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1 Overview

Introduction

Arca2 CPU core is a high performance and low power microprocessor core which implements
version 2 of Arca Instruction Set Architecture. Refer the document “ Arca Instruction Set Architecture
Reference Manual-V2” for ISA details.

The CPU core is not intended to be delivered as a stand alone product but as a building block
for an application processor with embedded markets such as thin client, handheld devices,
networking, storage, remote access servers, etc.

Arca2 CPU core is a Harvard cache architecture that is targeted at multiprogramming
applications where full memory management, high performance and low power consumption
are all important. In addition to the five-stage pipeline CPU, the core integrates a full featured
MMU with separated 32 entry instruction TLB and data TLB, separated virtual tag instruction
cache and data cache each with 8KBytes size, and a write buffer which greatly alleviate the
memory latency.

Arca2 CPU core includes a debug module which provides a powerful mechanism for both
hardware and software debugging. Hardware instruction and data breakpoints are provided.
Through a JTAG interface, a software debugger could connect to the target processor without
the need for extra hardware like serial or ethernet port.

Arca2 CPU core also integrates a performance monitor that could monitor a variety of
performance events. This provides an efficient way for application performance tuning,
benchmark evaluation and compiler optimization.

Arca2 CPU core interfaces to the rest of system through a unified Bus Interface Unit (BIU). The
BIU could easily be connected to some on chip SOC bus, for example, the OCS(On Chip
System) bus designed by ARCA Technology Corporation, or AMBA AHB bus by ARM.

ARCA Technology Corporation



Overview

1.2 Block Diagram

Arca2 CPU Core
IPA
ITLB
f Insn ¢
IVA > Cache
< v
\ 4 B
Arca?2 |
CPU MMU U
e A
¢
DVA e t
L » Daa | | PA » WBB
Cache TAG
DTLB

DPA

Figure 1-1 Arca2 CPU core Block Diagram

The block diagram of Arca2 CPU core is shown in Figure 1-1.

> ARCA Technology Corporation




Overview

1.3 Features

The key features of Arca2 CPU core are listed in Table 1-1.

Table 1-1 Arca2 CPU Core Features

Item

Features

Arca2 CPU

Arca version 2 architecture, 32-bit Arca instruction set.
32 32-bit general registers

5-stage pipeline

Interlocked implementation

Virtual address space: 4 G-Bytes

Memory Manager
Unit (MMU)

4 G-Bytes of address space, divided into 5 partition spaces

Full associative 32-entry instruction TLB (ITLB) and 32-entry data
TLB (DTLB), with round robin replacement algorithm

Four different page size: 4KB, 16KB, 1MB and 16MB in any entry
Support entry lock

Translate 32-bit virtual address to 32-bit physical address

Space identifier ASID: 8 bits, 256 virtual address spaces

Data Cache

8K-Byte, physically-indexed, virtually-tagged

Hardware resolve alias issue

32-way set associative: 8 sets with each set containing 32 ways
Each way contains 32 bytes (one cache line)

Round robin replacement algorithm

Write-back, write-through

4-word deep write buffer

Support lock, allocate operations

Instruction Cache

8K-Byte, physically-indexed, virtually-tagged

32-way set associative: 8 sets with each set containing 32 ways
Each way contains 32 bytes (one cache line)

Round robin replacement algorithm

Support lock operation

Debug

JTAG interface to host machine

ASID match

Two instruction or one maskable instruction address breakpoint
Two data or one maskable data address breakpoint

One data store result breakpoint

Software break

Asynchronous break from host machine

Asynchronous boot from host machine

Performance Monitor
(PMON)

One 32-bits internal clock counter

Two 32-bits signal counter, each of which can be set to count 1 of
15 signals

Count overflow interrupt

ARCA Technology Corporation 3




Arca2 CPU

2 Arca2 CPU

2.1 Overview

Arca2 implementation uses a 5-stage pipeline design. The five stages are:

IF - instruction fetch, fetch instruction from ICache or External Memory
ID - instruction decode and GRF (general register file) read

EX - instruction execution like addition, shift or the first part of multiply
MA - memory access or the second part of multiply

wB - write back result to GRF

Figure 2-1 shows general pipeline.

IF | ID | EX| MA|[WB
IF | ID | EX| MA|WB

Figure 2-1 General pipeline

Arca2 pipeline will automatically interlock when a data dependence is detected by pipeline

control. The interlocked implementation allows software to function identically across different
implementations without concern for pipeline effects.

4 ARCA Technology Corporation
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2.2 Pipeline for One-Pass and Multi-Pass Instructions

Most of Arca instructions are implemented to occupy one pipeline pass. For these instructions it
seems that one instruction is executed within one cycle, which ensures high performance. It is
illustrated by figure blow, where all 11, 12, 13 and 14 instructions occupied one pipeline pass.

11 IF | ID | EX|MA|WB
12 IF | ID | EX{ MA|WB
13 IF | ID| EX|MA|WB
14 IF | ID | EX{MA|WB

Besides, a few Arca instructions are implemented to occupy more than one pipeline pass, and

thus multiple cycles are needed to be executed, such as MULU with high 32-bit result, ITLB,
ICACHE and SLEEP.

2.2.1 MULU with high 32-bit result

MULU (MULU Rh: Ra, Rb, Rc) is special in that the execution could be 1 or 2 pipeline passes. If
Rh is RO, i.e., the higher 32-bit result is not required, one pass is needed, otherwise it needs

another pass to write the higher 32-bit result. The figure below illustrates the execution process
of MULU with Rh not equal to RO:

Cycle: Cl C2 C3 C4 C5
11: MULU instruction IF | ID | EX| MA|WB| <«—— pass 1:accomplish multiply and write Ra
MULU pass 2 IF [ ID | EX| MA|WB| <«—— pass 2:write Rh
I2: next instruction if | ID| EX|MA|WB| «—— I2isexecuted

2.2.2 ITLB/ICACHE

ITLB is implemented as a two-pass instruction and ICACHE instruction is a four-pass one.

2.2.3 SLEEP

SLEEP is implemented as an ‘infinite’ pass instruction and the next instruction will not be
executed until an interrupt or a wakeup signal breaks the execution of the SLEEP

I1: sleep IF|ID] - = =
sleep if | ID] - - -
sleep if [ D] -] - -
sleep if |ID| - | -] -
...... if | ID| - | -] -

ARCA Technology Corporation
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2.3

Hazard & Forwarding

2.3.1 Forwarding method

Most Arca instructions carry out an operation with such a pattern: Ra = Rb op Rc. In each cycle,
there may be five instructions executed in the pipeline. If an operand that the current instruction
needs to read is just the one that a preceding instruction will write, we called WR relation for
short, the data dependency hazard occurs. Bypass or forwarding technique is used to solve this
kind of hazard.

When WR occurs, a result data of previous instruction is needed by current instruction before
the data is written to GRF. With forwarding technique, the data is forwarded directly to current
instruction when it is on the way to GRF, instead of waiting it write to GRF then read from GRF.
So the forwarding technique prevents a big lost in CPU performance. Arca2 CPU employs this
technique in all possible circumstance that solves most of the data dependency hazard.

2.3.2 Hazard

Arca has 3 kinds of hazard. The first one is control hazard caused by branch instruction or
exception acknowledgement. The second one is data hazard caused by WR relationship. The
last one is structure hazard caused by multiplier resource contention.

2.3.2.1 Control hazard

1. Jump and branch instruction

When jump or branch instruction executed, there is always one bubble between the
jump/branch instruction and the next one. That is to say, there always exists 1 cycle penalty for
Arca2 CPU to execute a jump or a branch instruction (refer to the figure below).

Cycle: Cl C2 C3 C4 C5
branch insn IF | ID | EX| MA|WB
bubble IF |[ID]| - - -

next insn IF | ID | EX| MA|WB

Note that for BCC/BCCI instructions, there is only 1 cycle penalty no matter whether the branch
is taken or not.

2. RTE instruction
When RTE instruction is executed, there are always two bubbles between RTE and the next
instruction T1, which is in the instruction flow before exception happen.

Cycle: Cl C2 C3 C4 C5
11: RTE IF | ID | EX|MA|WB
bubble if | ID]| - - -
bubble if | ID]| - - -
T1: return point IF | ID | EX|{ MA|WB

ARCA Technology Corporation
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3. Exception

All kinds of exception could cause control hazards, see Figure 2-2.

insnl WB WB WB WB WS
insn2 MA MA MA MA MA
insn3 EX EX X X EX
insn4 ID B B 1B B
insn5 = = = s =
TRAP ILLINS DBRK DFAULT DBOOT
SBRK INT RESET
IFAULT
IBRK
DINT

Figure 2-2 Exception hazard

Note that the deep gray area in above figure means that instruction could flow forward without

any effect from exception, while the dash area denotes that these instructions’ pipeline should
be cut down.

2.3.2.2 Data hazard (Stall)

Data hazard is generally caused by WR relationship between two adjacent instructions. If the
first instruction produces a data in a later stage and the next instruction uses it in an earlier
stage, the data consumer has to wait till the data is available. The instruction execution pipeline

is then stalled. The data hazard caused by the different type instruction will be discussed in the
following:

1. Read after Load

Since the result of a load instruction is ready at the end of MA stage, 1 stall is needed for the
next instruction if it is one of the store, SWAP, CST or WCR instruction that uses the result as

the data to be stored. 2 stalls are needed for the next instruction if it is one of other instructions
that uses the result or other using cases.

11: Ln/LXn/CLD/SWAP IF | ID|EX|MA|WB| «— data available at WB
stall IF | ID| - L -

12: SN/STn/SWAP/CST/WCR if [ ID

X |[MA|WB| <€—— 12 need data at EX

I1: Ln/LXn/CLD/SWAP IF [ ID [ EX|MA|WB| €4— data available at WB
stall IF|ID| - -

stall if | ID] |- -
I12: Other cases if [YO[EX|™A

WB| <4— 12 need data at ID

ARCA Technology Corporation
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2. Read after MULU

Similar to a load instruction, MULU gets its result (ml for low 32-bit and mh for high 32-bit) at the
end of MA stage and is available at WB stage. The stall case when ‘mh’ is not required is just
the same as read after load. When the higher 32-bit result (mh) is required, MULU lasts two
pipeline passes, where ml is available at WB stage of pass 1, and mh is of pass 2. The stalls
needed between mh producing and using is also the same as the read after load case. The
figures below illustrates the pipeline sequence for two-pass MULU and its following instruction
that using MULU"s ml:

I1: MULU with a valid Rh IF | ID|EX|MA|WB| «— WB: ml available
MULU pass2 | IF | ID [ EX @A WB
12: SN/STn/SWAP/CST/WCR if | ID|EX[MA WB|

12 need ml at EX
< (no stall is needed)

I1: MULU with a valid Rh IF | ID | EX|MA|WB| €«—— WB: mlavailable
MULU pass2 | IF | ID | EX|MA|WB| «—— WB: mh available

stall if |ID LD -1 -
12: Other cases if EX| MA WB| <«4—— 12 need ml at ID

2.3.2.3 Structure hazard

Structure hazard in Arca is caused by multiplier resource contention. One MULU instruction will
occupy multiplier resource for two or three consecutive gcles, when a MULU immediately
followed by another MULU, the resource contention occurs, which requires one bubble being
inserted between two consecutive MULU instructions. The figure below explains multiplier
resource contention:

Cycle: Cl C2 C3 C4 C5
11: MULU RO, Ra, Rb, Rc IF | ID IMUL|MUL|WB| <€— 11 occupies multiplier in C2 and C3
stall IF|ID| - - -
12: MULU . .. if | ID [MUL|MUL|WB| <«— 12 can use multiplier in C4 ...
—r—
I1 uses 12 uses
MUL MUL
Cycle: Cl C2 C3 C4 C5
11: MULU RO, Ra, Rb, Rc | IF | ID [MUL|MUL|WB| «4— 11 occupies multiplier in C2, C3 and C4
Where Rh is not RO IF | ID [MUL|MUL|WB| €— 11 pass2
stall if [ID]| - - -
12: MULU . .. if | ID |MUL|MUL WB| «4— 12 can use multiplier in C5 ...
| >
11 uses 12 uses
MUL MUL

Notes structure hazards caused by cache/memory resource contention are described in
“Chapter 6 Cache”
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2.4 Cycles for Arca2 instruction executions and stalls

Table 2-1 summarizes static cycle consumption for all instructions and IU states and Table 2-2
summarizes dynamic cycle consumption for all cases that cause stall.

Table 2-1 Instruction and special |U states cycles

IU state Instruction Cycles Description
Power-on i 32 1. Wait peripheral devices to be initialized
RESET 2. Clear GRF
When an exception/interrupt is detected and
Exception - 5 accepted, 5 extra cycles are needed before execute
the first instruction in exception/interrupt routine
SLEEP SLEEP i SLEEP instruction will be r_epeatedly executed until
an interrupt or a wake up signal
ICACHE 4
NORMAL ITLB 2
STATE MULU Rh, Ra, Rb, Rc 2 When Rh is not RO
Others 1

Table 2-2 Stall conditions and cycles

Instruction - Stall
May Cause Stalls Stall Condition Cycles
BEQ BNE BLT BLTU BGE BGEU
BEQ BNEI BEQUI BNEU BLTI Always 1
BLTU BGElI BGEU J JA
RTE Always 2
The loaded data is used as a stored data™ in next
instruction L
L8 L8U L16 L16U L32 LX8 The loaded data is used by next instruction as other 5
LX8U LX16 LX16U LX32 LX16S | than a stored data
LX16SU LX32S CLD SWAP The next instruction consume one cycle and the
loaded data is used by the next of the next 1
instruction as other than a stored data
MULU RO, Ra, Rb, Re Same as the load inst_ruction cases, just replace the 1/2
“loaded data” by “multiply result”
Rh data dependence is just like above, just replace 1/2
MULU Rh, Ra, Rb, Rc the “multiply result” by “multiply high 32-bit result”
(where Rh is not RO) The multiply low 32-bit result is used by the next
. : 1
instruction as other than a stored data
MULU If next instruction is a MULU again 1
Note

(1) “stored data” means the data to be stored (or Ra) of the instruction CST SWAP WCR S8
S16 S32 SX8 SX16 SX32 SX16S SX32S.

Please note when there are multiple stall conditions meet simultaneously, the longest stall takes

place.
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3.1

3.2

3 Exception Model

Overview

Arca2 CPU core provides a simple and efficient way to organize and handle exceptions. By
providing an 8-entry vector table with each entry corresponding to one or more exception types,
Arca2 can switch to the top exception routine conveniently and efficiently. The top exception
routine may consult the exception cause register to further determine the specific exception
service.

Exception Types

There is a variety of resources that can trigger an exception to CPU. Figure 3-1 illustrates the
various resources that will request exception services from CPU.

shrk
illins
trap
dboot reset

. Arca2 <

ibrk

dbrk I CPU int

dfault T T ifault
Debug Module MMU Interrupt System

Figure 3-1 Exceptions and Exception Resources

Debug and MMU are modules inside the CPU core, they will issue exceptions to CPU for debug
and memory access event. Eve nts such as reset and hardware interrupt are issued by modules
outside the CPU core such as an interrupt or system controller. CPU itself will generate
exceptions when executing a special instruction.

There are total 10 types of exceptions supported by Arca2 CPU Core as illustrated in Figure 3-1:
RESET: Reset exception request by a system controller outside of the CPU core. Reset
exception can be induced by a power-on reset and manual reset from external input pin or a
watchdog time-out reset.

INT: Interrupt exception issued by an interrupt controller outside of the CPU core.

Dfault: Data access fault exception occurred when a data access request by CPU couldn’t
be satisfied by memory subsystem.

10
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Ifault: Instruction fetch fault occurred when an instruction access request by CPU couldn’t
be satisfied by memory subsystem.

Illins: lllegal instruction caused by executing a reserved instruction or there is a privilege
violation in executing the instruction.

Trap: the OS trap mechanism caused by executing a trap instruction.

Shrk: a software breakpoint instruction caused by executing a SBRK instruction when
debug module support is enabled by SR.DE bit.

ASYNBRK: Debug asynchronous break from host machine.

IBRK: Instruction break caused when an instruction fetch address appeared in the
instruction address bus matches the set in the debug module’s instruction breakpoint
register. The asynchronous

DBRK: Data break caused when a data access address appeared in the data address bus
or a stored data in data bus matches the set in debug module’s data breakpoint register.

DBOOT: Debug Bootstrap. Issued by the debug module when it receives a command from
the extended JTAG ports by the host machine debugger.

The exceptions supported by Arca2 CPU core can be classified into 2 categories: normal
exceptions and debug exceptions. Normal exceptions include Reset, Dfault, Ifault, Illins, Trap,
INT, and debug exceptions include DBOOT, IBRK, DBRK, SBRK and ASYNBRK. CPU uses ESR,
EPC for normal exception and DSR, DPC for debug exception.

ARCA Technology Corporation 1
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3.3 Exception Priorities

More than one exception could request CPU's attention simultaneously. When this situation
occurs, the exception that has the highest priority will be accepted by CPU. The exception
priorities are fixed as illustrated by the table below:

Table 3-1 Arca Exception Priorities

Exception ] Exception
Kinds Exception Events Priorities
DBoot Debug Bootstrap 0 (highest)
Reset Power-on/Manual Reset 1

DFAULT Data Access Fault 2
DBRK Debug Data Breakpoint 3
ILLINS Reserved Instruction or Privilege Violation 4

TRAP/SBRK | TRAP or SBRK Instruction 5
IBRK/ Debug Instruction Breakpoint or 6

ASYNBRK | asynchronous break from host machine

IFAULT Instruction Fetch Fault 7
INT Interrupt 8 (lowest)

12
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3.4 Exception Vector Table

Arca2 CPU core uses 8word memory space to hold exception vectors. The vector table is

shown in Table 3-2:

Table 3-2 Arca Exception Vector Table

Vector Number Vector Offset Exceptions
0 H'00 RESET, DBOOT
1 H04 ILLINS
? MO8 | some asvnerk
3 H'Oc Reserved
4 H'10 INT
5 H'14 TRAP
6 H'18 DFAULT, IFAULT
7 H'lc Reserved

The base address of the vector table base for DBOOT exception is always at H'EC000000.

When Arca2 CPU core is set to host mode by a debugger running in a host machine, the
exception vector table base is fixed at H’EC000000.

For other cases, exception vector table is placed on the boundary of 64M memory page of P1

area, which is decided by SR.VB bits (refer to Status Register description).

Base address = {3B 100, SR VB, 26B 0}

Since SR.VR is initialized to 3B’000, so the base address for power-on reset without DBOOT is

always H’80000000.

ARCA Technology Corporation
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3.5

Exception Cause

In Table 3-2, there are several vector numbers that contain more than one exception type.
Vector number 0 is the exception handler entry address for RESET and DBOOT; vector number
2 is the exception handler entry address for IBRK, DBRK, SBRK and ASYNBRK; vector
number 6 is the exception handler entry address for DFAULT and IFAULT. This arrangement
limits the vector table size to an 8 words size. A small vector table could be locked into data

cache line, thereby improve the performance for exception handling.

Since more than one exception types share one exception vector table entry, a mechanism is
needed for differentiate the exception type by the exception handler routine. The cause register
of MMU and Debug module serves this purpose. The interrupt controller outside the CPU core
will provide a similar register. The immediate number operand in TRAP instruction provides
more information for its exception handler.

Table 3-3 Exception Cause

Exception Exception Cause Register Instruction to Read
Type Cause Register Set by Cause Register
TRAP General The trap number can be passed to a general

Register register via TRAP instruction
DFAULT
IFAULT MCR.cause MMU CLD Ra,#MMU #MCR
INT A register in INTC INTC load from the memory-
mapped location

IBRK DBRK
SBRK DCR.cause DEBUG CLD Ra,#DEBUG,#DCR

ASYNBRK

14
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3.6

Control Register

The SR, ESR, EPC, DSRand DPC are control registers of IU. They play the key roles of the
exception model. Here we give the detailed description.

3.6.1 Status Register (SR)

Bit: 31 6 5 4 3 2 1 0
Read: VB sMm|ps|DE| IE
Write:

Reset: 0 0 0 0 1 0 0 0

Bits 31~7 reserved, these bits are always read as 0 and written are ignored.
- |E (Interrupt Enable): When it is cleared, interrupt is disabled.

- DE (Debug Enable): When it is cleared, no Debug Exceptions are to be accepted
exception DBOOT. Debug bootstrap can't be disabled by this bit.

- DS (Debug State): 1 indicates an exception is a debug exception (which include debug
bootstrap), 0 for other exceptions. RTE restore PC/SR register from DPC/DSR when it is 1,
from EPC/ESR when it is 0.

- SM (Supervisor Mode): 1 for Supervisor mode, 0 for User mode. Write to this bit by WCR
instruction is ignored. Program should use RTE to switch from supervise mode to user
mode by first clear corresponding bit in ESR or DSR register.

- VB (Vector Base): form bit 28~26 of the base address of Vector Table (the highest 3 bits
are 100, pointing to P1 area), when it is neither a DBOOT exception nor in host mode.

3.6.2 Spot-saving Register

ESR: used to save the current status register for none debug exceptions

Bit: 31 6 5 4 3 2 1 0
Read: VB sm|ps|DpE| E
Write:

Reset: 0 undefined

EPC: used to save none debug exception return address.

Bit: 31 2 1 0
Read: PC[31:2] 010
Write:

Reset: undefined 0 0

DSR: used to save the current status register for debug exceptions

Bit: 31 6 5 4 3 2 1 0
Read: VB sM|ps|DE| IE
Write:

ARCA Technology Corporation 15
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3.7

3.8

Reset: 0 undefined

DPC: used to save debug exception return address.

Bit: 31 2 1 0
Read: PC[31:2] 010
Write:

Reset: undefined 0 0

Exception Acknowledgement Process

It takes several cycles for Arca2 CPU to switch from the current program flow to the exception
routine.

The CPU exception acknowledgement process fulfills the following jobs:

Save the Status Register (SR) to ESR for none debug exception or to DSR for debug
exception.

Compute the return address and save it to EPC for none debug exception or to DPC for
debug exception.

Form the vector entry address based on the exception type and vector base. Load the
exception handler start address from the vector entry. Fetch the first exception handler
instruction from the loaded exception handler start address.

If the process is in SLEEP state, put it into normal state.
Enter into privilege mode by setting SR.SM
Clearing SR.IE to disable interrupt exceptions

For debug exceptions, clearing SR.DE to disable additional debug exceptions.

Set SR.DS to 0 for none debug exceptions, or set SR.DS to 1 for debug exception.

Return from Exception Routine

Return from exception routine is implemented by the instruction RTE, which runs in privilege
mode and fulfills the following jobs:

Restore previous system status by copying ESR if SR.DS is 0, or DSRif SRDS is 1, into SR.

Restore execution of previous program by jumping to the return address stored in EPC if
SR.DS is 0, or DPCif SR.DS is 1.

To ensure no interrupt exception is acknowledged and thus clobber the content in ESR/EPC,
SR.IEmust be cleared before execution of RTEif SR.DS is 0. Similar, for not clobbering DSR/DPC,
SR.DE must be cleared before execution of RTE if SR.DS is 1.
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41

Overview

4 Core Configuration

In addition to CPU, Arca2 CPU core includes other modules such as MMU, data TLB (DTLB),
instruction TLB (ITLB), data cache, instruction cache, debug module and performance monitor
(PMON). Later versions of the CPU core may add more modules to expand functionality. Arca
architecture provides a uniform and extensible way to manage these modules with the
instructions listed below. These instructions provide a consistent way to exchange values
between CPU register file and control registers of a specific module, and to expand module
specific operations.

CLD Ra,
CST Ra,
| TLB C\D,
DTLB C\D,
| CACHE CMD,
DCACHE CMD,

I D, S10
I D, S10
Rb
Rb
Rb, S10
Rb, S10

ARCA Technology Corporation
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4.2 Configuration Instructions

4.2.1 CLD/CST instruction

CLD Ra, ID, S10
Op: 011001 | . Ext: 001000 S10 |

CST Ra, ID, S10
Op: 011001 | | Ext: 001001 S10 |

These two instructions exchange data between CPU register file and amodule’s control register.
CLD loads a 32 bits data into CPU register Ra from the control register specified by S10 field in
the module specified by ID field. CST writes the data in Ra to the control register specified by S10
field in the module specified by ID field.

e Ra: CPU register. For CLD instruction, this is the destination register. For CST instruction,
this is the source register.

e ID: module indentify code. Arca2 CPU core defines 3 module as illustrated in the following
table:

Table 4-1 Module Identification Number

Module Name MMU PMON DEBUG
ID 000 001 011

e S10: The control register number inside module ID. The control number can be 0 ~ 511. The
access right to a specific control register is defined by the module itself. For example, MCR
and CCR register in MMU module can't be accessed in user mode. When the access right
violation happens, a dfault exception will be induced to CPU by MMU module.

The control registers defined in module MMU are as below. See section 5 for the detailed
description of these control registers.

Table 4-2 Control Registers in Module MMU

CR Name MCR TTB MEA CED ASI CCR
Number 000 001 010 100 011 101

The control registers defined in module Debug are as below. See section 7 for the detailed
description of these control registers.

Table 4-3 CR in Module Debug

CR Name | DBG_CR DBG_IA0O | DBG _IA1 | DBG_DAQO DBG_DA1l | DBG_DDO | DBG_ASID

Number 000 001 010 011 100 101 110

The control registers defined in module PMON are as below. See section 8 for the detailed
description of these control registers.
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Table 4-4 Control registers in Module PMON

CR Name

PMC

CTR

MORO

MOR1

Number

000

001

010

011

4.2.2 ITLB/DTLB/ICACHE/DCACHE instructions

I TLB CMD,

Op: 000000 | Ext: 001101

DTLB CMD,
Op: 000000

| CACHE CMD,

Rb
Rb
|

Rb, S10

Ext: 001001

Don't care

Don't care |

DCACHE CMD,

Rb, S10

Op: 000000 Ext: 000001

These instructions are used for special erations applied on Arca embedded memory. The
specific position on RAM is defined by the virtual address: [Rb+S10<<2] while the specific
operation is defined by each kind of RAM's through ‘CMD’. Note some of CMDs may be executed
in User Mode while some of them may not. When executing a privileged CMD in User Mode or the
CMD does not exist, a dfault exception request will be asserted.

4.2.3 CMD in ITLB/DTLB/ICACHE/DCACHE

The module CMD (4-bits) is defined as below:

Table 4-5 Module CMD Definitions

CMD

RAM Name

Discard

DTLB

Discard

Read

Read

Write

Write

ICache DCache

Prefetch Prefetch

Discard Discard
Write-back

|

Flush
Allocate

Flush-buffer

1110 Unlock Unlock Unlock Unlock
1111 Invalidate Invalidate Invalidate Invalidate
Notes

ARCA Technology Corporation
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(1) For DTLB/ITLB all operations are only valid in privileged mode, for ICache/DCache, CMD[2:1]

specifies the access right, i.e., ‘11’ for privileged mode only, others for both modes,

(2) For flush-buffer, invalidate and unlock commands, the address specified by the instruction is

ignored. CMD[3]=1 specifies this

The commands are explained as below:

Prefetch: prefetch data or instructions into cache Iline, during prefetch process,
ICache/DCache should not freeze the [U-pipeline.

Discard: clear V-bit of the specified TLB entry or cache line for the specified TLB or cache.
Write-back: write back data of the specified cache line if D-bit is set, then clear D-bit.

Flush: this is the combination of discard and write-back, that is, write back the cache line if it
is dirty and clear D and V bits.

Read: read the specified TLB entry, put the PPN and attribute bits into CED register

Write: write a TLB entry, PPN and attribute bits from CED register, VPN from the specified
address

Allocate: allocate a cache line for the virtual address, that is, only fill the TAG into a cache line
but does not care the data.

Flush-buffer: flush the write back buffer in DCache.

ALock: for DCache only, allocate and lock a cache line.

PLock: for ITLB/DTLB, load and lock an entry, for ICache/DCache, load and lock a cache line.
Unlock: unlock all locked TLB entry or cache line for the specified TLB or cache.

Invalidate: clear V-bits for entries those not been locked in the specified TLB or cache.

20
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5 Memory Manage Unit

5.1 Overview

MMU serves as a powerful manager to make efficient use of physical memory. To accelerate
translating virtual memory to physical memory, Arca2 CPU core uses both an instruction
Translation Look-aside Buffer (ITLB) and a data Translation Look-aside Buffer (DTLB) to cache
the latest translation. Arca2 CPU core supports four page sizes: 4KB, 16KB, 1MB, and 16MB.
MMU also controls virtual memory access permission for different processor mode: privileged
mode and user mode.

5.1.1 Features

MMU equips Translation Look-aside Buffer (TLB) for both instruction fetch and data access
to accelerate virtual to physical address translation. Each TLB holds 32 entries and is full
associative.

Use round-robin replacement method and support lock function to lock critical entries in
DTLB or ITLB.

Virtual Address translation uses the paging system and supports four page sizes: 4KB,
16KB, 1MB and 16MB bytes.

Virtual Address map to physical address space directly when disable paging system.

MMU checks the memory access permission in different processor modes to provide
access protection.

MMU issues the exception request to CPU when the instruction fetch or data access
encounters a fault. It also saves spot information such as fault address and fault cause to
be referenced by the exception routine.
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5.2

Register Configuration

The Arca2 CPU core provides several 32-bit MMU and cache control registers, which determine
the operation of MMU and Cache. A brief description of the registers is provided below.

Data is written to and read from the MMU registers using the Arca2 CST/CLD instructions.

The MMU Control Register holds the control signal bits and exception cause bits, which
determine the operation of MMU.

The Translation Table Base Register holds the base physical address of the translation table
maintained in main memory.

The MMU Exception Address Register holds the virtual address where the exceptions occur.
The Address Space Identifier Register holds process ID number.

The Configure Exchange Data Register holds the data for read, write or lock TLB operation.

The Cache Control Register holds control signal bits that determine the operation of Cache.
The detail description is in Cache spec.

Table 5-1 MMU Registers

Name Full Name riw | [nitialvalue fAceess |y | op
when power on| Size
MCR | MMU Control Register R/W | H'00000000 32 000 [ 000
TTB Translation Table Base Register R/W | Undefined 32 000 | 001
MEA | MMU Exception Address Register R/W | Undefined 32 000 010
CED | Configure Exchange Data Register | R/W | Undefined 32 000 100
ASI Address Space ldentifier Register R/W | Undefined 32 000 011
CCR [ Cache Control Register R/W | H'00000000 32 000 101

22
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5.2.1 Register Descriptions

5.2.1.1 MMU Control Register (MCR)

Bit:
Read:
Write:

Reset:

Bit:
Read:
Write:

Reset:

Bit:
Read:
Write:

Reset:

Bit:
Read:

Write:
Reset:

#ID=000 #CR=000

31 30 29 28 27 26 25 24
CAUSE
0 0 0 0 0 0 0 0
23 22 21 20 19 18 17 16
0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
ATE
0 0 0 0 0 0 0 0

Bit 24 ~ 1: Reserved bits, ignored in write operation, always 0 in read operation.

- ATE: address translation enabled/disabled bit.
0: address translation disabled.
1: address translation enabled.

- CAUSE: Exception causes bits.

Bit31: TLB miss or not.
Bit30: Address error.

Bit29: Reserved bit, ignored in write operation, always 0 in read operation.
Bit28: Initial write.
Bit27: Exception occurs in instruction fetch or data access 0: data; 1:instruction.
Bit26: Exception occurs in LOAD or STORE operations. 0: LOAD, 1: STORE(include swap
operation).
Bit25: Exception occurs in core configure instruction.

The valid cause patterns are listed in following table.

CAUSE Description
1000 100 ITLB miss when fetch instruction.
1000 101 ITLB miss when use I-cache instruction.
0100 100 address error when fetch instruction.
0100 101 address error when use I-cache or ITLB instruction.
0000 101 illegal I-cache or ITLB operation.
1000 000 DTLB miss when read access
1000 010 DTLB miss when store or swap access

ARCA Technology Corporation
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CAUSE Description
1000 001 DTLB miss when D-cache instruction
0100 000 address error when read access
0100 010 address error when store or swap access
0100 001 address error when use D-cache or DTLB instruction
0001 010 initial write when store or swap access
0000_001 illegal cache or TLB configure operation or CLD/CST
operation.
0000 000 no exception, initial value when power-on reset.

5.2.1.2 Translation Table Base (TTB)

Point to the base address of current page table. This register is managed by software.

#ID=000 #CR=001

Bit: 3L 4 3 2 1 0
Read:
) Base address of the currently used page table
Write:
Reset: 0 0 0 0 0 0 0

5.2.1.3 MMU Exception Address (MEA)

When MMU exception occurs, the virtual address that induces exception is set into this register
by hardware. The contents of this register can be changed by software.

#ID=000 #CR=010

Bit: 31 4 3 2 1 0
\Ffveiig:_ Virtual address causing data access or instruction fetch fault
Reset: 0 0 0 0 0 0 0

5.2.1.4 Address Space Identifier (ASI)

#ID=000 #CR=011

Bit: 31 12 11 10 9 8
Read:
Write:
Reset: 0 0 0 0 0 0 0

Bit: 7 6 5 4 3 2 1 0
Read:

) ASID

Write:
Reset: 0 0 0 0 0 0 0 0

Bit 31 ~ Bit 8: Reserved bits, ignored in write operation, always 0 in read operation.

— ASID: Address space identifier. ASID indicates current process, which is regarded as
expansion of virtual memory.
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5.2.1.5 Configure Exchange Data Register (CED)

#ID=000 # CR =100

Bit: 31 30 29 28 27 26 25 24
Read:
. PPN
Write:
Reset: 0 0 0 0 0 0 0 0
Bit: 23 22 21 20 19 18 17 16
Read:
PPN
Write:
Reset: 0 0 0 0 0 0 0 0
Bit: 15 14 13 12 11 10 9 8
Regd: PPN
Write:
Reset: 0 0 0 0 0 0 0 0
Bit: 7 6 5 4 3 2 1 0
Read: sz D B c M
Write:
Reset: 0 0 0 0 0 0 0 0

Bit 11 ~ Bit6: Reserved bits, ignored in write operation, always 0 in read operation.
— PPN: Physical page number.

— SZ: 2 page size bits.
00: 4KB page size
01: 16KB page size
10: 1MB page size
11: 16MB page size

— D: Dirty bit.
Used only in DTLB. Ignored when write ITLB, undefined when read ITLB.

— B: Bufferable bit.
Used only in DTLB. Ignored when write ITLB, undefined when read ITLB.

— C: Cacheable bhit.
— M: Read ITLB/DTLB miss bhit.

Ignored when write ITLB/DTLB, set 1 when read ITLB/DTLB miss, clear 0 when read
ITLB/DTLB hit. When M is 1 after read ITLB/DTLB, the other bits’ value is undefined.

ARCA Technology Corporation o5



Memory Manage Unit

5.3

Memory Space

Arca2 CPU core supports a 32-bit physical address space, and can access a 4-Ghyte space,
and use virtual memory system to logically expand the physical memory space of the processor,
by translating addresses composed in a large virtual address space into the physical address
space of the system. Arca2 CPU core has two modes to translate virtual address: paging
system mode, and direct map mode.

5.3.1 Direct Map Virtual Address Space

When the MCR.ATE bit is reset to 0, the MMU address translation is in direct map mode. The
virtual address space mapping is shown in Figure 5-1.

VIRTUAL PHYSICAL
H’ FFFFFFF
A4 (0.5G byte)
Non-cacheable > Heels
H'E000000 A3 (0.5G byte) 0.5G byte
Non-cacheable/ >
, Cacheable (cb/wt)
H CO00000 ™7 (0.5G byte) 0.5G byte
Non-cacheable Reserved
H’ A000000
A1 (0.5G byte)
Cacheable (cb/wt)
H’ 8000000
2G byte
A0 (2G byte)
Cacheable (ch/wt) >
0.5G byte
H’ 0000000

Figure 5-1 Direct Virtual Physical Address translation (MCR.ATE=0)

AO Area: The A0 areas can be accessed using the cache. When use cache, the write
policy can be programmed to copy-back(cb) or write-through(wt). This area is always
translated to linear 2GB region of the physical addres space (from ‘H20000000 to
‘HOFFFFFFFF) .

26
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A1l Area: The Al area can be accessed using the cache, When use cache, the write
policy can be programmed to copy-back(cb) or write-through(wt). This area is always
translated to a linear 512MB region of the physical address space starting at physical
address 0.

A2 Area: The A2 area cannot be accessed using the cache. The write can be
programmed to bufferable or unbufferable. This area is always translated to a linear
512MB region of the physical address space starting at physical address 0.

A3 Area: The cacheable attribute of A3 area can be programmable (see cache spec),
default is uncacheable. When use cache, the write policy can be programmed to copy-
back(cb) or write-through(wt). When doesn't use cache, the write can be programmed to
bufferable or unbufferable. This area is always translated to a linear 512MB region of
physical address (from H'C0000000 to H'DFFFFFFF).

A4 Area: This area cannot be accessed using the cache. The write is unbufferable. Some
A4 area is mapped to on-chip 1/O registers channels and some is mapped to JTAG
memory. This area is always translated to a linear 512M region of physical address( from
H’E0000000 to H'FFFFFFFF).

In user mode, the 2Gbhyte of virtual address space from H’00000000 to H'7FFFFFFF(area A0)
can be accessed. The 2 Ghytes of virtual address space from H’80000000 to H'FFFFFFFF
cannot be accessed in user mode. Attempting to do so creates an exception named address
error.
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5.3.2 Virtual Address Space In Paging System

When the MCR.ATE bit is set to 1, MMU is in paging system mode. Arca2 CPU core uses 32-bit
virtual addresses to accesss 4Gbyte virtual address space that is divided into several areas.
Address space mapping is shown in Figure 5-2.

VIRTUAL PHYSICAL

H' FFFFFFF A4 (0.5G byte)
Unmapped
Non_cmheabl e

R 0.5G byte

H’ E0000CC

A3 (0.5G byte)
Mapped
Cacheable
H’ C000000

A2 (0.5G byte)
Unmapped
Non-cacheable

H’ A000000

A1 (0.5G byte)
Unmapped
Cacheable (cb/wt) [ 3.0G byte

H’ 8000000

A0 (2G-byte)
Mapped
Cacheabl e (ch/wt)

N

0.5G byte

H’ 000000C

Figure 5-2 Paging Virtual Physical Address translation (MCR.ATE=1)

Setting the MCR.ATE bit to 1 enables the A0, and A3 areas of the address space in the Arca2
CPU core to be mapped onto any external memory space. By using 8-bit ASID address
identifier, the A0 can be increased to a maximum of 256. A3 is a global area, all processes
share it. This is called the virtual address space. Mapping from virtual address space to 32-bit
physical memory space is carried out using the TLB.
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- AO,A3 areas: These areas are mapped onto physical address space in page unites. In
accordance with TLB information and CCR, these areas can be cacheable or noncacheable,
bufferable or unbufferable.

- Al area: This area is fixed to 512 MB physical address space starting from physical address 0,
this area can be cached. When use cache, the write policy can be programmed to copy-
back(cb) or write-through(wt).

- A2 area: This area is fixed to 512 MB physical address space starting from physical address 0,
this area cannot be cached. The write can be programmed to bufferable or unbufferable.

- The Al and A2 areas are not mapped by the address translation table, so the TLB is not used
and no TLB exceptions like TLB misses occur. Initialization of MMU-related registers,
exception process handling, and the like codes can be located in the A1 and A2 areas.
Because the Al area is cached, handlers that require high-speed processing are placed
there.

- A4 Area: This area cannot be accessed using the cache. The write is unbufferable. Some A4
area is mapped to on-chip I/O registers channels and some is mapped to JTAG memory.
This area is always translated to a linear 512M region of physical address( from
H’E0000000 to H'FFFFFFFF).

In user mode, the 2Gbyte of virtual address space from H'00000000 to H'7FFFFFFF(AQ) can be
accessed. The 2 Ghytes of virtual address space from H'80000000 to H'FFFFFFFF cannot be
accessed in user mode. Attempting to do so creates an address error.
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5.4 Configuration of the TLB

The TLB caches address translation table information located in external memory. Figure 5-3
shows the DTLB and ITLB configuration. Both DTLB and ITLB are full associative with 32
entries.

DTLB
32x(32+23)
VPN[3L12] | ASD[7:0] |V| SZ[20]| PPN[3L12] |D|B|C 0
31
ITLB
32x(32+21)
VPN[3L1:12] | ASD[7:0] |Vv| SZ[20]| PPN[3112] |C 0
31

Figure 5-3 Configuration of TLB

- VPN: Virtual page number
4Kbyte page: VPN bits [31:12] are valid.
16Kbyte page: VPN bits [31:14] are valid.
1Mbyte page: VPN bits [31:20] are valid
16Mbyte page: VPN bits [31:24] are valid

- ASID: Address space identifier.

- V: Validity bit.
Indicates whether the entry is valid or not.
0: Invalid
1: valid

- SZ[2:0]: page size bits.
Indicates the page size of this page. Only following 4 patterns are valid, other patterns will
cause ITLB/DTLB search result unpredictable.
000: 4KB page size
001: 16KB page size
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011: 1MB page size
111: 16MB page size

- PPN: Physical page number
Upper 20 bits of physical address
4Kbyte page: PPN bits [31:12] are valid physical page number.
16Kbyte page: PPN bits [31:14] are valid physical page number.
1Mbyte page: PPN bits [31:20] are valid physical page number.
16Mbyte page: PPN bits [31:24] are valid physical page number.

- D: dirty bit
Indicates whether a write has been performed to the page.
0: written has not been performed
1: written has been performed

- B: bufferable bit
Indicates whether a page is bufferable or not.
0: not bufferable.
1: bufferable

- C: cacheable bit
Indicates whether a page is cacheable, effective for mapped virtual memory space.
0: not cacheable
1: cacheable

Arca2 CPU core support four page sizes at the same time, if a big page overlaps with a little
page, then the translation result of ITLB/DTLB is unpredictable.

Both ITLB and DTLB use round-robin replacement method. When write a new entry to
ITLB/DTLB, overwrite the entry specified by round-robin pointer, and round-robin pointer add 1
to next line. If the pointer is 31 now, then the next is 0 in no ITLB/DTLB locked case.

Arca2 CPU core support ITLB/DTLB lock instruction to lock critical ITLB/DTLB entries, the
locked entries are not overwritten by other virtual address nor invalidated by ITLB/DTLB
invalidate instruction. Hardware will ignore the lock command if software is trying to lock the last
entry of TLB, i.e. entry 31 can never be locked. When this happens, the entry will still be written
into the ITLB/DTLB but the lock will be ignored.

Locked entries in ITLB/DTLB can be discarded by ITLB/DTLB discard configure operation, but
the entries connot be overwritten until all ITLB/DTLB is unlocked. If a write ITLB/DTLB
instruction hit a locked entry, then the new physical address and page attributes will be written
to the hit entry.
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5.5 Address Translation Method

Figure 5-4 and

Figure 5-5 show flowcharts of memory accesses using the DTLB and ITLB respective.

Virtual address of data access (VA)

VA isin AO,
A3 area

@

Data access
address error

VA isin VA isin VA isin

A4 area A2 area Al area
On-chip I/O or . 0
JTAG access v

0
CCR.DCE2
1
Date access command

Read /\ Write
read/write?

C=lan

CCR.DCE?

D-cache access

A

@)

DTLB miss
exception

Initial write
exception

mc;y access

Figure 5-4 Flowchart of Data Access Using DTLB
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Virtual address of instruction fetch (VA)

VAisin VA isin VAisin
A2 Adarea Al area AO, A3 area "
' 1
Fetch insn
address error
PN and ASK
match and V=
) ®
ITLB miss
excention
C=1lan
CRICE2 0
1
|-cache access

Memory access

Figure 5-5 Flowchart of Instruction Fetch Using ITLB

Note:

(1) When instruction or data access, MMU always check address error first (refer to 5.7.2)
and send address error exception if address error is detected.

(2) Since Arca2 CPU core uses virtual address D-cache and read access needn’t page
write protection check, so we will ignore DTLB miss exception when read access hit
D-cache.

(3) Since Arca2 CPU core uses virtual address I-cache and fetch instruction needn’t page
write protection check, we will ignore ITLB miss when fetch hit I-cache.
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5.6 Configure Operation

5.6.1 MMU Function

Arca2 CPU core provides configuration interface ketween MMU and CPU to control MMU
operation as listed below. All these instructions can be used in privileged mode only. ITLB
instruction must be placed in unmapped area and at least 4 instructions following it cannot jump
to mapped area. The first instruction following DTLB instruction cannot access mapped area for
the consideration of that it may be depend on the result of these instructions.

- Discard TLB: clear V bit of hit entry in ITLB/DTLB.

- Invalidate TLB: clear all unlocked V bits of ITLB/DTLB.

- Read/Write TLB: read or write ITLB/DTLB.

- Lock TLB: write ITLB/DTLB and lock it if the address missed and there are at least two
unlocked entries.

- Unlock TLB: unlocked all locked entries in ITLB/DTLB.

- CST/CLD: Read or write MMU control registers.

5.6.2 MMU Interface Format

The following table lists the detailed format and function of MMU configuration instructions.

Table 5-2 MMU configuration instruction

Operation

Code format

Function description

Discard ITLB

ITLB #discard, Rb

Search virtual address Rb in ITLB. If hit, clear the hit entry
as invalid, else do nothing.

Invalidate ITLB

ITLB #inv, Rb

Invalid all unlocked ITLB entries, Rb is ignored.

Read ITLB

ITLB #read, Rb

Read ITLB data to CED: Search virtual address Rb in
ITLB, if hit, clear 0 to CED.M bit, write the read data (PPN,
SZ, C) to CED field respective, and CED.D,B bits
undefined, else, set 1 to CED.M, and other bits undefined.

Write ITLB

ITLB #write, Rb

Store data reside in CED register to ITLB. Search virtual
address Rb in ITLB, if hit, fill the full item of ITLB:
VPN[31:12] from Rb, ASID from ASI register, PPN[31:12],
SZ, C from CED register, and set 1 to V bit to hit entry,
else fill them to replaced entry.

Lock ITLB

ITLB #lock, Rb

Search virtual address Rb in ITLB, if hit, do nothing; if
miss, fill the full item of ITLB: VPN[31:12] from Rb, ASID
from ASI register, PPN[31:12], SZ, C from CED register,
and set 1 to V bit to replaced entry, and lock the entry.
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Operation

Code format

Function description

Unlock ITLB

ITLB #unlock, Rb

Unlock all locked entries in ITLB. Rb is ignored.

Discard DTLB

DTLB #discard, Rb

Search virtual address Rb in DTLB. If hit, clear the hit
entry as invalid, else, do nothing.

Invalidate
DTLB

DTLB #inv, Rb

Invalid all unlocked DTLB entries. Rb is ignored.

Read DTLB

DTLB #read, Rb

Read data to CED: search virtual address Rb in DTLB, if
hit read the physical information (PPN,SZ, D,B,C) to
register CED, and clear 0 to CED.M bit, else set 1 to
CED.M bit, other bits is undefined.

Write DTLB

DTLB #write, Rb

Store data reside in CED register to DTLB: search virtual
address Rb in DTLB, if hit, write VPN (Rb[31:12]), ASID
(register ASI), PPN, Sz, D, B, C (register CED), set 1 to V
bit to the hit entry, else write to replaced entry in DTLB.

Lock DTLB

DTLB #lock, Rb

Search virtual address Rb in DTLB, if hit, do nothing; if
miss, write VPN (Rb[31:12]), ASID (register ASI) valid,
PPN, Sz, D, B, C (register CED), set 1 to V bit to the
replaced entry in DTLB, and lock the entry.

Unlock DTLB

DTLB #unlock, Rb

Unlocked all locked entries in DTLB. Rb is ignored.

MMU Configure
register load

CLD Ra, #MMU, #CR

Read data from MMU registers to Ra. CR holds control
register’s index number (refer to Table 5-1).

MMU Configure
register store

CST Ra, #MMU, #CR

Write data of Ra to MMU registers. CR holds control
register’'s index number (refer to Table 5-1).

Notes:

1. If the address is unmapped in “ Discard” , “ Read” , “ Write” , and “ lock” TLB
instruction or MCR.ATE is zero, nothing is done.
2. If MCR.ATE is zero, “ invalidate” instruction does nothing.

5.6.3 Code Examples

1. Fill or update a TLB entry is implemented by 2 instructions:

CST Ra, #MWJ, #CED !

DTLB #write,

Record source data (PPN and attri butes)

I into CED register in MW.

Rb | Read data from CED regi ster and wite

ARCA Technology Corporation

35




Memory Manage Unit

| to DTLB entry specified by Rb.

2. Read an entry of TLB to check is implemented by 2 instructions:

DTLB #read, Rb | Read data from DTLB |ine specified by Rb,
I and wite into CED register.
CLD Ra, #MWJ, #CED ! read data from CED register.

3. lock an entry to DTLB. In order to lock success, discard the entry or invalidate DTLB first.

CST Ra, #MMJ, #CED ! Record source data (PPN and attri butes)
into CED register in M.

di scard the exist entry.

write CED register and virtual page nunber
to DTLB and | ock this entry.

DTLB #di scard, Rb

!
!
DTLB #l ock, Rb !
!
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5.7 MMU exception

There are two kinds of exception in MMU: Data access Fault (D-fault) and Instruction fetch Fault
(I-fault). The causes for D-fault and I-fault are explained in below:

Data access Fault may be induced by the following causes with priority from high to low:
lllegal configure operation
Data address error
Data TLB miss
Data TLB initial page write

Instruction fetch Fault may be induced by the following causes with priority from high to low:
Instruction address error
Instruction TLB miss

The priority of D-fault causes is higher than that of I-fault causes. When D-fault and I-fault occur
at the same cycle, only the spot information corresponding to the exception cause with the
highest priority will be recorded:

Store the fault trigger address in MEA.

Put the fault cause code into MCR.cause.

The D-fault and IHault handlers share a common entry in the exception vector table. The
exception routine needs to consult MCR.cause to further determine the exception service for the
specific fault cause. There is a one bit (bit 31) in MCR.cause used to distinguish TLB miss or
not so that the routine may use only two instructions to jump to the service handling TLB miss:

CLD Ra, #MMU, #MCR ; read control register number 0 in DTLB, i.e., MCR
BLT Ra, RO, label ; Ra < 0 means bit 31 of MCR == 1, i.e., TLB miss

The descriptions in below give further explanation for the fault causes.

5.7.1 lllegal configure exception

MMU checks the operation of configure instructions. If the operation is illegal, generates an
illegal configure exception. Following configure cases are illegal:

Use privileged CLD/CST command on MMU module in user mode.
Use CLD/CST command on unknown module.

Use CLD/CST command on unknown control register of MMU module.
Use unknown command of ITLB, DTLB, l-cache, and D-cache.

Use ITLB, DTLB instruction in user mode.

Use |-cache, D-cache invalid, lock and unlock command in user mode.

5.7.2 Address Error

An address error for a fetch or data access occurs in the following cases:

Instruction fetch address not located on word boundary.

Instruction fetch address is other than AO area in user mode

Instruction (load, store, and swap) access address is misalign, that is, accessing a
word/half-word not located on word/halfword boundary.
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Instruction (load, store, swap, I-cache discard, prefetch instruction, all D-cache user used
instructions) access memory space other than A0 area in user mode.

5.7.3 TLB Miss

5.7.4

An ITLB miss occurs when the translation information of instruction fetch address cannot be
found in the ITLB. A DTLB miss occurs when the translation information of data access address
cannot be found in the DTLB.

Except normal load, store, and swap accessing, following D-cache instructions may occur DTLB
miss too, if the address translation information cannot be found in DTLB:

D-cache prefetch (only when D-cache miss first)

D-cache allocation (only when D-cache miss first)

D-cache p-lock (only when D-cache miss first)

D-cache a-lock (only when D-cache miss first)

Except normal instruction fetch, I-cache prefetch and p-lock instruction will occur ITLB miss too,
if the address missed in I-cache and translation information cannot be found in ITLB.

Initial Page Write

Initial page write is an exception of store (swap) access only. An initial page write for a store
(swap) access occurs when, even though a DTLB entry contains the required address
translation information, but the page attribute D is 0, which means no write has been performed
to the current page.
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6 Cache

6.1 Overview

Arca2 CPU core supports a Harvard structural one level cache (a respective instruction cache
and data cache). Each has 8K bytes capacitance, and the cache line size is 8word (32 bytes).
Each line d the data cache has two dirty bits to specify the dirty situation of the datum in the
upper and lower half line respectively. This document delineates the detail common
specifications and especial features of the cache embedded in Arca2 CPU core. Please rote
that in Arca2 technical documents, data cache is abbreviated to D-cache, and instruction cache
is abbreviated to I-cache.

To further reduce the memory access latency, Arca2 CPU core provides a 4-line X 4word/line
write buffer.

6.1.1 Cache Feature

Table 6-1 Cache Feature

Item Features
Capacity 8 kilo bytes for I-cache and 8 kilo bytes for D-cache
Structure 32-way set associative
Line Size 32 bytes per line
Sets 8 sets
Write policy Programmable WB (write back) and WT (write through) in D-cache
Write buffer 4 lines, 4 word per line in D-cache.
Hit algorithm Virtual tag comparison
Replace method | Round-robin
Lock Support lock and unlock function
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6.2 Register Configuration

There is one control register named CCR to control the functional option of cache. Software can
use CLD/CST instruction to access the register. The configuration of CCR shows in following

figure.
#ID=000 #CR=101
Bit: 31 12 11 10 9 8
Read:
Write:
Reset: 0 0 0 0 0 0 0
Bit: 7 6 5 4 3 2 1 0
Read: ICE DCE A3C A3B A2B A1B AOB
Write:
Reset: 0 0 0 0 0 0 0 0

Bit 31 ~ 7: Reserved bits, ignored in write operation, always 0 in read operation.

— Bit 0 AOB: Bufferable bit for AO areas. 1: bufferable 0: unbufferable.

— Bit 1 A1B: Bufferable bit for A1 area. 1: bufferable 0: unbufferable.

— Bit 2 A2B: Bufferable bit for A2 area. 1: bufferable 0: unbufferable.

— Bit 3 A3B: Bufferable bit for A3 area. 1: bufferable 0: unbufferable.

— Bit 4 A3C: Cacheable hit for A3 area in direct map mode. 0: Uncacheable, 1. Cacheable
— Bit 5 DCE: D-cache enable. O: Disable D-cache, 1: Enable D-cache

— Bit 6 ICE: |-cache enable. 0: Disable I-cache, 1: Enable l-cache
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6.3

Data Cache and Write Buffer

Arca2 CPU core has one virtual tagged Dcache and one write buffer tightly combined with D-
cache. Manipulation of D-cache and write buffer are controlled by the C (cacheable) and B
(bufferable) fields of page table item resided in the DTLB, or by CCR.DCE and CCR.AXxB, bits
for direct map mode (MMU.ATE=0). Please refer to the MMU specification for address space
partition definition, page table attribute specification and the CCR (Cache Control Register)
contents description.

Combination cases of C and B attributes of page table item are listed in the below:

Table 6-2 Cacheable and Bufferable attribute of one page

MCR.ATE Attribute Virtual address area
Al A2 A3 A0 A4
CCR.DCE& CCR.DCE
1 Cacheable CCR.DCE | O pTC 'L apPTC ! 0
Bufferable | CCR.A1B | CCRA2B | PT.B™ PT.B 0
CCR.DCE &
0 Cacheable CCR.DCE | O CCRA3C CCR.DCE | O
Bufferable CCR.A1B | CCR.A2B | CCR.A3B CCR.AOB | O

Note: *1 PT.C and PT.B represents the C and B attributes of page table item.
In abovetable, value 1 represnts active state, while value 0 repsents inactive state.

Table 6-3 describes D-cache and write buffer manipulation policy for cacheable and bufferable

attribute of accessed address. From cache viewpoint, page attribute is invisible, cache only
cares the attribute of the accessed address.

Table 6-3 D-cache and Write Buffer Policy

Cacheable | Bufferable Policy

0 0 Non-cached, and non-buffered

0 1 Non-cached, and write data are buffered

1 0 Cached in write through(WT) policy, the write datum is buffered
1 1 Cached in write back(WB) policy, the replaced data are buffered

Notes:

1. when A3C, A3B, AlB, or AOB of CCR are modified, all instructions that are loacated in the
affected areas should be DISCARDED, and all data that are loacated in the affected areas
should be DISCARDed or FLUSHed from DCACHE.

2. When PPN, C-bit of an ITLB entry is changed, all instructions that are loacated in the page
should be DISCARDed.

3. When PPN, C-bit, D-bit or B-bit of an DTLB entry is changed, all data that are loacated in
the page should be DISCARDed or FLUSHed.

Otherwise, unpredictable results may occur.

ARCA Technology Corporation a1




Cache

6.3.1 D-cache Structure

The data cache is a 8-Kbyte, 32-way set associative cache. Following figure shows the

structure of D-cache:

Set7
s way0 |V D[L0]| 32 bytes(cacheline)
el wayl |V Lo
Set Index - = L0}
Setl
St 0 way0 |V [D[1.0]|] 32 bytes(cacheline) DATA
way0 |V [D[L0]| 32 bytes(cacheline)

Set 0is selected wayl |V [D[LO]

inthisexample

by set index.

CAM DATA

ASID: address

spaceidentifier.
Setin ASI register

of MMU way3L |V [piLo]|
T CAM: Content Addressable
Word P
Byte select p| Byteaignment
Data address (virtual) Dataword
31 €8 54 21 0
Tag Set Index | Word | Byte |

Figure 6-1 Data Cache Structure

The Figure 6-1 shows that there are 8 sets with each set containing 32 ways. Each way of a set
contains 32 bytes (one cache line) and one valid bit. There also exist two dirty bits for every line,
one for the lower 16 bytes and the other one for the upper 16 bytes. When a store hits the
cache in write-back mode, one of the dirty bits associated with the hit line is set. The
replacement policy is a round-robin algorithm.

Figure 6-1 shows the cache organization and how the data address is used to access the cache.

6.3.2 Cacheable Access Operation

After power-on reset, D-cache is disabled and all lines are invalid, it cannot be used until system
initializes it. Set value 1 to CCR.DCE can enable Dcache. Please note that the write buffer
cannot be disabled and serves only for bufferable or cacheable address areas. Refer to Table
6-2 and Table 6-3 for detail definition about address B (bufferable) and C (cacheable) attributes.
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In later chapters, acronyms NB, NC, B and C are used to represents non-bufferable, non-
cacheable, bufferable and cacheable. When D-cache is enabled, access cacheable memory
may hit or miss D-cache. Following sections describe D-cache access hit/miss operation.
Please note that Arca2 CPU core D-cache cache-line fill operation needs an 8-word (32
continuous bytes) wraparound burst read, while the cache write-back operation needs a 4-word
(16 continuous bytes) wraparound burst write.

6.3.2.1 Read Access

Read Hit: When read access hits D-cache, the hit datum is transported from D-cache to CPU.

Read Miss: When reading D-cache misses, the write buffer should be searched first.

If the missed physical address (ignore the lowest 5 bits) hits the write buffer, the expected
cache-line fill operation has to wait until the write buffer drains the hit line. Then the missed line
aligned at 8-word boundary that contains the missed datum can be burst read from external
memory and filled into D-cache.

As a contrast, failed search in the write buffer incurs an external memory burst read access
immediately.

Moreover, if the replaced line calculated by round-robin algorithm contains dirty data, the dirty
half line or all line will be backup to the write buffer, which is called WBB (write back to buffer).
After D-cache completes the fill process, the final write back operation mandated by the write
buffer due to preceding WBB (if exist) will be manipulated implicitly.

Please note that the leadoff datum (word granularity) returned from external memory must be
the one that triggers the miss operation and expected by CPU, and the other data filling in the
background of CPU if no memory access or core configure instruction during the duration

6.3.2.2 Write Access

Arca2 CPU core data cache supplies the write without allocate strategy for WT access, and
write with allocate strategy for WB access. Write operation needs at least two cycles (hit D-
cache or miss in WT mode), but if no memory access or core configure instruction following it,
the write finished in backend to CPU.

Write Hit (WB policy): the hit datum is only written to D-cache, no external memory access
request is asserted. Value 1 should be set to the correlative dirty bit that represents the dirty
situation of the correlative half line (upper or lower according to the accessed address).

Write Hit (WT policy): the hit datum is written to D-cache, meanwhile it is written to the write
buffer, and the datum buffered in the write buffer will be written to external memory later. In the
case, the dirty bit is cleaned.

Write Miss (WB policy): When a write miss occurs, the write buffer should be searched first. If
the missed address (ignore the lowest 5 bits) hits the write buffer, the cache-line fill operation
has to wait until the write buffer drains the hit line. Then the missed line aligned at 8word
boundary that contains the missed datum can be burst read from external memory and filled
into D-cache. As a contrast, failed search in the write buffer incurs an immediately external
memory burst read access. Moreover, if the replaced line calculated by ound-robin algorithm
contains dirty data, the dirty half line or all line will be backup to the write buffer. Similar to read
miss, a WBB (if exist) causes the write buffer to perform a write back operation implicitly. Please
note that the missed datum (word granularity) should be returned from external memory first,
and is stuffed to D-cache after being coalesced with the new write datum issued by CPU. Value
1 should be set to the correlative upper or lower dirty bit field of the filled line according to the
accessed address.
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Write Miss (WT policy): When a write miss occurs in WT mode, the missed datum is just
stored to the write buffer, and is written to the external memory later by the write buffer.

6.3.3 Non-cacheable Access Operation

When D-cache is disabled, access operation does not look up Dcache. However, in the case
that D-cache is enabled and the accessed address is non-cacheable, software must ensure that
the address does not exist in the D-cache. Otherwise, the access result is unpredictable.

6.3.3.1 Read Access

When the write buffer is empty, assert a single beat read request to the external memory
immediately, otherwise, assert the read request after write buffer drains.

6.3.3.2 Write Access

When the accessed address is B, the write datum is stored to the write buffer without directly
asserting single beat write request to the external memory. When the accessed address is NB,
the write buffer should be scanned first. If the scanning result shows that the write buffer is not
empty, it has to wait until the write buffer drain that the write request can be asserted. Otherwise,
the write request is immediately asserted.

Write operation needs at least two cycles (bufferable and write buffer is not full), but if no
memory access or core configure instruction following it, the write finished in backend to CPU.

6.3.4 Write Buffer

Arca2 CPU core has one four-level FIFO type write buffer, it always attempts to send buffered
data to the external memory as long as the external bus is idle until it evicts all the buffered data
The write buffer can overlap some memory access latency with CPU core’s pipeline operation.
However, the performance enhancement derived from the write buffer tightly depends on the
code optimization and the cache hit rate. In general, interspersing store instructions in the code
stream is better than issuing such instructions in bulk. For cacheable memory access, higher
cache hit rate (both Fcache and D-cache) is helpful to overlap writing external memory latency.
Arca2 CPU core write buffer supports following operations:

Buffer the replaced half lines that contain dirty data (these data should be written back to
the external memory) until the external bus is usable.

Buffer the write datum until the external bus is usable if the address is with WT policy or
with NC and B attribute.

Empty itself to ensure that all the buffered data arrive to the external memory before a new
access request issued by CPU, which is called flushing write buffer

An uncacheable read/swap or uncacheable & unbufferable write will empty the write buffer
before access external memory.

a4 ARCA Technology Corporation



Cache

6.4 Instruction Cache

Arca2 CPU core has one virtual tagged and physical indexed I|-cache. Following figure shows
the configuration of kcache. The instruction cache is a 8Kbyte, 32-way set associative cache.
Each way of a set contains 32 bytes (one cache line) and one valid bit. The replacement policy
is round-robin algorithm.

Set7
s way0 |V 32 bytes (cacheline)
Set Index ————— -~ wayl |V
Setl
Y, 2 byt heli
S0 Wiy? Y 32 bytes (cacheline) DATA
way0 |V 32 bytes (cacheline)
Set 0 is selected wayl |V
inthisexample
by set index.
CAM DATA
ASID: address
spaceidentifier.
Setin ASI

register of MMU | way31 | V;

ASID + Tag i‘**‘#‘i CAM:Corl\l/Ite:Tg(;Ar;dressable

Word

. Instruction word
Data address (virtual)

31 €8 54 21 O
Tag Set Index | Word | |

Figure 6-2 Instruction Cache Structure

6.4.1 Fetch Operation

When I-cache is enabled (CCR.ICE = 1) and the fetch address is cacheable, every requested
instruction is searched in the I-cache.

Fetch hit: A fetch hit occurs when the requested instruction is found in the I-cache, the hit
instruction is returned to CPU.

Fetch miss: A fetch miss occurs when the requested instruction is not found in the l-cache.
When this occurs, I-cache sends a fetch request to the external memory, and 8 words aligned at
32-byte boundary would be burst read back, like D-cache fill operation, the missed instruction
should be returned first. The following fetch may hit the filling data or hit I-cache under the last
filling process.

When I-cache is disabled (CCR.ICE = 0) or the fetch address is non-cacheable, each fetch
request need fetch one instruction (word granularity) from the external memory.
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6.5

Prefetch Operation

Arca2 CPU core supports prefetching data into Dcache. It is a backend action, that is, once
CPU successfully issues a prefetch instruction, pipeline should go on without waiting prefetched
data being filled into D-cache. Please note that any data access fault caused by prefetch must
be handled like the normal load type instruction. During prefetching period, any new memory
access instruction or core configure instruction will have to wait until prefetching finish. So the
sophisticated Interspersing of the prefetch instructions can reduce D-cache miss rate. Because
the prefetched data are in the cacheable memory and will be accessed by CPU soon In
essence, such manipulation is used to get high cache hit rate and overlap external memory
access latency.

Arca2 CPU core supports prefetching instruction into kcache too. It is a backend action, and
following fetch can hit Fcache or hit the filling data. But cache and D-cache access the same
external memory, so we need be care for avoid data access and instruction fetch access
external memory at the same time for the higher performance.
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6.6

SWAP Operation

When CPU issues a swap instruction, which results in a read operation followed by a write
operation. And the two operations are in-dividable, in another word, they are combined into an
atomic operation. According to the combinatorial case of C and B attribute of the swapped
address, following actions maybe performed:

C&B: The operation is similar to a write access with WB policy, except the original datum in
the swapped address (may be in the D-cache or in the memory) should be returned to CPU
before being updated by the write operation.

C&NB: When the read operation hits D-cache, the hit datum is returned to CPU from D-
cache, then D-cache and write buffer is updated by the write operation. When the read
operation misses D-cache, after the write buffer drains, the coupled read/write operation is
asserted to external bus, and the correlative bus controller must ensure that it is an atomic
operation, note that no fill operation here and D-cache is not updated in this case.

NC&B: The coupled read/write operation is asserted to external bus after the write buffer
drains, and the correlative bus controller must ensure that it is an atomic operation.

NC&NB: The coupled read/write operation is asserted to external bus after the write buffer
drains, and the correlative bus controller must ensure that it is an atomic operation.
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6.7

Alias Solution

Alias occurs when multiple virtual addresses map to a same physical address. When cache is
virtual tagged or virtual indexed, such aliases are illegal because without taking any special
correcting method, updating one alias cache line will not be snooped by other associative alias
cache lines. Hence, data coherency problem may arise when accessing other untouched alias
lines later.

Arca2 CPU core automatically solves the alias problem by hardware, in detail, for Dcache, it
ensures that only one copy of contents in a physical memory region exists in the D-cache at any
time for associative alias lines. But if the virtual memory system is in direct mapping mode, the
alias of AO area for different ASID isn't solved. And D-cache DISCARD, FLUSH, WRITE_BACK
commands don’t check alias hit, because any alias hit command will clean (write back dirty data)
the hit line.

For I-cache, maybe more than one copy of contents in a physical memory region exists,
fortunately, as the I-cache is read only, no data coherency problem delineated before may be
triggered. However, memory coherency problem still exists among I|-cache, D-cache, write
buffer and external memory. Thus, software has to make careful management.
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6.8

Coherency Between Cache And External Memory

Software must ensure data coherency between the cache and the memory. For the cacheable
memory shared by Arca2 CPU core and another device, the latest modified data may be
recorded in D-cache, or in the shared memory.

To guarantee the data coherency when the latest modified data resided in Dcache, flush
the crucial D-cache lines, if some lines are dirty, write back operations are generated then.
Otherwise, these lines are simply abandoned. Flush write buffer is necessary before the
shared crucial data can be accessed from memory.

To guarantee the data coherency when the latest modified data resided in the shared
cacheable memory, just invalidate the associated lines in the I-cache or D-cache.

Moreover, coherency problem between I-cache and Dcache can also be solved by above two
methods.
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6.9

Cache replacement and lock function

Arca2 CPU core kcache and Dcache use round-robin replacement method. Every cache set
has a replace pointer. When cache need allocate a new line, the new address will overwrite the
line specified by the replace pointer, and replace pointer add 1 to specify the next line. If current
pointer is 31, then next is 0 in no locked line case.

Instructions and data can be locked in kcache and D-cache so that they cannot be overwritten
by linefill. This operates with a granularity of one line, that is 8 words (32 bytes).

Software has the ability to lock performance critical routines into the instruction cache. Up to 31
lines in each set can be locked. Hardware will ignore the last lock command if software is trying
to lock all lines in a particular set, i.e. way 31 can never be locked.

When use ICACHE/DCACHE lock instruction to lock one address to CACHE, it must be sure
that the address must miss in ICACHE/DCACHE. If the address of lock command had existed in
ICACHE/DCACHE, the result of ICACHE/DCACHE lock instruction is unpredictable. So before
lock ICACHE/DCACHE, it is better to use ICACHE/DCACHE discard or invalidate instruction to
clear the address from ICACHE/DCACHE.

The locked line can be discard, write back, and flush, but the hole in locked area after doing
discard and flush cannot be filled with new line unless unlock operation is done.
ICACHE/DCACHE invalidate instruction will not clear the locked line.

Please note that DCACHE discard, write back, and flush instruction do not check alias hit, but
P-lock and A-lock instruction need check alias hit, and the result is unpredictable if P-lock or A-
lock instruction alias hit DCACHE. When read, write, swap, prefetch, and allocate instruction
alias hit a locked line, it will change the locked virtual tag in DCACHE and write back dirty data
of the line.

ICACHE/DCACHE unlock instruction used to unlock all the locked lines in ICACHE/DCACHE.
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6.10 Cache Configuration

Cache configure instructions is used to serve the OS development or application program
optimization. Such operations use the instruction format: ICACHE CMD, Rb, S10 and DCACHE
CMD, Rb, S10. Please refer to Arca2 ISA for detail information.

6.10.1 Operation List

Table 6-4 list all the operations to D-cache and I-cache through the core module interface of
Arca instruction set.

Table 6-4 Cache Operations

Operation Code Function description

Discard ICACHE #discard, Rb, S10 | Discard specific line in the I-cache. An expected

one instruction virtual address (Rb + S10<<2) is sent to

I-cache I-cache, if it hits I-cache, the hit line is invalidated,

line otherwise, nothing is done.

Invalidate ICACHE #inv, Rb, S10 Invalidate all unlocked l-cache lines, Rb and S10

I-cache are ignored. This operation is only permitted in
supervisor mode, in user mode, issuing the
instruction will trigger a protection fault.

Prefetch - | ICACHE #prefetch, Rb, Fetch specified line to I-cache. Search virtual

cache S10 address (Rb + S10<<2) in I-cache, if hit, do nothing,
else allocate a new line for fill it from external
memory.

Prefetch ICACHE #p-lock, Rb, S10 Fetch specific line to I-cache and lock it. Search

and lock virtual address (Rb + S10<<2) in I-cache, if hit, do

one I nothing, else allocate a new line for fill it from

cache line external memory and locked it. This operation is
only permitted in supervisor mode, in user mode,
issuing the instruction will trigger a protection fault.

Unlock all | ICACHE #unlock, Rb, S10 Unlock all locked lines in I-cache. These lines will

locked line be overwritten when l-cache miss later. This

in l-cache operation is only permitted in supervisor mode, in
user mode, issuing the instruction will trigger a
protection fault.

Prefetch DCACHE #pfd, Rb, S10 If specific cacheable virtual address (Rb + S10<<2)

one data hits D-cache, nothing is done; if the address alias

line hit D-cache, write back dirty data of the hit line and
mark the line with clean label; otherwise, allocate
one line for the address and load the associated
data from external memory.

Discard DCACHE #discard, Rb, If specific cacheable virtual address (Rb + S10<<2)

one S10 hits D-cache, the hit line is invalidated; otherwise,

D-cache nothing is done. Please be cautious to use the

line function because it does not write back any dirty
data.

Invalidate DCACHE #inv, Rb, S10 Invalidate all unlocked D-cache lines, Rb and S10

D-cache are ignored. Be cautious to use the function
because it does not write back valid dirty lines. This
operation is only permitted in supervisor mode, in
user mode, issuing the instruction will trigger a
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protection fault.

Flush one
D-cache
line

DCACHE #flush, Rb, S10

If specific cacheable virtual address (Rb + S10<<2)
hits D-cache, invalidate the hit line, moreover, if the
line is dirty, the dirty upper or/and lower half lines
should be written back to external memory. If the
address miss D-cache, nothing is done.

Write back
one dirty
line

DCACHE #wb, Rb, S10

If specific cacheable virtual address (Rb + S10<<2)
hits D-cache and the hit line is dirty, then write back
the dirty upper or/and lower half lines, then set 0 to
the dirty bit field of the hit line. If the address misses
D-cache or the hit line is not dirty, nothing is done.

Allocate
one
D-cache
Line

DCACHE #alloc, Rb, S10

If specific virtual address (Rb + S10<<2) hits D-
cache, nothing is done. If the address alias hits D-
cache, write back dirty data of the line and mark the
line with clean label. Otherwise, allocate one line for
the address directly and do not load associated
data from external memory. Moreover, if the
allocated line calculated by round-robin algorithm
has valid dirty data, they will be written back to
external memory before allocation. Please note that
after allocation, some valid data must be written to
the line before read, otherwise, the read datum is a
random value.

Allocate
and lock
one D-
cache line

DCACHE #a-lock, Rb, S10

Allocate a new line in D-cache and lock it. Search
virtual address (Rb + S10<<2) in D-cache, if hit, do
nothing; if the address alias hit D-cache, write back
dirty data of the hit line and mark the line with clean
label; otherwise allocate one line for the address
directly and needn’t load associated data from
external memory then lock it. This operation is only
permitted in supervisor mode, in user mode, issuing
the instruction will trigger a protection fault.
Moreover, if the allocated line calculated by replace
algorithm has valid dirty data, they will be written
back to external memory before allocation. Please
note that after allocation, some valid data must be
written to the line before read, otherwise, the read
datum is a random value.

Prefetch
and lock
one D-
cache line

DCACHE #p-lock, Rb, S10

Fetch specified line to D-cache and lock it. Search
virtual address (Rb + S10<<2) in D-cache, if hit, do
nothing; if the address alias hit D-cache, write back
dirty data of the hit line and mark the line with clean
label; otherwise allocate a new line for fill it from
external memory and lock it. This operation is only
permitted in supervisor mode, in user mode, issuing
the instruction will trigger a protection fault.
Moreover, if the allocated line calculated by replace
algorithm has valid dirty data, they will be written
back to external memory before fill.

Unlock all
locked
lines in D-
cache

DCACHE #unlock, Rb, S10

Unlock all locked lines in D-cache. These lines will
be replaced when D-cache miss later. This
operation is only permitted in supervisor mode, in
user mode, issuing the instruction will trigger a
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protection fault.

Flush DCACHE #flush-buf, Rb, Evict all buffered data in the write buffer to external
write S10 memory until it is empty, Rb and S10 are ignored.
buffer
Notes:

Except invalidat, p-lock, a-lock, unlock I-cache/D-cache, issuing other cache
instructions in user mode is valid. Moreover, address protection mechanism (refer to

MMU exception section for d

etail) is also suitable for those cache instructions.

Prefetch, allocate, p-lock, and a-lock operation only can be performed when the
expected address has cacheable attribute.

Discard, flush and write back operation issued by specific cache instructions do not
care the cacheable attribute of the expected address. Hence, it had better flush the

correlative D-cache lines of a

page before adjust its C attribute in the page table,

otherwise, some unpredictable result may be triggered.

6.10.2 Code Examples

6.10.2.1 Discard one D-cache line

If some dirty data in D-cache are useless later, they can be discarded directly. Such operation
does not trigger any write back action, which can reduce bus traffic and enhance the program
executing efficiency in some special applications.

DCACHE #di scard, R3, O !

6.10.2.2 Invalidate D-cache

DCACHE #inv, RO, O

6.10.2.3 Flush one D-cache line

R3 contains the expected address

I nval idate all unlocked D-cache |ines.
After the instruction executing, only
the | ocked address can hit the D-cache.
The function can be used, for instance,
to ensure data coherency of shared
menmory with WI attri bute

Flush dirty line in D-cache to enforce the dirty data to be written back to external memory and
filled from external memory in next access.

DCACHE #flush, R3, O

R3 contai ns the expected address, flush
valid dirty line can incur wite back
operation, which enforce the nenory
section associated with the flushed
dirty line to be updated by dirty data
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6.10.2.4 Write back dirty line

Following code sequence attempts to write back a valid dirty line to external memory, and make
it as a valid clean line again.

DCACHE #wb, R3, 0 I R3 contains the expected address

6.10.2.5 Allocate D-cache line

This command can be used in following two cases:

Allocate a line in the Dcache, which associative address will be accessed by store type
instruction first, and the original contents in the address are not concerned at all. For instance,
when stack is cacheable, use the function to allocate some new stack space in the D-cache
before push some never cached data, which can reduce stack push load evidently. Be care for
the granularity of allocating is one line of the D-cache, which are 8 words (32 bytes).

Evict all dirty data in D-cache back to external memory during context switching. In Arca2 CPU
core, following codes can clean all unlocked data in D-cache: (It is better to use an unmapped
address as s_addr. If the lowest 11 bits are all zero, two ORI instructions in following codes
can be removed. Because the branch instruction will lost a cycle in Arca2 CPU core, you can
unroll the loop by using DCACHE #alloc, R1, S10 to improve the performance.)

LHI R1, (s_addr>>11)

ORl R1, R1, (s_addr & Ox7ff)

LHI R2, ((s_addr+0x2000)>>11)

ORI R2, R2, ((s_addr+0x2000) & Ox7ff)

ALP:

DCACHE #alloc, R1, O
ADDI R1, R1, 32
BNE R1, R2, ALP

DCACHE #inv, RO, O

6.10.2.6 Flush write buffer

Consider a code runtime modification application, before branching to the dynamically
generated code section, it had better flush D-cache and write buffer to synchronize the memory
contents, because the fresh generated code maybe still buffered in the write buffer. And then
discard the address in |-cache to force it fill from external memory.

DCACHE #flush, R4, O
| CACHE #discard, R5, O
DCACHE #f |l ush-buf, R6, O
JA Rl, R2, O I R2 contains branch target
I RL contains returned address

6.10.2.7 Discard I-cache line

If a segment of instruction has been modified in main memory, we need update the new
instruction to I-cache, i.e. we should discard the old copy of the segment in l-cache. The
following code sequence discards a segment of instruction code in I-cache:
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LOOP:

| CACHE #discard, R3, 0 R3 contains the address of invalidated
code

let R3 point to next line

R4 contains the end address

ADDI R3, R3, #32
BLE R3, R4, #LOOP

6.10.2.8 Invalidate I-cache

If there are more instructions have been modified in main memory, we can use ICACHE
#invalidate instruction to discard all unlocked copy in I-cache to improve the performance of
discard.

| CACHE #inv, RO, O I Invalidate all unlocked |-cache lines.
I After the instruction executing,
I only | ocked address can hit |-cache.

6.10.2.9 Lock cache

We can use cache lock instruction to lock critical instruction or data into I-cache or D-cache to
improve the performance. Following codes give an example to lock a segment critical instruction
to I-cache.

LHI R3, (s_addr >> 11)

ORI R3, (s_addr & Ox7ff) I load start address of critical
! code to R3

LHI R4, (e_addr >> 11)

ORI R4, (e_addr & Ox7ff) | oad end address of critical code

|
| to R4
| CACHE #inv, RO, O | invalidate |-cache to nmake sure
I the critical instruction address
| will miss in |l-cache first.
LOOP:
| CACHE #l ock, R3, 0
ADDI R3, R3, #32 I let R3 point to next line

BLE R3, R4, #LOOP
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7.1

7 Debug and JTAG

Overview

Generally software debugger should modify program memory in order to insert breakpoints. The
breakpoint can be either a real breakpoint instruction or an illegal instruction, which can trigger
break or illegal-instruction exception. When this kind of instructions is encountered the
debugged program is stopped and the debugger accepts the control right from it. Additional
external hardware tools can supplement these basic mechanisms, such as logic analyzers and
in-circuit emulators (ICEs) for additional control and information about program execution.

Although this model of debug works well for many sorts of system, it has the following
shortcomings if the system to be debugged is a highly-integrated design:

System-On-a-Chip (SOC) component design no longer provides an external interface to the
processor pin-out or system bus, making the use of logic analyzers and ICEs difficult or
impossible.

Debugging based on the insertion of software breakpoint instructions assumes that
programs reside in RAM. It is impractical for fully ROM-based systems and assuming
support in the O/S for these techniques.

For consumer electronic applications, a communication port like Ethernet or RS-232 serves
no purpose beyond software debug and adds disproportionately to the cost and size of the
design.

The ROM necessary to support a debug monitor on a consumer electronic application could
add unacceptable costs.

The Debug module with extended JTAG supplements the ARCA architecture in dealing with
these problems. The processor can be tied into a JTAG scan chain and comprehensively
debugged using an external JTAG probe connected to the system’s JTAG TAP interface.

The Debug module offers efficient and smart break functions to simplify program debugging. It
provides the following new capabilities for software and system debug:

- Off-board JTAG memory
The extended JTAG allows an ARCA processor in host-monitoring debug to refer to
instructions or data that are not resident on the system under test. This JTAG memory is
mapped to the processor as if it were physical memory; references to it are converted into
transactions on the TAP interface. Both instructions and data can be accessed in JTAG
memory, which allows debugging of systems without requiring the presence of a ROM
monitor or debugger scratchpad RAM. It also provides a communications channel between
debug software executing on the processor and an external debugging agent.

- Support hardware breakpoints
1. instruction fetch breakpoint
2. data access address/result breakpoint
3. asynchronous break/boot
These breakpoints can be used to implement watchpoints, breakpoints and single-step
execution, without requiring that the program code reside in RAM.

- System access via the extended JTAG interface
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The extended JTAG can force processor entry into host-monitoring debug. Debug software

can then get further system access via JTAG interface.

7.1.1 Debug Features

Table 7-1 Debug Features

Break condition

Description

Fetch address match

Compare instruction address bus with preset value

Fetch address mask

Ignore masked bits when fetch address comparison

Access address match

Compare data address bus with preset value

Access address mask

Ignore masked bits when data access address comparison

Address ASID match

Compare ASID of current process with preset value

Access data match

Compare data access (store/swap) result with preset value

Access type control

Only specific access type (read, write, etc.) can be monitored

Access size control

Only specific access size (byte, half word, word) can be
monitored

Software breakpoint

Provide a software-breakpoint instruction SBRK

Asynchronous break

Host send a command to break current executing instruction
stream

Asynchronous boot

Host send a command to reboot processor from dedicated
memory

7.1.2 Extended JTAG Feature

Table 7-2 Extended JTAG Features

Break condition

Description

IEEE 1149.1 standard

Compliant with standard JTAG feature

Extended data register

BIU_BSR is composed of boundary cells encompassing the
interface of BIU in ARCA CPU core

Extended instructions

In addition to standard mandatory instructions: BYPASS,
extended JTAG in ARCA supports seven new instructions
named ASYN_BRK, ASYN_BOOT, CONTROL, ADDR, DATA,
ALL and HOST MODE

7.1.3 Debugging Pattern

- Self-Monitor Debugging
In this debug pattern, both the debugged program and the debugger itself are executing on
the ARCA processor. Since JTAG interface cannot be accessed in the case, asynchronous
break and asynchronous boot cannot be triggered.

- Host-Monitor Debugging
In this debug pattern, the debugged program is executing on the ARCA processor, while the
debugger is executing on the host. After debug handler begins executions, the debugger can
communicate with and even control the ARCA processor through JTAG interface.
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7.1.4 Debug & JTAG Solution Diagram

Debug & JTAG solution apparently shows that in some situation, CPU core can communicate
with external world through standard TAP ports instead of the core bus agent. Therefore, host-
monitor can be realized through this communication method. However, when TAP does not
work, the Debug module can still monitors IU_BUS to support self-monitor through the software
debugger’s help.

The TAP in the CPU core (called internal TAP in later chapters) only supports extended seven
new instructions and standard BYPASS instruction, while the TAP outside of the CPU core
(called external TAP in later chapters) just supports standard JTAG instructions including
BYPASS, SAMPLE/PRELOAD, EXTEST and RUNBIST. The selection of internal TAP and
external TAP depends on the pin TAP_SEL when power-on reset. If TAP_SEL is 1, internal
TAP works, otherwise external TAP works. This document has no reference about detail of
external TAP since it is an IEEE 1149.1a standard compatible product.

MMU U |
< $ 0 BUS $>
*

CACHE DBG |
?
BIU TAP
A * A

<—CTTY_¢—>F;§ BUS K———»

JTAG Interfare
A 4

TAP

On-chip Devices

Figure 7-1 Debug and Extended JTAG
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7.2 Extended JTAG

7.2.1 Overview

ARCA series JTAG hardware are compliant with IEEE 1149.1 TAP&BSA standard. In addition,
to support host-monitoring debug, several private instructions and an extra boundary cell data
register is added. The following diagram shows the structure of the internal TAP.

TCK T
e = n_brk n
TMS % < asyn_boot;n
TRST|| © E 2yN_Do%
BIU BSR
___________ Pl SR B
DI L_ypas o TDO
instruction

Figure 7-2 Internal Tap

Note:
The extra output signals from BIU_BSR register are devised to serve for host-monitoring.

Later chapters will discuss them in detail.
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7.2.2 Standard & Extended Private Instructions

There are seven private instructions appended to support the communication between ARCA
processor and host. The following table lists the instructions supported by internal TAP.

Table 7-3 Extended JTAG Instructions

Name Code Description
BYPASS HF Compliant with JTAG standard, but the output from TDO is not
the value of TDI latched at the rising edge of TCK and it is a
random value.

CONTROL HO After decoding, always select the sub-field of BIU_BSR named
CTRL, which is devised for host polling convenience

ADDR H'1 After decoding, always select the sub-field of BIU_BSR named
ADDR

DATA H2 After decoding, always select the sub-field of BIU_BSR named

DATA. Note that only the instruction can inject data from JTAG
memory to CPU core at Update DR state of internal TAP

ALL H'3 After decoding, select the whole BIU_BSR between TDI and
TDO
ASYN_BRK H4 After decoding, assert an active low level signal named

asyn_brk_n, attempt to asynchronously break CPU core current
operation. In addition, it selects the sub-field of BIU_BSR named
CTRL between TDI and TDO

ASYN_BOOT H'S After decoding, assert an active low level signal named
asyn_boot_n to boot processor from specific off-board JTAG
memory space. In addition, it selects the sub-field of BIU_BSR
named CTRL between TDI and TDO

HOST_MODE H'6 After decoding, the exception vector table base (VBR) is
automatically re-directed (not modified) and fixed at
H'EC000000. Which is called host-mode vector base. The
instruction always selects the sub-field of BIU_BSR named
CTRL between TDI and TDO. Note that only active TRST_ or at
least 5 high level TMS cause the internal TAP controller to enter
into the Test-Logic-Reset state, which can restore the vector
base to initial value.

H7~E Reserved for future usage

Note: Any one of the seven private instructions is active, which denotes that the JTAG memory
space can be accessed.
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7.2.3 Extended Data Registers

In the diagram of TAP&BSA, there is 1 data register. Its usage is listed below.

- BIU_BSR represents the boundary scan registers encompassing the CPU core, which is used

to realize communication between JTAG interface and CPU core.

In the host-monitoring environment, the contents of the BIU_BSR are cyclically shifted out or
updated according to the monitoring result. The following figure shows the format of BIU_BSR.

32

oLSB 36 oLSB 1 0oLSB

SO

DATA ADDR CTRL

J Bl Sl

Figure 7-3 BIU_BSR Register

Since there are two forwarding paths after DATA and ADDR, the three sub-fields of BIU_BSR
can be manipulated respectively. The following table lists these sub-fields’ configuration.

Table 7-4 BIU_BSR Register

Name Bit field Description
bit0 Active value 1 denotes an active JTAG memory space access request, inactive value
CTRL 0 means no JTAG memory access
bitl Read/Write label of access request. 0: read access, 1: write access.
bit31~0 Denotes the access address
bit33~32 | Denotes the access result size. 2’B11: byte, 2’'B01: half word, 2'B10: word.
bit34 Bus lock label. Active 1 means current read access and next write access are
ADDR an atomic operation. The bit can be ignored by host because not any other
bus device connects the bus serving for internal TAP.
bit35 Active 1 denotes burst enable. Inactive 0 denotes single beat access.
bit36 Active 1 denotes 8 words burst; inactive 0 denotes 4 words burst. When bit35
takes inactive 0, the field is ignored.
bit31~0 Access result. For read access of JTAG memory space, need be filled by
JTAG interface (through DATA instruction). For write access of JTAG
DATA memory space, need be scanned out by JTAG interface.
bit32 IU_BUS freezing label. 1: bus is ready, 0: bus is locked due to an unfinished
access. For an active JTAG memory space access, need JTAG interface
(through DATA instruction) set active high level to unfreeze the IU BUS
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7.2.4 Endian Adjustment

Since ARCA series support big-endian and little-endian, debugger in the host maybe has to
adjust endian if JTAG memory use different endian. The following figure shows the byte position
in the DATA part according to access size and the two LSBs of ADDR part.

SIZE ADDR[1:0] Big Endian Little Endian
byte 2B00 31210 312(1]0
2B01 312|110 3|2|1]|0
2B10 3|2|1]|0 3|12|1|0
2B11 3/]2(1]0 3|2(1]0
half
word 2'B00 3(2(1|0 3(2(1(0
2B10 3|1]2|1(0 3(2(1|0
word 3|12|1{0 3|12|1(0

NOTES: gray arearepresents available bytefield

Figure 7-4 Endian Adjustment

7.2.5 JTAG Memory Space

JTAG memory is dedicated to serve for debugger in the host-monitor environment. The memory
space from H'EC000000 to H'EFFFFFFF is mapped to off-board JTAG memory space. The
space can not be allocated to any other external device. The following table lists the JTAG

memory space special usage.

Table 7-5 JTAG Memory Space

Memory Space Usage

H'EC000000 Special vector serving for DBG_BOOT

H’EC000000~ Position of vector table for host-mode vector base. In the case, reset handler
H'EC00001F entry is always equivalent to boot handler entry.

HEFFFFFOO ~ | Memory mapped JTAG control register space.

HEFFFFFFF H' EFFFFF20: Asynchronous break response register, when 1U writes any value
to the register, which denotes that the asynchronous break has already been
responded by IU. The sustained active signal asyn_brk_n then is deasserted by
hardware automatically

7.2.6 Miscellaneous Constraints

To make host-debug environment safe and reliable, some hardware constraints are imposed.
System designers need pay more attention to this section.
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7.2.6.1 Reset Constraint

In ARCA series, TRST_ is necessary. During power-up reset (due to pressing power key),
TRST_ must be active to reset the internal TAP. However, during hot reset (system reset,
without pressing power key), TRST_ is not affected at all.

7.2.6.2 TCK Constraint

To guarantee the processor can enter boot handler through JTAG interface instead of reset
handler in the case that, memory system has some problem or even there is not any on-board
memory system, the following rules should be obeyed:

- Core clock frequency is not less than TCK clock frequency

- Maximum TCK clock frequency is 50MHz

7.2.6.3 TMS Constraint

Since there are two TAPs on the chip, which need a special pin to control the TMS usage. For
instance, when the pin TAP_SEL keeps at high level, TMS is switched to serve for internal TAP,
and the path of TMS routing to the external TAP is locked at high level. When the pin TAP_SEL
keeps at low level, the handling is reversed.
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7.3 Debug Module

The Debug module supports instruction and data access hardware breakpoints. By monitoring
the IU_BUS, ASID of current process (for multi-process OS), and combining with the presetting
control information, the Debug module can trigger abundant types of hardware breakpoints,
such as single step breakpoint, precise watchpoint, ambiguous address range breakpoint and
etc. The following figure shows the topology of Debug in the CPU core.
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Figure 7-5 The Stutcture of Debug Module
Table 7-6 Debug Internal Signals
Signal Name Description
IA BUS IU instruction fetching address bus
DA BUS IU data access address bus
DD _BUS IU data bus
CMD_BUS IU accessé&fetch command bus
dbg irg n break request signal, due to fetch breakpoint, asynchronous break
dbg drg n break request signal, due to data access breakpoint
asyn boot n signal from BIU BSR to boot processor from JTAG memory space
asyn brk n signal from BIU BSR to break current executing instruction stream
asid ASID of current executing process
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7.4 Debug Register Configuration

The following table lists the Debug registers. Software can use CLD/CST instruction to access
the register. These registers can only be read/written in supervisor mode.

Table 7-7 Debug Registers

Name Full Name riw | [nitialvalue - Access #1D | #CR
when power on Size
DBG _CR Debug Configure register R/W | H00000000 32 011 000
DBG_IAOQ Debug Instruction Address 0 R/W | Undefined 32 011 001
DBG_IAl Debug Instruction Address 1 R/W | Undefined 32 011 010
DBG_DAO Debug Data access Address 0 | R/W | Undefined 32 011 011
DBG_ DAl Debug Data access Address 1 | R/W | Undefined 32 011 100
DBG DD | DePug Data access R/W | Undefined 32 011 101
- (store/swap) Result 0
DBG ASID | Debug ASID R/W Undefined 32 011 110
7.4.1 Register Descriptions
7.4.1.1 Debug Control Register(DBG_CR)
#ID=011 #CR=000
Bit: 31 30 29 28 27 26 25 24
Read: HOST BKEN
Write:
Reset: 0 0 0 0 0 0 0 0
Bit: 23 22 21 20 19 18 17 16
Read: SBRK DHIT
Write:
Reset: 0 0 0 0 0 0 0 0
Bit: 15 14 13 12 11 10 9 8
svii:: IHIT DMEN IMEN ASIDM | DMSKO DLEN1
ite:
Reset: 0 0 0 0 0 0 0 0
Bit: 7 6 5 4 3 2 1 0
Read: DLENO DRW1 DRWO DDEN | IDEN
Write:
Reset: 0 0 0 0 0 0 0 0

Bit 29 ~ 19: Reserved bits, ignored in write operation, always 0 in read operation.

— IDEN: Hardware instruction fetch breakpoint enable.
0: disable instruction fetch breakpoint.
1: enable instruction fetch breakpoint.
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— DDEN: Hardware data access breakpoint enable.
0: disable data access breakpoint.
1: enable data access breakpoint.

— DRWO: Data access type label for DBG_DAO.
2'HO: match due to read or write memory access can be granted.
2'H1: match due to read access can be granted.
2'H2: match due to write access can be granted.
2'H3: reserved.

— DRWZ1.: Similar to DRWO, serve for DBG_DAL.

— DLENO: Data access size label for DBG_DAO.
2'HO: word access is checked.
2'H1: half word access is checked.
2'H2: byte, half word and word access are all checked.
2'H3: byte access is checked.

— DLENZ1: Similar to DLENO, serve for DBG_DAL.

— DMSKO: Data access (store/swap) result mask for DBG_DDO.
0: denotes that data result is not cared for data access breakpoint monitoring.
1: denotes that data result is cared for data access breakpoint monitoring.
Note that only DBG_DAO support data access result breakpoint.

— ASIDM: ASID mask enable.
1: denotes that current ASID is not cared for any breakpoint monitoring (fetch or data
access).
0: denotes that current ASID must be monitored for hardware breakpoint.

— IMEN: Fetch breakpoint mask enable.
0: denotes that DBG_IALl is used for DBG_DIO mask bits. In DBG_IA1, 0: Corresponding
address bit is compared, 1: Corresponding address bit is masked.
1: denotes that DBG_IAL is also used as the second fetch address register, hence the two
fetch address registers must be set with precise expected values to perform non-maskable
address comparing.

— DMEN: Data access breakpoint mask enable,.
0: denotes that DBG_DAL is used for DBG_DAO mask hits. In DBG_DAL, 0: Corresponding
address bit is compared, 1: Corresponding address bit is masked.
1: denotes that DBG_DAL is also used as the second data access address register, hence
the two data access address registers must be set with precise expected values to perform
non-maskable address comparing.

— IHIT: Fetch breakpoint match flag.
The field is automatically set with value 1 by hardware once such a matching is detected.
Bit14 denotes DBG_IAO match, and bitl5 denotes DBG_IA1l match.

— DHIT: Data access breakpoint match flag.
The field is automatically set with value 1 by hardware once such a matching is detected.
Bit16 denotes DBG_DAO match, and bitl7 denotes DBG_DA1 match.

— SBRK: Software breakpoint request flag.
This field is automatically set when a software-breakpoint instruction (SBRK) is executed.

— BKEN: Asynchronous break request flag.
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If the instruction in internal TAP is ASYN_BRK, then it is set to 1 and an exception is
generated immediately. However it will be kept 1 until the instruction has been changed and
it has been acknowledged through writing OXEFFFFF20.

0: denotes no asynchronous break request occurs.

1: denotes an active asynchronous break request being asserted.

The bit is read-only by software.

— HOST: Host-monitoring environment enable.

74.12

7.4.1.3

If the instruction in internal TAP is CONTROL, ADDR, DATA, ALL, ASYN_BRK,
ASYN_BOOT or HOST_MODE, then it is 1, otherwise it is 0.
0: denotes that accessing JTAG memory space cannot be granted by host through JTAG

interface.
1: denotes that accessing JTAG memory space can be granted by host through JTAG

interface.
The bit is read-only by software.

Instruction Address Register O(DBG_IAOQ)

#D=011 #CR=001

Bit: 31 4 3 2 1 0
Re‘.”‘d: Instruction Address 0
Write:
Reset: 0 0 0 0 0 0 0

Bit 1 ~ O: Reserved bits, ignored in write operation, always 0 in read operation.

Bit 31~2: Set expected fetch address in this register to trigger instruction fetch breakpoint.

Instruction Address Register 1(DBG_IA1)

#ID=011 #CR=010

Bit: 31 4 3 2 1 0
Re?‘d: Instruction Address 1
Write:
Reset: 0 0 0 0 0 0 0

Bit 1 ~ 0: Reserved bits, ignored in write operation, always 0 in read operation.

Bit 31~2: When DBG_CR.IMEN takes inactive 1, set expected fetch address in this register to

trigger instruction fetch breakpoint.

When DBG_CR.IMEN takes active 0, which can mask the comparing result of
instruction address[31:2]. For example, set 32’HFFFFFFFF in DBG_IA1, which may
trigger a fetch breakpoint for each instruction fetching despite of fetch address once the
DBG_CR.IDEN is set and SR.DE is set (refer to exception spec for SR usage).

7.4.1.4 Address Space Identifier Register(DBG_ASID)

#ID=011 #CR=011

3 2 1 0

l
(o]
~
o
a1
IN

Bit: 31
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Read: ASID
Write:
Reset: o .. 0 0O 0 0 0 0 0 0 o

Bit 31 ~ 8: Reserved bits, ignored in write operation, always 0 in read operation.

Bit 7 ~ 0: Set expected ASID in this register to make ASID check in addition to address
comparison.

7.4.1.5 Data Access Address Register 0(DBG_DADO)

#ID=011 #CR=100

Bit: 31 4 3 2 1 0
Read: Data Access Address 0
Write:
Reset: 0 0 0 0 0 0 0

Set expected data access address in this register to trigger data access breakpoint.

7.4.1.6 Data Access Address Register 1(DBG_DA1)

#/D=011 #CR=101

Bit: 31 4 3 2 1 0
Read: Data Access Address 1
Write:
Reset: 0 0 0 0 0 0 0

Bit 31 ~ 0: When DBG_CR.DMEN takes inactive 1, set expected data access address in this
register to trigger data access breakpoint.

When DBG_CR.DMEN takes active 0, which can mask the comparing result of data
access address[31:0]. For example, set 32’HFFFFFFFF in DBG_DA1, which may

trigger a data access address breakpoint for each available data access despite of
access address once the DBG_CR.DDEN is set and SR.DE is set.

Note that there has no initial value for this register, when DBG_CR.DMEN is inactive high, which
serves as another data access address register.

7.4.1.7 Data access (store/swap) result register O( DBG_DDO0)

#ID=011 #CR=110

Bit: 3L 4 3 2 1 0
Read: Data Access result O
Write:
Reset: 0 0 0 0 0 0 0

Bit 31~0: Set expected data access result in this register to make result check in addition to data
access address comparison. Note that even when DBG_CR.DMEN = 1, which denotes
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that two access address should be monitored, data access result breakpoint can only
be triggered for DBG_DAO. It only works for store and swap instructions.
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7.5

Debug Operation

7.5.1 Overview

In general, the Debug module in ARCA supports two kinds of hardware breakpoint break
condition: synchronous break and asynchronous break. When SR.DE is set active value 1,
which denotes that IU permits break exception, any available asserted break request can be
responded by IU.

For synchronous break, the Debug monitors the IA_BUS of IU for instruction fetch breakpoint
condition matching detection, and monitors the DA_BUS and DD_BUS of IU for data access
breakpoint matching detection. Once the captured value from monitored target match the
expected break conditions that are set before, active low level signals dbg_irg_n and/or
dbg_drg_n then are asserted to inform 1U that some preset breakpoint is triggered.

The break caused by software breakpoint instruction (SBRK) is also a synchronous one.

However this break is controlled by SR.DE.

1. If SR.DE =1, SBRK cause a debug exception, DSR/DPC are used to save env, SR.DS is
set to 1, handler is load from vector offset = 2 (the debug vector), exception return address
is next instruction.

2. If SR.DE = 0, SBRK cause an illegal instruction exception, ESR/EPC are used to save env,
SR.DS is set to 0, handler is load from vector offset = 1 (the illegal insn vector), exception
return address is this instruction

Moreover, the Debug module supports asynchronous break mechanism including asynchronous
break and asynchronous boot. Note that only in host-monitoring environment such breaks may
be active. IF SR.DE is disabled, the signal asyn_brk_n is ignored, while asyn_boot_n does
not care for SR.DE. For asynchronous break, once the signal asyn_brk_n takes active low
level, the break request dbg_irg_n is immediately asserted to attempt to break current executing
code stream, and the signal can retain at low level until the asyn_brk_n is de-asserted. For
asynchronous boot, once the signal asyn_boot_n takes active low level and the pipeline is not
frozen, the processor can switch to supervisor mode immediately and redirects execution to an
asyn-boot handler routine.

Note that the entry of the asyn-boot handler routine is placed at JTAG memory space
H'ECO000000, independent with exception vector table.
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7.5.2 Fetch Breakpoint Operation

Fetch breakpoint can be used to trace the flow of an executing code segment. To trigger a fetch
breakpoint, the following steps are needed:

1. set DBG_CR.IDEN with inactive value 0, to avoid inadvertently fetch breakpoint triggering

2. set DBG_IAOQ, DBG_IAl, DBG_ASID with expected values

3. set DBG_CR.IMEN and DBG_CR.ASIDM with expected value, and enable breakpoint
detection mechanism by setting DBG_CR.IDEN with active value 1

After finishing above steps, once an effective fetch matches the presetting break condition, and
so long as SR.DE is set with active value 1, then dbg_irq_n can be asserted. Accompanied with
asserting dbg_irq_n, DBG_CR.IHIT (IHIT[0] and/or IHIT[1]) is set active 1 to represent that a
fetch breakpoint is captured. See the following true table for detail.

Table 7-8 Fecth Breakpoint True Table

DBG_CR.IDEN | SR.DE | DBG IA (*1) | DBG_ASID (*2) | dbg _irq_n

0 -- - -- inactive

1 0 - -- inactive
mismatch mismatch inactive

1 1 mismatch match inactive
match mismatch inactive
match match active

Notes:

1. Asterisk (*1) denotes that comparison of fetch address is masked by DBG_IA1 when
DBG_CR.IMEN takes active 0. When DBG_CR.IMEN takes inactive 1, the match of
DBG_IA means at least one of DBG_IAX (x represents 0, 1) is identical with the captured
instruction address bus.

2. Asterisk (*2) denotes that comparison of ASID is ignored when DBG_CR.ASIDM takes
inactive 1.However, when DBG_CR.ASIDM takes active 0, the match of DBG_ASID
means that DBG_ASID is identical with current ASID.

3. Double dash line denotes don't care field.

7.5.3 Data Access Breakpoint Operation

Data access breakpoint can be used to monitor the memory access situation. To trigger a data
access breakpoint, following 4 steps are needed:

1. set DBG_CR.DDEN with inactive value 0, avoid inadvertently fetch breakpoint triggering

2. set DBG_DAO, DBG_DA1, DBG_ASID, DBG_DDO (optional) with expected values

3. set DBG_CR.DRWO, DBG_CR.DRW1, DBG_CR.DLENO, DBG_CR.DLEN1,
DBG_CR.ASIDM, DBG_CR.DMSKO0 and DBG_CR.DMEN with expected values, and
enable breakpoint detection by setting DBG_CR.DDEN with active value 1.

After finishing above steps, once an effective data access matches the presetting break
condition, and so long as SR.DE is set with active value 1, then dbg_drg_n can be asserted.
Accompanied with asserting dbg_drg_n, DBG_CR.DHIT (DHIT[0] and/or DHIT[1]) is set active 1
to represent that a data access breakpoint is captured, meanwhile DBG_DAO is overwritten by
captured DA_BUS when DBG_CR.DMEN is active 0. One point must be emphasized that
comparison of DBG_DDO depends on the set of DBG_CR.DMSKO0. When DBG_CR.DMSKO
takes value 0, which represents data access address breakpoint, otherwise, represents data
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access (store/swap) result breakpoint. The following true table lists the detailed match process
of data access breakpoint. Moreover, data access (store/swap) result breakpoint only
serves for DBG_DAO, and only write access result case is supported.

Table 7-9 Data Access Breakpoint True Table

DBG CR | SR | DBG DAx (*1) & | DBG CR | DBG _CR DBG _CR
DDEN | .DE DBG__ASIIS (*)2) DMSKO | .DRWx | .DLENx (+3) | PBC-PDO | dbg_drq_n
0 -- - - -- - inactive
1 0 - - -- - inactive
mismatch - -- - inactive
mismatch | mismatch - inactive
L mismatch | match - inactive
T match mismatch | -- inactive
match match - active
1 1 - - - -
match mismatch [ mismatch -- inactive
mismatch | match - inactive
== match mismatch - inactive
match match mismatch | inactive
match match match active
Notes:

1. Asterisk (*1) denotes that comparison of data access address is masked by DBG_DA1
when DBG_CR.DMEN takes active 0. When DBG_CR.DMEN takes inactive 1, the match
of DBG_DA means at least one of DBG_DAX (x represents 0, 1) is identical with the
captured data address bus.

2. Asterisk (*2) denotes that comparison of ASID is ignored when DBG_CR.ASIDM takes
inactive 1.However, when DBG_CR.ASIDM takes active 0, the match of DBG_ASID
means that DBG_ASID is identical with current ASID.

3. Asterisk (*3) contains a special case. That is, if DBG_CR.DLENX is set by value 2, the
match of the LSB[1:0] of DBG_DAXx must refer to current access length, simply put, it's a
covering over data access breakpoint. For instance, set value 2 to DBG_CR.DLENO, bring
on following three cases:

1) For current word size access, DBG_DAO[1:0] comparing is always match despite of
comparing result described in (*1).

2) For current half word size access, DBG_DAO[0] comparing is always match despite of
comparing result described in (*1), while DBG_DAO[1] still refers to the comparing result
carried out from (*1)

3) For current byte size access, the match of DBG_DAO[1:0] always refers to the
comparing result carried out from (*1).

4. Double dash line denotes don't care field.

7.5.3.1 Data Access Command Monitoring

In ARCA ISA, there are several special system instructions serving for system special usage.
These instructions also need touch IU_BUS, but the Debug module does not monitor them at all.

Moreover, when IU issues a SWAP instruction, the Debug module regards it as a store type
instruction for data access result breakpoint monitoring. The following table lists the instructions
that are not monitored.
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Table 7-10 Instructions That Are Not Monitored

Instruction Name Notes
CLD/CST Rx, #ID, S10 Value on the DA BUS is not concerned
ITLB #CMD, Rx Value on the IA_BUS is not concerned
DTLB #CMD, Rx Value on the DA BUS is not concerned

ICACHE #CMD, Rx, S10 Value on the IA_BUS is not concerned
DCACHE #CMD, Rx, S10 Value on the DA BUS is not concerned

7.5.4 Asynchronous Break/Boot Operation

ARCA Debug supports asynchronous break, and the break type is dedicated to host-monitor
debugging. ARCA JTAG extends two instructions named ASYN_BRK and ASYN_BOOT. When
instruction register of the internal TAP decodes ASYN_BRK, as a result, the signal asyn_brk_n
is asserted to Debug; similarly, the signal asyn_boot_n is asserted to IU for ASYN_BOOT. Note
that DBG_CR.DDEN and DBG_CR.IDEN just control the synchronous hardware breakpoint
comparing logic, e.g., they do not forbid request of asynchronous break source. Once the
Debug module samples the active low asyn_brk_n signal, it immediately asserts active
dbg_irgq_n to IU, and in the case, dbg_irg_n can sustain until the asyn_brk_n is deasserted.

Note that once the ASYN_BRK instruction is asserted, before the memory mapped register
H'EFFFFF20 is written by a store type instruction, the signal asyn_brk_n can maintain at active
status despite whether current JTAG instruction is ASYN_BRK. In order to make asyn_brk_n
inactive, CTRL should be shifted into JTAG instruction and the memory mapped register
H'EFFFFF20 should be written. Software should check DBG_CR.BKEN bit to judge whether
asyn_brk_n has been inactive.

For ASYN_BOOT, there is no need to acknowledge it and asyn_boot_n is automatically de-
asserted.
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7.6 Debug Exception Operation

When an effective dbg_irq_n or dbg_drqg_n is asserted, IU should respond them immediately,
unless some other higher priority exception requests arise simultaneously. For active low
asyn_boot_n caused by ASYN_BOOT, which takes the highest priority over all of other
exceptions even including reset and does not care for SR.DE. The following fragment of
exception resource signals’ priority table illustrates all debug exceptions priority cases.

Asyn Boot high priority
Reset

d-fault
data access breakpoint

trap, sbrk
i-fault
Asyn break, fetch breakpoint v
i low priority

Figure 7-6 Exception Priority

Once a debug exception is granted by IU, the following common steps need be done
automatically:

Load debug handler entry from exception vector table

Save expected return address to DPC

Save SR to DSR

Set value 0 to SR.DE to avoid reenter problem in debug handler
Set value 1 to SR.SM to let CPU toggle to supervisor mode
Set value 1 to SR.DS to represents an active debug state

o, wbNE

One point must be emphasized that in the fetch breakpoint or data access breakpoint
handler routine, it had better remove the DBG_CR[IHIT] or DBG_CR[DHIT] after
investigate them by software, otherwise, the obsolete match flags may confuse later
breakpoint event judgment, or cause even more worse situation: the same fetch
breakpoint is triggered endlessly. In detail, if both DBG_CR[IHIT] and DBG_CR[DHIT] are
set, just get rid of DBG_CR[DHIT] according to above exception priority diagram rather
than remove them all. If only one of the two breakpoints is triggered, just remove
DBG_CR[IHIT] or DBG_CR[DHIT], in terms of the breakpoint type. However, in the
handler routines of other exception types, do not attempt to affect those breakpoint flag
bits, otherwise, some concurrently captured breakpoint events may miss out.

The later sections delineate the responding process for 6 types of debug break in detail. It is
better to refer to IU exception spec for more information.
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7.6.1 Fetch Breakpoint Debug Exception

Fetch breakpoint is similar to I-fault, it is also an IF stage exception, hence instructions in the
later pipeline stages from ID to WB will be done normally. However, in some pipelining

situations, special exception handling tactics (for instance, ID stage instruction is canceled too*l)
may be taken to manipulate the acknowledgement process of the fetch breakpoint. Even though,
at any case, hardware can guarantee that after the handler routine of fetch breakpoint, returning
location always points to the first canceled instruction in the code stream, or the executed
instruction which resuming has not any side effect. As an instance, a fetch breakpoint next to a
BCC instruction (BCC is untaken) need always return to the location of the BCC instruction,
rather than itself, besides, hardware can manage the case to avoid endless loop. Please refer to
exception model spec for more detail. When IU responds a fetch breakpoint, the following

actions shall be done.

For hardware (necessary):

Load common debug handler entry from exception vector table (base + H'8)
Save returning location value to DPC

Save SR to DSR

Set value 0 to SR.DE to avoid reenter problem in debug handler

Set value 1 to SR.DS and SR.SM

S

For software (recommend, not necessary):

1. Read DBG_CR.IHIT, DBG_CR.DHIT and DBG_CR.SBRK to check that which breakpoint is
granted

2. After enter the subroutine service for software breakpoint, clear DBG_CR.IHIT

3. When service finish, use RTE instruction to return to the normal execution stream

Note: *1 When fetch break occurs, if the previous instruction is a BCC, a MUL with Rh not RO
stalled for one cycle, or any instuction stalled for two cylcles, then this previous instuction is
cancelled and it is set to the return address DPC. In this situation, except for BCC case, the
fetch break will occur again after return from handler and continue the execution.

7.6.2 Data Access Breakpoint Debug Exception

Data access breakpoint is similar to D-fault, it is also an MA stage exception source. However,
differ from D-fault, the trigger instruction in the MA stage should be executed, that is, only
instructions from IF to EX stage need be canceled. If IU grants a data access breakpoint,
following actions may be done.

For hardware (necessary):

Load common debug handler entry from exception vector table (base + H'8)
Save return address that point to the current EX stage instruction to DPC
Save SR to DSR

Set value 0 to SR.DE to avoid reenter problem in debug handler

Set value 1 to SR.DS and SR.SM

arowpdE

For software (recommend, not necessary):

1. Read DBG_CR.IHIT, DBG_CR.DHIT and DBG_CR.SBRK to check that which breakpoint is
granted

2. After enter the subroutine service for software breakpoint, clear DBG_CR.DHIT

3. When service finish, use RTE instruction to return to the normal execution stream

Evidently, if data access breakpoint handler does not change any of the data access break
conditions, after handler executing, the next adjacent instruction can be naturally executed.
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7.6.3 Software Breakpoint Debug Exception

If SR.DE == 0, SBRK causes an illegal instruction exception. Here we only consider the
SBRK is used as a software breakpoint at SR.DE == 1.

Software breakpoint is similar to trap, it is also an ID stage exception, hence instructions in the
later pipeline stages from EX to WB will be done normally. At any case, hardware can
guarantee that after the handler routine of SBRK, the returning location is next instruction.
When U responds a software breakpoint, the following actions shall be done

For hardware (necessary):

Load common debug handler entry from exception vector table (base + H'8)
Save returning location value to DPC

Save SR to DSR

Set value 0 to SR.DE to avoid reenter problem in debug handler

Set value 1 to SR.DS and SR.SM

S

For software (recommend, not necessary):

1. Read DBG_CR.IHIT, DBG_CR.DHIT and DBG_CR.SBRK to check that which breakpoint is
granted

2. After enter the subroutine service for software breakpoint, clear DBG_CR.SBRK

3. When service finish, use RTE instruction to return to the normal execution stream

Note that hardware can assure that the instruction following the instruction SBRK which causes
exception will be really executed after the responsive handler routine finish.

7.6.4 Asynchronous Break Debug Exception

Asynchronous break is similar to INT request, but its privilege level is less than INT request.
Once an asynchronous break is granted, hardware takes the same measure as fetch breakpoint,
and then the following actions maybe done:

For hardware (necessary):

Load common debug handler entry from exception vector table (base + H'8)
Save returning location value to DPC

Save SR to DSR

Set value 0 to SR.DE to avoid reenter problem in debug handler

Set value 1 to SR.DS and SR.SM

aropdE

For software (recommend, not necessary):

1. Read DBG_CR.BKEN to check that exact asynchronous break is granted
2. Cease asyn_brk_n*2

3. Check whether DBG_CR.BKEN has been inactive

4. When service finish, use RTE instruction to return

Notes:

1. "' denotes that since asynchronous break maybe arises concurrently with synchronous
fetch breakpoint, hence handler should investigate DBG_CR.IHIT. If both DBG_CR.IHIT
and DBGT_CR.BKEN are set, the asynchronous break should be responded first.

2. 2 denotes that only in the host debugging environment, assert a write access to JTAG
memory address H'EFFFFF20 to inform host that the asynchronous break is granted by
CPU.
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7.6.5 Asynchronous Boot Debug Exception

Asynchronous boot is similar to reset, but has highest priority. Once an asynchronous boot is
granted, all instructions in the pipeline are cancelled, and then the following actions maybe done:

For hardware (necessary):

Load asynchronous handler entry from H’EC000000
Save current PC register value to DPC

Save current SR register value to DSR

Set value 0 to SR.DE

Set value 1 to SR.DS and SR.SM

arLONE

For software (recommend, not necessary):
1. Invalidate D-cache, I-cache, D-TLB, I-TLB, GRF
2. etc.
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7.7 Example For Application

7.7.1 Single step execution

RCR R1, SR

ANDI R1, R1l, Ox7D
WCR SR, R1

ORI R3, RO, -1
CST R3, 3, 1
CLDR2, 3, O

ORI R2, R2, 0X0801
CST R2, 3, O

RCR R1, ESR

ORI R1, R1, 2

WCR ESR, R1

RTE

Tar get _secti on:

Fol | owi ng code sections run in supervisor node
Read SR

Clear SR DE to forbid break exception respondi ng
Cl ear done

R3 & OXFFFFFFFF

Mask DBG | AO fetch address compari son

Read DBG CR

Enabl e DBG _CR. | DEN, DBG _CR. | MEN, DBG _CR. AS| DM
Enabl e done

Read ESR

Set value 1 to ESR DE

EPC contains the entry of the expected code
segment and a fetch breakpoint can be triggered
after each instruction in the target code segnent
i s executed

XXXX I dbg_irq_n arise when this instruction flows to |IF stage
yyyy I dbg_irq_n arise when this instruction flows to |IF stage
2222 I dbg_irq_n arise when this instruction flows to |IF stage
Notes:

1. Inthe target code section, if the current ID stage instruction is a branch instruction (BCC or
JA, J), dbg_irg_n should be granted until the branch instruction flows to EX stage.

2. The fetch breakpoint handler must clear DBG_CRJIHIT], otherwise the executing would be
blocked at the first instruction of the target section, because the instruction triggers fetch
breakpoint after RTE each time.
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7.7.2 Combinatorial Break Condition Capture

_LOOP:

Sx16
BEQ
XXXX
yyyy
J R7
XYXy
_tar

ZyXy

Rl1, R2, R3

R4, R5, _target!

, <_LOOP>

get:

br eakpoi nt

if RL ==1, it triggers data access result break
if R4 == R5, branch to _target

conti nue | oop

fetch this instruction should trigger a fetch

Suppose that above code section is located in a larger loop entity, and programmer wants to
capture the case that both the data access result breakpoint and fetch breakpoint are triggered
simultaneously, how to do it? Following code give a solution. Please note that such
combinatorial break condition detection can not be automatically performed by hardware, which
need software (debug handler) assistance.

RCR
ANDI
WCR
LHI

R1, SR

R1, R1, OX7D
SR, Rl
R3, 0X018000

ORI R3, R3, 0X400
CST R3, 3, 1

CST RO, 3, 2

ORI R4, RO, 0X88
CST R4, 3, 6

CST RO, 3, 4

ORI R3, R3, 0XC00
CST R3, 3, 3

ORI R4, RO, 1
CST R4, 3, 5

ORI R2, RO, 0X3C4B
CST R2, 0, O

RCR R1, ESR

ORI R1, R1, 2
WCR ESR, R1

RTE

segnent

Fol | owi ng code sections run in supervisor node
Read SR

Clear SR DE to forbid break exception respondi ng
Cl ear done

0X0C000400 is the _target address

Set DBG | A0

Set DBG | A1, DBG | A0 need conpare

0X88 is the expected ASID

Set DBG ASI D

Set DBG DAl, DBG DAO need conpare
0X0CO00CO00 is the target data access address
Set DBG_DAO

0X1 is the target data access result

Set DBG _DDO

Enabl e DBG CR. | DEN, DBG CR. DDEN, DBG CR. ASI DM
DBG_CR. DMSKO

Only the wite half word access causing
result 0X1 can match

Read ESR

Set value 1 to ESR. DE

EPC contains the entry of the expected code

In the data access result breakpoint subroutine, if checking DBG_CR.IHIT[0] and
DBG_CR.DHIT[O] represents that both of them are set, which means the combinatorial
condition is match.
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7.7.3 Data transfer between target and host

In host-monitoring debug, the data of JTAG memory are scanned into or out of JTAG interface.
For different type, address[1:0], endian and access, data should be shifted into DATA registers
or out from DATA register correctly. The following table lists the shift count in different
conditions.

Type Address[1:0] big-endian little-endian
read write read write
0 8 32 32 8
1 16 24 24 16
byte 2 24 16 16 24
3 32 8 8 32
0 16 32 32 16
half word 2 32 16 16 32
word 0 32 32 32 32
Notes:

1. Read/write is viewed from target, that is to say, read is a LOAD instruction executed at
target and write is a STORE instruction executed at target.

2. Here only lists the shift count of data. Another one shift is also needed to shift a “1™ into
DATA[32] to tell TAP that data access has been finished and bus is not frozen.
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7.7.4 How To Access JTAG Memory Space

When the FSM is in Test-Logic-Reset because TRST_ is active or high level of TMS retains at
least 5 TCK cycles, adopt the following algorithm to monitor load/store JTAG memory access
issued by CPU. The example does not include burst access case.

Insert CONTROL Insert ADDR insn to Insert ADDR insn to
instruction scan out addr scan out addr
|
Generate CTRL part Insert DATA insn
of BIU_BSR poalling et DATA nSn o to scan out data and
L then inject unfreezing
inject the expected signal to CPU
datafrom JTAG
memory[addr] and |
the unfreezing Save scanned out
signal to CPU datato JTAG
memory[addr]
Resume

Resume

Figure 7-7 Debug and Extended JTAG

The following are correlative timing diagrams. Although the processor supports two
endians, the following figures only considers big-endian.
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3. Use ADDR instruction to scan out ADDR part of BIU_BSR (for write JTAG memory access)
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4. Use DATA instruction to scan out write data and inject unfreezing CPU signal (for write JTAG

memory access)

Note: In the case, it's a write byte access, and the value of addr[1:0] is 3, the write result is H'a8.
For half word of word access, the circulating times of Shift. DR need make corresponding

extension. And the alignment for big endianess must be cautious, for example, if CPU wants to

write a byte value to H'EC000080, it needs 33 times of shifting, and the TDI must be 33'B1x. (x

means don't care bits, which has 32 bits long and can be 0 or 1).
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(for read JTAG memory access)

[ [ [
] ] ]
| | |
.................................. )
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5. Use ADDR instruction to scan out ADDR of BIU_BSR
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6. Use DATA instruction to inject expected data and unfreezing CPU signal (for read JTAG memory

Debug and JTAG

Note: In the case, it's a read byte access, and the value of addr[1:0] is O, the read result is H'57.
ARCA Technology Corporation

For half word or word access, the circulating times of Shift. DR need make corresponding
extension. And the alignment for big endianess must be cautious, for example, if CPU wants to

read a byte value H'73 from H'EC000083, the final shift data must be 33'B1x01110011. (x

means don't care bits, which has 24 bits long and can be any value).
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7.7.5 How To Implement Burst Access from JTAG memory (burst read 8 words / burst
write 4 words)

Use following algorithm, and the timing is similar (need some alteration) to above case.

Insert CONTROL Insert ADDR insn to Insert ADDR insn to
instruction scan out addr scan out addr
| | |
Generate CTRL part Check ADDR part of Check ADDR part of
of BIU_BSR palling | BIU BSR, it'sa BIU BSR,it'sa
burst read (8-word) burst write (4-word)
| |
Insert DATA insn to Insert DATA insn to
inject the datafrom scan out data, then

JTAG ory[addr]
and unhfreezing signal
toC

\ | ]
= Save datatp JTAG
Y (read)| f >addrA 4, it'sa mifxo [ j/édr],thm
N(write) yiféparound operation | | | Aff = i+ 4 itsa
,_/ // G\I/aparound operation
/" perform8 N Resume-—— L_ | Resume
( perrorm ) /o pefam4 N
> \tlmes/ Z \__ times

—_——

Figure 7-8 Debug and Extended JTAG

Note that burst access from JTAG memory uses wrap-round mode.

1. If burst access is write, which means writing 4 words. For example, if the burst access
address is OXEC000004, then the addresses of written data should be OXEC000004,
0xEC000008, 0OxEC00000C, 0XxEC000000.

2. If burst access is read, which means reading 8 words. The addresses of read data are
splitted into two groups: low group and high group. Wrap-round access only occurs in the
group that has the start address and sequence access occurs in the group that has not the
start address. For example, if the burst access address is OXEC000004, then the addresses
of read data should be 0OXEC000004, 0xEC000008, 0xEC00000C, 0xEC000000,
0xEC000010, 0XEC000014, 0OXEC000018, OXECO0001C. if the burst access address is
0xXEC000014, then the addresses of read data should be OXEC000014, OXEC000018,
0xEC00001C, 0XEC000010, OXEC000000, 0XEC000004, 0OXEC000008, OXEC0O0000C.

7.7.6 How To Boot System From JTAG Memory

The case illustrates how to boot system from JTAG memory after power-on reset. It is very
useful for developing system without on-board memory system at all. The steps are listed below:

1. Set TAP_SEL to 1 to select the internal TAP.
2. Press power key to reset processor and the internal TAP works.
3. Use TMS or TRST_ to reset the internal.
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4. Inject ASYN_BOOT instruction from JTAG interface into the instruction register of the

internal TAP
5. The boot handler entry located at H'EC00000O is load by CPU, hence system can boot from

JTAG memory space successfully.
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8.1

8 Performance Monitor

Overview

CPU performance is the guidance in evaluation of ISA, micro-architecture, cache and MMU. In
addition, it can supply information for compiler writers, system developers and software
programmers.

Arca2 provides two 32-bit performance counters that allow two unique events to be monitored.
In addition, a 32-bit clock counter can be used with the performance counters. When any one of
the three counters reaches its maximum value OxFFFFFFFF, an overflow interrupt will occur. At
the same time, the corresponding counter will wrap to zero and continue counting.
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8.2

Register Configuration

PMON registers are listed in Table 8-1 and they can be accessed by CLD/CST instructions.

Table 8-1 PMON Registers

Name Full Name riw | Initialvalue o oossize | #D | #CR
when power on

pumc | Performance . RIW | H'00003FFC* 32 001 | 000
Monitor Control Register

CTR Clock Cycle Time R/W | H00000000 32 001 | 001
Register

MORg | Monitor Object Counter | o\, 14 160000000 32 001 | 010
Register 0

MoR1 | Monitor Object Counter | oy | 160000000 32 001 |o11
Registerl

Note that the value of PMC is reset to H'00003FFC, but it will be H'00003FF0 next cycle after
reset. So its value should be considered to be H'00003FFO after reset.

8.2.1 Performance Monitor Control Register (PMC)

Bit:
Read:
Write:

Reset:

Bit:
Read:
Write:

Reset:

Bit:
Read:
Write:

Reset:

Bit:
Read:
Write:

Reset:

#ID=001 # CR =000

31 30 29 28 27 26 25 24
0 0 0 0 0 0 0 0
23 22 21 20 19 18 17 16
SM flag
0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8
MORO_
flag MOR1_SLT SLT
0 0 1 1 1 1 1 1
7 6 5 4 3 1 0
MORO_SLT P C M E
1 1 1 1 1* 1* 0 0

Bit 31 ~ Bit 18: Reserved bits, ignored in write operation, always 0 in read operation.

= O

o

E: Clock Counter Enable
: clock counter is disabled.
: clock counter is enabled.

M: Monitor Counter Enable
. all monitor counters are disabled.
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8.2.2

1: all monitor counters are enabled.

— C: Clock counter reset

0: no action.

1: reset clock counters to 0x0. This bit will be auto-reset to 0 at next clock.

This bit will reset to ‘1’ when system reset so that CTR will auto reset to zero at the same time.
This bit also clears overflow flag (bit 16).

— P: Performance Counter Reset

0: no action.

1: reset all monitor object counters to 0x0. This bit will be auto-reset to 0 at next clock.

This bit will reset to ‘1’ when system reset so that MORO and MORL1 will auto reset to zero at the
same time.

This bit also clears overflow flag (bit 15 ~ 14).

— MORO_SLT (Bit 8-Bit 4): identify the source of events for first monitor counter.
This is MORO selector and its value is listed in Table 8-3. It is unpredictable when system reset.

— MORL1_SLT (Bit 13-Bit 9): identify the source of events for second monitor counter.
This is MORL1 selector and its value is listed in Table 8-3. It is unpredictable when system reset.

— flag (Bit 16-Bit 14): overflow flag

Bit 16: clock counter overflow flag

Bit 15: object counterl overflow flag

Bit 14: object counter0 overflow flag.

Read value: 0: no overflow. 1: overflow has occurred.
Write value: 0O: clear this bit. 1: no change.

- SM (Bit 17): This bit is used to select the monitored event.

0: select all events in supervisor or user mode.
1: only select events which occur in supervisor mode.

Clock Cycle Time Register (CTR)

32-bit counter used to record clock cycles.

#ID=001 #CR=001

Bit: 3L 4 3 2 1 0
Read: . .
Write: Clock Cycle Time Register
Reset: 0 0 0 0 0 0 0

8.2.3 Monitor Object Counter Register 0 (MORO)

32-hit counter used to record the number of expected event such as TLB miss, Cache miss, jump and etc.

#ID=001 #CR=010

Bit: 3L 4 3 2 1 0
Rei”‘d: Monitor Object Counter Register 0
Write:
Reset: 0 0 0 0 0 0 0
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8.2.4 Monitor Object Counter Register 1 (MOR1)

32-bit counter used to record the number of expected event such as TLB miss, Cache miss, jump and etc.

#ID=001 #CR=011

Bit: 3L 4 3 2 1 0
Regd: Monitor Object Counter Register 1
Write:
Reset: 0 0 0 0 0 0 0
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8.3 Monitoring Event

The 5-bit MORO_SLT and MOR1_SLT in PMC contain 32 events space respectively. It is
divided to 4 parts as Table 8-2 lists.

Table 8-2 PMON Monitored Modules

MOR_SLT Highest 2-bits Monitored Modules
00 U
01 MMU and I-Cache
10 D-Cache
11 Reserved

Table 8-3 lists events that can be monitored by the MORO/MOR1. Monitor Object Count
Registers (MOR) can count any listed event. Software can select which event will be counted by
setting the MORO_SLT and MOR1_SLT fields of the PMC register.

Table 8-3 PMON Monitored Events

MOR SLT Event Name Event Description
high | low
000 | insn Instruction that is executed. It also count those are canceled by
exception.
. Instruction that canceled by exception. It is not accurate if the
001 | insn_cancel . : . L
. instruction occupied more than one CPU pipeline stages
2 010 | stall CPU pipeline stall, including canceled one
= 011 [ sv insn Instruction that is executed in supervisor mode
100 | bcc_insn BCC instruction, including canceled one
101 | bec_taken BCC instruction that branch is taken, including canceled one
110 | jump insn J, JA, RTE instruction, including canceled one
111 | Reserved
000 | itlb_miss ITLB miss count
m 001 | dtlb _miss DTLB miss count. It also includes initial write exception.
<
S 010 | Reserved
Q 011 | Reserved
-) 100 . Icache miss count, including cacheable fetch miss and
s Icc_miss .
= uncacheable fetch miss.
= 101 | lcc_unc fth Icache fetch uncacheable area, which always induces icc miss.
o 110 | Reserved
111 | Reserved
D-cache accepts load/store/swap command count, including
000 | Dcc_ldst i
fault command and the load when IU accept exception.
001 | Dcc_miss D-cache does fill from external memory count.
E D-cache does single (read/write/read-then-write) access to
3 010 | Dcc_unc external memory. It does not include fault access and
Q bufferable write and missed write in write-through mode.
2 Jo1l Dcc_wbb D-cache write back words count.
S [100 | Reserved
101 | Reserved
110 | Reserved
111 | Reserved
L $ 2 4000
' ¢ | 001
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MOR_SLT
high | low
010
011
100
101
110
111

Event Name Event Description

By setting object event number in PMC and capturing different event counter, different
performance can be monitored. Table 8-4 shows some typical combinations of monitored events.

Table 8-4 Typical Monitored Events

Iltems MORO SLT MOR1 SLT

CPI 0x0 (instruction count) 0x1 (instruction canceled)
Jump rate 0x5 (conditional jump that taken) 0x6 (unconditional jump)
BCC taken rate 0x5 (branch taken) 0x4 (branch instruction)
Stall rate 0x2 (stall) 0x0 (instruction count)
ITLB miss rate 0x8 (itlb miss) 0x0 (instruction count)
DTLB miss rate 0x9 (dtlb miss) 0x10 (load/store count)
I-Cache miss rate 0xC (I-cache miss) 0x0 (instruction count)
D-Cache miss rate 0x11 (D-cache miss) 0x10 (load/store count)
Data access rate 0x10 (dcc instruction) 0x0 (instruction count)

- CPI: cycles per instruction.
CPI = CTR / MORO

- Jump rate: the rate of jumping target in total fetched instructions.
jump_rate = (MORO + MOR1) / (instruction count)

- BCC taken rate: the taken (jumping target) rate of BCC.
bcc_taken_rate = MORO / MORL1

- Stall rate: how many stall happen when one instruction is executed
stall_rate = MORO / MOR1

- ITLB miss rate: the rate of ITLB miss in total fetched instructions.
itlb_miss_rate = MORO / MOR1

- DTLB miss rate: the rate of DTLB miss in total load/store instructions.
dtlb_miss_rate = MORO / MOR1

- |-Cache miss rate: the rate of [-Cache miss in total fetched instructions.
icache_miss_rate = MORO / MOR1

- D-Cache miss rate: the rate of D-Cache miss in total load/store instructions.
dcache_miss_rate = MORO / MORL1

- Data access rate: the rate of D-Cache access in total fetched instructions.
data_access_rate = MORO / MOR1
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8.4 Monitoring flow

PMON monitors the object events when program is running. Two 32-bit MOR and one 32-bit CTR
accumulate events independently before wrapping around. An overflow interrupt will occur when
the counters wrap. Extended event logging may be accomplished by periodically reading the
contents of the MORO/MOR1/CTR before each overflow.

The steps using PMON can be concluded as follows.

1

2.

3.

&

Reset all PMON counters by setting P and C, clearing MOR_SLT and overflow flag bits in
PMC.

Set MOR_SLTO0 and MOR_SLT1 with object event number listed in Table 8-3 and SM bit (If
only want to monitor events in supervisor mode, then setitto 1) .

Turn on clock counter and monitor counters by setting E bit and M bits in PMC.

If overflow interrupt occurs, record overflow in the corresponding variables.

Check the result of CTR, MORO, MOR1 and overflow variables after program is over.
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