer will be written to external memory later. In the 
case, the dirty bit is cleaned. 
 
Write Miss (WB policy): When a write miss occurs, the write buffer should be searched first. If 
the missed address (ignore the lowest 5 bits) hits the write buffer, the cache-line fill operation 
has to wait until the write buffer drains the hit line. Then the missed line aligned at 8-word 
boundary that contains the missed datum can be burst read from external memory and filled 
into D-cache. As a contrast, failed search in the write buffer incurs an immediately external 
memory burst read access. Moreover, if the replaced line calculated by round-robin algorithm 
contains dirty data, the dirty half line or all line will be backup to the write buffer. Similar to read 
miss, a WBB (if exist) causes the write buffer to perform a write back operation implicitly. Please 
note that the missed datum (word granularity) should be returned from external memory first, 
and is stuffed to D-cache after being coalesced with the new write datum issued by CPU. Value 
1 should be set to the correlative upper or lower dirty bit field of the filled line according to the 
accessed address. 
 



Cache 

 
 ARCA Technology Corporation  44 

Write Miss (WT policy): When a write miss occurs in WT mode, the missed datum is just 
stored to the write buffer, and is written to the external memory later by the write buffer.  
 

6.3.3 Non-cacheable Access Operation 
 
When D-cache is disabled, access operation does not look up D-cache. However, in the case 
that D-cache is enabled and the accessed address is non-cacheable, software must ensure that 
the address does not exist in the D-cache. Otherwise, the access result is unpredictable. 
 

6.3.3.1 Read Access 
 
When the write buffer is empty, assert a single beat read request to the external memory 
immediately, otherwise, assert the read request after write buffer drains. 
 

6.3.3.2 Write Access 
 
When the accessed address is B, the write datum is stored to the write buffer without directly 
asserting single beat write request to the external memory. When the accessed address is NB, 
the write buffer should be scanned first. If the scanning result shows that the write buffer is not 
empty, it has to wait until the write buffer drain that the write request can be asserted. Otherwise, 
the write request is immediately asserted.  
Write operation needs at least two cycles (bufferable and write buffer is not full), but if no 
memory access or core configure instruction following it, the write finished in backend to CPU. 
 

6.3.4 Write Buffer 
 
Arca2 CPU core has one four-level FIFO type write buffer, it always attempts to send buffered 
data to the external memory as long as the external bus is idle until it evicts all the buffered data. 
The write buffer can overlap some memory access latency with CPU core’s pipeline operation. 
However, the performance enhancement derived from the write buffer tightly depends on the 
code optimization and the cache hit rate. In general, interspersing store instructions in the code 
stream is better than issuing such instructions in bulk. For cacheable memory access, higher 
cache hit rate (both I-cache and D-cache) is helpful to overlap writing external memory latency. 
Arca2 CPU core write buffer supports following operations: 
 
• Buffer the replaced half lines that contain dirty data (these data should be written back to 

the external memory) until the external bus is usable. 
 
• Buffer the write datum until the external bus is usable if the address is with WT policy or 

with NC and B attribute. 
 
• Empty itself to ensure that all the buffered data arrive to the external memory before a new 

access request issued by CPU, which is called flushing write buffer  
 

• An uncacheable read/swap or uncacheable & unbufferable write will empty the write buffer 
before access external memory. 

 



  Cache 

  
 ARCA Technology Corporation 45 

6.4 Instruction Cache 
 
Arca2 CPU core has one virtual tagged and physical indexed I-cache. Following figure shows 
the configuration of I-cache. The instruction cache is a 8-Kbyte, 32-way set associative cache. 
Each way of a set contains 32 bytes (one cache line) and one valid bit. The replacement policy 
is round-robin algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-2 Instruction Cache Structure 

 

6.4.1 Fetch Operation 
 
When I-cache is enabled (CCR.ICE = 1) and the fetch address is cacheable, every requested 
instruction is searched in the I-cache.  
 
Fetch hit: A fetch hit occurs when the requested instruction is found in the I-cache, the hit 
instruction is returned to CPU.  
 
Fetch miss: A fetch miss occurs when the requested instruction is not found in the I-cache. 
When this occurs, I-cache sends a fetch request to the external memory, and 8 words aligned at 
32-byte boundary would be burst read back, like D-cache fill operation, the missed instruction 
should be returned first. The following fetch may hit the filling data or hit I-cache under the last 
filling process. 
 
When I-cache is disabled (CCR.ICE = 0) or the fetch address is non-cacheable, each fetch 
request need fetch one instruction (word granularity) from the external memory. 

way0 32 bytes (cache line) 
way1  

 
 

CAM 

 
 

DATA 

way31  

V 
V 

V 

way0 32 bytes (cache line) 
way1  

 
 

CAM 

 
 

DATA 

way31  

V 
V 

V 

Set 0 

Set 1 

Set 7 

Set Index 

Set 0 is selected 
in this example 
by set index. 

ASID + Tag 

0

ASID: address 
space identifier. 

Set in ASI 
register of MMU 

Word 
select 

CAM: Content Addressable 
Memory 

Data address (virtual) 

Tag Set Index Word 

2 1458931 

Instruction word 

way0 32 bytes (cache line) 
way1  

 
 

CAM 

 
 

DATA 

way31  

V 
V 

V 



Cache 

 
 ARCA Technology Corporation  46 

6.5 Prefetch Operation 
 
Arca2 CPU core supports prefetching data into D-cache. It is a backend action, that is, once 
CPU successfully issues a prefetch instruction, pipeline should go on without waiting prefetched 
data being filled into D-cache. Please note that any data access fault caused by prefetch must 
be handled like the normal load type instruction. During prefetching period, any new memory 
access instruction or core configure instruction will have to wait until prefetching finish. So the 
sophisticated Interspersing of the prefetch instructions can reduce D-cache miss rate. Because 
the prefetched data are in the cacheable memory and will be accessed by CPU soon In 
essence, such manipulation is used to get high cache hit rate and overlap external memory 
access latency.  
Arca2 CPU core supports prefetching instruction into I-cache too. It is a backend action, and 
following fetch can hit I-cache or hit the filling data. But I-cache and D-cache access the same 
external memory, so we need be care for avoid data access and instruction fetch access 
external memory at the same time for the higher performance. 
 



  Cache 

  
 ARCA Technology Corporation 47 

6.6 SWAP Operation 
 
When CPU issues a swap instruction, which results in a read operation followed by a write 
operation. And the two operations are in-dividable, in another word, they are combined into an 
atomic operation. According to the combinatorial case of C and B attribute of the swapped 
address, following actions maybe performed: 
 
• C&B: The operation is similar to a write access with WB policy, except the original datum in 

the swapped address (may be in the D-cache or in the memory) should be returned to CPU 
before being updated by the write operation. 
 

• C&NB: When the read operation hits D-cache, the hit datum is returned to CPU from D-
cache, then D-cache and write buffer is updated by the write operation. When the read 
operation misses D-cache, after the write buffer drains, the coupled read/write operation is 
asserted to external bus, and the correlative bus controller must ensure that it is an atomic 
operation, note that no fill operation here and D-cache is not updated in this case. 
 

• NC&B: The coupled read/write operation is asserted to external bus after the write buffer 
drains, and the correlative bus controller must ensure that it is an atomic operation. 
 

• NC&NB: The coupled read/write operation is asserted to external bus after the write buffer 
drains, and the correlative bus controller must ensure that it is an atomic operation. 
 
 



Cache 

 
 ARCA Technology Corporation  48 

6.7 Alias Solution 
 
Alias occurs when multiple virtual addresses map to a same physical address. When cache is 
virtual tagged or virtual indexed, such aliases are illegal because without taking any special 
correcting method, updating one alias cache line will not be snooped by other associative alias 
cache lines. Hence, data coherency problem may arise when accessing other untouched alias 
lines later. 
 
Arca2 CPU core automatically solves the alias problem by hardware, in detail, for D-cache, it 
ensures that only one copy of contents in a physical memory region exists in the D-cache at any 
time for associative alias lines. But if the virtual memory system is in direct mapping mode, the 
alias of A0 area for different ASID isn’t solved. And D-cache DISCARD, FLUSH, WRITE_BACK 
commands don’t check alias hit, because any alias hit command will clean (write back dirty data) 
the hit line. 
 
For I-cache, maybe more than one copy of contents in a physical memory region exists, 
fortunately, as the I-cache is read only, no data coherency problem delineated before may be 
triggered. However, memory coherency problem still exists among I-cache, D-cache, write 
buffer and external memory. Thus, software has to make careful management. 
 



  Cache 

  
 ARCA Technology Corporation 49 

6.8 Coherency Between Cache And External  Memory 
 
Software must ensure data coherency between the cache and the memory. For the cacheable 
memory shared by Arca2 CPU core and another device, the latest modified data may be 
recorded in D-cache, or in the shared memory. 
 
• To guarantee the data coherency when the latest modified data resided in D-cache, flush 

the crucial D-cache lines, if some lines are dirty, write back operations are generated then. 
Otherwise, these lines are simply abandoned. Flush write buffer is necessary before the 
shared crucial data can be accessed from memory. 
 

• To guarantee the data coherency when the latest modified data resided in the shared 
cacheable memory, just invalidate the associated lines in the I-cache or D-cache. 

 
Moreover, coherency problem between I-cache and D-cache can also be solved by above two 
methods. 
 



Cache 

 
 ARCA Technology Corporation  50 

6.9 Cache replacement and lock function 
 
Arca2 CPU core I-cache and D-cache use round-robin replacement method. Every cache set 
has a replace pointer. When cache need allocate a new line, the new address will overwrite the 
line specified by the replace pointer, and replace pointer add 1 to specify the next line. If current 
pointer is 31, then next is 0 in no locked line case. 
  
Instructions and data can be locked in I-cache and D-cache so that they cannot be overwritten 
by linefill. This operates with a granularity of one line, that is 8 words (32 bytes).  
 
Software has the ability to lock performance critical routines into the instruction cache. Up to 31 
lines in each set can be locked. Hardware will ignore the last lock command if software is trying 
to lock all lines in a particular set, i.e. way 31 can never be locked.  
 
When use ICACHE/DCACHE lock instruction to lock one address to CACHE, it must be sure 
that the address must miss in ICACHE/DCACHE. If the address of lock command had existed in 
ICACHE/DCACHE, the result of ICACHE/DCACHE lock instruction is unpredictable. So before 
lock ICACHE/DCACHE, it is better to use ICACHE/DCACHE discard or invalidate instruction to 
clear the address from ICACHE/DCACHE.  
 
The locked line can be discard, write back, and flush, but the hole in locked area after doing 
discard and flush cannot be filled with new line unless unlock operation is done. 
ICACHE/DCACHE invalidate instruction will not clear the locked line. 
 
Please note that DCACHE discard, write back, and flush instruction do not check alias hit, but 
P-lock and A-lock instruction need check alias hit, and the result is unpredictable if P-lock or A-
lock instruction alias hit DCACHE. When read, write, swap, prefetch, and allocate instruction 
alias hit a locked line, it will change the locked virtual tag in DCACHE and write back dirty data 
of the line. 
 
ICACHE/DCACHE unlock instruction used to unlock all the locked lines in ICACHE/DCACHE. 
 



  Cache 

  
 ARCA Technology Corporation 51 

6.10 Cache Configuration 
 
Cache configure instructions is used to serve the OS development or application program 
optimization. Such operations use the instruction format: ICACHE CMD, Rb, S10 and DCACHE 
CMD, Rb, S10. Please refer to Arca2 ISA for detail information.  
 

6.10.1 Operation List 
 
Table 6-4 list all the operations to D-cache and I-cache through the core module interface of 
Arca instruction set. 
 

Table 6-4 Cache Operations 

Operation  Code  Function description 
Discard 
one  
I-cache 
line 

ICACHE #discard, Rb, S10 Discard specific line in the I-cache. An expected 
instruction virtual address (Rb + S10<<2) is sent to 
I-cache, if it hits I-cache, the hit line is invalidated, 
otherwise, nothing is done. 

Invalidate  
I-cache  

ICACHE #inv, Rb, S10 Invalidate all unlocked I-cache lines, Rb and S10 
are ignored. This operation is only permitted in 
supervisor mode, in user mode, issuing the 
instruction will trigger a protection fault. 

Prefetch I-
cache 

ICACHE #prefetch, Rb, 
S10 

Fetch specified line to I-cache. Search virtual 
address (Rb + S10<<2) in I-cache, if hit, do nothing, 
else allocate a new line for fill it from external 
memory. 

Prefetch 
and lock 
one  I-
cache line 

ICACHE #p-lock, Rb, S10 Fetch specific line to I-cache and lock it. Search 
virtual address (Rb + S10<<2) in I-cache, if hit, do 
nothing, else allocate a new line for fill it from 
external memory and locked it. This operation is 
only permitted in supervisor mode, in user mode, 
issuing the instruction will trigger a protection fault. 

Unlock all 
locked line 
in I-cache 

ICACHE #unlock, Rb, S10 Unlock all locked lines in I-cache. These lines will 
be overwritten when I-cache miss later. This 
operation is only permitted in supervisor mode, in 
user mode, issuing the instruction will trigger a 
protection fault. 

Prefetch 
one data 
line 

DCACHE #pfd, Rb, S10 If specific cacheable virtual address (Rb + S10<<2) 
hits D-cache, nothing is done; if the address alias 
hit D-cache, write back dirty data of the hit line and 
mark the line with clean label; otherwise, allocate 
one line for the address and load the associated 
data from external memory. 

Discard 
one  
D-cache 
line 

DCACHE #discard, Rb, 
S10 

If specific cacheable virtual address (Rb + S10<<2) 
hits D-cache, the hit line is invalidated; otherwise, 
nothing is done. Please be cautious to use the 
function because it does not write back any dirty 
data. 

Invalidate  
D-cache  

DCACHE #inv, Rb, S10  Invalidate all unlocked D-cache lines, Rb and S10 
are ignored. Be cautious to use the function 
because it does not write back valid dirty lines. This 
operation is only permitted in supervisor mode, in 
user mode, issuing the instruction will trigger a 



Cache 

 
 ARCA Technology Corporation  52 

protection fault. 

Flush one    
D-cache 
line 

DCACHE #flush, Rb, S10 If specific cacheable virtual address (Rb + S10<<2) 
hits D-cache, invalidate the hit line, moreover, if the 
line is dirty, the dirty upper or/and lower half lines 
should be written back to external memory. If the 
address miss D-cache, nothing is done. 

Write back 
one dirty 
line 

DCACHE #wb, Rb, S10 If specific cacheable virtual address (Rb + S10<<2) 
hits D-cache and the hit line is dirty, then write back 
the dirty upper or/and lower half lines, then set 0 to 
the dirty bit field of the hit line. If the address misses 
D-cache or the hit line is not dirty, nothing is done. 

Allocate 
one  
D-cache 
Line 

DCACHE #alloc, Rb, S10 If specific virtual address (Rb + S10<<2) hits D-
cache, nothing is done. If the address alias hits D-
cache, write back dirty data of the line and mark the 
line with clean label. Otherwise, allocate one line for 
the address directly and do not load associated 
data from external memory. Moreover, if the 
allocated line calculated by round-robin algorithm 
has valid dirty data, they will be written back to 
external memory before allocation. Please note that 
after allocation, some valid data must be written to 
the line before read, otherwise, the read datum is a 
random value.  

Allocate 
and lock 
one D-
cache line 

DCACHE #a-lock, Rb, S10 Allocate a new line in D-cache and lock it. Search 
virtual address (Rb + S10<<2) in D-cache, if hit, do 
nothing; if the address alias hit D-cache, write back 
dirty data of the hit line and mark the line with clean 
label; otherwise allocate one line for the address 
directly and needn’t load associated data from 
external memory then lock it. This operation is only 
permitted in supervisor mode, in user mode, issuing 
the instruction will trigger a protection fault. 
Moreover, if the allocated line calculated by replace 
algorithm has valid dirty data, they will be written 
back to external memory before allocation. Please 
note that after allocation, some valid data must be 
written to the line before read, otherwise, the read 
datum is a random value. 

Prefetch 
and lock 
one  D-
cache line 

DCACHE #p-lock, Rb, S10 Fetch specified line to D-cache and lock it. Search 
virtual address (Rb + S10<<2) in D-cache, if hit, do 
nothing; if the address alias hit D-cache, write back 
dirty data of the hit line and mark the line with clean 
label; otherwise allocate a new line for fill it from 
external memory and lock it. This operation is only 
permitted in supervisor mode, in user mode, issuing 
the instruction will trigger a protection fault. 
Moreover, if the allocated line calculated by replace 
algorithm has valid dirty data, they will be written 
back to external memory before fill. 

Unlock all 
locked 
lines in D-
cache 

DCACHE #unlock, Rb, S10 Unlock all locked lines in D-cache. These lines will 
be replaced when D-cache miss later. This 
operation is only permitted in supervisor mode, in 
user mode, issuing the instruction will trigger a 



  Cache 

  
 ARCA Technology Corporation 53 

protection fault. 

Flush 
write 
buffer 

DCACHE #flush-buf, Rb, 
S10 

Evict all buffered data in the write buffer to external 
memory until it is empty, Rb and S10 are ignored. 

 
Notes:  

• Except invalidat, p-lock, a-lock, unlock I-cache/D-cache, issuing other cache 
instructions in user mode is valid. Moreover, address protection mechanism (refer to 
MMU exception section for detail) is also suitable for those cache instructions. 

• Prefetch, allocate, p-lock, and a-lock operation only can be performed when the 
expected address has cacheable attribute. 

• Discard, flush and write back operation issued by specific cache instructions do not 
care the cacheable attribute of the expected address. Hence, it had better flush the 
correlative D-cache lines of a page before adjust its C attribute in the page table, 
otherwise, some unpredictable result may be triggered. 

 

6.10.2 Code Examples  
 

6.10.2.1 Discard one D-cache line 
 
If some dirty data in D-cache are useless later, they can be discarded directly. Such operation 
does not trigger any write back action, which can reduce bus traffic and enhance the program 
executing efficiency in some special applications.  
 
DDCCAACCHHEE  ##ddiissccaarrdd,,  RR33,,  00  !!  RR33  ccoonnttaaiinnss  tthhee  eexxppeecctteedd  aaddddrreessss  
 

6.10.2.2 Invalidate D-cache 
 
DDCCAACCHHEE  ##iinnvv,,  RR00,,  00  !!  IInnvvaalliiddaattee  aallll  uunnlloocckkeedd  DD--ccaacchhee  lliinneess..    

!!  AAfftteerr  tthhee  iinnssttrruuccttiioonn  eexxeeccuuttiinngg,,  oonnllyy    
!!  tthhee  lloocckkeedd  aaddddrreessss  ccaann  hhiitt  tthhee  DD--ccaacchhee..    
!!  TThhee  ffuunnccttiioonn  ccaann  bbee  uusseedd,,  ffoorr  iinnssttaannccee,,    
!!  ttoo  eennssuurree  ddaattaa  ccoohheerreennccyy  ooff  sshhaarreedd    
!!  mmeemmoorryy  wwiitthh  WWTT  aattttrriibbuuttee  

  

6.10.2.3 Flush one D-cache line 
 
 Flush dirty line in D-cache to enforce the dirty data to be written back to external memory and 
filled from external memory in next access.  
 
DDCCAACCHHEE  ##fflluusshh,,  RR33,,  00  !!  RR33  ccoonnttaaiinnss  tthhee  eexxppeecctteedd  aaddddrreessss,,  fflluusshh    

!!  vvaalliidd  ddiirrttyy  lliinnee  ccaann  iinnccuurr  wwrriittee  bbaacckk    
!!  ooppeerraattiioonn,,  wwhhiicchh  eennffoorrccee  tthhee  mmeemmoorryy    
!!  sseeccttiioonn  aassssoocciiaatteedd  wwiitthh  tthhee  fflluusshheedd    
!!  ddiirrttyy  lliinnee  ttoo  bbee  uuppddaatteedd  bbyy  ddiirrttyy  ddaattaa  

 



Cache 

 
 ARCA Technology Corporation  54 

6.10.2.4 Write back dirty line 
 
Following code sequence attempts to write back a valid dirty line to external memory, and make 
it as a valid clean line again. 
 
DDCCAACCHHEE  ##wwbb,,  RR33,,  00    !!  RR33  ccoonnttaaiinnss  tthhee  eexxppeecctteedd  aaddddrreessss  
  

6.10.2.5 Allocate D-cache line 
 
This command can be used in following two cases: 
 

• Allocate a line in the D-cache, which associative address will be accessed by store type 
instruction first, and the original contents in the address are not concerned at all. For instance, 
when stack is cacheable, use the function to allocate some new stack space in the D-cache 
before push some never cached data, which can reduce stack push load evidently. Be care for 
the granularity of allocating is one line of the D-cache, which are 8 words (32 bytes). 

 
• Evict all dirty data in D-cache back to external memory during context switching. In Arca2 CPU 

core, following codes can clean all unlocked data in D-cache: (It is better to use an unmapped 
address as s_addr. If the lowest 11 bits are all zero, two ORI instructions in following codes 
can be removed. Because the branch instruction will lost a cycle in Arca2 CPU core, you can 
unroll the loop by using DCACHE #alloc, R1, S10 to improve the performance.) 

 
LLHHII  RR11,,  ((ss__aaddddrr>>>>1111))  
OORRII  RR11,,  RR11,,  ((ss__aaddddrr  &&  00xx77ffff))  
LLHHII  RR22,,  ((((ss__aaddddrr++00xx22000000))>>>>1111))  
OORRII  RR22,,  RR22,,  ((((ss__aaddddrr++00xx22000000))  &&  00xx77ffff))  

AALLPP::  
DDCCAACCHHEE      ##aalllloocc,,  RR11,,  00  
AADDDDII          RR11,,  RR11,,  3322  
BBNNEE            RR11,,  RR22,,  AALLPP  
DDCCAACCHHEE      ##iinnvv,,  RR00,,  00  

 

6.10.2.6 Flush write buffer 
 
Consider a code runtime modification application, before branching to the dynamically 
generated code section, it had better flush D-cache and write buffer to synchronize the memory 
contents, because the fresh generated code maybe still buffered in the write buffer. And then 
discard the address in I-cache to force it fill from external memory. 
 
DDCCAACCHHEE  ##fflluusshh,,  RR44,,  00  
IICCAACCHHEE  ##ddiissccaarrdd,,  RR55,,  00  
DDCCAACCHHEE  ##fflluusshh--bbuuff,,  RR66,,  00  
JJAA  RR11,,  RR22,,  00    !!  RR22  ccoonnttaaiinnss  bbrraanncchh  ttaarrggeett  

!!  RR11  ccoonnttaaiinnss  rreettuurrnneedd  aaddddrreessss  
  

6.10.2.7 Discard I-cache line 
 
If a segment of instruction has been modified in main memory, we need update the new 
instruction to I-cache, i.e. we should discard the old copy of the segment in I-cache. The 
following code sequence discards a segment of instruction code in I-cache:  
 



  Cache 

  
 ARCA Technology Corporation 55 

LLOOOOPP::  
IICCAACCHHEE  ##ddiissccaarrdd,,  RR33,,  00  !!  RR33  ccoonnttaaiinnss  tthhee  aaddddrreessss  ooff  iinnvvaalliiddaatteedd    

!!  ccooddee  
AADDDDII  RR33,,  RR33,,  ##3322    !!  lleett  RR33  ppooiinntt  ttoo  nneexxtt  lliinnee  
BBLLEE  RR33,,  RR44,,  ##LLOOOOPP  !!  RR44  ccoonnttaaiinnss  tthhee  eenndd  aaddddrreessss  
  

6.10.2.8 Invalidate I-cache 
 
If there are more instructions have been modified in main memory, we can use ICACHE 
#invalidate instruction to discard all unlocked copy in I-cache to improve the performance of 
discard. 
 
IICCAACCHHEE  ##iinnvv,,  RR00,,  00    !!  IInnvvaalliiddaattee  aallll  uunnlloocckkeedd  II--ccaacchhee  lliinneess..  

!!  AAfftteerr  tthhee  iinnssttrruuccttiioonn  eexxeeccuuttiinngg,,  
!!  oonnllyy  lloocckkeedd  aaddddrreessss  ccaann  hhiitt  II--ccaacchhee.  
 

6.10.2.9 Lock cache 
 
We can use cache lock instruction to lock critical instruction or data into I-cache or D-cache to 
improve the performance. Following codes give an example to lock a segment critical instruction 
to I-cache. 
 
LLHHII  RR33,,  ((ss__aaddddrr  >>>>  1111))  
OORRII  RR33,,  ((ss__aaddddrr  &&  00xx77ffff))  !!  llooaadd  ssttaarrtt  aaddddrreessss  ooff  ccrriittiiccaall    

!!  ccooddee  ttoo  RR33  
LLHHII  RR44,,  ((ee__aaddddrr  >>>>  1111))  
OORRII  RR44,,  ((ee__aaddddrr  &&  00xx77ffff))  !!  llooaadd  eenndd  aaddddrreessss  ooff  ccrriittiiccaall  ccooddee    

!!  ttoo  RR44  
IICCAACCHHEE    ##iinnvv,,  RR00,,  00    !!  iinnvvaalliiddaattee  II--ccaacchhee  ttoo  mmaakkee  ssuurree    

!!  tthhee  ccrriittiiccaall  iinnssttrruuccttiioonn  aaddddrreessss    
!!  wwiillll  mmiissss  iinn  II--ccaacchhee  ffiirrsstt..  

LLOOOOPP::  
IICCAACCHHEE    ##lloocckk,,  RR33,,  00        
AADDDDII  RR33,,  RR33,,  ##3322      !!  lleett  RR33  ppooiinntt  ttoo  nneexxtt  lliinnee  
BBLLEE  RR33,,  RR44,,  ##LLOOOOPP  

  
 
 



Debug and JTAG 

 
 ARCA Technology Corporation  56 

7 Debug and JTAG 
 

7.1 Overview 
 
Generally software debugger should modify program memory in order to insert breakpoints. The 
breakpoint can be either a real breakpoint instruction or an illegal instruction, which can trigger 
break or illegal-instruction exception. When this kind of instructions is encountered the 
debugged program is stopped and the debugger accepts the control right from it. Additional 
external hardware tools can supplement these basic mechanisms, such as logic analyzers and 
in-circuit emulators (ICEs) for additional control and information about program execution. 
  
Although this model of debug works well for many sorts of system, it has the following 
shortcomings if the system to be debugged is a highly-integrated design: 
 
• System-On-a-Chip (SOC) component design no longer provides an external interface to the 

processor pin-out or system bus, making the use of logic analyzers and ICEs difficult or 
impossible. 

 
• Debugging based on the insertion of software breakpoint instructions assumes that 

programs reside in RAM. It is impractical for fully ROM-based systems and assuming 
support in the O/S for these techniques. 

 
• For consumer electronic applications, a communication port like Ethernet or RS-232 serves 

no purpose beyond software debug and adds disproportionately to the cost and size of the 
design. 

 
• The ROM necessary to support a debug monitor on a consumer electronic application could 

add unacceptable costs. 
 
The Debug module with extended JTAG supplements the ARCA architecture in dealing with 
these problems. The processor can be tied into a JTAG scan chain and comprehensively 
debugged using an external JTAG probe connected to the system’s JTAG TAP interface. 
 
The Debug module offers efficient and smart break functions to simplify program debugging. It 
provides the following new capabilities for software and system debug: 
 
• Off-board JTAG memory 

The extended JTAG allows an ARCA processor in host-monitoring debug to refer to 
instructions or data that are not resident on the system under test. This JTAG memory is 
mapped to the processor as if it were physical memory; references to it are converted into 
transactions on the TAP interface. Both instructions and data can be accessed in JTAG 
memory, which allows debugging of systems without requiring the presence of a ROM 
monitor or debugger scratchpad RAM. It also provides a communications channel between 
debug software executing on the processor and an external debugging agent. 

 
• Support hardware breakpoints 

1. instruction fetch breakpoint 
2. data access address/result breakpoint 
3. asynchronous break/boot 
These breakpoints can be used to implement watchpoints, breakpoints and single-step 
execution, without requiring that the program code reside in RAM. 
 

• System access via the extended JTAG interface 



  Debug and JTAG 

  
 ARCA Technology Corporation 57 

The extended JTAG can force processor entry into host-monitoring debug. Debug software 
can then get further system access via JTAG interface. 
 

7.1.1 Debug Features 
 

Table 7-1 Debug Features 

Break condition Description 
Fetch address match Compare instruction address bus with preset value 
Fetch address mask Ignore masked bits when fetch address comparison 
Access address match Compare data address bus with preset value 
Access address mask Ignore masked bits when data access address comparison 
Address ASID match Compare ASID of current process with preset value 
Access data match Compare data access (store/swap) result with preset value 
Access type control Only specific access type (read, write, etc.) can be monitored 
Access size control Only specific access size (byte, half word, word)  can be 

monitored  
Software breakpoint Provide a software-breakpoint instruction SBRK 
Asynchronous break Host send a command to break current executing instruction 

stream  
Asynchronous boot Host send a command to reboot processor from dedicated 

memory 
 

7.1.2 Extended JTAG Feature 
 

Table 7-2 Extended JTAG Features 

Break condition Description 
IEEE 1149.1 standard Compliant with standard JTAG feature 
Extended data register BIU_BSR is composed of boundary cells encompassing the 

interface of BIU in ARCA CPU core 
Extended instructions In addition to standard mandatory instructions: BYPASS, 

extended JTAG in ARCA supports seven new instructions 
named ASYN_BRK, ASYN_BOOT, CONTROL, ADDR, DATA, 
ALL and HOST_MODE  

 

7.1.3 Debugging Pattern 
 
• Self-Monitor Debugging 

In this debug pattern, both the debugged program and the debugger itself are executing on 
the ARCA processor. Since JTAG interface cannot be accessed in the case, asynchronous 
break and asynchronous boot cannot be triggered. 

 
• Host-Monitor Debugging 

In this debug pattern, the debugged program is executing on the ARCA processor, while the 
debugger is executing on the host. After debug handler begins executions, the debugger can 
communicate with and even control the ARCA processor through JTAG interface. 

 



Debug and JTAG 

 
 ARCA Technology Corporation  58 

7.1.4 Debug & JTAG Solution Diagram 
 
Debug & JTAG solution apparently shows that in some situation, CPU core can communicate 
with external world through standard TAP ports instead of the core bus agent. Therefore, host-
monitor can be realized through this communication method. However, when TAP does not 
work, the Debug module can still monitors IU_BUS to support self-monitor through the software 
debugger’s help.  
 
The TAP in the CPU core (called internal TAP in later chapters) only supports extended seven 
new instructions and standard BYPASS instruction, while the TAP outside of the CPU core 
(called external TAP in later chapters) just supports standard JTAG instructions including 
BYPASS, SAMPLE/PRELOAD, EXTEST and RUNBIST. The selection of internal TAP and 
external TAP depends on the pin TAP_SEL when power-on reset. If TAP_SEL is 1, internal 
TAP works, otherwise external TAP works. This document has no reference about detail of 
external TAP since it is an IEEE 1149.1a standard compatible product. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 7-1 Debug and Extended JTAG 

IU_BUS 

 
MMU IU 

CACHE 

BIU 

DBG 

CORE_BUS 

TAP On-chip Devices 

JTAG Interface 

IU_BUS 

TAP 



  Debug and JTAG 

  
 ARCA Technology Corporation 59 

7.2 Extended JTAG 
 

7.2.1 Overview 
 
ARCA series JTAG hardware are compliant with IEEE 1149.1 TAP&BSA standard. In addition, 
to support host-monitoring debug, several private instructions and an extra boundary cell data 
register is added. The following diagram shows the structure of the internal TAP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-2 Internal Tap 

 
Note: 

The extra output signals from BIU_BSR register are devised to serve for host-monitoring.  
Later chapters will discuss them in detail. 

 

TA
P 

C
on

tr
ol

le
r 

BIU_BSR 

instruction 

bypass 

TCK 
TMS 

TDI 

TRST 

TDO 

asyn_boot_n

asyn_brk_n

TRST 



Debug and JTAG 

 
 ARCA Technology Corporation  60 

7.2.2 Standard & Extended Private Instructions 
 
There are seven private instructions appended to support the communication between ARCA 
processor and host. The following table lists the instructions supported by internal TAP. 
 

 Table 7-3 Extended JTAG Instructions 

Name Code Description 
BYPASS H’F Compliant with JTAG standard, but the output from TDO is not 

the value of TDI latched at the rising edge of TCK and it is a 
random value. 

CONTROL H’0 After decoding, always select the sub-field of BIU_BSR named 
CTRL, which is devised for host polling convenience 

ADDR H’1 After decoding, always select the sub-field of BIU_BSR named 
ADDR 

DATA H’2 After decoding, always select the sub-field of BIU_BSR named 
DATA. Note that only the instruction can inject data from JTAG 
memory to CPU core at Update_DR state of internal TAP 

ALL H’3 After decoding, select the whole BIU_BSR between TDI and 
TDO 

ASYN_BRK H’4 After decoding, assert an active low level signal named 
asyn_brk_n, attempt to asynchronously break CPU core current 
operation. In addition, it selects the sub-field of BIU_BSR named 
CTRL between TDI and TDO 

ASYN_BOOT H’5 After decoding, assert an active low level signal named 
asyn_boot_n to boot processor from specific off-board JTAG 
memory space. In addition, it selects the sub-field of BIU_BSR 
named CTRL between TDI and TDO 

HOST_MODE H’6 After decoding, the exception vector table base (VBR) is 
automatically re-directed (not modified) and fixed at 
H’EC000000. Which is called host-mode vector base. The 
instruction always selects the sub-field of BIU_BSR named 
CTRL between TDI and TDO. Note that only active TRST_ or at 
least 5 high level TMS cause the internal TAP controller to enter 
into the Test-Logic-Reset state, which can restore the vector 
base to initial value. 

 H’7~E Reserved for future usage 
 
Note: Any one of the seven private instructions is active, which denotes that the JTAG memory 
space can be accessed. 
 



  Debug and JTAG 

  
 ARCA Technology Corporation 61 

7.2.3 Extended Data Registers 
 
In the diagram of TAP&BSA, there is 1 data register. Its usage is listed below. 
 
• BIU_BSR represents the boundary scan registers encompassing the CPU core, which is used 

to realize communication between JTAG interface and CPU core. 
 
In the host-monitoring environment, the contents of the BIU_BSR are cyclically shifted out or 
updated according to the monitoring result. The following figure shows the format of BIU_BSR. 
 
 
 
 
 
 
 
 

 
 

Figure 7-3 BIU_BSR Register 

 
Since there are two forwarding paths after DATA and ADDR, the three sub-fields of BIU_BSR 
can be manipulated respectively. The following table lists these sub-fields’ configuration. 
 

Table 7-4 BIU_BSR Register 

Name Bit field Description 
bit0 Active value 1 denotes an active JTAG memory space access request, inactive value 

0 means no JTAG memory access CTRL 
bit1 Read/Write label of access request. 0: read access, 1: write access.  
bit31~0 Denotes the access address 
bit33~32 Denotes the access result size. 2’B11: byte, 2’B01: half word, 2’B10: word.  
bit34 Bus lock label. Active 1 means current read access and next write access are 

an atomic operation. The bit can be ignored by host because not any other 
bus device connects the bus serving for internal TAP.  

bit35 Active 1 denotes burst enable. Inactive 0 denotes single beat access.  

ADDR 

bit36 Active 1 denotes 8 words burst; inactive 0 denotes 4 words burst. When bit35 
takes inactive 0, the field is ignored. 

bit31~0 Access result. For read access of JTAG memory space, need be filled by 
JTAG interface (through DATA instruction). For write access of JTAG 
memory space, need be scanned out by JTAG interface. 

DATA 
bit32 IU_BUS freezing label. 1: bus is ready, 0: bus is locked due to an unfinished 

access. For an active JTAG memory space access, need JTAG interface 
(through DATA instruction) set active high level to unfreeze the IU_BUS 

 

DATA CTRL ADDR 

32          0/LSB          36                 0/LSB          1           0/LSB   

SI SO 



Debug and JTAG 

 
 ARCA Technology Corporation  62 

7.2.4 Endian Adjustment 
 
Since ARCA series support big-endian and little-endian, debugger in the host maybe has to 
adjust endian if JTAG memory use different endian. The following figure shows the byte position 
in the DATA part according to access size and the two LSBs of ADDR part. 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 7-4 Endian Adjustment 

 

7.2.5 JTAG Memory Space 
 
JTAG memory is dedicated to serve for debugger in the host-monitor environment. The memory 
space from H’EC000000 to H’EFFFFFFF is mapped to off-board JTAG memory space. The 
space can not be allocated to any other external device. The following table lists the JTAG 
memory space special usage. 
 

Table 7-5 JTAG Memory Space 

Memory Space Usage 
H’EC000000 Special vector serving for DBG_BOOT 
H’EC000000~ 
H’EC00001F 

Position of vector table for host-mode vector base . In the case, reset handler 
entry is always equivalent to boot handler entry. 

H’EFFFFF00 ~ 
H’EFFFFFFF 

Memory mapped JTAG control register space.  
H’EFFFFF20: Asynchronous break response register, when IU writes any value 
to the register, which denotes that the asynchronous break has already been 
responded by IU. The sustained active signal asyn_brk_n then is deasserted by 
hardware automatically 

 

7.2.6 Miscellaneous Constraints 
 
To make host-debug environment safe and reliable, some hardware constraints are imposed. 
System designers need pay more attention to this section. 

byte 2’B00 

2’B01 

2’B10 

2’B11 

half 
word 2’B00 

2’B10 

word 

1 0 2 3 1 3 2 0 

NOTES: gray area represents available byte field 

SIZE     ADDR[1:0]        Big Endian                 Little Endian 

1 0 2 3 1 3 2 0 

1 0 2 3 1 3 2 0 

1 0 2 3 1 3 2 0 

1 0 2 3 1 3 2 0 

1 0 2 3 1 3 2 0 

1 0 2 3 1 3 2 0 



  Debug and JTAG 

  
 ARCA Technology Corporation 63 

7.2.6.1 Reset Constraint 
 
In ARCA series, TRST_ is necessary. During power-up reset (due to pressing power key), 
TRST_ must be active to reset the internal TAP. However, during hot reset (system reset, 
without pressing power key), TRST_ is not affected at all. 
 

7.2.6.2 TCK Constraint 
 
To guarantee the processor can enter boot handler through JTAG interface instead of reset 
handler in the case that, memory system has some problem or even there is not any on-board 
memory system, the following rules should be obeyed: 
• Core clock frequency is not less than TCK clock frequency 
• Maximum TCK clock frequency is 50MHz 

 

7.2.6.3 TMS Constraint 
 
Since there are two TAPs on the chip, which need a special pin to control the TMS usage. For 
instance, when the pin TAP_SEL keeps at high level, TMS is switched to serve for internal TAP, 
and the path of TMS routing to the external TAP is locked at high level. When the pin TAP_SEL 
keeps at low level, the handling is reversed. 
 



Debug and JTAG 

 
 ARCA Technology Corporation  64 

7.3 Debug Module  
 
The Debug module supports instruction and data access hardware breakpoints. By monitoring 
the IU_BUS, ASID of current process (for multi-process OS), and combining with the presetting 
control information, the Debug module can trigger abundant types of hardware breakpoints, 
such as single step breakpoint, precise watchpoint, ambiguous address range breakpoint and 
etc. The following figure shows the topology of Debug in the CPU core. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 7-5 The Stutcture of Debug Module 

 

Table 7-6 Debug Internal Signals 

Signal Name Description 
IA_BUS IU instruction fetching address bus 
DA_BUS IU data access address bus 
DD_BUS IU data bus 
CMD_BUS IU access&fetch command bus 
dbg_irq_n break request signal, due to fetch breakpoint, asynchronous break 
dbg_drq_n break request signal, due to data access breakpoint 
asyn_boot_n signal from BIU_BSR to boot processor from JTAG memory space 
asyn_brk_n signal from BIU_BSR to break current executing instruction stream 
asid ASID of current executing process 

 

asyn_boot_n 

 
IU 

 
 

Debug 

 
 

MMU 
IA

_B
U

S 

D
A

_B
U

S 

D
D

_B
U

S 
asyn_brk_n 

C
M

D
_B

U
S 

dbg_irq_n 

dbg_drq_n 



  Debug and JTAG 

  
 ARCA Technology Corporation 65 

7.4 Debug Register Configuration 
 
The following table lists the Debug registers. Software can use CLD/CST instruction to access 
the register. These registers can only be read/written in supervisor mode. 
 

Table 7-7 Debug Registers 

Name Full Name R/W 
Initial value 

when power on 
Access 
Size 

   # ID  #CR 

DBG_CR Debug Configure register R/W H’00000000 32 011 000 
DBG_IA0 Debug Instruction Address 0 R/W Undefined 32 011 001 
DBG_IA1 Debug Instruction Address 1 R/W Undefined 32 011 010 
DBG_DA0 Debug Data access Address 0 R/W Undefined 32 011 011 
DBG_DA1 Debug Data access Address 1 R/W Undefined 32 011 100 

DBG_DD0 
Debug Data access 
(store/swap) Result 0 

R/W Undefined 32 011 101 

DBG_ASID Debug ASID R/W Undefined 32 011 110 

 

7.4.1 Register Descriptions  
 

7.4.1.1 Debug Control Register(DBG_CR) 
 

#ID=011  #CR=000 
 

Bit: 31 30 29 28 27 26 25 24 

Read: HOST BKEN  
Write:    
Reset: 0 0 0 0 0 0 0 0 

 
Bit: 23 22 21 20 19 18 17 16 

Read:  
Write:  

SBRK DHIT 

Reset: 0 0 0 0 0 0 0 0 
 

Bit: 15 14 13 12 11 10 9 8 
Read: 
Write: 

IHIT DMEN IMEN ASIDM DMSK0 DLEN1 

Reset: 0 0 0 0 0 0 0 0 
 

Bit: 7 6 5 4 3 2 1 0 
Read: 
Write: 

DLEN0 DRW1 DRW0 DDEN IDEN 

Reset: 0 0 0 0 0 0 0 0 
 
Bit 29 ~ 19: Reserved bits, ignored in write operation, always 0 in read operation. 
 
– IDEN: Hardware instruction fetch breakpoint enable. 

0: disable instruction fetch breakpoint. 
1: enable instruction fetch breakpoint. 



Debug and JTAG 

 
 ARCA Technology Corporation  66 

 
– DDEN: Hardware data access breakpoint enable. 

0: disable data access breakpoint. 
1: enable data access breakpoint. 

 
– DRW0: Data access type label for DBG_DA0.  

2’H0: match due to read or write memory access can be granted. 
2’H1: match due to read access can be granted. 
2’H2: match due to write access can be granted. 
2’H3: reserved. 
 

– DRW1: Similar to DRW0, serve for DBG_DA1. 
 
– DLEN0: Data access size label for DBG_DA0. 

2’H0: word access is checked. 
2’H1: half word access is checked. 
2’H2: byte, half word and word access are all checked. 
2’H3: byte access is checked. 
 

– DLEN1: Similar to DLEN0, serve for DBG_DA1. 
 
– DMSK0: Data access (store/swap) result mask for DBG_DD0. 

0: denotes that data result is not cared for data access breakpoint monitoring. 
1: denotes that data result is cared for data access breakpoint monitoring. 
Note that only DBG_DA0 support data access result breakpoint. 
 

– ASIDM: ASID mask enable. 
1: denotes that current ASID is not cared for any breakpoint monitoring (fetch or data 

access). 
0: denotes that current ASID must be monitored for hardware breakpoint. 
 

– IMEN: Fetch breakpoint mask enable. 
0: denotes that DBG_IA1 is used for DBG_DI0 mask bits. In DBG_IA1, 0: Corresponding 
address bit is compared, 1: Corresponding address bit is masked. 
1: denotes that DBG_IA1 is also used as the second fetch address register, hence the two 
fetch address registers must be set with precise expected values to perform non-maskable 
address comparing. 
 

– DMEN: Data access breakpoint mask enable,. 
0: denotes that DBG_DA1 is used for DBG_DA0 mask bits. In DBG_DA1, 0: Corresponding 
address bit is compared, 1: Corresponding address bit is masked. 
1: denotes that DBG_DA1 is also used as the second data access address register, hence 
the two data access address registers must be set with precise expected values to perform 
non-maskable address comparing. 
 

– IHIT: Fetch breakpoint match flag. 
The field is automatically set with value 1 by hardware once such a matching is detected. 
Bit14 denotes DBG_IA0 match, and bit15 denotes DBG_IA1 match. 
 

– DHIT: Data access breakpoint match flag. 
The field is automatically set with value 1 by hardware once such a matching is detected. 
Bit16 denotes DBG_DA0 match, and bit17 denotes DBG_DA1 match. 
 

– SBRK: Software breakpoint request flag. 
This field is automatically set when a software-breakpoint instruction (SBRK) is executed.   
 

– BKEN: Asynchronous break request flag. 



  Debug and JTAG 

  
 ARCA Technology Corporation 67 

If the instruction in internal TAP is ASYN_BRK, then it is set to 1 and an exception is 
generated immediately. However it will be kept 1 until the instruction has been changed and 
it has been acknowledged through writing 0xEFFFFF20.  
0: denotes no asynchronous break request occurs. 
1: denotes an active asynchronous break request being asserted. 
The bit is read-only by software. 
 

– HOST: Host-monitoring environment enable. 
If the instruction in internal TAP is CONTROL, ADDR, DATA, ALL, ASYN_BRK, 
ASYN_BOOT or HOST_MODE, then it is 1, otherwise it is 0. 
0: denotes that accessing JTAG memory space cannot be granted by host through JTAG 
interface. 
1: denotes that accessing JTAG memory space can be granted by host through JTAG 
interface. 
The bit is read-only by software. 
 

7.4.1.2 Instruction Address Register 0(DBG_IA0) 
 

#ID=011  #CR=001 
 

Bit: 31 … … … … … … … …  4 3 2 1 0 
Read:  
Write: 

Instruction Address 0 
 

Reset: 0 0 0 0 0 0 0 
 
Bit 1 ~ 0: Reserved bits, ignored in write operation, always 0 in read operation. 
 
Bit 31~2: Set expected fetch address in this register to trigger instruction fetch breakpoint. 
 

7.4.1.3 Instruction Address Register 1(DBG_IA1) 
 

#ID=011  #CR=010 
 

Bit: 31 … … … … … … … …  4 3 2 1 0 
Read:  
Write: 

Instruction Address 1 
 

Reset: 0 0 0 0 0 0 0 
 
Bit 1 ~ 0: Reserved bits, ignored in write operation, always 0 in read operation. 
 
Bit 31~2: When DBG_CR.IMEN takes inactive 1, set expected fetch address in this register to 

trigger instruction fetch breakpoint. 
When DBG_CR.IMEN takes active 0, which can mask the comparing result of 
instruction address[31:2]. For example, set 32’HFFFFFFFF in DBG_IA1, which may 
trigger a fetch breakpoint for each instruction fetching despite of fetch address once the 
DBG_CR.IDEN is set and SR.DE is set (refer to exception spec for SR usage). 

 

7.4.1.4 Address Space Identifier Register(DBG_ASID) 
 
#ID=011  #CR=011 
 

Bit: 31 ~ 8 7 6 5 4 3 2 1 0 



Debug and JTAG 

 
 ARCA Technology Corporation  68 

Read:  
Write:  

ASID 

Reset: 0 … …  0 0 0 0 0 0 0 0 0 
 

Bit 31 ~ 8: Reserved bits, ignored in write operation, always 0 in read operation. 
 

Bit 7 ~ 0: Set expected ASID in this register to make ASID check in addition to address 
comparison. 

 

7.4.1.5 Data Access Address Register 0(DBG_DA0) 
 

#ID=011  #CR=100 
 

Bit: 31 … … … … … … … …  4 3 2 1 0 
Read: Data Access Address 0 
Write:  
Reset: 0 0 0 0 0 0 0 

 
Set expected data access address in this register to trigger data access breakpoint. 
 

7.4.1.6 Data Access Address Register 1(DBG_DA1) 
 

#ID=011  #CR=101 
 

Bit: 31 … … … … … … … …  4 3 2 1 0 
Read: Data Access Address 1 
Write:  
Reset: 0 0 0 0 0 0 0 

 
Bit 31 ~ 0: When DBG_CR.DMEN takes inactive 1, set expected data access address in this 

register to trigger data access breakpoint. 
 

When DBG_CR.DMEN takes active 0, which can mask the comparing result of data 
access address[31:0]. For example, set 32’HFFFFFFFF in DBG_DA1, which may 
trigger a data access address breakpoint for each available data access despite of 
access address once the DBG_CR.DDEN is set and SR.DE is set. 

 
Note that there has no initial value for this register, when DBG_CR.DMEN is inactive high, which 
serves as another data access address register. 
 

7.4.1.7 Data access (store/swap) result register 0( DBG_DD0) 
 
#ID=011  #CR=110 
 

Bit: 31 … … … … … … … …  4 3 2 1 0 
Read: Data Access result 0 
Write:  
Reset: 0 0 0 0 0 0 0 

 
Bit 31~0: Set expected data access result in this register to make result check in addition to data 

access address comparison. Note that even when DBG_CR.DMEN = 1, which denotes 



  Debug and JTAG 

  
 ARCA Technology Corporation 69 

that two access address should be monitored, data access result breakpoint can only 
be triggered for DBG_DA0. It only works for store and swap instructions. 

 



Debug and JTAG 

 
 ARCA Technology Corporation  70 

7.5 Debug Operation 
 

7.5.1 Overview 
 
In general, the Debug module in ARCA supports two kinds of hardware breakpoint break 
condition: synchronous break and asynchronous break. When SR.DE is set active value 1, 
which denotes that IU permits break exception, any available asserted break request can be 
responded by IU. 
  
For synchronous break, the Debug monitors the IA_BUS of IU for instruction fetch breakpoint 
condition matching detection, and monitors the DA_BUS and DD_BUS of IU for data access 
breakpoint matching detection. Once the captured value from monitored target match the 
expected break conditions that are set before, active low level signals dbg_irq_n and/or 
dbg_drq_n then are asserted to inform IU that some preset breakpoint is triggered. 
 
The break caused by software breakpoint instruction (SBRK) is also a synchronous one. 
However this break is controlled by SR.DE. 
1. If SR.DE = 1, SBRK cause a debug exception, DSR/DPC are used to save env, SR.DS is 

set to 1, handler is load from vector offset = 2 (the debug vector), exception return address 
is next instruction. 

2. If SR.DE = 0, SBRK cause an illegal instruction exception, ESR/EPC are used to save env, 
SR.DS is set to 0, handler is load from vector offset = 1 (the illegal insn vector), exception 
return address is this instruction 
 

Moreover, the Debug module supports asynchronous break mechanism including asynchronous 
break and asynchronous boot. Note that only in host-monitoring environment such breaks may 
be active. IF SR.DE is disabled, the signal asyn_brk_n is ignored, while asyn_boot_n does 
not care for SR.DE. For asynchronous break, once the signal asyn_brk_n takes active low 
level, the break request dbg_irq_n is immediately asserted to attempt to break current executing 
code stream, and the signal can retain at low level until the asyn_brk_n is de-asserted. For 
asynchronous boot, once the signal asyn_boot_n takes active low level and the pipeline is not 
frozen, the processor can switch to supervisor mode immediately and redirects execution to an 
asyn-boot handler routine.  
 
Note that the entry of the asyn-boot handler routine is placed at JTAG memory space 
H’EC000000, independent with exception vector table. 
 
 



  Debug and JTAG 

  
 ARCA Technology Corporation 71 

7.5.2 Fetch Breakpoint Operation 
 
Fetch breakpoint can be used to trace the flow of an executing code segment. To trigger a fetch 
breakpoint, the following steps are needed: 
 
1. set DBG_CR.IDEN with inactive value 0, to avoid inadvertently fetch breakpoint triggering  
2. set DBG_IA0, DBG_IA1, DBG_ASID with expected values 
3. set DBG_CR.IMEN and DBG_CR.ASIDM with expected value, and enable breakpoint 

detection mechanism by setting DBG_CR.IDEN with active value 1 
 
After finishing above steps, once an effective fetch matches the presetting break condition, and 
so long as SR.DE is set with active value 1, then dbg_irq_n can be asserted. Accompanied with 
asserting dbg_irq_n, DBG_CR.IHIT (IHIT[0] and/or IHIT[1]) is set active 1 to represent that a 
fetch breakpoint is captured. See the following true table for detail. 
 

Table 7-8 Fecth Breakpoint True Table 

DBG_CR.IDEN SR.DE DBG_IA (*1) DBG_ASID (*2) dbg_irq_n 
0 -- -- -- inactive 
1 0 -- -- inactive 

mismatch mismatch inactive 
mismatch match inactive 
match mismatch inactive 

1 1 

match match active 
 
Notes: 

1. Asterisk (*1) denotes that comparison of fetch address is masked by DBG_IA1 when 
DBG_CR.IMEN takes active 0. When DBG_CR.IMEN takes inactive 1, the match of 
DBG_IA means at least one of DBG_IAx (x represents 0, 1) is identical with the captured 
instruction address bus. 

2. Asterisk (*2) denotes that comparison of ASID is ignored when DBG_CR.ASIDM takes 
inactive 1.However, when DBG_CR.ASIDM takes active 0, the match of DBG_ASID 
means that DBG_ASID is identical with current ASID. 

3. Double dash line denotes don’t care field. 
 

7.5.3 Data Access Breakpoint Operation 
 
Data access breakpoint can be used to monitor the memory access situation. To trigger a data 
access breakpoint, following 4 steps are needed: 
 
1. set DBG_CR.DDEN with inactive value 0, avoid inadvertently fetch breakpoint triggering  
2. set DBG_DA0, DBG_DA1, DBG_ASID, DBG_DD0 (optional) with expected values 
3. set DBG_CR.DRW0, DBG_CR.DRW1, DBG_CR.DLEN0, DBG_CR.DLEN1, 

DBG_CR.ASIDM, DBG_CR.DMSK0 and DBG_CR.DMEN with expected values, and 
enable breakpoint detection by setting DBG_CR.DDEN with active value 1. 

 
After finishing above steps, once an effective data access matches the presetting break 
condition, and so long as SR.DE is set with active value 1, then dbg_drq_n can be asserted. 
Accompanied with asserting dbg_drq_n, DBG_CR.DHIT (DHIT[0] and/or DHIT[1]) is set active 1 
to represent that a data access breakpoint is captured, meanwhile DBG_DA0 is overwritten by 
captured DA_BUS when DBG_CR.DMEN is active 0. One point must be emphasized that 
comparison of DBG_DD0 depends on the set of DBG_CR.DMSK0. When DBG_CR.DMSK0 
takes value 0, which represents data access address breakpoint, otherwise, represents data 



Debug and JTAG 

 
 ARCA Technology Corporation  72 

access (store/swap) result breakpoint. The following true table lists the detailed match process 
of data access breakpoint. Moreover, data access (store/swap) result breakpoint only 
serves for DBG_DA0, and only write access result case is supported. 
 

Table 7-9 Data Access Breakpoint True Table 

DBG_CR 
.DDEN 

SR 
.DE 

DBG_DAx (*1) & 
DBG_ASID (*2) 

DBG_CR 
.DMSK0 

DBG_CR 
.DRWx 

DBG_CR 
.DLENx (*3) 

DBG_DD0 dbg_drq_n 

0 -- -- -- --  -- inactive 
1 0 -- -- --  -- inactive 

mismatch -- --  -- inactive 
mismatch mismatch -- inactive 
mismatch match -- inactive 
match mismatch -- inactive 

==0 

match match -- active 
mismatch mismatch -- inactive 
mismatch match -- inactive 
match mismatch -- inactive 
match match mismatch inactive 

1 1 
match 

==1 

match match match active 
 
Notes: 

1. Asterisk (*1) denotes that comparison of data access address is masked by DBG_DA1 
when DBG_CR.DMEN takes active 0. When DBG_CR.DMEN takes inactive 1, the match 
of DBG_DA means at least one of DBG_DAx (x represents 0, 1) is identical with the 
captured data address bus. 

2. Asterisk (*2) denotes that comparison of ASID is ignored when DBG_CR.ASIDM takes 
inactive 1.However, when DBG_CR.ASIDM takes active 0, the match of DBG_ASID 
means that DBG_ASID is identical with current ASID. 

3. Asterisk (*3) contains a special case. That is, if DBG_CR.DLENx is set by value 2, the 
match of the LSB[1:0] of DBG_DAx must refer to current access length, simply put, it’s a 
covering over data access breakpoint. For instance, set value 2 to DBG_CR.DLEN0, bring 
on following three cases: 

1) For current word size access, DBG_DA0[1:0] comparing is always match despite of 
comparing result described in (*1). 

2) For current half word size access, DBG_DA0[0] comparing is always match despite of 
comparing result described in (*1), while DBG_DA0[1] still refers to the comparing result 
carried out from (*1) 

3) For current byte size access, the match of DBG_DA0[1:0] always refers to the 
comparing result carried out from (*1). 

4. Double dash line denotes don’t care field. 
 

7.5.3.1 Data Access Command Monitoring 
 
In ARCA ISA, there are several special system instructions serving for system special usage. 
These instructions also need touch IU_BUS, but the Debug module does not monitor them at all. 
 
Moreover, when IU issues a SWAP instruction, the Debug module regards it as a store type 
instruction for data access result breakpoint monitoring. The following table lists the instructions 
that are not monitored. 
 



  Debug and JTAG 

  
 ARCA Technology Corporation 73 

Table 7-10 Instructions That Are Not Monitored 

Instruction Name Notes 
CLD/CST Rx, #ID, S10 Value on the DA_BUS is not concerned 
ITLB #CMD, Rx Value on the IA_BUS is not concerned 
DTLB #CMD, Rx Value on the DA_BUS is not concerned 
ICACHE #CMD, Rx, S10 Value on the IA_BUS is not concerned 
DCACHE #CMD, Rx, S10 Value on the DA_BUS is not concerned 

 

7.5.4 Asynchronous Break/Boot Operation 
 
ARCA Debug supports asynchronous break, and the break type is dedicated to host-monitor 
debugging. ARCA JTAG extends two instructions named ASYN_BRK and ASYN_BOOT. When 
instruction register of the internal TAP decodes ASYN_BRK, as a result, the signal asyn_brk_n 
is asserted to Debug; similarly, the signal asyn_boot_n is asserted to IU for ASYN_BOOT. Note 
that DBG_CR.DDEN and DBG_CR.IDEN just control the synchronous hardware breakpoint 
comparing logic, e.g., they do not forbid request of asynchronous break source. Once the 
Debug module samples the active low asyn_brk_n signal, it immediately asserts active 
dbg_irq_n to IU, and in the case, dbg_irq_n can sustain until the asyn_brk_n is deasserted.  
 
Note that once the ASYN_BRK instruction is asserted, before the memory mapped register 
H’EFFFFF20 is written by a store type instruction, the signal asyn_brk_n can maintain at active 
status despite whether current JTAG instruction is ASYN_BRK. In order to make asyn_brk_n 
inactive, CTRL should be shifted into JTAG instruction and the memory mapped register 
H’EFFFFF20 should be written. Software should check DBG_CR.BKEN bit to judge whether 
asyn_brk_n has been inactive. 
 
For ASYN_BOOT, there is no need to acknowledge it and asyn_boot_n is automatically de-
asserted. 
 



Debug and JTAG 

 
 ARCA Technology Corporation  74 

7.6 Debug Exception Operation 
 
When an effective dbg_irq_n or dbg_drq_n is asserted, IU should respond them immediately, 
unless some other higher priority exception requests arise simultaneously. For active low 
asyn_boot_n caused by ASYN_BOOT, which takes the highest priority over all of other 
exceptions even including reset and does not care for SR.DE. The following fragment of 
exception resource signals’ priority table illustrates all debug exceptions priority cases. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-6 Exception Priority 

 
Once a debug exception is granted by IU, the following common steps need be done 
automatically: 

 
1. Load debug handler entry from exception vector table 
2. Save expected return address to DPC 
3. Save SR to DSR 
4. Set value 0 to SR.DE to avoid reenter problem in debug handler 
5. Set value 1 to SR.SM to let CPU toggle to supervisor mode 
6. Set value 1 to SR.DS to represents an active debug state 
 
One point must be emphasized that in the fetch breakpoint or data access breakpoint 
handler routine, it had better remove the DBG_CR[IHIT] or DBG_CR[DHIT] after 
investigate them by software, otherwise, the obsolete match flags may confuse later 
breakpoint event judgment, or cause even more worse situation: the same fetch 
breakpoint is triggered endlessly. In detail, if both DBG_CR[IHIT] and DBG_CR[DHIT] are 
set, just get rid of DBG_CR[DHIT] according to above exception priority diagram rather 
than remove them all. If only one of the two breakpoints is triggered, just remove 
DBG_CR[IHIT] or DBG_CR[DHIT], in terms of the breakpoint type. However, in the 
handler routines of other exception types, do not attempt to affect those breakpoint flag 
bits, otherwise, some concurrently captured breakpoint events may miss out.  
The later sections delineate the responding process for 6 types of debug break in detail. It is 
better to refer to IU exception spec for more information. 

Asyn Boot 

 

 

high priority 

low priority 

 

 

Asyn break, fetch breakpoint 

Reset 

d-fault 

data access breakpoint 

i-fault 

trap, sbrk 



  Debug and JTAG 

  
 ARCA Technology Corporation 75 

7.6.1 Fetch Breakpoint Debug Exception 
 
Fetch breakpoint is similar to I-fault, it is also an IF stage exception, hence instructions in the 
later pipeline stages from ID to WB will be done normally. However, in some pipelining 
situations, special exception handling tactics (for instance, ID stage instruction is canceled too*1) 
may be taken to manipulate the acknowledgement process of the fetch breakpoint. Even though, 
at any case, hardware can guarantee that after the handler routine of fetch breakpoint, returning 
location always points to the first canceled instruction in the code stream, or the executed 
instruction which resuming has not any side effect. As an instance, a fetch breakpoint next to a 
BCC instruction (BCC is untaken) need always return to the location of the BCC instruction, 
rather than itself, besides, hardware can manage the case to avoid endless loop. Please refer to 
exception model spec for more detail. When IU responds a fetch breakpoint, the following 
actions shall be done. 

 
For hardware (necessary): 
1. Load common debug handler entry from exception vector table (base + H’8) 
2. Save returning location value to DPC 
3. Save SR to DSR 
4. Set value 0 to SR.DE to avoid reenter problem in debug handler 
5. Set value 1 to SR.DS and SR.SM 

 
For software (recommend, not necessary): 
1. Read DBG_CR.IHIT, DBG_CR.DHIT and DBG_CR.SBRK to check that which breakpoint is 

granted 
2. After enter the subroutine service for software breakpoint, clear DBG_CR.IHIT 
3. When service finish, use RTE instruction to return to the normal execution stream 
 
Note: *1 When fetch break occurs, if the previous instruction is a BCC, a MUL with Rh not R0 
stalled for one cycle, or any instuction stalled for two cylcles, then this previous instuction is 
cancelled and it is set to the return address DPC. In this situation, except for BCC case, the 
fetch break will occur again after return from handler and continue the execution. 
 

7.6.2 Data Access Breakpoint Debug Exception 
 
Data access breakpoint is similar to D-fault, it is also an MA stage exception source. However, 
differ from D-fault, the trigger instruction in the MA stage should be executed, that is, only 
instructions from IF to EX stage need be canceled. If IU grants a data access breakpoint, 
following actions may be done. 

 
For hardware (necessary): 
1. Load common debug handler entry from exception vector table (base + H’8) 
2. Save return address that point to the current EX stage instruction to DPC 
3. Save SR to DSR 
4. Set value 0 to SR.DE to avoid reenter problem in debug handler 
5. Set value 1 to SR.DS and SR.SM 
 
For software (recommend, not necessary): 
1. Read DBG_CR.IHIT, DBG_CR.DHIT and DBG_CR.SBRK to check that which breakpoint is 

granted 
2. After enter the subroutine service for software breakpoint, clear DBG_CR.DHIT 
3. When service finish, use RTE instruction to return to the normal execution stream 
 
Evidently, if data access breakpoint handler does not change any of the data access break 
conditions, after handler executing, the next adjacent instruction can be naturally executed. 



Debug and JTAG 

 
 ARCA Technology Corporation  76 

7.6.3 Software Breakpoint  Debug Exception 
 
If SR.DE == 0, SBRK causes an illegal instruction exception. Here we only consider the 
SBRK is used as a software breakpoint at SR.DE == 1. 
 
Software breakpoint is similar to trap, it is also an ID stage exception, hence instructions in the 
later pipeline stages from EX to WB will be done normally. At any case, hardware can 
guarantee that after the handler routine of SBRK, the returning location is next instruction. 
When IU responds a software breakpoint, the following actions shall be done 

 
For hardware (necessary): 
1. Load common debug handler entry from exception vector table (base + H’8) 
2. Save returning location value to DPC 
3. Save SR to DSR 
4. Set value 0 to SR.DE to avoid reenter problem in debug handler 
5. Set value 1 to SR.DS and SR.SM 

 
For software (recommend, not necessary): 
1. Read DBG_CR.IHIT, DBG_CR.DHIT and DBG_CR.SBRK to check that which breakpoint is 

granted 
2. After enter the subroutine service for software breakpoint, clear DBG_CR.SBRK 
3. When service finish, use RTE instruction to return to the normal execution stream 
 
Note that hardware can assure that the instruction following the instruction SBRK which causes 
exception will be really executed after the responsive handler routine finish. 
 

7.6.4 Asynchronous Break Debug Exception 
 
Asynchronous break is similar to INT request, but its privilege level is less than INT request. 
Once an asynchronous break is granted, hardware takes the same measure as fetch breakpoint, 
and then the following actions maybe done: 
 
For hardware (necessary): 
1. Load common debug handler entry from exception vector table (base + H’8) 
2. Save returning location value to DPC 
3. Save SR to DSR 
4. Set value 0 to SR.DE to avoid reenter problem in debug handler 
5. Set value 1 to SR.DS and SR.SM 
 
For software (recommend, not necessary): 
1. Read DBG_CR.BKEN to check that exact asynchronous break *1 is granted 
2. Cease asyn_brk_n*2 
3. Check whether DBG_CR.BKEN has been inactive 
4. When service finish, use RTE instruction to return 

 
Notes:  
1. *1 denotes that since asynchronous break maybe arises concurrently with synchronous 

fetch breakpoint, hence handler should investigate DBG_CR.IHIT. If both DBG_CR.IHIT 
and DBGT_CR.BKEN are set, the asynchronous break should be responded first. 

2. *2 denotes that only in the host debugging environment, assert a write access to JTAG 
memory address H’EFFFFF20 to inform host that the asynchronous break is granted by 
CPU. 

 



  Debug and JTAG 

  
 ARCA Technology Corporation 77 

7.6.5 Asynchronous Boot Debug Exception 
 
Asynchronous boot is similar to reset, but has highest priority. Once an asynchronous boot is 
granted, all instructions in the pipeline are cancelled, and then the following actions maybe done: 
 
For hardware (necessary): 
1. Load asynchronous handler entry from H’EC000000 
2. Save current PC register value to DPC 
3. Save current SR register value to DSR 
4. Set value 0 to SR.DE 
5. Set value 1 to SR.DS and SR.SM 
 
For software (recommend, not necessary): 
1. Invalidate D-cache, I-cache, D-TLB, I-TLB, GRF 
2. etc. 
 



Debug and JTAG 

 
 ARCA Technology Corporation  78 

7.7 Example For Application 
 

7.7.1 Single step execution 
 
……        !!  FFoolllloowwiinngg  ccooddee  sseeccttiioonnss  rruunn  iinn  ssuuppeerrvviissoorr  mmooddee  
RRCCRR  RR11,,  SSRR    !!  RReeaadd  SSRR  
AANNDDII  RR11,,  RR11,,  00xx77DD  !!  CClleeaarr  SSRR..DDEE  ttoo  ffoorrbbiidd  bbrreeaakk  eexxcceeppttiioonn  rreessppoonnddiinngg  
WWCCRR  SSRR,,  RR11    !!  CClleeaarr  ddoonnee  
OORRII  RR33,,  RR00,,  --11  !!  RR33  ßß  00XXFFFFFFFFFFFFFFFF    
CCSSTT  RR33,,  33,,  11    !!  MMaasskk  DDBBGG__IIAA00  ffeettcchh  aaddddrreessss  ccoommppaarriissoonn  
CCLLDD  RR22,,  33,,  00    !!  RReeaadd  DDBBGG__CCRR  
OORRII  RR22,,  RR22,,  00XX00880011  !!  EEnnaabbllee  DDBBGG__CCRR..IIDDEENN,,  DDBBGG__CCRR..IIMMEENN,,  DDBBGG__CCRR..AASSIIDDMM  
CCSSTT  RR22,,  33,,  00    !!  EEnnaabbllee  ddoonnee  
RRCCRR  RR11,,  EESSRR    !!  RReeaadd  EESSRR  
OORRII  RR11,,  RR11,,  22    !!  SSeett  vvaalluuee  11  ttoo  EESSRR..DDEE    
WWCCRR  EESSRR,,  RR11        
RRTTEE      !!  EEPPCC  ccoonnttaaiinnss  tthhee  eennttrryy  ooff  tthhee  eexxppeecctteedd  ccooddee    

!!  sseeggmmeenntt  aanndd  aa  ffeettcchh  bbrreeaakkppooiinntt  ccaann  bbee  ttrriiggggeerreedd    
!!  aafftteerr  eeaacchh  iinnssttrruuccttiioonn  iinn  tthhee  ttaarrggeett  ccooddee  sseeggmmeenntt  
!!  iiss  eexxeeccuutteedd  

  
TTaarrggeett__sseeccttiioonn::  
xxxxxxxx    !!  ddbbgg__iirrqq__nn  aarriissee  wwhheenn  tthhiiss  iinnssttrruuccttiioonn  fflloowwss  ttoo  IIFF  ssttaaggee  
yyyyyyyy    !!  ddbbgg__iirrqq__nn  aarriissee  wwhheenn  tthhiiss  iinnssttrruuccttiioonn  fflloowwss  ttoo  IIFF  ssttaaggee  
zzzzzzzz    !!  ddbbgg__iirrqq__nn  aarriissee  wwhheenn  tthhiiss  iinnssttrruuccttiioonn  fflloowwss  ttoo  IIFF  ssttaaggee  
……  
 
Notes: 
1. In the target code section, if the current ID stage instruction is a branch instruction (BCC or 

JA, J), dbg_irq_n should be granted until the branch instruction flows to EX stage. 
2. The fetch breakpoint handler must clear DBG_CR[IHIT], otherwise the executing would be 

blocked at the first instruction of the target section, because the instruction triggers fetch 
breakpoint after RTE each time. 

 



  Debug and JTAG 

  
 ARCA Technology Corporation 79 

7.7.2 Combinatorial Break Condition Capture 
 
__LLOOOOPP::  
……  
SSxx1166  RR11,,  RR22,,  RR33  !!  iiff  RR11  ====  11,,  iitt  ttrriiggggeerrss  ddaattaa  aacccceessss  rreessuulltt  bbrreeaakk  
BBEEQQ  RR44,,  RR55,,  __ttaarrggeett  !!  iiff  RR44  ====  RR55,,  bbrraanncchh  ttoo  __ttaarrggeett  
xxxxxxxx  
yyyyyyyy  
JJ  RR77,,  <<__LLOOOOPP>>    !!  ccoonnttiinnuuee  lloooopp  
xxyyxxyy  
__ttaarrggeett::  
zzyyxxyy      !!  ffeettcchh  tthhiiss  iinnssttrruuccttiioonn  sshhoouulldd  ttrriiggggeerr  aa  ffeettcchh  
bbrreeaakkppooiinntt  
……..  
  
 
Suppose that above code section is located in a larger loop entity, and programmer wants to 
capture the case that both the data access result breakpoint and fetch breakpoint are triggered 
simultaneously, how to do it? Following code give a solution. Please note that such 
combinatorial break condition detection can not be automatically performed by hardware, which 
need software (debug handler) assistance. 
 
……        !!  FFoolllloowwiinngg  ccooddee  sseeccttiioonnss  rruunn  iinn  ssuuppeerrvviissoorr  mmooddee  
RRCCRR  RR11,,  SSRR    !!  RReeaadd  SSRR  
AANNDDII  RR11,,  RR11,,  00XX77DD  !!  CClleeaarr  SSRR..DDEE  ttoo  ffoorrbbiidd  bbrreeaakk  eexxcceeppttiioonn  rreessppoonnddiinngg  
WWCCRR  SSRR,,  RR11    !!  CClleeaarr  ddoonnee  
LLHHII  RR33,,  00XX001188000000  
OORRII  RR33,,  RR33,,  00XX440000  !!  00XX00CC000000440000  iiss  tthhee  __ttaarrggeett  aaddddrreessss  
CCSSTT  RR33,,  33,,  11    !!  SSeett  DDBBGG__IIAA00  
CCSSTT  RR00,,  33,,  22    !!  SSeett  DDBBGG__IIAA11,,  DDBBGG__IIAA00  nneeeedd  ccoommppaarree  
OORRII  RR44,,  RR00,,  00XX8888  !!  00XX8888  iiss  tthhee  eexxppeecctteedd  AASSIIDD  
CCSSTT  RR44,,  33,,  66    !!  SSeett  DDBBGG__AASSIIDD  
CCSSTT  RR00,,  33,,  44    !!  SSeett  DDBBGG__DDAA11,,  DDBBGG__DDAA00  nneeeedd  ccoommppaarree  
OORRII  RR33,,  RR33,,  00XXCC0000  !!  00XX00CC000000CC0000  iiss  tthhee  ttaarrggeett  ddaattaa  aacccceessss  aaddddrreessss  
CCSSTT  RR33,,  33,,  33    !!  SSeett  DDBBGG__DDAA00  
OORRII  RR44,,  RR00,,  11    !!  00XX11  iiss  tthhee  ttaarrggeett  ddaattaa  aacccceessss  rreessuulltt  
CCSSTT  RR44,,  33,,  55    !!  SSeett  DDBBGG__DDDD00  
OORRII  RR22,,  RR00,,  00XX33CC44BB  !!  EEnnaabbllee  DDBBGG__CCRR..IIDDEENN,,  DDBBGG__CCRR..DDDDEENN,,  DDBBGG__CCRR..AASSIIDDMM  

!!  DDBBGG__CCRR..DDMMSSKK00  
CCSSTT  RR22,,  00,,  00    !!  OOnnllyy  tthhee  wwrriittee  hhaallff  wwoorrdd  aacccceessss  ccaauussiinngg  

!!  rreessuulltt  00XX11  ccaann  mmaattcchh  
RRCCRR  RR11,,  EESSRR    !!  RReeaadd  EESSRR  
OORRII  RR11,,  RR11,,  22    !!  SSeett  vvaalluuee  11  ttoo  EESSRR..DDEE  
WWCCRR  EESSRR,,  RR11        
RRTTEE      !!  EEPPCC  ccoonnttaaiinnss  tthhee  eennttrryy  ooff  tthhee  eexxppeecctteedd  ccooddee  
sseeggmmeenntt  
……  
 
In the data access result breakpoint subroutine, if checking DBG_CR.IHIT[0] and 
DBG_CR.DHIT[0] represents that both of them are set, which means the combinatorial 
condition is match. 



Debug and JTAG 

 
 ARCA Technology Corporation  80 

7.7.3 Data transfer between target and host 
 
In host-monitoring debug, the data of JTAG memory are scanned into or out of JTAG interface.  
For different type, address[1:0], endian and access, data should be shifted into DATA registers 
or out from DATA register correctly. The following table lists the shift count in different 
conditions.  
 

big-endian little-endian Type Address[1:0] 
read write read write 

0 8 32 32 8 
1 16 24 24 16 
2 24 16 16 24 

byte 

3 32 8 8 32 
0 16 32 32 16 

half word 
2 32 16 16 32 

word 0 32 32 32 32 
 
Notes: 
1. Read/write is viewed from target, that is to say, read is a LOAD instruction executed at 

target and write is a STORE instruction executed at target. 
2. Here only lists the shift count of data. Another one shift is also needed to shift a “1”” into 

DATA[32] to tell TAP that data access has been finished and bus is not frozen. 



  Debug and JTAG 

  
 ARCA Technology Corporation 81 

7.7.4 How To Access JTAG Memory Space 
 
When the FSM is in Test-Logic-Reset because TRST_ is active or high level of TMS retains at 
least 5 TCK cycles, adopt the following algorithm to monitor load/store JTAG memory access 
issued by CPU. The example does not include burst access case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7-7 Debug and Extended JTAG 

 
The following are correlative timing diagrams.  Although the processor supports two 
endians, the following figures only considers big-endian. 

1 

Generate CTRL part 
of BIU_BSR polling  

Insert CONTROL  
instruction  

 Y 

N 

 

Y(read) 

Insert ADDR insn to 
scan out addr 

Insert DATA insn to 
inject the expected 

data from JTAG  
memory[addr] and 

the unfreezing 
signal to CPU 

Resume 
N(write) 

Insert ADDR insn to  
scan out addr 

Save scanned out  
data to JTAG 
memory[addr] 

Resume 

Insert DATA insn 
to scan out data and 
then inject unfreezing 

signal to CPU 
check shift out 

(SFT_OUT[0] =0)? 

check shift out 
(SFT_OUT[1] =0)? 



Debug and JTAG 

 
 ARCA Technology Corporation  82 

1. Insert CONTROL instruction to replace the default BYPASS instruction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Use following TMS series to implement BIU_BSR.CTRL polling function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TMS 

TCK 

FSM 

T
es

t-L
og

ic
-R

es
et

 

R
un

-T
es

t/I
dl

e 

Se
le

ct
_D

R
-S

ca
n 

Se
le

ct
_I

R
-S

ca
n 

C
ap

tu
re

_I
R

 

Sh
if

t_
IR

 

Sh
if

t_
IR

 

Sh
if

t_
IR

 

Sh
if

t_
IR

 

E
xi

t_
IR

 

U
pd

at
e_

IR
 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

TDI 
CTRL = B’0000 

TMS 

TCK 

FSM 

Se
le

ct
_D

R
-S

ca
n 

C
ap

tu
re

_D
R

 

Sh
if

t_
D

R
 

Sh
if

t_
D

R
 

E
xi

t_
D

R
 

U
pd

at
e_

D
R

 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 



  Debug and JTAG 

  
 ARCA Technology Corporation 83 

3. Use ADDR instruction to scan out ADDR part of BIU_BSR (for write JTAG memory access) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TMS 

TCK 

FSM 

Se
le

ct
_D

R
-S

ca
n 

Se
le

ct
_I

R
-S

ca
n 

C
ap

tu
re

_I
R

 

Sh
if

t_
IR

 

Sh
if

t_
IR

 

Sh
if

t_
IR

 

Sh
if

t_
IR

 

E
xi

t_
IR

 

U
pd

at
e_

IR
 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

TDI 
ADDR = B’0001 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

TMS 

TCK 

FSM 

Se
le

ct
_D

R
-S

ca
n 

C
ap

tu
re

_D
R

 

Sh
if

t_
D

R
 

Sh
if

t_
D

R
 

E
xi

t_
D

R
 

U
pd

at
e_

D
R

 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

37 TCK cycles 



Debug and JTAG 

 
 ARCA Technology Corporation  84 

4. Use DATA instruction to scan out write data and inject unfreezing CPU signal (for write JTAG 
memory access) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: In the case, it’s a write byte access, and the value of addr[1:0] is 3, the write result is H’a8. 
For half word of word access, the circulating times of Shift_DR need make corresponding 
extension. And the alignment for big endianess must be cautious, for example, if CPU wants to 
write a byte value to H’EC000080, it needs 33 times of shifting, and the TDI must be 33’B1x. (x 
means don’t care bits, which has 32 bits long and can be 0 or 1). 

 

TMS 

TCK 

FSM 

Se
le

ct
_D

R
-S

ca
n 

Se
le

ct
_I

R
-S

ca
n 

C
ap

tu
re

_I
R

 

Sh
if

t_
IR

 

Sh
if

t_
IR

 

Sh
if

t_
IR

 

Sh
if

t_
IR

 

E
xi

t_
IR

 

U
pd

at
e_

IR
 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

TDI 
DATA = B’0010 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

TMS 

TCK 

FSM 

Se
le

ct
_D

R
-S

ca
n 

C
ap

tu
re

_D
R

 

Sh
if

t_
D

R
 

E
xi

t_
D

R
 

U
pd

at
e_

D
R

 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

TDI 
TDI = 9’B100000000 

Sh
if

t_
D

R
 

Sh
if

t_
D

R
 

Sh
if

t_
D

R
 

Sh
if

t_
D

R
 

Sh
if

t_
D

R
 

Sh
if

t_
D

R
 

Sh
ift

_D
R

 

Sh
if

t_
D

R
 

TDO TDO = 9’B010101000 



  Debug and JTAG 

  
 ARCA Technology Corporation 85 

5. Use ADDR instruction to scan out ADDR of BIU_BSR (for read JTAG memory access) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TMS 

TCK 

FSM 

Se
le

ct
_D

R
-S

ca
n 

Se
le

ct
_I

R
-S

ca
n 

C
ap

tu
re

_I
R

 

Sh
if

t_
IR

 

Sh
if

t_
IR

 

Sh
if

t_
IR

 

Sh
if

t_
IR

 

E
xi

t_
IR

 

U
pd

at
e_

IR
 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

TDI 
ADDR = B’0001 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

TMS 

TCK 

FSM 

Se
le

ct
_D

R
-S

ca
n 

C
ap

tu
re

_D
R

 

Sh
if

t_
D

R
 

Sh
if

t_
D

R
 

E
xi

t_
D

R
 

U
pd

at
e_

D
R

 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

37 TCK cycles 



Debug and JTAG 

 
 ARCA Technology Corporation  86 

6. Use DATA instruction to inject expected data and unfreezing CPU signal (for read JTAG memory 
access) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: In the case, it’s a read byte access, and the value of addr[1:0] is 0, the read result is H’57. 
For half word or word access, the circulating times of Shift_DR need make corresponding 
extension. And the alignment for big endianess must be cautious, for example, if CPU wants to 
read a byte value H’73 from H’EC000083, the final shift data must be 33’B1x01110011. (x 
means don’t care bits, which has 24 bits long and can be any value). 

TMS 

TCK 

FSM 

Se
le

ct
_D

R
-S

ca
n 

Se
le

ct
_I

R
-S

ca
n 

C
ap

tu
re

_I
R

 

Sh
if

t_
IR

 

Sh
if

t_
IR

 

Sh
if

t_
IR

 

Sh
if

t_
IR

 

E
xi

t_
IR

 

U
pd

at
e_

IR
 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

TDI 
DATA = B’0010 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

TMS 

TCK 

FSM 

Se
le

ct
_D

R
-S

ca
n 

C
ap

tu
re

_D
R

 

Sh
if

t_
D

R
 

E
xi

t_
D

R
 

U
pd

at
e_

D
R

 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

R
un

-T
es

t/I
dl

e 

TDI 
BIU_BSR.DATA[32:24] = 9’B101010111 

Sh
if

t_
D

R
 

Sh
if

t_
D

R
 

Sh
if

t_
D

R
 

Sh
if

t_
D

R
 

Sh
if

t_
D

R
 

Sh
if

t_
D

R
 

Sh
if

t_
D

R
 

Sh
if

t_
D

R
 



  Debug and JTAG 

  
 ARCA Technology Corporation 87 

7.7.5 How To Implement Burst Access from JTAG memory (burst read 8 words / burst 
write 4 words) 
 
Use following algorithm, and the timing is similar (need some alteration) to above case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-8 Debug and Extended JTAG 

 
Note that burst access from JTAG memory uses wrap-round mode. 
1. If burst access is write, which means writing 4 words. For example, if the burst access 

address is 0xEC000004, then the addresses of written data should be 0xEC000004, 
0xEC000008, 0xEC00000C, 0xEC000000. 

2. If burst access is read, which means reading 8 words. The addresses of read data are 
splitted into two groups: low group and high group. Wrap-round access only occurs in the 
group that has the start address and sequence access occurs in the group that has not the 
start address. For example, if the burst access address is 0xEC000004, then the addresses 
of read data should be 0xEC000004, 0xEC000008, 0xEC00000C, 0xEC000000, 
0xEC000010, 0XEC000014, 0xEC000018, 0xEC00001C. if the burst access address is 
0xEC000014, then the addresses of read data should be 0xEC000014, 0xEC000018, 
0xEC00001C, 0xEC000010, 0xEC000000, 0XEC000004, 0xEC000008, 0xEC00000C. 

 

7.7.6 How To Boot System From JTAG Memory 
 
The case illustrates how to boot system from JTAG memory after power-on reset. It is very 
useful for developing system without on-board memory system at all. The steps are listed below: 
 
1. Set TAP_SEL to 1 to select the internal TAP. 
2. Press power key to reset processor and the internal TAP works. 
3. Use TMS or TRST_ to reset the internal. 

addr = addr + 4, it’s a  
wraparound operation 

1 

Generate CTRL part 
of BIU_BSR polling  

Insert CONTROL  
instruction  

 Y 

N 

 

Y(read) 

Insert ADDR insn to 
scan out addr 

Check ADDR part of  
BIU_BSR,  it’s a  

burst read (8-word) 

Insert DATA insn to  
inject the data from 
JTAGmemory[addr] 

and unfreezing signal 
to CPU.  

1 
Resume 

N(write) 

Insert ADDR insn to  
scan out addr 

Check ADDR part of  
BIU_BSR, it’s a 

burst write (4-word) 

1 

Resume 

Insert DATA insn to 
scan out data, then 

inject unfreezing 
signal to CPU 

Save data to JTAG 
memory[addr], then 

addr = addr + 4, it’s a 
wraparound operation 

perform 8  
times 

perform 4 
times 

check shift out 
(SFT_OUT[0] =0)? 

check shift out 
(SFT_OUT[1] =0)? 



Debug and JTAG 

 
 ARCA Technology Corporation  88 

4. Inject ASYN_BOOT instruction from JTAG interface into the instruction register of the 
internal TAP 

5. The boot handler entry located at H’EC000000 is load by CPU, hence system can boot from 
JTAG memory space successfully. 

 
 
 



  List of Figures 

  
 ARCA Technology Corporation 89 

8 Performance Monitor 
 

8.1 Overview 
 

CPU performance is the guidance in evaluation of ISA, micro-architecture, cache and MMU. In 
addition, it can supply information for compiler writers, system developers and software 
programmers. 
 
Arca2 provides two 32-bit performance counters that allow two unique events to be monitored. 
In addition, a 32-bit clock counter can be used with the performance counters. When any one of 
the three counters reaches its maximum value 0xFFFFFFFF, an overflow interrupt will occur. At 
the same time, the corresponding counter will wrap to zero and continue counting. 



List of Figures 

 
 ARCA Technology Corporation  90 

8.2 Register Configuration 
 

PMON registers are listed in Table 8-1 and they can be accessed by CLD/CST instructions. 
 

Table 8-1 PMON Registers 

Name Full Name R/W 
Initial value 

when power on 
Access Size #ID #CR 

PMC 
Performance 
Monitor Control Register 

R/W H’00003FFC*  32  001 000 

CTR 
Clock Cycle Time 
Register 

R/W H’00000000  32  001 001 

MOR0 
Monitor Object Counter 
Register 0  

R/W H’00000000  32  001 010 

MOR1 
Monitor Object Counter 
Register1 

R/W H’00000000  32  001 011 

 
Note that the value of PMC is reset to H’00003FFC, but it will be H’00003FF0 next cycle after 
reset. So its value should be considered to be H’00003FF0 after reset. 
 

8.2.1 Performance Monitor Control Register (PMC) 
 

#ID=001 # CR =000 
 

Bit: 31 30 29 28 27 26 25 24 
Read:  
Write:  
Reset: 0 0 0 0 0 0 0 0 

 
Bit: 23 22 21 20 19 18 17 16 

Read:  
Write:  

SM flag 

Reset: 0 0 0 0 0 0 0 0 
 

Bit: 15 14 13 12 11 10 9 8 
Read: 
Write: 

flag MOR1_SLT MOR0_
SLT 

Reset: 0 0 1 1 1 1 1 1 
 

Bit: 7 6 5 4 3 2 1 0 
Read: 
Write: 

MOR0_SLT P C M E 

Reset: 1 1 1 1 1* 1* 0 0 
 

Bit 31 ~ Bit 18: Reserved bits, ignored in write operation, always 0 in read operation. 
 
– E: Clock Counter Enable 
0: clock counter is disabled. 
1: clock counter is enabled. 
 
– M: Monitor Counter Enable 
0: all monitor counters are disabled. 



  List of Figures 

  
 ARCA Technology Corporation 91 

1: all monitor counters are enabled. 
 
– C: Clock counter reset 
0: no action. 
1: reset clock counters to 0x0. This bit will be auto-reset to 0 at next clock. 
This bit will reset to ‘1’ when system reset so that CTR will auto reset to zero at the same time. 
This bit also clears overflow flag (bit 16). 
 
– P: Performance Counter Reset 
0: no action. 
1: reset all monitor object counters to 0x0. This bit will be auto-reset to 0 at next clock. 
This bit will reset to ‘1’ when system reset so that MOR0 and MOR1 will auto reset to zero at the 
same time. 
This bit also clears overflow flag (bit 15 ~ 14). 
    
– MOR0_SLT (Bit 8-Bit 4): identify the source of events for first monitor counter. 
This is MOR0 selector and its value is listed in Table 8-3. It is unpredictable when system reset. 
 
– MOR1_SLT (Bit 13-Bit 9): identify the source of events for second monitor counter. 
This is MOR1 selector and its value is listed in Table 8-3. It is unpredictable when system reset. 
 
– flag (Bit 16-Bit 14): overflow flag 
Bit 16: clock counter overflow flag 
Bit 15: object counter1 overflow flag 
Bit 14: object counter0 overflow flag. 
Read value: 0: no overflow.   1: overflow has occurred. 
Write value: 0: clear this bit. 1: no change. 
 
− SM (Bit 17): This bit is used to select the monitored event.  

0: select all events in supervisor or user mode. 
1: only select events which occur in supervisor mode. 

 

8.2.2 Clock Cycle Time Register (CTR) 
 
32-bit counter used to record clock cycles. 
 

#ID=001  #CR=001 
 

Bit: 31 … … … … … … … …  4 3 2 1 0 
Read: 
Write: 

Clock Cycle Time Register 

Reset: 0 0 0 0 0 0 0 
 

8.2.3 Monitor Object Counter Register 0 (MOR0) 
 
32-bit counter used to record the number of expected event such as TLB miss, Cache miss, jump and etc. 
 

#ID=001  #CR=010 
 

Bit: 31 … … … … … … … …  4 3 2 1 0 
Read: 
Write: 

Monitor Object Counter Register 0 

Reset: 0 0 0 0 0 0 0 



List of Figures 

 
 ARCA Technology Corporation  92 

8.2.4 Monitor Object Counter Register 1 (MOR1) 
 
32-bit counter used to record the number of expected event such as TLB miss, Cache miss, jump and etc. 
 

#ID=001  #CR=011 
 

Bit: 31 … … … … … … … …  4 3 2 1 0 
Read: 
Write: 

Monitor Object Counter Register 1 

Reset: 0 0 0 0 0 0 0 



  List of Figures 

  
 ARCA Technology Corporation 93 

8.3 Monitoring Event 
 

The 5-bit MOR0_SLT and MOR1_SLT in PMC contain 32 events space respectively. It is 
divided to 4 parts as Table 8-2 lists.  

 

Table 8-2 PMON Monitored Modules 

MOR_SLT Highest 2-bits Monitored Modules 
00 IU 
01 MMU and I-Cache 
10 D-Cache 
11 Reserved 

 
Table 8-3 lists events that can be monitored by the MOR0/MOR1. Monitor Object Count 
Registers (MOR) can count any listed event. Software can select which event will be counted by 
setting the MOR0_SLT and MOR1_SLT fields of the PMC register. 

  

Table 8-3 PMON Monitored Events 

MOR_SLT 
high low 

Event Name Event Description 

000 insn 
Instruction that is executed. It also count those are canceled by 
exception. 

001 insn_cancel 
Instruction that canceled by exception. It is not accurate if the 
instruction occupied more than one CPU pipeline stages 

010 stall CPU pipeline stall, including canceled one 
011 sv_insn Instruction that is executed in supervisor mode 
100 bcc_insn BCC instruction, including canceled one 
101 bcc_taken BCC instruction that branch is taken, including canceled one 
110 jump_insn J, JA, RTE instruction, including canceled one 

00
 (

IU
) 

111 Reserved  
000 itlb_miss ITLB miss count 
001 dtlb_miss DTLB miss count. It also includes initial write exception. 
010 Reserved  
011 Reserved  

100 Icc_miss 
Icache miss count, including cacheable fetch miss and 
uncacheable fetch miss. 

101 Icc_unc_fth Icache fetch uncacheable area, which always induces icc miss. 
110 Reserved  01

 (
M

M
U

 I-
C

ac
he

) 

111 Reserved  

000 Dcc_ldst 
D-cache accepts load/store/swap command count, including 
fault command and the load when IU accept exception. 

001 Dcc_miss D-cache does fill from external memory count. 

010 Dcc_unc 
D-cache does single (read/write/read-then-write) access to 
external memory. It does not include fault access and 
bufferable write and missed write in write-through mode. 

011 Dcc_wbb D-cache write back words count. 
100 Reserved  
101 Reserved  
110 Reserved  

10
 (

D
-C

ac
he

) 

111 Reserved  
000   

11
 

(R
es

er
ve d)
 

001   



List of Figures 

 
 ARCA Technology Corporation  94 

MOR_SLT 
high low 

Event Name Event Description 

010   
011   
100   
101   
110   

 

111   
 

By setting object event number in PMC and capturing different event counter, different 
performance can be monitored. Table 8-4 shows some typical combinations of monitored events. 

 

Table 8-4 Typical Monitored Events 

Items MOR0_SLT MOR1_SLT 
CPI 0x0 (instruction count) 0x1 (instruction canceled) 
Jump rate 0x5 (conditional jump that taken) 0x6 (unconditional jump) 
BCC taken rate 0x5 (branch taken) 0x4 (branch instruction) 
Stall rate 0x2 (stall) 0x0 (instruction count) 
ITLB miss rate 0x8 (itlb miss) 0x0 (instruction count) 
DTLB miss rate 0x9 (dtlb miss) 0x10 (load/store count) 
I-Cache miss rate 0xC (I-cache miss) 0x0 (instruction count) 
D-Cache miss rate 0x11 (D-cache miss) 0x10 (load/store count) 
Data access rate 0x10 (dcc instruction) 0x0 (instruction count) 

 
• CPI: cycles per instruction. 

CPI = CTR / MOR0 
 
• Jump rate: the rate of jumping target in total fetched instructions. 

jump_rate = (MOR0 + MOR1) / (instruction count) 
  
• BCC taken rate: the taken (jumping target) rate of BCC. 

bcc_taken_rate = MOR0 / MOR1 
 
• Stall rate: how many stall happen when one instruction is executed 

stall_rate = MOR0 / MOR1 
 
• ITLB miss rate: the rate of ITLB miss in total fetched instructions. 

itlb_miss_rate = MOR0 / MOR1 
 
• DTLB miss rate: the rate of DTLB miss in total load/store instructions. 

dtlb_miss_rate = MOR0 / MOR1 
 
• I-Cache miss rate: the rate of I-Cache miss in total fetched instructions. 

icache_miss_rate = MOR0 / MOR1 
 
• D-Cache miss rate: the rate of D-Cache miss in total load/store instructions. 

dcache_miss_rate = MOR0 / MOR1 
 
• Data access rate: the rate of D-Cache access in total fetched instructions.  

data_access_rate = MOR0 / MOR1 
 
 
 



  List of Figures 

  
 ARCA Technology Corporation 95 

8.4 Monitoring flow 
 

PMON monitors the object events when program is running. Two 32-bit MOR and one 32-bit CTR 
accumulate events independently before wrapping around. An overflow interrupt will occur when 
the counters wrap. Extended event logging may be accomplished by periodically reading the 
contents of the MOR0/MOR1/CTR before each overflow.  
 
The steps using PMON can be concluded as follows. 
1. Reset all PMON counters by setting P and C, clearing MOR_SLT and overflow flag bits in 

PMC. 
2. Set MOR_SLT0 and MOR_SLT1 with object event number listed in Table 8-3 and SM bit (If 

only want to monitor events in supervisor mode, then set it to 1) . 
3. Turn on clock counter and monitor counters by setting E bit and M bits in PMC. 
4. If overflow interrupt occurs, record overflow in the corresponding variables. 
5. Check the result of CTR, MOR0, MOR1 and overflow variables after program is over. 
 



List of Figures 

 
 ARCA Technology Corporation  96 

               List of Figures 
 

Figure 1-1 Arca2 CPU core Block Diagram ......................................................................................2 
Figure 2-1 General pipeline ............................................................................................................4 
Figure 2-2 Exception hazard...........................................................................................................7 
Figure 3-1  Exceptions and Exception Resources ...........................................................................10 
Table 4-1 Module Identification Number ........................................................................................18 
Table 4-2 Control Registers in Module MMU..................................................................................18 
Table 4-3 CR in Module Debug.....................................................................................................18 
Table 4-4 Control registers in Module PMON .................................................................................19 
Table 4-5 Module CMD Definitions ................................................................................................19 
Figure 5-1 Direct Virtual Physical Address translation (MCR.ATE=0)...............................................26 
Figure 5-2 Paging Virtual Physical Address translation (MCR.ATE=1) .............................................28 
Figure 5-3 Configuration of TLB ....................................................................................................30 
Figure 5-4 Flowchart of Data Access Using DTLB ..........................................................................32 
Figure 5-5 Flowchart of Instruction Fetch Using ITLB ......................................................................33 
Figure 6-1 Data Cache Structure...................................................................................................42 
Figure 6-2 Instruction Cache Structure ..........................................................................................45 
Figure 7-1 Debug and Extended JTAG..........................................................................................58 
Figure 7-2 Internal Tap.................................................................................................................59 
Figure 7-3 BIU_BSR Register .......................................................................................................61 
Figure 7-4 Endian Adjustment .......................................................................................................62 
Figure 7-5 The Stutcture of Debug Module ....................................................................................64 
Figure 7-6 Exception Priority.........................................................................................................74 
Figure 7-7 Debug and Extended JTAG..........................................................................................81 
Figure 7-8 Debug and Extended JTAG..........................................................................................87 

 



  List of Tables 

  
 ARCA Technology Corporation 97 

                List of Tables 
 

Table 1-1 Arca2 CPU Core Features ...............................................................................................3 
Table 2-1 Instruction and special IU states cycles ............................................................................9 
Table 2-2 Stall conditions and cycles...............................................................................................9 
Table 3-1 Arca Exception Priorities................................................................................................12 
Table 3-2 Arca Exception Vector Table..........................................................................................13 
Table 3-3 Exception Cause...........................................................................................................14 
Table 5-1 MMU Registers .............................................................................................................22 
Table 5-2 MMU configuration instruction ........................................................................................34 
Table 6-1 Cache Feature ..............................................................................................................39 
Table 6-2 Cacheable and Bufferable attribute of one page ..............................................................41 
Table 6-3 D-cache and Write Buffer Policy.....................................................................................41 
Table 6-4 Cache Operations .........................................................................................................51 
Table 7-1 Debug Features ............................................................................................................57 
Table 7-2 Extended JTAG Features ..............................................................................................57 
Table 7-3 Extended JTAG Instructions ..........................................................................................60 
Table 7-4 BIU_BSR Register ........................................................................................................61 
Table 7-5 JTAG Memory Space....................................................................................................62 
Table 7-6 Debug Internal Signals ..................................................................................................64 
Table 7-7 Debug Registers ...........................................................................................................65 
Table 7-8 Fecth Breakpoint True Table..........................................................................................71 
Table 7-9 Data Access Breakpoint True Table ...............................................................................72 
Table 7-10 Instructions That Are Not Monitored .............................................................................73 
Table 8-1 PMON Registers ...........................................................................................................90 
Table 8-2 PMON Monitored Modules.............................................................................................93 
Table 8-3 PMON Monitored Events ...............................................................................................93 
Table 8-4 Typical Monitored Events ..............................................................................................94 
 


