

Intel[®] PXA250 and PXA210 Application Processors

Developer's Manual

February 2002

Order Number: 278522-001

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The PXA250 and PXA210 application processors may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled platforms may require licenses from various entities, including Intel Corporation.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2002

AlertVIEW, i960, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, Commerce Cart, CT Connect, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, GatherRound, i386, i486, iCat, iCOMP, Insight960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel ChatPad, Intel Create&Share, Intel Dot.Station, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Play, Intel Play logo, Intel Pocket Concert, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel WebOutfilter, Intel Xeon, Intel XScale, Itanium, JobAnalyst, LANDesk, LanRover, MCS, MMX, MMX logo, NetPort, NetportExpress, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, ProShare, RemoteExpress, Screamline, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside, The Journey Inside, This Way In, TokenExpress, Trillium, Vivonic, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

1	Introd	duction	1-1
	1.1 1.2	Intel® XScale™ Core Features System Integration Features 1.2.1 Memory Controller 1.2.2 Clocks and Power Controllers	1-21-31-31-31-41-41-41-41-51-5
2	Syste	1.2.17 Interrupt Controlem Architecture	
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15	Overview Package Types Intel® XScale™ Microarchitecture Implementation Options 2.3.1 Coprocessor 7 Register 4 - PSFS Bit 2.3.2 Coprocessor 14 Registers 0-3 - Performance Monitoring 2.3.3 Coprocessor 14 Register 6 and 7- Clock and Power Management 2.3.4 Coprocessor 15 Register 0 - ID Register Definition 2.3.5 Coprocessor 15 Register 1 - P-Bit I/O Ordering Semaphores Interrupts Reset Internal Registers Selecting Peripherals vs. General Purpose I/O Power on Reset and Boot Operation Power Management Pin List Processor Options Memory Map Register Address Summary	2-2 2-3 2-3 2-3 2-4 2-6 2-6 2-7 2-7 2-8 2-9 2-10 2-26
3		ss and Power Manager	
	3.1 3.2	Clock Manager Introduction	

,	3.3	Clock	vianager	3-2
		3.3.1	32.768 kHz Oscillator	3-4
		3.3.2	3.6864 MHz Oscillator	3-4
		3.3.3	Core Phase Locked Loop	3-4
		3.3.4	95.85 MHz Peripheral Phase Locked Loop	3-5
		3.3.5	147.46 MHz Peripheral Phase Locked Loop	
		3.3.6	Clock Gating	
:	3.4	Resets	and Power Modes	
		3.4.1	Hardware Reset	
		3.4.2	Watchdog Reset	
		3.4.3	GPIO Reset	
		3.4.4	Run Mode	
		3.4.5	Turbo Mode	
		3.4.6	Idle Mode	
		3.4.7	Frequency Change Sequence	
		3.4.8	Sleep Mode	
		3.4.9	Power Mode Summary	
:	3.5		Manager Registers	
•	0.0	3.5.1	Power Manager Control Register	
		3.5.2	Power Manager General Configuration Register	
		3.5.3	Power Manager Wake-Up Enable Register	
		3.5.4	Power Manager Rising-Edge Detect Enable Register	
		3.5.5	Power Manager Falling-Edge Detect Enable Register	
		3.5.6	Power Manager GPIO Edge Detect Status Register	
		3.5.7	Power Manager Sleep Status Register	
		3.5.8	Power Manager Scratch Pad Register	
		3.5.9	Power Manager GPIO Sleep State Registers	
		3.5.10		
		3.5.11	Power Manager Register Locations	
,	3.6		Manager Registers	
•	5.0	3.6.1	Core Clock Configuration Register	
		3.6.2	Clock Enable Register	
		3.6.3	Oscillator Configuration Register	
		3.6.4	Clocks Manager Register Locations	
	3.7		cessor 14: Clock and Power Management	
•	5.1	3.7.1	CCLKCFG Register (CP14 Register 6)	
		3.7.1	PWRMODE Register (CP14 Register 7)	
	3.8		al Hardware Considerations	
•	3.0	3.8.1	Power Supply Sequencing	
		3.8.2	Power-On-Reset Considerations	
		3.8.3	Power Supply Connectivity	
		3.8.4	Driving the Crystal Pins from an External Clock Source	
		3.8.5	Noise Coupling Between Driven Crystal Pins and a Crystal Oscillator	
		3.6.5	Noise Coupling Between Driven Crystal Pins and a Crystal Oscillator	3-38
;	Syste	m Integi	ration Unit	4-1
4	4.1	Genera	al-Purpose I/O	4-1
		4.1.1	GPIO Operation	4-1
		4.1.2	GPIO Alternate Functions	4-2
		4.1.3	GPIO Register Definitions	
		4.1.4	GPIO Register Locations	

4

	4.2	interru	ipt Controller	4-22
		4.2.1	Interrupt Controller Operation	4-22
		4.2.2	Interrupt Controller Register Definitions	4-23
		4.2.3	Interrupt Controller Register Locations	4-30
	4.3	Real-T	Fime Clock	4-30
		4.3.1	Real-Time Clock Operation	4-30
		4.3.2	RTC Register Definitions	
		4.3.3	Trim Procedure	
		4.3.4	Real-Time Clock Register Locations	
	4.4	Opera	ting System (OS) Timer	
		4.4.1	Watchdog Timer Operation	
		4.4.2	OS Timer Register Definitions	
		4.4.3	OS Timer Register Locations	4-41
	4.5	Pulse	Width Modulator	
		4.5.1	Pulse Width Modulator Operation	4-42
		4.5.2	Register Descriptions	
		4.5.3	Pulse Width Modulator Output Wave Example	
		4.5.4	Register Summary	
5		Control	ler	E 1
5				
	5.1		Description	
		5.1.1	DMAC Channels	
		5.1.2	Signal Descriptions	
		5.1.3	DMA Channel Priority Scheme	
		5.1.4	DMA Descriptors	
		5.1.5	Channel States	
		5.1.6	Read and Write Order	
		5.1.7	Byte Transfer Order	
	5 0	5.1.8	Trailing Bytes	
	5.2		ferring Data	
		5.2.1 5.2.2	Servicing Internal Peripherals	
			Quick Reference for DMA Programming	
		5.2.3	Servicing Companion Chips and External Peripherals	
	- 0	5.2.4	Memory-to-Memory Moves	
	5.3		C Registers	
		5.3.1	DMA Channel Control (Status Basistar	
		5.3.2 5.3.3	DMA Channel Control/Status Register	
			DMA Request to Channel Map Registers DMA Descriptor Address Registers	
		5.3.4	DMA Source Address Registers	
		5.3.5 5.3.6	· · · · · · · · · · · · · · · · · · ·	
		5.3.7	DMA Target Address Registers DMA Command Registers	
	5.4		ples	
	5.5		C Registers	
			-	
6	Mem	•	troller	
	6.1		iew	
	6.2	Functi	onal Description	
		6.2.1	SDRAM Interface Overview	
		6.2.2	Static Memory Interface / Variable Latency I/O Interface	6-3

	6.2.3 16-Bit PC Card / Compact Flash Interrace	6-4
6.3	Memory System Examples	6-4
6.4	Memory Accesses	6-7
	6.4.1 Reads and Writes	6-8
	6.4.2 Aborts and Nonexistent Memory	6-8
6.5	Memory Configuration Registers	
6.6	Synchronous DRAM Memory Interface	
	6.6.1 SDRAM MDCNFG Register	6-9
	6.6.2 SDRAM Mode Register Set Configuration Register	
	6.6.3 SDRAM MDREFR Register	
	6.6.4 Fixed-Delay or Return-Clock Data Latching	
	6.6.5 SDRAM Memory Options	
	6.6.6 SDRAM Command Overview	
	6.6.7 SDRAM Waveforms	
6.7	Synchronous Static Memory Interface	
0.7	6.7.1 Synchronous Static Memory Configuration Register	
	6.7.2 Synchronous Static Memory Mode Register Set Configuration Register	
	6.7.3 Synchronous Static Memory Timing Diagrams	
	6.7.4 Non-SDRAM Timing SXMEM Operation	
6.8	Asynchronous Static Memory	
0.0	6.8.1 Static Memory Interface	
	6.8.2 Asynchronous Static Memory Control Registers (MSC2-0)	
	6.8.3 ROM Interface	
	6.8.4 SRAM Interface Overview	
	6.8.5 Variable Latency I/O (VLIO) Interface Overview	
C 0	6.8.6 FLASH Memory Interface	
6.9	16-Bit PC Card/Compact Flash Interface	
	6.9.1 Expansion Memory Timing Configuration Register	
	6.9.2 Expansion Memory Configuration Register (MECR)	
	6.9.3 16-Bit PC Card Overview	
	6.9.4 External Logic for 16-Bit PC Card Implementation	
	6.9.5 Expansion Card Interface Timing Diagrams and Parameters	
6.10	Companion Chip Interface	
	6.10.1 Alternate Bus Master Mode	
6.11	Options and Settings for Boot Memory	
	6.11.1 Alternate Booting	
	6.11.2 Boot Time Defaults	
	6.11.3 Memory Interface Reset and Initialization	
6.12	Hardware, Watchdog, or Sleep Reset Operation	
6.13	GPIO Reset Procedure	6-77
LCD	Controller	7-1
7.1	Overview	7_1
7.1	7.1.1 Features	
7.0	·	
7.2	LCD Controller Operation	
	7.2.1 Enabling the Controller	
	7.2.2 Disabling the Controller	
	7.2.3 Resetting the Controller	
7.3	Detailed Module Descriptions	7-5

7

		7.3.1	Input FIFOs		
		7.3.2	Lookup Palette	7-6	
		7.3.3	Temporal Modulated Energy Distribution (TMED) Dithering	7-6	
		7.3.4	Output FIFOs	7-8	
		7.3.5	LCD Controller Pin Usage	7-8	
		7.3.6	DMA	7-9	
	7.4	LCD E	xternal Palette and Frame Buffers	7-10	
		7.4.1	External Palette Buffer		
		7.4.2	External Frame Buffer		
	7.5	Function	onal Timing		
	7.6		er Descriptions		
		7.6.1	LCD Controller Control Register 0 (LCCR0)		
		7.6.2	LCD Controller Control Register 1 (LCCR1)		
		7.6.3	LCD Controller Control Register 2 (LCCR2)		
		7.6.4	LCD Controller Control Register 3 (LCCR3)		
		7.6.5	LCD Controller DMA		
		7.6.6	LCD DMA Frame Branch Registers (FBRx)		
		7.6.7	LCD Controller Status Register (LCSR)		
		7.6.8	LCD Controller Interrupt ID Register (LIIDR)		
		7.6.9	TMED RGB Seed Register		
		7.6.10	· · · · · · · · · · · · · · · · · · ·		
			LCD Controller Register Summary		
0	Cyma		Ç		
8	Synchronous Serial Port Controller				
	8.1		ew		
	8.2	•	Description		
		8.2.1	External Interface to Synchronous Serial Peripherals		
	8.3		onal Description		
		8.3.1	Data Transfer		
	8.4		Formats		
		8.4.1	Serial Data Formats for Transfer to/from Peripherals		
		8.4.2	Parallel Data Formats for FIFO Storage		
	8.5		Operation and Data Transfers		
		8.5.1	Using Programmed I/O Data Transfers		
		8.5.2	Using DMA Data Transfers		
	8.6		Rate Generation		
	8.7		erial Port Registers		
		8.7.1	SSP Control Register 0 (SSCR0)		
		8.7.2	SSP Control Register 1 (SSCR1)		
		8.7.3	SSP Data Register (SSDR)		
		8.7.4	SSP Status Register (SSSR)		
		8.7.5	SSP Register Address Map	8-18	
9	I ² C E	Bus Interf	face Unit	9-1	
	9.1	Overvi	ew	9-1	
	9.2	Signal	Description	9-1	
	9.3		onal Description		
		9.3.1	Operational Blocks		
		9.3.2	I2C Bus Interface Modes		
		9.3.3	Start and Stop Bus States		

	9.4	I2C Bus Operation	9-7
		9.4.1 Serial Clock Line (SCL) Generation	
		9.4.2 Data and Addressing Management	
		9.4.3 I2C Acknowledge	
		9.4.4 Arbitration	9-9
		9.4.5 Master Operations	9-12
		9.4.6 Slave Operations	9-15
		9.4.7 General Call Address	9-16
	9.5	Slave Mode Programming Examples	9-18
		9.5.1 Initialize Unit	9-18
		9.5.2 Write n Bytes as a Slave	9-18
		9.5.3 Read n Bytes as a Slave	
	9.6	Master Programming Examples	
		9.6.1 Initialize Unit	9-19
		9.6.2 Write 1 Byte as a Master	
		9.6.3 Read 1 Byte as a Master	
		9.6.4 Write 2 Bytes and Repeated Start Read 1 Byte as a Master	
		9.6.5 Read 2 Bytes as a Master - Send STOP Using the Abort	
	9.7	Glitch Suppression Logic	
	9.8	Reset Conditions	
	9.9	Register Definitions	
		9.9.1 I2C Bus Monitor Register- IBMR	
		9.9.2 I2C Data Buffer Register- IDBR	
		9.9.3 I2C Control Register- ICR	
		9.9.4 I2C Status Register	
		9.9.5 I2C Slave Address Register- ISAR	9-28
10	UAR	Гs	10-1
	10.1	Feature List	10-1
	10.2	Overview	10-2
		10.2.1 Full Function UART	
		10.2.2 Bluetooth UART	
		10.2.3 Standard UART	10-2
		10.2.4 Compatibility with 16550	10-2
	10.3	Signal Descriptions	
	10.4	UART Operational Description	
		10.4.1 Reset	
		10.4.2 Internal Register Descriptions	10-5
		10.4.3 FIFO Interrupt Mode Operation	10-21
		10.4.4 FIFO Polled Mode Operation	10-22
		10.4.5 DMA Requests	
		10.4.6 Slow Infrared Asynchronous Interface	10-23
	10.5	Register Summary	
		10.5.1 UART Register Differences	10-28
11	Fast	Infrared Communication Port	11-1
	11.1	Signal Description	11-1
	11.2	FICP Operation	
		11.2.1 4PPM Modulation	
		11.2.2 Frame Format	

		11.2.3 Address Field	
		11.2.4 Control Field	
		11.2.5 Data Field	
		11.2.6 CRC Field	
		11.2.7 Baud Rate Generation	
		11.2.8 Receive Operation	11-5
		11.2.9 Transmit Operation	11-6
		11.2.10 Transmit and Receive FIFOs	
		11.2.11 Trailing or Error Bytes in the Receive FIFO	11-7
	11.3	FICP Register Definitions	11-8
		11.3.1 FICP Control Register 0	11-8
		11.3.2 FICP Control Register 1	11-11
		11.3.3 FICP Control Register 2	11-12
		11.3.4 FICP Data Register	11-13
		11.3.5 FICP Status Register 0	11-14
		11.3.6 FICP Status Register 1	11-16
	11.4	FICP Register Locations	11-17
10	LICD	Device Controller	10.1
12	USB		
	12.1	USB Overview	
	12.2	Device Configuration	
	12.3	USB Protocol	
		12.3.1 Signalling Levels	
		12.3.2 Bit Encoding	
		12.3.3 Field Formats	
		12.3.4 Packet Formats	
		12.3.5 Transaction Formats	12-6
		12.3.6 UDC Device Requests	
		12.3.7 Configuration	
	12.4	UDC Hardware Connection	12-10
		12.4.1 Self-Powered Device	
		12.4.2 Bus-Powered Devices	12-11
	12.5	UDC Operation	12-11
		12.5.1 Case 1: EP0 Control Read	12-12
		12.5.2 Case 2: EP0 Control Read with a Premature Status Stage	12-12
		12.5.3 Case 3: EP0 Control Write With or Without a Premature Status Stage	12-13
		12.5.4 Case 4: EP0 No Data Command	12-14
		12.5.5 Case 5: EP1 Data Transmit (BULK-IN)	12-15
		12.5.6 Case 6: EP2 Data Receive (BULK-OUT)	12-16
		12.5.7 Case 7: EP3 Data Transmit (ISOCHRONOUS-IN)	12-17
		12.5.8 Case 8: EP4 Data Receive (ISOCHRONOUS-OUT)	12-18
		12.5.9 Case 9: EP5 Data Transmit (INTERRUPT-IN)	
		12.5.10 Case 10: RESET Interrupt	
		12.5.11 Case 11: SUSPEND Interrupt	12-20
		12.5.12 Case 12: RESUME Interrupt	
	12.6	UDC Register Definitions	
		12.6.1 UDC Control Register	
		12.6.2 UDC Endpoint 0 Control/Status Register (UDCCS0)	
		12.6.3 UDC Endpoint x Control/Status Register (UDCCSx), Where x is 1, 6, or 11.	
		12.6.4 UDC Endpoint x Control/Status Register (UDCCSx), Where x is 2, 7, or 12.	

		12.6.5 UDC Endpoint x Control/Status Register (UDCCSx), Where x is 3, 8, or 13	.12-30
		12.6.6 UDC Endpoint x Control/Status Register (UDCCSx), Where x is 4, 9, or 14	.12-32
		12.6.7 UDC Endpoint x Control/Status Register (UDCCSx), Where x is 5, 10, or 15.	
		12.6.8 UDC Interrupt Control Register 0 (UICR0)	
		12.6.9 UDC Interrupt Control Register 1 (UICR1)	
		12.6.10 UDC Status/Interrupt Register 0 (USIR0)	
		12.6.11 UDC Status/Interrupt Register 1 (USIR1)	
		12.6.12 UDC Frame Number High Register (UFNHR)	
		12.6.13 UDC Frame Number Low Register (UFNLR)	
		12.6.14 UDC Byte Count Register x (UBCRx), Where x is 2, 4, 7, 9, 12, or 14	
		12.6.15 UDC Endpoint 0 Data Register (UDDR0)	
		12.6.16 UDC Data Register x (UDDRx), Where x is 1, 6, or 11	
		12.6.17 UDC Data Register x (UDDRx), Where x is 2, 7, or 12	
		12.6.18 UDC Data Register x (UDDRx), Where x is 3, 8, or 13	
		12.6.19 UDC Data Register x (UDDRx), Where x is 4, 9, or 14	
		12.6.20 UDC Data Register x (UDDRx), Where x is 5, 10, or 15	
		12.6.21 UDC Register Locations	
	4.00=	-	
13	AC97	Controller Unit	
	13.1	Overview	13-1
	13.2	Feature List	13-1
	13.3	Signal Description	13-2
		13.3.1 Signal Configuration Steps	
		13.3.2 Example AC-link	13-2
	13.4	AC-link Digital Serial Interface Protocol	
		13.4.1 AC-link Audio Output Frame (SDATA_OUT)	
		13.4.2 AC-link Audio Input Frame (SDATA_IN)	13-8
	13.5	AC-link Low Power Mode	
		13.5.1 Powering Down the AC-link	
		13.5.2 Waking up the AC-link	
	13.6	ACUNIT Operation	
		13.6.1 Initialization	
		13.6.2 Trailing bytes	
		13.6.3 Operational Flow for Accessing Codec Registers	
	13.7	Clocks and Sampling Frequencies	
	13.8	Functional Description	
		13.8.1 FIFOs	
		13.8.2 Interrupts	
		13.8.3 Registers	.13-18
14	Inter	ntegrated-circuit Sound (I2S) Controller	14-1
	14.1	Overview	14-1
	14.2	Signal Descriptions	
	14.3	Controller Operation	
	-	14.3.1 Initialization	
		14.3.2 Disabling and Enabling Audio Replay	
		14.3.3 Disabling and Enabling Audio Record	
		14.3.4 Transmit FIFO Errors	
		14.3.5 Receive FIFO Errors	
		14.3.6 Trailing Bytes	14-5

	14.4	Serial Audio Clocks and Sampling Frequencies	
	14.5	Data Formats	
		14.5.1 FIFO and Memory Format	
		14.5.2 I2S and MSB-Justified Serial Audio Formats	
	14.6	Registers	
		14.6.1 Serial Audio Controller Global Control Register (SACR0)	14-8
		14.6.2 Serial Audio Controller I2S/MSB-Justified Control Register (SACR1)	14-11
		14.6.3 Serial Audio Controller I2S/MSB-Justified Status Register (SASR0)	14-12
		14.6.4 Serial Audio Clock Divider Register (SADIV)	14-13
		14.6.5 Serial Audio Interrupt Clear Register (SAICR)	14-14
		14.6.6 Serial Audio Interrupt Mask Register (SAIMR)	14-15
		14.6.7 Serial Audio Data Register (SADR)	
		14.6.8 Controller: Register Memory Map	
	14.7	· · · · · · · · · · · · · · · · · · ·	
4-	N.A. 1411	·	
15	Multil	MediaCard Controller	15-1
	15.1	Overview	15-1
	15.2	MMC Controller Functional Description	15-4
		15.2.1 Signal Description	15-5
		15.2.2 MMC Controller Reset	15-5
		15.2.3 Card Initialization Sequence	15-5
		15.2.4 MMC and SPI Modes	
		15.2.5 Error Detection	
		15.2.6 Interrupts	
		15.2.7 Clock Control	
		15.2.8 Data FIFOs	
	15.3	Card Communication Protocol	
		15.3.1 Basic, No Data, Command and Response Sequence	
		15.3.2 Data Transfer	
		15.3.3 Busy Sequence	
		15.3.4 SPI Functionality	
	15.4	MultiMediaCard Controller Operation	
		15.4.1 Start and Stop Clock	
		15.4.2 Initialize	
		15.4.3 Enabling SPI Mode	
		15.4.4 No Data Command and Response Sequence	
		15.4.5 Erase	
		15.4.6 Single Data Block Write	
		15.4.7 Single Block Read	
		15.4.8 Multiple Block Write	
		15.4.9 Multiple Block Read	
		15.4.10 Stream Write	
	45.5	15.4.11 Stream Read	
	15.5	MMC Controller Registers	
		15.5.1 MMC_STRPCL Register	
		15.5.2 MMC_STAT Register	
		15.5.3 MMC_CLKRT Register	
		15.5.4 MMC_SPI Register	
		15.5.5 MMC_CMDAT Register	
		15.5.6 MMC_RESTO Register	15-29

	15.5.7 MMC_RDTO Register	15-29
	15.5.8 MMC_BLKLEN Register	
	15.5.9 MMC_NOB Register	
	15.5.10 MMC_PRTBUF Register	
	15.5.11 MMC_I_MASK Register	
	15.5.12 MMC_I_REG Register	
	15.5.13 MMC_CMD Register	
	15.5.14 MMC_ARGH Register	
	15.5.15 MMC_ARGL Register	
	15.5.16 MMC_RES FIFO (read only)	
	15.5.17 MMC_RXFIFO FIFO (read only)	
	15.5.18 MMC_TXFIFO FIFO	
	ures	0.0
2-1 2-2	Block Diagram	
2-2 2-3	Memory Map (Part One) — From 0x8000 0000 to 0xFFFF FFFF	
	Memory Map (Part Two) — From 0x0000 0000 to 0x7FFF FFFF	
3-1 4-1	Clocks Manager Block Diagram	
+- ı 1-2	General-Purpose I/O Block Diagram	
+-2 1-3	PWMn Block Diagram	
+-3 1-4	Basic Pulse Width Waveform	
+- 4 5-1	DMAC Block Diagram	
5-1 5-2	DREQ timing requirements	
5-3	No-Descriptor Fetch Mode Channel State	
5-4	Descriptor Fetch Mode Channel State	
5-5	Little Endian Transfers	
5-1	General Memory Interface Configuration	
5-2	SDRAM Memory System Example	
3-3	Asynchronous Static Memory System Example	
5-4	External to Internal Address Mapping Options	
6-5	Basic SDRAM Timing Parameters	
6-6	SDRAM 4-Beat Read/ 4-Beat Write To Different Partitions	
5-7	SDRAM 4-Beat Write / 4-Write Same Bank, Same Row	
6-8	SMROM Read Timing Diagram Half-Memory Clock Frequency,	
6-9	Burst-of-Eight Synchronous Flash Timing Diagram (non-divide-by-2 mode)	
5-10	MSC0/1/2 Register Bitmap	.6-43
6-11	32-Bit Burst-of-Eight ROM or Flash Read Timing Diagram(MSC0:RDF = 4, MSC0:RDN = 1 MSC0:RRR = 1)	.6-48
5-12	Eight-Beat Burst Read from 16-Bit Burst-of-Four ROM or Flash(MSC0:RDF = 4, MSC0:RDN MSC0:RRR = 0)	l = 1,
6-13	32-Bit Non-burst ROM, SRAM, or Flash Read Timing Diagram - Four Data Beats(MSC0:RI 4, MSC0:RRR = 1)	OF =
6-14	32-Bit SRAM Write Timing Diagram (4-beat Burst)(MSC0:RDF = 2, MSC0:RRR = 1)	.6-51
6-15	32-Bit Variable Latency I/O Read Timing (Burst-of-Four, One Wait Cycle Per Beat) (MSC0: = 2, MSC0:RDN = 2, MSC0:RRR = 1) 6-53	
6-16	32-Bit Variable Latency I/O Write Timing (Burst-of-Four, Variable Wait Cycles Per Beat)	.6-54
S-17	Asynchronous 32-Bit Flash Write Timing Diagram (2 Writes)	
5-18	MCMEM1 Register Bitmap	.6-57

6-19	MCATT1 Register Bitmap	6-57
6-20	MCIO1 Register Bitmap	
6-21	16-Bit PC Card Memory Map	
6-22	Expansion Card External Logic for a One-Socket Configuration	6-64
6-23	Expansion Card External Logic for a Two-Socket Configuration	6-65
6-24	16-Bit PC Card Memory or I/O 16-Bit (Half-word) Access	6-66
6-25	16-Bit PC Card I/O 16-Bit Access to 8-Bit Device	
6-26	Alternate Bus Master Mode	6-68
6-27	Variable Latency IO	
6-28	Asynchronous Boot Time Configurations and Register Defaults	
6-29	SMROM Boot Time Configurations and Register Defaults	
6-30	SMROM Boot Time Configurations and Register Defaults (Continued)	
7-1	LCD Controller Block Diagram	
7-2	Temporal Dithering Concept - Single Color	
7-3	Compare Range for TMED	
7-4	TMED Block Diagram	
7-5	Palette Buffer Format	
7-6	1 Bit Per Pixel Data Memory Organization	
7-7	2 Bits Per Pixel Data Memory Organization	
7-8	4 Bits Per Pixel Data Memory Organization	
7-9	8 Bits Per Pixel Data Memory Organization	
7-10	16 Bits Per Pixel Data Memory Organization - Passive Mode	
7-11	16 Bits Per Pixel Data Memory Organization - Active Mode	
7-12	Passive Mode Start-of-Frame Timing	
7-14	Passive Mode Pixel Clock and Data Pin Timing	
7-13	Passive Mode End-of-Frame Timing	
7-15	Active Mode Timing	
7-16	Active Mode Pixel Clock and Data Pin Timing	
7-17	LCD Data-Pin Pixel Ordering	
8-1	Texas Instruments' Synchronous Serial Frame* Format	
8-2	Motorola SPI* Frame Format	
8-3	National Microwire* Frame Format	8-6
8-4	Motorola SPI* Frame Formats for SPO and SPH Programming	8-13
9-1	I ² C Bus Configuration Example	
9-2	Start and Stop Conditions	
9-3	START and STOP Conditions	
9-4	Data Format of First Byte in Master Transaction	9-8
9-5	Acknowledge on the I2C Bus	9-9
9-6	Clock Synchronization During the Arbitration Procedure	9-10
9-7	Arbitration Procedure of Two Masters	
9-8	Master-Receiver Read from Slave-Transmitter	
9-9	Master-Receiver Read from Slave-Transmitter / Repeated Start / Master-Transmitter	
	Slave-Receiver	
9-10	A Complete Data Transfer	9-14
9-11	Master-Transmitter Write to Slave-Receiver	
9-12	Master-Receiver Read to Slave-Transmitter	9-16
9-13	Master-Receiver Read to Slave-Transmitter, Repeated START, Master-Transmitter	
	Slave-Receiver	
9-14	General Call Address	9-17
10-1	Example UART Data Frame	10-4

10-2	Example NRZ Bit Encoding – (0b0100 1011	
10-3	IR Transmit and Receive Example	
10-4	XMODE example	
11-1	4PPM Modulation Encodings	11-2
11-2	4PPM Modulation Example	
11-3	Frame Format for IrDA Transmission (4.0 Mbps)	11-3
12-4	NRZI Bit Encoding Example	
12-5	Self-Powered Device	
13-6	Data Transfer Through the AC-link	
13-7	AC97 Standard Bidirectional Audio Frame	
13-8	AC-link Audio Output Frame	
13-9	Start of Audio Output Frame	
13-10	AC97 Input Frame	
13-11	Start of an Audio Input Frame	
13-11	AC-link Powerdown Timing	
13-12	SDATA_IN Wake Up Signaling	
13-13	PCM Transmit and Receive Operation	
13-15	Mic-in Receive-Only Operation	
13-16	Modern Transmit and Receive Operation	
14-1	I2S Data Formats (16 bits)	
14-2	MSB-Justified Data Formats (16 bits)	
14-3	Transmit and Receive FIFO Accesses Through the SADR	
15-1	MMC System Interaction	
15-2	MMC Mode Operation Without Data Token	
15-3	MMC Mode Operation With Data Token	
15-4	SPI Mode Operation Without Data Token	
15-5	SPI Mode Read Operation	
15-6	SPI Mode Write Operation	15-4
Tab	les	
2-1	CPU Core Fault Register Bitmap and Bit Definitions (Read-only)	2-3
2-2	ID Register Bitmap and Bit Definitions (Read-only)	
2-3	PXA250 ID Values	
2-4	PXA210 ID Values	
2- 4 2-5	Effect of Each Type of Reset on Internal Register State	
2-3 2-6	Application Processor Pin Types	
2-0 2-7		
2-7 2-8	Pin & Signal Descriptions for the PXA250 Application Processor Pin Description Notes	۲۰۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰
2-0 2-9	Pin & Signal Descriptions for the PXA210 Application Processor	
	, , , , , , , , , , , , , , , , , , , ,	
2-10	Pin Description Notes	
2-11	Signals Not Supported for the PXA210 Application Processor	
2-12	Register Address Summary	
3-1	Core PLL Output Frequencies for 3.6864 MHz Crystal	
3-2	95.85 MHz Peripheral PLL Output Frequencies for 3.6864 MHz Crystal	
3-3	147.46 MHz Peripheral PLL Output Frequencies for 3.6864 MHz Crystal	
3-4	Power Mode Entry Sequence Table	
3-5	Power Mode Exit Sequence Table	
3-6	Power and Clock Supply Sources and States During Power Modes	
3-7	Power Manager Control Register	3-21

3-8	PCFR Register Bitmap and Bit Definitions	3-22
3-9	PWER Register Bitmap and Bit Definitions	3-23
3-10	PRER Register Bitmap and Bit Definitions	3-24
3-11	PFER Register Bitmap and Bit Definitions	3-25
3-12	PEDR Register Bitmap and Bit Definitions	3-26
3-13	PSSR Register Bitmap and Bit Definitions	3-27
3-14	PSPR Register Bitmap and Bit Definitions	3-28
3-15	PGSR0 Register Bitmap and Bit Definitions	3-29
3-16	PGSR1 Register Bitmap and Bit Definitions	3-29
3-17	PGSR2 Register Bitmap and Bit Definitions	3-30
3-18	RCSR Register Bitmap and Bit Definitions	3-31
3-19	Power Manager Register Locations	3-31
3-20	CCCR Register Bitmap and Bit Definitions	3-33
3-21	CKEN Register Bitmap and Bit Definitions	
3-22	OSCC Register Bitmap and Bit Definitions	3-36
3-23	Clocks Manager Register Locations	3-36
3-24	Coprocessor 14 Clock and Power Management Summary	3-37
3-25	CCLKCFG Register Bitmap and Bit Definitions	3-37
3-26	PWRMODE Register Bitmap and Bit Definitions	3-38
4-1	GPIO Alternate Functions	4-3
4-2	GPIO Register Definitions	4-6
4-3	GPLR0 Register Bitmap	4-7
4-4	GPLR1 Register Bitmap	4-8
4-5	GPLR2 Register Bitmap	4-8
4-6	GPDR0 Register Bitmap	4-9
4-7	GPDR1 Register Bitmap	4-9
4-8	GPDR2 Register Bitmap	4-9
4-9	GPSR0 Register Bitmap	4-10
4-10	GPSR1 Register Bitmap	4-10
4-11	GPSR2 Register Bitmap	4-11
4-12	GPCR0 Register Bitmap	4-11
4-13	GPCR1 Register Bitmap	4-11
4-14	GPCR2 Register Bitmap	4-12
4-15	GRER0 Register Bitmap	4-13
4-16	GRER1 Register Bitmap	4-13
4-17	GRER2 Register Bitmap	4-13
4-18	GFER0 Register Bitmap	4-14
4-19	GFER1 Register Bitmap	4-14
4-20	GFER2 Register Bitmap	
4-21	GEDR0 Register Bitmap	4-15
4-22	GEDR1 Register Bitmap	4-16
4-23	GEDR2 Register Bitmap	4-16
4-24	GAFR0_L Register Bitmap	4-17
4-25	GAFR0_U Register Bitmap	4-18
4-26	GAFR1_L Register Bitmap	4-18
4-27	GAFR1_U Register Bitmap	
4-28	GAFR2_L Register Bitmap	4-19
4-29	GAFR2_U Register Bitmap	4-20
4-30	GPIO Register Addresses	4-21
4-31	ICMR Register Bitmap	4-24

4-32	ICLR Register Bitmap	4-24
4-33	ICCR Register Bitmap	4-25
4-34	ICIP Register Bitmap	4-26
4-35	ICFP Register Bitmap	4-26
4-36	ICPR Register Bitmap	4-27
4-37	List of First–Level Interrupts	4-29
4-38	Interrupt Controller Register Addresses	
4-39	RTTR Register Bitmap	
4-40	RTAR Register Bitmap	
4-41	RCNR Register Bitmap	
4-42	RTSR Register Bitmap	
4-43	RTC Register Addresses	
4-44	OSMR[x] Register Bitmap	
4-45	OIER Register Bitmap	
4-46	OWER Register Bitmap	
4-47	OSCR Register Bitmap	
4-48	OS Timer Register Locations	
4-49	PWM_CTRLn Register Bitmap	
4-50	PWM_DUTYn Register Bitmap	
4-51	PWM PERVALn Register Bitmap	
4-52	PWM Register Locations	
5-1	DMAC Signal List	
5-2	Channel Priority (if all channels are running concurrently)	
5-3	Channel Priority	
5-4	Priority Schemes Examples	
5-5	DMA Quick Reference for Internal Peripherals	
5-6	DINT Register Bitmap and Bit Definitions	
5-7	DMA Channel Control/Status Register Bitmap and Bit Definitions	
5-8	DRCMRx Registers Bitmap Bit Definitions	
5-9	DMA Descriptor Address Register Bit Definitions	
5-10	DSADRx Register Bitmap Bit Definitions	
5-11	DTADRx Register Bitmap Bit Definitions	
5-12	DCMDx Register Bitmap and Bit Definitions	
5-13	DMA Controller Registers	
6-1	Device Transactions	
6-2	Memory Interface Control Registers	
6-3	MDCNFG Register Bitmap and Bit Definitions	
6-4	MDMRS Register Bitmap	
6-5	MDREFR Register Bitmap	
6-6	Sample SDRAM Memory Size Options	
6-7	External to Internal Address Mapping for Normal Bank Addressing	
6-8	External to Internal Address Mapping for SA-1111 Addressing	
6-9	Pin Mapping to SDRAM Devices with Normal Bank Addressing	
6-10	Pin Mapping to SDRAM Devices with SA1111 Addressing	
6-11	SDRAM Command Encoding	
6-12	SDRAM Mode Register Opcode Table	
6-13	SXCNFG Register Bitmap	
6-14	SXCNFG Register Bitmap	
6-15	Synchronous Static Memory External to Internal Address Mapping Options	
6-16	SXMRS Register Bitmap	

6-17	Read Configuration Register Programming Values	
6-18	Frequency Code Configuration Values Based on Clock Speed	6-40
6-20	16-Bit Bus Write Access	6-43
6-19	32-Bit Bus Write Access	6-43
6-21	MSC0/1/2 Register Bit Definitions	6-44
6-22	Asynchronous Static Memory and Variable Latency I/O Capabilities	6-47
6-23	MCMEMx Register Bitmap	6-57
6-25	MCIOx Register Bitmap	
6-24	MCATTx Register Bitmap	
6-26	Card Interface Command Assertion Code Table	
6-27	MECR Configuration Register Bitmap	
6-28	Common Memory Space Write Commands	
6-29	Common Memory Space Read Commands	
6-30	Attribute Memory Space Write Commands	
6-31	Attribute Memory Space Read Commands	
6-32	16-Bit I/O Space Write Commands (nIOIS16 = 0)	
6-33	16-Bit I/O Space Read Commands (nIOIS16 = 0)	
6-34	8-Bit I/O Space Write Commands (nIOIS16 = 1)	
6-35	8-Bit I/O Space Read Commands (nIOIS16 = 1)	
6-36	BOOT_SEL Definitions	
6-37	BOOT_DEF Register Bitmap	
6-38	Valid Boot Configurations Based on Processor Type	
6-39	Memory Controller Pin Reset Values	
7-1	Pin Descriptions	
7-2	LCD Controller Control Register 0	
7-3	Frame Buffer/Palette Output to LCD Data Pins in Active Mode	
7-4	LCD Controller Data Pin Utilization	
7-5	LCD Controller Control Register 1	
7-6	LCD Controller Control Register 2	
7-7	LCD Controller Control Register 3	
7-8	LCD DMA Frame Descriptor Address Registers	
7-9	LCD DMA Frame Source Address Registers	
7-10	LCD Frame ID Registers	
7-11	LCD DMA Command Registers	
7-12	LCD DMA Frame Branch Registers (FBRx)	
7-13	LCD Controller Status Register	
7-13	LCD Controller Interrupt ID Register	
7-14	TMED RGB Seed Register	
7-13	TMED Control Register	
7-10	LCD Controller Register Locations	
8-1	External Interface to Codec	
8-2	SSP Control Register 0 (SSCR0) Bitmap and Bit Definitions	
8-3	• , ,	
8-3 8-4	SSP Control Register 1 (SSCR1) Bitmap and Definitions	
	TFT and RFT Values for DMA Servicing	
8-5	SSP Data Register (SSDR) Bitmap and Definitions	
8-6	SSP Status Register (SSSR) Bitmap and Bit Definitions	
8-7	SSP Register Address Map	
9-1	MMC Signal Description	
9-2	I2C Bus Definitions	
9-3	Modes of Operation	9-4

9-4	START and STOP Bit Definitions	9-5
9-5	Master Transactions	9-12
9-6	Slave Transactions	9-15
9-7	General Call Address Second Byte Definitions	9-17
9-8	I2C Register Addresses	
9-9	I2C Bus Monitor Register - IBMR	
9-10	I2C Data Buffer Register - IDBR	
9-11	I2C Control Register - ICR	
9-12	I2C Status Register - ISR	
9-13	I2C Slave Address Register - ISAR	
10-1	UART Signal Descriptions	
10-2	UART Register Addresses as Offsets of a Base	
10-3	Receive Buffer Register	
10-4	Transmit Holding Register	
10-5	Divisor Latch Low Register	
10-6	Divisor Latch High Register	
10-7	Interrupt Enable Register	
10-8	Interrupt Conditions	
10-9	Interrupt Identification Register	
10-10	Interrupt Identification Register Decode	
10-11	FIFO Control Register	
10-12	Line Control Register	
10-13	Line Status Register	
10-14	Modem Control Register	
10-15	Modem Status Register	
10-16	Scratch Pad Register – SPR	
10-17	Infrared Selection Register	
10-18	FFUART Register Addresses	
10-19	BTUART Register Locations	
10-20	STUART Register Locations	
10-21	Flow Control Registers in BTUART and STUART	
11-1	FICP Signal Description	
11-2	Fast Infrared Communication Port Control Register 0	
11-3	Fast Infrared Communication Port Control Register 1	
11-4	Fast Infrared Communication Port Control Register 2	
11-5	Fast Infrared Communication Port Data Register	
11-6	Fast Infrared Communication Port Status Register 0	
11-7	Fast Infrared Communication Port Status Register 1	
11-8	FICP Control, Data, and Status Register Locations	
12-9	Endpoint Configuration	
12-10	USB States	
12-11	IN, OUT, and SETUP Token Packet Format	
12-12	SOF Token Packet Format	
12-13	Data Packet Format	
12-14	Handshake Packet Format	
12-15	Bulk Transaction Formats	
12-16	Isochronous Transaction Formats	
12-17	Control Transaction Formats	
12-18	Interrupt Transaction Formats	
12-19	Host Device Request Summary	

12-20	UDC Control Register	
12-21	UDC Endpoint 0 Control Status Register	12-25
12-22	UDC Endpoint x Control Status Register, Where x is 1, 6 or 11	12-27
12-23	UDC Endpoint x Control Status Register, Where x is 2, 7, or 12	
12-24	UDC Endpoint x Control Status Register, Where x is 3, 8, or 13	12-32
12-25	UDC Endpoint x Control Status Register, Where x is 4, 9, or 14	
12-26	UDC Endpoint x Control Status Register, Where x is 5, 10, or 15	
12-27	UDC Interrupt Control Register 0	
12-28	UDC Interrupt Control Register 1	
12-29	UDC Status / Interrupt Register 0	
12-30	UDC Status / Interrupt Register 1	
12-31	UDC Frame Number High Register	
12-32	UDC Frame Number Low Register	
12-33	UDC Byte Count Register x, Where x is 2, 4, 7, 9, 12, or 14	
12-34	UDC Endpoint 0 Data Register	
12-35	UDC Endpoint x Data Register, Where x is 1, 6, or 11	
12-36	UDC Endpoint x Data Register, Where x is 2, 7, or 12	
12-37	UDC Endpoint x Data Register, where x is 3, 8, or 13	
12-38	UDC Endpoint x Data Register, Where x is 4, 9, or 14	
12-39	UDC Endpoint x Data Register, Where x is 5, 10, or 15	
12-40	UDC Control, Data, and Status Register Locations	
13-41	External Interface to Codecs	
13-42	Supported Data Stream Formats	
13-43	Slot 1 Bit Definitions.	
13-44	Slot 2 Bit Definitions	
13-45	Input Slot 1 Bit Definitions	
13-46	Input Slot 2 Bit Definitions	
13-47	Register Mapping Summary	
13-48	Global Control Register	
13-49	Global Status Register	
13-50	PCM-Out Control Register	
13-51	PCM-In Control Register (PICR)	
13-52	PCM-Out Status Register	
13-53	PCM_In Status Register	
13-54	Codec Access Register	
13-55	PCM Data Register	
13-56	Mic-In Control Register	
13-57	Mic-In Status Register	
13-58	Mic-In Data Register	
13-59	Modem-Out Control Register	
13-60	Modem-In Control Register	
13-61	Modem-Out Status Register	
13-62	Modem-In Status Register	
13-63	Modem Data Register	
13-64	Address Mapping for Codec Registers	
14-1	External Interface to CODEC	
14-2	Supported Sampling Frequencies	
14-3	SACR0 Bit Descriptions	
14-4	FIFO Write/Read table	
14-5	TFTH and RFTH Values for DMA Servicing	
	The state of the value of the birth of violing	1 - 10

14-6	SACR1 Bit Descriptions	14-11
14-7	SASR0 Bit Descriptions	14-12
14-8	SADIV Bit Descriptions	14-14
14-9	SAICR Bit Descriptions	14-14
14-10	SAIMR Bit Descriptions	14-15
14-11	SADR Bit Descriptions	14-15
14-12	Register Memory Map	14-17
15-1	Command Token Format	15-2
15-2	MMC Data Token Format	15-2
15-3	SPI Data Token Format	15-2
15-4	MMC Signal Description	15-5
15-5	MMC Controller Registers	15-22
15-6	MMC_STRPCL Register	15-23
15-7	MMC_STAT Register	15-24
15-8	MMC_CLK Register	15-26
15-9	MMC_SPI Register	15-27
15-10	MMC_CMDAT Register	15-28
15-11	MMC_RESTO Register	15-29
15-12	MMC_RDTO Register	15-29
15-13	MMC_BLKLEN Register	15-30
15-14	MMC_NOB Register	
15-15	MMC_PRTBUF Register	15-31
15-16	MMC_I_MASK Register	
15-17	MMC_I_REG Register	
15-18	MMC_CMD Register	15-34
15-19	Command Index Values	15-34
15-20	MMC_ARGH Register	15-36
15-21	MMC_ARGL Register	15-36
15-22	MMC_RES, FIFO Entry	
15-23	MMC_RXFIFO, FIFO Entry	
15-24	MMC_TXFIFO, FIFO Entry	15-38

Revision History

Date	Revision	Description
February 2002	Public Release 1.0	Released to the public
November 2001	1.5	Released for publication
December 2001	1.5	VLIO operation changed

Introduction 1

This document applies to both the Intel® PXA250 and the PXA210 application processors. They are Application Specific Standard Products (ASSP) that provide industry-leading MIPS/mW performance for Handheld Computing Applications. Each application processor is a highly integrated system on a chip and includes a high-performance low-power Intel® XScaleTM Core with a variety of different system peripherals.

The PXA250 application processor is a 17x17mm 256-pin PBGA package configuration for high performance. The 17x17mm package has a 32-bit memory data bus and the full assortment of peripherals.

The PXA210 is a 13x13mm 255 pin T-PBGA package for a smaller form factor. The 13x13mm package has a 16-bit memory data bus and some reduction in available peripherals.

Note: See section Section 2.13, "Processor Options" on page 2-26 for a list of the features supported by the PXA250 application processor, but not by the PXA210.

Throughout the other chapters in this document, the phrase "application processor" applies to both the PXA250 and PXA210 application processors, unless otherwise noted.

1.1 Intel[®] XScale[™] Core Features

The Intel XScale Core provides the following features:

- ARMTM Version 5TE ISA compliant.
 - ARM Thumb Instruction Support
 - ARM DSP Enhanced Instructions
- Low power consumption and high performance
- · Intel Media Processing Technology
 - Enhanced 16-bit Multiply
 - 40-bit Accumulator
- 32-KByte Instruction Cache
- 32-KByte Data Cache
- 2-KByte Mini Data Cache
- 2-KByte Mini Instruction Cache
- Instruction and Data Memory Management Units
- Branch Target Buffer
- Debug Capability via JTAG Port

Refer to the *Intel XScale Core Developer's Manual* for more details.

1.2 System Integration Features

The application processor integrates the Intel XScale Core with the following peripheral set:

- Memory Controller
- Clock and Power Controllers
- · Universal Serial Bus Client
- DMA Controller
- LCD Controller
- AC97
- I^2S
- MultiMediaCard
- FIR Communication
- · Synchronous Serial Protocol Port
- I²C
- General Purpose I/O pins
- UARTs
- · Real-Time Clock
- OS Timers
- Pulse Width Modulation
- Interrupt Control

1.2.1 Memory Controller

The Memory Controller provides glueless control signals with programmable timing for a wide assortment of memory-chip types and organizations. It supports up to four SDRAM partitions; six static chip selects for SRAM, SSRAM, Flash, ROM, SROM, and companion chips; support for two PCMCIA or Compact Flash slots

Note: The PXA210 application processor does not support PCMCIA, Compact Flash, or variable-latency I/O.

1.2.2 Clocks and Power Controllers

The application processor functional blocks are driven by clocks that are derived from a 3.6864-MHz crystal and an optional 32.768-kHz crystal.

The 3.6864-MHz crystal drives a core Phase Locked Loop (PLL) and a Peripheral PLL. The PLLs produce selected clock frequencies to run particular functional blocks.

The 32.768-kHz crystal provides an optional clock source that must be selected after a hard reset. This clock drives the Real Time Clock, Power Management Controller, and Interrupt Controller. The 32.768-kHz crystal is on a separate power island to provide an active clock while the application processor is in Sleep Mode.

Power Management controls the transition between the Turbo/Run, Idle, and Sleep operating modes.

1.2.3 Universal Serial Bus (USB) Client

The USB Client Module is based on the Universal Serial Bus Specification, Revision 1.1. It supports up to sixteen endpoints and it provides an internally generated 48-MHz clock. The USB Device Controller provides FIFOs with DMA access to or from memory.

1.2.4 DMA Controller (DMAC)

The DMAC provides sixteen prioritized channels to service transfer requests from internal peripherals and up to two data transfer requests from external companion chips. The DMAC is descriptor-based to allow command chaining and looping constructs.

The DMAC operates in Flow-Through Mode when performing peripheral-to-memory, memory-to-peripheral, and memory-to-memory transfers. The DMAC is compatible with peripherals that use word, half-word, or byte data sizes.

1.2.5 LCD Controller

The LCD Controller supports both passive (DSTN) and active (TFT) flat-panel displays with a maximum supported resolution of 800x600x16-bit/pixel. An internal 256 entry palette expands 1, 2, 4, or 8-bit encoded pixels. Non-encoded 16-bit pixels bypass the palette.

Two dedicated DMA channels allow the LCD Controller to support single- and dual-panel displays. Passive monochrome mode supports up to 256 gray-scale levels and passive color mode supports up to 64K colors. Active color mode supports up to 64K colors.

1.2.6 AC97 Controller

The AC97 Controller supports AC97 Revision 2.0 CODECs. These CODECs can operate at sample rates up to 48 KHz. The controller provides independent 16-bit channels for Stereo PCM In, Stereo PCM Out, Modem In, Modem Out, and mono Microphone In. Each channel includes a FIFO that supports DMA access to memory.

1.2.7 Inter-IC Sound (I²S) Controller

The I²S Controller provides a serial link to standard I²S CODECs for digital stereo sound. It supports both the Normal-I²S and MSB-Justified I²S formats, and provides four signals for connection to an I²S CODEC. I²S Controller signals are multiplexed with AC97 Controller pins. The controller includes FIFOs that support DMA access to memory.

1.2.8 Multimedia Card (MMC) Controller

The MMC Controller provides a serial interface to standard memory cards. The controller supports up to two cards in either MMC or SPI modes with serial data transfers up to 20 Mbps. The MMC controller has FIFOs that support DMA access to and from memory.

1.2.9 Fast Infrared (FIR) Communication Port

The FIR Communication Port is based on the 4-Mbps Infrared Data Association (IrDA) Specification. It operates at half-duplex and has FIFOs with DMA access to memory. The FIR Communication Port uses the STUART's transmit and receive pins to directly connect to external IrDA LED transceivers.

1.2.10 Synchronous Serial Protocol Controller (SSPC)

The SSP Port provides a full-duplex synchronous serial interface that operates at bit rates from 7.2 kHz to 1.84 MHz. It supports National Semiconductor's Microwire*, Texas Instruments' Synchronous Serial Protocol*, and Motorola's Serial Peripheral Interface*. The SSPC has FIFOs with DMA access to memory.

1.2.11 Inter-Integrated Circuit (I²C) Bus Interface Unit

The I²C Bus Interface Unit provides a general purpose 2-pin serial communication port. The interface uses one pin for data and address and a second pin for clocking.

1.2.12 GPIO

Each GPIO pin can be individually programmed as an output or an input. Inputs can cause interrupts on rising or falling edges. Primary GPIO pins are not shared with peripherals while secondary GPIO pins have alternate functions which can be mapped to the peripherals.

1.2.13 **UARTs**

The application processor provides three Universal Asynchronous Receiver/Transmitters. Each UART can be used as a slow infrared (SIR) transmitter/receiver based on the Infrared Data Association Serial Infrared (SIR) Physical Layer Link Specification.

1.2.13.1 Full Function UART (FFUART)

The FFUART baud rate is programmable up to 230 Kbps. The FFUART provides a complete set of modem control pins: nCTS, nRTS, nDSR, nDTR, nRI, and nDCD. It has FIFOs with DMA access to or from memory.

Note: See Table 2-11, "Signals Not Supported for the PXA210 Application Processor" for a list of the signals that are not supported for the PXA210.

1.2.13.2 Bluetooth UART (BTUART)

The BTUART baud rate is programmable up to 921 Kbps. The BTUART provides a partial set of modem control pins: nCTS and nRTS. Other modem control pins can be implemented via GPIOs. The BTUART has FIFOs with DMA access to or from memory.

1.2.13.3 Standard UART (STUART)

The STUART baud rate is programmable up to 230 Kbps. The STUART does not provide any modem control pins. The modem control pins can be implemented via GPIOs. The STUART has FIFOs with DMA access to or from memory.

The STUART's transmit and receive pins are multiplexed with the Fast Infrared Communication Port.

1.2.14 Real-Time Clock (RTC)

The Real-Time Clock can be clocked from either crystal. A system with a 32.768-KHz crystal consumes less power during Sleep versus a system using only the 3.6864-MHz crystal. This crystal can be removed to save system cost. The RTC provides a constant frequency output with a programmable alarm register. This alarm register can be used to wake up the application processor from Sleep mode.

1.2.15 **OS Timers**

The OS Timers can be used to provide a 3.68-MHz reference counter with four match registers. These registers can be configured to cause interrupts when equal to the reference counter. One match register can be used to cause a watchdog reset.

1.2.16 Pulse-Width Modulator (PWM)

The PWM has two independent outputs that can be programmed to drive two GPIOs. The frequency and duty cycle are independently programmable. For example, one GPIO can control LCD contrast and the other LCD brightness.

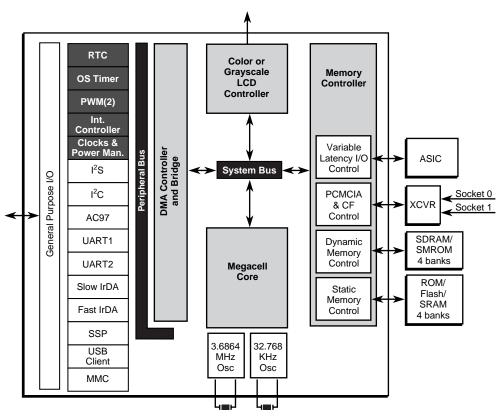
1.2.17 Interrupt Control

The Interrupt Controller directs the application processor interrupts into the core's IRQ and FIQ inputs. The Mask Register enables or disables individual interrupt sources.

Introduction

intel® System Architecture

2.1 **Overview**


The PXA250 and PXA210 application processors are an integrated system-on-a-chip microprocessor for high performance, low power portable handheld and handset devices. It incorporates the Intel® XScaleTM microarchitecture with on-the-fly frequency scaling and sophisticated power management to provide industry leading MIPs/mW performance. The application processor is ARM Version 5TE instruction set compliant (excluding floating point instructions) and follows the ARM programmer's model.

The application processor memory interface supports a variety of memory types to allow design flexibility. Support for the connection of two companion chips permits a glueless interface to external devices. An integrated LCD display controller provides support for displays up to 800x600 pixels, and permits 1-, 2-, 4-, and 8-bit grayscale and 8- or 16-bit color pixels. A 256 entry/512 byte palette RAM provides flexibility in color mapping.

A set of serial devices and general system resources provide computational and connectivity capability for a variety of applications. Refer to Figure 2-1, "Block Diagram" on page 2-2 for an overview of the microprocessor system architecture.

Figure 2-1. Block Diagram

A8651-01

2.2 Package Types

The PXA250 application processor is available in a 17x17 mm PBGA package and the PXA210 application processor is available in a 13x13 mm T-PBGA package that only supports a 16-bit data bus. The software used to access the application processor can detect the processor that is being used. For a list of pins that are not available in the PXA210 application processor, refer to Table 2-11 on page 2-26.

2.3 Intel® XScale[™] Microarchitecture Implementation Options

The application processor incorporates the Intel® XScale™ microarchitecture which is described in a separate document. This core contains implementation options which an Application Specific Standard Product (ASSP) may elect to implement or omit. This section describes these options.

Most of these options are specified within the coprocessor register space. The application processor does not implement any coprocessor registers beyond those defined in the Megacell EAS. The coprocessor registers which are ASSP specific, as stated in the *Intel® XScale™ Microarchitecture* for the PXA250 and PXA210 Application Processors User's Manual, order# 278525, are defined in the following sections.

2.3.1 Coprocessor 7 Register 4 - PSFS Bit

Bit 5 of this register is defined as the Power Source Fault Status bit or PSFS bit. This bit is set when either nVDD_FAULT or nBATT_FAULT pins are asserted and the Imprecise Data Abort Enable (IDAE) bit in the Power Manager Control Register (PMCR) is set.

Table 2-1. CPU Core Fault Register Bitmap and Bit Definitions (Read-only)

			(CP7	Re	gist	er 4	Į.					C	PU	Со	re F	aul	t								CI	P7					
Bit	3	3 0	2 9	2 8	2 7	2 6	2 5	2 4	2	2	2	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0
													Reserved														PSFS			Reserved		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	[31:6] Reserved. Read undefined.																															
	Read undefined. Power Source Fault Status 0 = nVDD_FAULT or nBATT_FAULT pin has not been asserted since it was last cleared by a reset or the CPU. 1 = nVDD_FAULT or nBATT_FAULT pin was asserted and PMCR[IDAE] = 1. Read only, write ignored. Cleared by Hardware, Watchdog, and GPIO Resets.																															
	[4:0] —											Reserved. Read undefined.																				

2.3.2 Coprocessor 14 Registers 0-3 - Performance Monitoring

The application processor does not define any performance monitoring features beyond those called out in the *Intel*® *XScale*TM *Microarchitecture for the PXA250 and PXA210 Application Processors User's Manual, order# 278525.* The interrupt generated by performance monitoring events is defined in Chapter 4, "System Integration Unit". The ASSP defined performance monitoring events (events 0x10 - 0x17), defined through the PMNC register are reserved for the application processor.

2.3.3 Coprocessor 14 Register 6 and 7- Clock and Power Management

These registers allow software to use the clocking and power management modes. The valid operations are described in Table 3-24, "Coprocessor 14 Clock and Power Management Summary" on page 3-37.

2.3.4 Coprocessor 15 Register 0 - ID Register Definition

This register may be read by software to determine the device type and revision. The contents of this register for the PXA250 and PXA210 application processors are defined in the table below. Combined, this register must read as $0x6905\ 2X0R$ where R=0b0000 for the first stepping and then increments for subsequent steppings, and X is the revision of the Intel® XScaleTM Microarchitecture present. Please see the Intel Developer Homepage at http://developer.intel.com for updates.

Table 2-2. ID Register Bitmap and Bit Definitions (Read-only)

			С	P1	5 Re	gist	ter ()							II)										СР	15					
Bit	3 1	3 0	2 9	2 8	2 7	2 6	2 5	2 4	2	2	2	2 0	1 9	1	1 7	1	1 5	1 4	1	1 2	1	1	9	8	7	6	5	4	3	2	1	0
				Implementation	Trademark							Architecture	Version				Core	generation	5	Ç	Cole				Product	Number				Product	Revision	
Reset	0	1	1	0	1	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0
		[31:	16]						ntatio nark	n							ade rpora															
	[23:16] Architecture Version									ARM Architecture version of the core. 0x05 = ARM architecture version 5TE																						
	This field is updated when new sets of features are added to the core. This allows software that is dependant on core features to target a specific core generation: Ob001 = Intel® XScale™ Core																															
	[12:10] Core Revision									1		err Co 0b	ata, re ro 000	sof evis = F	twa ion: irst	re w vers	vorka sion	arou of t	und:	ne a s, et core	C.	e is	rev	ised	d. Di	iffer	ence	es n	nay	incl	ude	
	[9:4] Product Number									er		Pro Obt	oduo 010	ct N 000	umb = P	oer 'XA:	250	app	olic		on p											
[9:4] Product Number Product Number																																

Table 2-3. PXA250 ID Values

Stepping	ARM ID	JTAG ID
A0	0x69052100	0x09264013
A1	0x69052101	0x19264013
В0	0x69052902	0x29264013
B1	0x69052903	0x39264013

Table 2-4. PXA210 ID Values

Stepping	ARM ID	JTAG ID
В0	0x69052922	0x2926C013
B1	0x69052923	0x3926C013

2.3.5 Coprocessor 15 Register 1 - P-Bit

Bit 1 of this register is defined as the Page Table Memory Attribute bit or P-bit. It is not implemented in the application processor and must be written as zero. Similarly, the P-bit in the page table descriptor in the MMU is not implemented and must be written to zero.

2.4 I/O Ordering

The application processor uses queues that accept memory requests from the three internal masters: core, DMA Controller, and LCD Controller. Operations issued by a master are completed in the order they were received. Operations from one master may be interrupted by operations from another master. The application processor does not provide a method to regulate the order of operations from different masters.

Loads and stores to internal addresses are generally completed more quickly than those issued to external addresses. The difference in completion time allows one operation to be received before another operation, but completed after the second operation.

In the following sequence, the store to the address in r4 is completed before the store to the address in r2 because the first store waits for memory in the queue while the second is not delayed.

str r1, [r2] ; store to external memory address [r2].
str r3, [r4] ; store to internal (on-chip) memory address [r4].

If the two stores are control operations that must be completed in order, the recommended sequence is to insert a load to an unbuffered, uncached memory page followed by an operation that depends on data from the load:

str r1, [r2] ; first store issued

ldr r5, [r6] ; load from external unbuffered, uncached address ([r2] if possible)

mov r5, r5 ; nop stalls until r5 is loaded

str r3, [r4] ; second store completes in program order

2.5 Semaphores

The Swap (SWP) and Swap Byte (SWPB) instructions, as described in the ARM Architecture reference, may be used for semaphore manipulation. No on-chip master or process can access a memory location between the load and store portion of a SWP or SWPB to the same location.

Note:

Semaphore coherency may be interrupted because an external companion chip that uses the MBREQ/MBGNT handshake can take ownership of the bus during a locked sequence. To allow semaphore manipulation by external companion chips, the software must manage coherency.

2.6 Interrupts

The interrupt controller is described in detail in Section 4.2, "Interrupt Controller". All on-chip interrupts are enabled, masked, and routed to the core FIQ or IRQ. Each interrupt is enabled or disabled at the source through an interrupt mask bit. Generally, all interrupt bits in a unit are ORed together and present a single value to the interrupt controller.

Each interrupt goes through the Interrupt Controller Mask Register and then the Interrupt Controller Level Register directs the interrupt into either the IRQ or FIQ. If an interrupt is taken, the software may read the Interrupt Controller Pending Register to identify the source. After it identifies the interrupt source, the software is responsible for servicing the interrupt and clearing it in the source unit before exiting the service routine.

Note

Clearing interrupts may take a delay. To allow the status bit to clear before returning from an interrupt service routine (ISR), clear the interrupt early in the routine.

2.7 Reset

The application processor can be reset in any of three ways: Hardware, Watchdog, and GPIO resets. Each is described in more detail in Section 3.4, "Resets and Power Modes" on page 3-6.

- Hardware reset results from asserting the nRESET pin and forces all units into reset state.
- Watchdog reset results from a time-out in the OS Timer and may be used to recover from runaway code. Watchdog reset is disabled by default and must be enabled by software.
- GPIO reset is a "soft reset" that is less destructive than Hardware and Watchdog resets.

Each type of reset affects the state of the application processor pins. Table 2-5 shows each pin's state after each type of reset.

Leaving Sleep Mode causes a Sleep Mode reset. Unlike other resets, Sleep Mode resets do not change the state of the pins.

The Reset Controller Status Register (RCSR) contains information on the type of reset, including Sleep Mode resets.

Table 2-5. Effect of Each Type of Reset on Internal Register State

Unit	Sleep Mode	GPIO Reset	Watchdog Reset	Hard Reset
Core	reset	reset	reset	reset
Memory Controller	reset	All registers except configuration registers (refresh maintained)	reset	reset
LCD Controller	reset	reset	reset	reset
DMA Controller	reset	reset	reset	reset
Full Function UART	reset	reset	reset	reset
Bluetooth UART	reset	reset	reset	reset
Standard UART	reset	reset	reset	reset
I ² C	reset	reset	reset	reset
I ² S	reset	reset	reset	reset
AC97	reset	reset	reset	reset
USB	reset	reset	reset	reset
ICP	reset	reset	reset	reset
RTC	preserved	preserved	reset (except RTTR)	reset
OS Timer	reset	reset	reset	reset
PWM	reset	reset	reset	reset
Interrupt Controller	reset	reset	reset	reset
GPIO	reset	reset	reset	reset
Power Manager	preserved	reset	reset	reset
SSP	reset	reset	reset	reset
MMC	reset	reset	reset	reset
Clocks	preserved (except CP14)	preserved (except CP14)	reset (except OSCC)	reset

2.8 Internal Registers

All internal registers are mapped in physical memory space on 32-bit address boundaries. Use word access loads and stores to access internal registers. Internal register space must be mapped as non-cacheable.

Byte and halfword accesses to internal registers are not permitted and yield unpredictable results.

Register space where a register is not specifically mapped is defined as reserved space. Reading or writing reserved space causes unpredictable results.

The application processor does not use all register bit locations. The unused bit locations are marked reserved and are allocated for future use. Write reserved bit locations as zeros. Ignore the values of these bits during reads because they are unpredictable.

2.9 Selecting Peripherals vs. General Purpose I/O

Most peripherals connect to the external pins through GPIOs. To use a peripheral connected through a GPIO, the software must first configure the GPIO so that the desired peripheral is connected to its pins. The default state of the pins is GPIO inputs.

To allocate a peripheral to a pin, disable the GPIO function for that pin, then map the peripheral function onto the pin by selecting the proper alternate function for the pin. Some GPIOs have multiple alternate functions. After a function is selected for a pin, all other functions are excluded. For this reason some peripherals are mapped to multiple GPIOs, as shown in Section 4.1.2, "GPIO Alternate Functions" on page 4-2. Multiple mapping does not mean multiple instances of a peripheral - only that the peripheral is connected to the pins in several ways.

2.10 Power on Reset and Boot Operation

Before the device that uses the application processor is powered on, the system must assert nRESET and nTRST. To allow the internal clocks to stabilize, all power supplies must be stable for a specified period before nRESET or nTRST are deasserted. When nRESET is asserted, nRESET_OUT is driven active and can be used to reset other devices in the system. For additional information, see the *PXA250 and PXA210 Application Processors Design Guide, order# 278523.*

When the system deasserts nRESET and nTRST, the application processor deasserts nRESET_OUT a specified time later and the device attempts to boot from physical address location 0x0000 0000.

The BOOT_SEL[2:0] pins are sampled when reset is deasserted and let the user specify the type and width of memory device from which the application processor attempts to boot. The software can read the pins as described in Section 6.11.2, "Boot Time Defaults" on page 6-71.

2.11 Power Management

The application processor offers a number of modes to manage power in the system. These range widely in level of power savings and level of functionality. The following modes are supported:

- Turbo Mode: low latency (nanoseconds) switch between two preprogrammed frequencies.
- Run Mode: normal full function mode.
- Idle Mode: core clocks are stopped resume through an interrupt.
- Sleep Mode: low power mode that does not save state but keeps I/Os powered. The RTC, Power Manager, and Clock modules are saved, except for Coprocessor 14.

Note:

In low power modes, ensure that input pins are not floating and output pins are not driven by an external device that opposes how the application processor is driving that pin. In either case, the system will draw excess current. Current draw that varies in sleep mode or varies greatly between parts is typically a sign of floating pins.

Section 3.4, "Resets and Power Modes" describes the modes in detail.

2.12 Pin List

Some of the application processor pins can be connected to multiple signals. The signal connected to the pin is determined by the GPIO Alternate Function Select Registers (GAFRn_m). Some signals can go to multiple pins. The signal must be routed to only one pin by using the GAFRn_m registers. Because this is true, some pins are listed twice, once in each unit that can use the pin.

Table 2-6. Application Processor Pin Types

Туре	Function
IC	CMOS input
ОС	CMOS output
OCZ	CMOS output, Hi-Z
ICOCZ	CMOS Bidirectional, Hi-Z
IA	Analog Input
OA	Analog output
IAOA	Analog Bidirectional
SUP	Supply pin (either VCC or VSS)

Table 2-7 describes the PXA250 application processor pins.

Table 2-7. Pin & Signal Descriptions for the PXA250 Application Processor (Sheet 1 of 9)

Pin Name	Туре	Signal Descriptions	Reset State	Sleep State
Memory Contro	ller Pins		•	
MA[25:0]	OCZ	Memory address bus. (output) Signals the address requested for memory accesses.	Driven Low	Driven Low
MD[15:0]	ICOCZ	Memory data bus. (input/output) Lower 16 bits of the data bus.	Hi-Z	Driven Low
MD[31:16]	ICOCZ	Memory data bus. (input/output) Used for 32-bit memories.	Hi-Z	Driven Low
nOE	ocz	Memory output enable. (output) Connect to the output enables of memory devices to control data bus drivers.	Driven High	Note [4]
nWE	OCZ	Memory write enable. (output) Connect to the write enables of memory devices.	Driven High	Note [4]
nSDCS[3:0]	OCZ	SDRAM CS for banks 3 through 0. (output) Connect to the chip select (CS) pins for SDRAM. For the PXA250 application processor nSDCS0 can be Hi-Z, nSDCS1-3 cannot.	Driven High	Note [5]
DQM[3:0]	ocz	SDRAM DQM for data bytes 3 through 0. (output) Connect to the data output mask enables (DQM) for SDRAM.	Driven Low	Driven Low
nSDRAS	ocz	SDRAM RAS. (output) Connect to the row address strobe (RAS) pins for all banks of SDRAM.	Driven High	Driven High
nSDCAS	ocz	SDRAM CAS. (output) Connect to the column address strobe (CAS) pins for all banks of SDRAM.	Driven High	Driven High
SDCKE[0]	ос	Synchronous Static Memory clock enable. (output) Connect to the CKE pins of SMROM. The memory controller provides control register bits for deassertion.	Driven Low	Driven Low

Table 2-7. Pin & Signal Descriptions for the PXA250 Application Processor (Sheet 2 of 9)

Pin Name	Туре	Signal Descriptions	Reset State	Sleep State
SDCKE[1]	ос	SDRAM and/or Synchronous Static Memory clock enable. (output) Connect to the clock enable pins of SDRAM. It is deasserted during sleep. SDCKE[1] is always deasserted upon reset. The memory controller provides control register bits for deassertion.	Driven low	Driven low
SDCLK[0]	ОС	Synchronous Static Memory clock. (output) Connect to the clock (CLK) pins of SMROM. It is driven by either the internal memory controller clock, or the internal memory controller clock divided by 2. At reset, all clock pins are free running at the divide by 2 clock speed and may be turned off via free running control register bits in the memory controller. The memory controller also provides control register bits for clock division and deassertion of each SDCLK pin. SDCLK[0] control register assertion bit defaults to on if the boot-time static memory bank 0 is configured for SMROM.		
SDCLK[1]	OCZ	SDRAM Clocks (output)	Driven Low	Driven Low
SDCLK[2]	ос	Connect SDCLK[1] and SDCLK[2] to the clock pins of SDRAM in bank pairs 0/1 and 2/3, respectively. They are driven by either the internal memory controller clock, or the internal memory controller clock divided by 2. At reset, all clock pins are free running at the divide by 2 clock speed and may be turned off via free running control register bits in the memory controller. The memory controller also provides control register bits for clock division and deassertion of each SDCLK pin. SDCLK[2:1] control register assertion bits are always deasserted upon reset.	Driven Low	Driven Low
nCS[5]/ GPIO[33]	ICOCZ			
nCS[4]/ GPIO[80]	ICOCZ	Static chip selects. (output) Chip selects to static		
nCS[3]/ GPIO[79]	ICOCZ	memory devices such as ROM and Flash. Individually programmable in the memory configuration registers. nCS[5:0] can be used with variable latency I/O devices.	Hi-Z - Note [1]	Note [4]
nCS[2]/ GPIO[78]	ICOCZ	Tree[e.e] can be used with variable laterity in a devices.		
nCS[1]/ GPIO[15]	ICOCZ			
nCS[0]	ICOCZ	Static chip select 0. (output) Chip select for the boot memory. nCS[0] is a dedicated pin.	Driven High	Note [4]
RD/nWR	OCZ	Read/Write for static interface. (output) Signals that the current transaction is a read or write.	Driven Low	Note [5]
RDY/ GPIO[18]	ICOCZ	Variable Latency I/O Ready pin. (input) Notifies the memory controller when an external bus device is ready to transfer data.	Hi-Z - Note [1]	Note [3]
L_DD[8]/ GPIO[66]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. Memory Controller alternate bus master request. (input) Allows an external device to request the system bus from the Memory Controller.	Hi-Z - Note [1]	Note [3]

Table 2-7. Pin & Signal Descriptions for the PXA250 Application Processor (Sheet 3 of 9)

Pin Name	Туре	Signal Descriptions	Reset State	Sleep State
L_DD[15]/ GPIO[73]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. Memory Controller grant. (output) Notifies an external device that it has been granted the system bus.	Hi-Z - Note [1]	Note [3]
MBGNT/ GP[13]	ICOCZ	Memory Controller grant. (output) Notifies an external device that it has been granted the system bus.	Hi-Z - Note [1]	Note [3]
MBREQ/ GP[14]	ICOCZ	Memory Controller alternate bus master request. (input) Allows an external device to request the system bus from the Memory Controller.	Hi-Z - Note [1]	Note [3]
PCMCIA/CF Co	ntrol Pins			
nPOE/ GPIO[48]	ICOCZ	PCMCIA output enable. (output) Reads from PCMCIA memory and to PCMCIA attribute space.	Hi-Z - Note [1]	Note [5]
nPWE/ GPIO[49]	ICOCZ	PCMCIA write enable. (output) Performs writes to PCMCIA memory and to PCMCIA attribute space. Also used as the write enable signal for Variable Latency I/O.	Hi-Z - Note [1]	Note [5]
nPIOW/ GPIO[51]	ICOCZ	PCMCIA I/O write. (output) Performs write transactions to PCMCIA I/O space.	Hi-Z - Note [1]	Note [5]
nPIOR/ GPIO[50]	ICOCZ	PCMCIA I/O read. (output) Performs read transactions from PCMCIA I/O space.	Hi-Z - Note [1]	Note [5]
nPCE[2]/ GPIO[53]	ICOCZ	PCMCIA card enable 2. (output) Selects a PCMCIA card. nPCE[2] enables the high byte lane and nPCE[1] enables the low byte lane. MMC clock. (output) Clock signal for the MMC Controller.	Hi-Z - Note [1]	Note [5]
nPCE[1]/ GPIO[52]	ICOCZ	PCMCIA card enable 1. (outputs) Selects a PCMCIA card. nPCE[2] enables the high byte lane and nPCE[1] enables the low byte lane.	Hi-Z - Note [1]	Note [5]
nIOIS16/ GPIO[57]	ICOCZ	IO Select 16. (input) Acknowledge from the PCMCIA card that the current address is a valid 16 bit wide I/O address.	Hi-Z - Note [1]	Note [5]
nPWAIT/ GPIO[56]	ICOCZ	PCMCIA wait. (input) Driven low by the PCMCIA card to extend the length of the transfers to/from the PXA250 application processor.	Hi-Z - Note [1]	Note [5]
PSKTSEL/ GPIO[54]	ICOCZ	PCMCIA socket select. (output) Used by external steering logic to route control, address, and data signals to one of the two PCMCIA sockets. When PSKTSEL is low, socket zero is selected. When PSKTSEL is high, socket one is selected. Has the same timing as the address bus.	Hi-Z - Note [1]	Note [5]
nPREG/ GPIO[55]	ICOCZ	PCMCIA Register select. (output) Indicates that the target address on a memory transaction is attribute space. Has the same timing as the address bus.	Hi-Z - Note [1]	Note [5]
LCD Controller I	Pins			
L_DD(7:0)/ GPIO[65:58]	ICOCZ	LCD display data. (outputs) Transfers pixel information from the LCD Controller to the external LCD panel.	Hi-Z - Note [1]	Note [3]

Table 2-7. Pin & Signal Descriptions for the PXA250 Application Processor (Sheet 4 of 9)

Pin Name	Туре	Signal Descriptions	Reset State	Sleep State	
L_DD[8]/ GPIO[66]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. Memory Controller alternate bus master request. (input) Allows an external device to request the system bus from the Memory Controller.	Hi-Z - Note [1]	Note [3]	
L_DD[9]/ GPIO[67]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. MMC chip select 0. (output) Chip select 0 for the MMC Controller.	Hi-Z - Note [1]	Note [3]	
L_DD[10]/ GPIO[68]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. MMC chip select 1. (output) Chip select 1 for the MMC Controller.	Hi-Z - Note [1]	Note [3]	
L_DD[11]/ GPIO[69]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. MMC clock. (output) Clock for the MMC Controller.	Hi-Z - Note [1]	Note [3]	
L_DD[12]/ GPIO[70]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. RTC clock. (output) Real time clock 1 Hz tick.	Hi-Z - Note [1]	Note [3]	
L_DD[13]/ GPIO[71]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. 3.6864 MHz clock. (output) Output from 3.6864 MHz oscillator.	Hi-Z - Note [1]	Note [3]	
L_DD[14]/ GPIO[72]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. 32 kHz clock. (output) Output from the 32 kHz oscillator.	Hi-Z - Note [1]	Note [3]	
L_DD[15]/ GPIO[73]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. Memory Controller grant. (output) Notifies an external device it has been granted the system bus.	Hi-Z - Note [1]	Note [3]	
L_FCLK/ GPIO[74]	ICOCZ	LCD frame clock. (output) Indicates the start of a new frame. Also referred to as Vsync.	Hi-Z - Note [1]	Note [3]	
L_LCLK/ GPIO[75]	ICOCZ	LCD line clock. (output) Indicates the start of a new line. Also referred to as Hsync.	Hi-Z - Note [1]	Note [3]	
L_PCLK/ GPIO[76]	ICOCZ	LCD pixel clock. (output) Clocks valid pixel data into the LCD's line shift buffer.	Hi-Z - Note [1]	Note [3]	
L_BIAS/ GPIO[77]	ICOCZ	AC bias drive. (output) Notifies the panel to change the polarity for some passive LCD panel. For TFT panels, this signal indicates valid pixel data.	Hi-Z - Note [1]	Note [3]	
Full Function UART Pins					
FFRXD/ GPIO[34]	ICOCZ	Full Function UART Receive. (input) MMC chip select 0. (output) Chip select 0 for the MMC Controller.	Hi-Z - Note [1]	Note [3]	
FFTXD/ GPIO[39]	ICOCZ	Full Function UART Transmit. (output) MMC chip select 1. (output) Chip select 1 for the MMC Controller.	Hi-Z - Note [1]	Note [3]	
FFCTS/ GPIO[35]	ICOCZ	Full Function UART Clear-to-Send. (input)	Hi-Z - Note [1]	Note [3]	

Table 2-7. Pin & Signal Descriptions for the PXA250 Application Processor (Sheet 5 of 9)

Pin Name	Туре	Signal Descriptions	Reset State	Sleep State
FFDCD/ GPIO[36]	ICOCZ	Full Function UART Data-Carrier-Detect. (input)	Hi-Z - Note [1]	Note [3]
FFDSR/ GPIO[37]	ICOCZ	Full Function UART Data-Set-Ready. (input)	Hi-Z - Note [1]	Note [3]
FFRI/ GPIO[38]	ICOCZ	Full Function UART Ring Indicator. (input)	Hi-Z - Note [1]	Note [3]
FFDTR/ GPIO[40]	ICOCZ	Full Function UART Data-Terminal-Ready. (output)	Hi-Z - Note [1]	Note [3]
FFRTS/ GPIO[41]	ICOCZ	Full Function UART Request-to-Send. (output)	Hi-Z - Note [1]	Note [3]
Bluetooth UART	Pins			
BTRXD/ GPIO[42]	ICOCZ	Bluetooth UART Receive. (input)	Hi-Z - Note [1]	Note [3]
BTTXD/ GPIO[43]	ICOCZ	Bluetooth UART Transmit. (output)	Hi-Z - Note [1]	Note [3]
BTCTS/ GPIO[44]	ICOCZ	Bluetooth UART Clear-to-Send. (input)	Hi-Z - Note [1]	Note [3]
BTRTS/ GPIO[45]	ICOCZ	Bluetooth UART Data-Terminal-Ready. (output)	Hi-Z - Note [1]	Note [3]
Standard UART	and ICP F	ins		
IRRXD/ GPIO[46]	ICOCZ	IrDA receive signal. (input) Receive pin for the FIR function. Standard UART receive. (input)	Hi-Z - Note [1]	Note [3]
IRTXD/ GPIO[47]	ICOCZ	IrDA transmit signal. (output) Transmit pin for the Standard UART, SIR and FIR functions. Standard UART transmit. (output)	Hi-Z - Note [1]	Note [3]
MMC Controller	Pins	· · ·		
MMCMD	ICOCZ	Multimedia Card Command. (bidirectional)	Hi-Z	Hi-Z
MMDAT	ICOCZ	Multimedia Card Data. (bidirectional)	Hi-Z	Hi-Z
nPCE[2]/ GPIO[53]	ICOCZ	PCMCIA card enable 2. (outputs) Selects a PCMCIA card. Bit one enables the high byte lane and bit zero enables the low byte lane. MMC clock. (output) Clock signal for the MMC Controller.	Hi-Z - Note [1]	Note [5]
L_DD[9]/ GPIO[67]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. MMC chip select 0. (output) Chip select 0 for the MMC Controller.	Hi-Z - Note [1]	Note [3]
L_DD[10]/ GPIO[68]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. MMC chip select 1. (output) Chip select 1 for the MMC Controller.	Hi-Z - Note [1]	Note [3]
L_DD[11]/ GPIO[69]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. MMC clock. (output) Clock for the MMC Controller.	Hi-Z - Note [1]	Note [3]

Table 2-7. Pin & Signal Descriptions for the PXA250 Application Processor (Sheet 6 of 9)

Pin Name	Туре	Signal Descriptions	Reset State	Sleep State
FFRXD/ GPIO[34]	ICOCZ	Full Function UART Receive. (input) MMC chip select 0. (output) Chip select 0 for the MMC Controller.	Hi-Z - Note [1]	Note [3]
FFTXD/ GPIO[39]	ICOCZ	Full Function UART Transmit. (output) MMC chip select 1. (output) Chip select 1 for the MMC Controller.	Hi-Z - Note [1]	Note [3]
MMCCLK/ GP[6]	ICOCZ	MMC clock. (output) Clock signal for the MMC Controller.	Hi-Z - Note [1]	Note [3]
MMCCS0/ GP[8]	ICOCZ	MMC chip select 0. (output) Chip select 0 for the MMC Controller.	Hi-Z - Note [1]	Note [3]
MMCCS1/ GP[9]	ICOCZ	MMC chip select 1. (output) Chip select 1 for the MMC Controller.	Hi-Z - Note [1]	Note [3]
SSP Pins				
SSPSCLK/ GPIO[23]	ICOCZ	Synchronous Serial Port Clock. (output)	Hi-Z - Note [1]	Note [3]
SSPSFRM/ GPIO[24]	ICOCZ	Synchronous Serial Port Frame. (output)	Hi-Z - Note [1]	Note [3]
SSPTXD/ GPIO[25]	ICOCZ	Synchronous Serial Port Transmit. (output)	Hi-Z - Note [1]	Note [3]
SSPRXD/ GPIO[26]	ICOCZ	Synchronous Serial Port Receive. (input)	Hi-Z - Note [1]	Note [3]
SSPEXTCLK/ GPIO[27]	ICOCZ	Synchronous Serial Port External Clock. (input)	Hi-Z - Note [1]	Note [3]
USB Client Pins				
USB_P	IAOAZ	USB Client Positive. (bidirectional)	Hi-Z	Hi-Z
USB_N	IAOAZ	USB Client Negative pin. (bidirectional)	Hi-Z	Hi-Z
AC97 Controller	and I ² S C	ontroller Pins		
BITCLK/ GPIO[28]	ICOCZ	AC97 Audio Port bit clock. (input) AC97 clock is generated by Codec 0 and fed into the PXA250 and Codec 1. AC97 Audio Port bit clock. (output) AC97 clock is generated by the PXA250 application processor. I²S bit clock. (input) I2S clock is generated externally and fed into PXA250 application processor. I²S bit clock. (output) I²S clock is generated by the PXA250 application processor.	Hi-Z - Note [1]	Note [3]
SDATA_IN0/ GPIO[29]	ICOCZ	AC97 Audio Port data in. (input) Input line for Codec 0. I ² S data in. (input) Input line for the I ² S Controller.	Hi-Z - Note [1]	Note [3]
SDATA_IN1/ GPIO[32]	ICOCZ	AC97 Audio Port data in. (input) Input line for Codec 1. I ² S system clock. (output) System clock from I ² S Controller.	Hi-Z - Note [1]	Note [3]
SDATA_OUT/ GPIO[30]	ICOCZ	AC97 Audio Port data out. (output) Output from the PXA250 to Codecs 0 and 1. I ² S data out. (output) Output line for the I ² S Controller.	Hi-Z - Note [1]	Note [3]

Table 2-7. Pin & Signal Descriptions for the PXA250 Application Processor (Sheet 7 of 9)

Pin Name	Туре	Signal Descriptions	Reset State	Sleep State
SYNC/ GPIO[31]	ICOCZ	AC97 Audio Port sync signal. (output) Frame sync signal for the AC97 Controller. 12S sync. (output) Frame sync signal for the I2S Controller.	Hi-Z - Note [1]	Note [3]
nACRESET	ОС	AC97 Audio Port reset signal. (output)	Driven Low	Driven Low
I ² C Controller P	ins			
SCL	ICOCZ	I ² C clock. (bidirectional)	Hi-Z	Hi-Z
SDA	ICOCZ	I ² C data. (bidirectional).	Hi-Z	Hi-Z
PWM Pins				
PWM[1:0]/ GPIO[17:16]	ICOCZ	Pulse Width Modulation channels 0 and 1. (outputs)	Hi-Z - Note [1]	Note [3]
DMA Pins	•			
DREQ[1:0]/ GPIO[19:20]	ICOCZ	DMA Request. (input) Notifies the DMA Controller that an external device requires a DMA transaction. DREQ[1] is GPIO[19]. DREQ[0] is GPIO[20].	Hi-Z - Note [1]	Note [3]
GPIO Pins				
GPIO[1:0]	ICOCZ	General Purpose I/O. Wakeup sources on both rising and falling edges on nRESET.	Hi-Z - Note [1]	Note [3]
GPIO[14:2]	ICOCZ	General Purpose I/O. More wakeup sources for sleep mode.	Hi-Z - Note [1]	Note [3]
GPIO[22:21]	ICOCZ	General Purpose I/O. Additional General Purpose I/O pins.	Hi-Z - Note [1]	Note [3]
Crystal and Clo	ck Pins			
PXTAL	ОА	3.6864 Mhz crystal output. No external laps are required.	Note [2]	Note [2]
PEXTAL	IA	3.6864 Mhz crystal input. No external laps are required.	Note [2]	Note [2]
TXTAL	ОА	32.768 Khz crystal output. No external laps are required.	Note [2]	Note [2]
TEXTAL	IA	32.768 Khz crystal input. No external laps are required.	Note [2]	Note [2]
L_DD[12]/ GPIO[70]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. RTC clock. (output) Real time clock 1 Hz tick.	Hi-Z - Note [1]	Note [3]
L_DD[13]/ GPIO[71]	ICOCZ	LCD display data. (output) Transfers the pixel information from the LCD Controller to the external LCD panel. 3.6864 MHz clock. (output) Output from 3.6864 MHz oscillator.	Hi-Z - Note [1]	Note [3]
L_DD[14]/ GPIO[72]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. 32 kHz clock. (output) Output from the 32 kHz oscillator.	Hi-Z - Note [1]	Note [3]
48MHz/GP[7]	ICOCZ	48 MHz clock. (output) Peripheral clock output derived from the PLL. NOTE: This clock is only generated when the USB unit clock enable is set.	Hi-Z - Note [1]	Note [3]
RTCCLK/ GP[10]	ICOCZ	Real time clock. (output) 1 Hz output derived from the 32kHz or 3.6864MHz output.	Hi-Z - Note [1]	Note [3]

Table 2-7. Pin & Signal Descriptions for the PXA250 Application Processor (Sheet 8 of 9)

Pin Name	Туре	Signal Descriptions	Reset State	Sleep State
3.6MHz/GP[11]	ICOCZ	3.6864 MHz clock. (output) Output from 3.6864 MHz oscillator.	Hi-Z - Note [1]	Note [3]
32kHz/GP[12]	ICOCZ	32 kHz clock. (output) Output from the 32 kHz oscillator.	Hi-Z - Note [1]	Note [3]
Miscellaneous P	ins			
BOOT_SEL [2:0]	IC	Boot select pins. (input) Indicates type of boot device.	Input	Input
PWR_EN	ОС	Power Enable for the power supply. (output) When negated, it signals the power supply to remove power to the core because the system is entering Sleep Mode.	Driven High	Driven low while entering Sleep Mode. Driven high when sleep exit sequence begins.
nBATT_FAULT	IC	Main Battery Fault. (input) Signals that main battery is low or removed. Assertion causes PXA250 application processor to enter Sleep Mode or force an Imprecise Data Exception, which cannot be masked. PXA250 will not recognize a wakeup event while this signal is asserted. Minimum assertion time for nBATT_FAULT is 1 ms.	Input	Input
nVDD_FAULT	IC	VDD Fault. (input) Signals that the main power source is going out of regulation. nVDD_FAULT causes the PXA250 application processor to enter Sleep Mode or force an Imprecise Data Exception, which cannot be masked. nVDD_FAULT is ignored after a wakeup event until the power supply timer completes (approximately 10 ms). Minimum assertion time for nVDD_FAULT is 1 ms.	Input	Input
nRESET	IC	Hard reset. (input) Level sensitive input used to start the processor from a known address. Assertion causes the current instruction to terminate abnormally and causes a reset. When nRESET is driven high, the processor starts execution from address 0. nRESET must remain low until the power supply is stable and the internal 3.6864 MHz oscillator has stabilized.	Input	Input. Driving low during sleep will cause normal reset sequence and exit from sleep mode.
nRESET_OUT	ос	Reset Out. (output) Asserted when nRESET is asserted and deasserts after nRESET is deasserted but before the first instruction fetch. nRESET_OUT is also asserted for "soft" reset events: sleep, watchdog reset, or GPIO reset.	Driven low during any reset sequence - driven high prior to first fetch.	Driven Low
JTAG and Test F	Pins			
nTRST	IC	JTAG Test Interface Reset. Resets the JTAG/Debug port. If JTAG/Debug is used, drive nTRST from low to high either before or at the same time as nRESET. If JTAG is not used, nTRST must be either tied to nRESET or tied low.	Input	Input
TDI	IC	JTAG test data input. (input) Data from the JTAG controller is sent to the PXA250 using this pin. This pin has an internal pull-up resistor.	Input	Input
TDO	OCZ	JTAG test data output. (output) Data from the PXA250 application processor is returned to the JTAG controller using this pin.	Hi-Z	Hi-Z
TMS	IC	JTAG test mode select. (input) Selects the test mode required from the JTAG controller. This pin has an internal pull-up resistor.	Input	Input
тск	IC	JTAG test clock. (input) Clock for all transfers on the JTAG test interface.	Input	Input

Table 2-7. Pin & Signal Descriptions for the PXA250 Application Processor (Sheet 9 of 9)

Pin Name	Туре	Signal Descriptions	Reset State	Sleep State
TEST	IC	Test Mode. (input) Reserved. Must be grounded.	Input	Input
TESTCLK	IC	Test Clock. (input) Reserved. Must be grounded.	Input	Input
Power and Grou	ınd Pins			
VCC	SUP	Positive supply for internal logic. Must be connected to the low voltage (.85 - 1.3v) supply on the PCB.	Powered	Note [6]
VSS	SUP	Ground supply for internal logic. Must be connected to the common ground plane on the PCB.	Grounded	Grounded
PLL_VCC	SUP	Positive supply for PLLs and oscillators. Must be connected to the common low voltage supply.	Powered	Note [6]
PLL_VSS	SUP	Ground supply for the PLL. Must be connected to common ground plane on the PCB.	Grounded	Grounded
VCCQ	SUP	Positive supply for all CMOS I/O except memory bus and PCMCIA pins. Must be connected to the common 3.3v supply on the PCB.	Powered	Note [7]
VSSQ	SUP	Ground supply for all CMOS I/O except memory bus and PCMCIA pins. Must be connected to the common ground plane on the PCB.	Grounded	Grounded
VCCN	SUP	Positive supply for memory bus and PCMCIA pins. Must be connected to the common 3.3v or 2.5v supply on the PCB.	Powered	Note [7]
VSSN	SUP	Ground supply for memory bus and PCMCIA pins. Must be connected to the common ground plane on the PCB.	Grounded	Grounded

Table 2-8. Pin Description Notes

Note	Description
[1]	GPIO Reset Operation: Configured as GPIO inputs by default after any reset. The input buffers for these pins are disabled to prevent current drain and must be enabled prior to use by clearing the Read Disable Hold (RDH) bit described in Section 3.5.7, "Power Manager Sleep Status Register" on page 3-27.
[2]	Crystal oscillator pins: These pins are used to connect the external crystals to the on-chip oscillators. Refer to Section 3.3.1, "32.768 kHz Oscillator" on page 3-4 and Section 3.3.2, "3.6864 MHz Oscillator" on page 3-4 for details on Sleep Mode operation.
[3]	GPIO Sleep operation: During the transition into sleep mode, the state of these pins is determined by the corresponding PGSRn. See Section 3.5.9, "Power Manager GPIO Sleep State Registers" and Section 4.1.3.2, "GPIO Pin Direction Registers (GPDR)" on page 4-8. If selected as an input, this pin does not drive during sleep. If selected as an output, the value contained in the Sleep State Register is driven out onto the pin and held there while the PXA250 is in Sleep Mode.
	GPIOs configured as inputs after exiting Sleep Mode cannot be used until PSSR[RDH] is cleared.
[4]	Static Memory Control Pins: During Sleep Mode, these pins can be programmed to either drive the value in the Sleep State Register or to be placed in Hi-Z. To select the Hi-Z state, software must set the FS bit in the Power Manager General Configuration Register. If PCFR[FS] is not set, then during the transition to sleep these pins function as described in [3], above. For nWE, nOE, and nCS[0], if PCFR[FS] is not set, they are driven high by the Memory Controller before entering sleep. If PCFR[FS] is set, these pins are placed in Hi-Z.

Table 2-8. Pin Description Notes

Note	Description
[5]	PCMCIA Control Pins: During Sleep Mode: Can be programmed either to drive the value in the Sleep State Register or to be placed in Hi-Z. To select the Hi-Z state, software must set PCFR[FP]. If it is not set, then during the transition to sleep these pins function as described in [3], above.
[6]	During sleep, this supply may be driven low.
[7]	Remains powered in sleep mode.

Table 2-9 describes the PXA210 pins.

Table 2-9. Pin & Signal Descriptions for the PXA210 Application Processor (Sheet 1 of 7)

Pin Name	Туре	Signal Descriptions	Reset State	Sleep State
Memory Contro	ller Pins			
MA[25:0]	OCZ	Memory address bus. (output) Signals the address requested for memory accesses.	Driven Low	Driven Low
MD[15:0]	ICOCZ	Memory data bus. (input/output) Lower 16 bits of the data bus.	Hi-Z	Driven Low
nOE	OCZ	Memory output enable. (output) Connect to the output enables of memory devices to control data bus drivers.	Driven High	Note [4]
nWE	ocz	Memory write enable. (output) Connect to the write enables of memory devices.	Driven High	Note [4]
nSDCS[1:0]	OCZ	SDRAM CS for banks 1 and 0. (output) Connect to the chip select (CS) pins for SDRAM. For the PXA210 application processor nSDCS0 can be Hi-Z, nSDCS1 cannot.	Driven High	Note [5]
DQM[1:0]	OCZ	SDRAM DQM for data bytes 1 and 0. (output) Connect to the data output mask enables (DQM) for SDRAM.	Driven Low	Driven Low
nSDRAS	OCZ	SDRAM RAS. (output) Connect to the row address strobe (RAS) pins for all banks of SDRAM.	Driven High	Driven High
nSDCAS	OCZ	SDRAM CAS. (output) Connect to the column address strobe (CAS) pins for all banks of SDRAM.	Driven High	Driven High
SDCKE[0]	ОС	SDRAM and/or Synchronous Static Memory clock enable. (output) Connect to the CKE pins of SMROM and SDRAM-timing Synchronous Flash. The memory controller provides control register bits for deassertion.	Driven Low	Driven Low
SDCKE[1]	OC	SDRAM and/or Synchronous Static Memory clock enable. (output) Connect to the clock enable pins of SDRAM. It is deasserted during sleep. SDCKE[1] is always deasserted upon reset. The memory controller provides control register bits for deassertion.	Driven low	Driven low

Table 2-9. Pin & Signal Descriptions for the PXA210 Application Processor (Sheet 2 of 7)

Pin Name	Туре	Signal Descriptions	Reset State	Sleep State
SDCLK[0]	ос	Synchronous Static Memory clock. (output) Connect to the clock (CLK) pins of SMROM. It is driven by either the internal memory controller clock, or the internal memory controller clock divided by 2. At reset, all clock pins are free running at the divide by 2 clock speed and may be turned off via free running control register bits in the memory controller. The memory controller also provides control register bits for clock division and deassertion of each SDCLK pin. SDCLK[0] control register assertion bit defaults to on if the boot-time static memory bank 0 is configured for SMROM.	Driven Low	Driven Low
SDCLK[1]	OCZ	SDRAM Clocks (output) Connect SDCLK[1] to the clock pins of SDRAM in bank pair 0/1. They are driven by either the internal memory controller clock, or the internal memory controller clock divided by 2. At reset, all clock pins are free running at the divide by 2 clock speed and may be turned off via free running control register bits in the memory controller. The memory controller also provides control register bits for clock division and deassertion of each SDCLK pin. SDCLK[1] control register assertion bit is always deasserted upon reset.	1 Driveri Low	Divertion
nCS[5]/ GPIO[33]	ICOCZ			
nCS[4]/ GPIO[80]	ICOCZ	Static chip selects. (output) Chip selects to static		
nCS[3]/ GPIO[79]	ICOCZ	memory devices such as ROM and Flash. Individually programmable in the memory configuration registers. nCS[5:0] can be used with variable latency I/O devices.	Hi-Z - Note [1]	Note [4]
nCS[2]/ GPIO[78]	ICOCZ	Theo[5.0] can be used with variable faterity in devices.		
nCS[1]/ GPIO[15]	ICOCZ			
nPWE/ GPIO[49]	ICOCZ	VLIO write enable (output). Used as the write enable signal for Variable Latency I/O.	Hi-Z - Note [1]	Note [5]
nCS[0]	ICOCZ	Static chip select 0. (output) Chip select for the boot memory. nCS[0] is a dedicated pin.	Driven High	Note [4]
RD/nWR	OCZ	Read/Write for static interface. (output) Signals that the current transaction is a read or write.	Driven Low	
RDY/ GPIO[18]	ICOCZ	Variable Latency I/O Ready pin. (input) Notifies the memory controller when an external bus device is ready to transfer data.	Hi-Z - Note [1]	Note [3]
L_DD[8]/ GPIO[66]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. Memory Controller alternate bus master request. (input) Allows an external device to request the system bus from the Memory Controller.	Hi-Z - Note [1]	Note [3]
L_DD[15]/ GPIO[73]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. Memory Controller grant. (output) Notifies an external device that it has been granted the system bus.	Hi-Z - Note [1]	Note [3]

Table 2-9. Pin & Signal Descriptions for the PXA210 Application Processor (Sheet 3 of 7)

Pin Name	Туре	Signal Descriptions	Reset State	Sleep State
LCD Controller	Pins			
L_DD(7:0)/ GPIO[65:58]	ICOCZ	LCD display data. (outputs) Transfers pixel information from the LCD Controller to the external LCD panel.	Hi-Z - Note [1]	Note [3]
L_DD[8]/	10007	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel.	11: 7 11	N
GPIO[66]	ICOCZ	Memory Controller alternate bus master request. (input) Allows an external device to request the system bus from the Memory Controller.	Hi-Z - Note [1]	Note [3]
L_DD[9]/ GPIO[67]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. MMC chip select 0. (output) Chip select 0 for the MMC Controller.	Hi-Z - Note [1]	Note [3]
L_DD[10]/ GPIO[68]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. MMC chip select 1. (output) Chip select 1 for the MMC Controller.	Hi-Z - Note [1]	Note [3]
L_DD[11]/ GPIO[69]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. MMC clock. (output) Clock for the MMC Controller.	Hi-Z - Note [1]	Note [3]
L_DD[12]/ GPIO[70]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. RTC clock. (output) Real time clock 1 Hz tick.	Hi-Z - Note [1]	Note [3]
L_DD[13]/ GPIO[71]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. 3.6864 MHz clock. (output) Output from 3.6864 MHz oscillator.	Hi-Z - Note [1]	Note [3]
L_DD[14]/ GPIO[72]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. 32 kHz clock. (output) Output from the 32 kHz oscillator.	Hi-Z - Note [1]	Note [3]
L_DD[15]/ GPIO[73]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. Memory Controller grant. (output) Notifies an external device it has been granted the system bus.	Hi-Z - Note [1]	Note [3]
L_FCLK/ GPIO[74]	ICOCZ	LCD frame clock. (output) Indicates the start of a new frame. Also referred to as Vsync.	Hi-Z - Note [1]	Note [3]
L_LCLK/ GPIO[75]	ICOCZ	LCD line clock. (output) Indicates the start of a new line. Also referred to as Hsync.	Hi-Z - Note [1]	Note [3]
L_PCLK/ GPIO[76]	ICOCZ	LCD pixel clock. (output) Clocks valid pixel data into the LCD's line shift buffer.	Hi-Z - Note [1]	Note [3]
L_BIAS/ GPIO[77]	ICOCZ	AC bias drive. (output) Notifies the panel to change the polarity for some passive LCD panel. For TFT panels, this signal indicates valid pixel data.	Hi-Z - Note [1]	Note [3]
Full Function U/	ART Pins			
FFRXD/ GPIO[34]	ICOCZ	Full Function UART Receive. (input) MMC chip select 0. (output) Chip select 0 for the MMC Controller.	Hi-Z - Note [1]	Note [3]

Table 2-9. Pin & Signal Descriptions for the PXA210 Application Processor (Sheet 4 of 7)

Pin Name	Туре	Signal Descriptions	Reset State	Sleep State
FFTXD/ GPIO[39]	ICOCZ	Full Function UART Transmit. (output) MMC chip select 1. (output) Chip select 1 for the MMC Controller.	Hi-Z - Note [1]	Note [3]
Bluetooth UART	Pins			
BTRXD/ GPIO[42]	ICOCZ	Bluetooth UART Receive. (input)	Hi-Z - Note [1]	Note [3]
BTTXD/ GPIO[43]	ICOCZ	Bluetooth UART Transmit. (output)	Hi-Z - Note [1]	Note [3]
BTCTS/ GPIO[44]	ICOCZ	Bluetooth UART Clear-to-Send. (input)	Hi-Z - Note [1]	Note [3]
BTRTS/ GPIO[45]	ICOCZ	Bluetooth UART Data-Terminal-Ready. (output)	Hi-Z - Note [1]	Note [3]
Standard UART	and ICP F	Pins		
IRRXD/ GPIO[46]	ICOCZ	IrDA receive signal. (input) Receive pin for the FIR function. Standard UART receive. (input)	Hi-Z - Note [1]	Note [3]
IRTXD/ GPIO[47]	ICOCZ	IrDA transmit signal. (output) Transmit pin for the Standard UART, SIR and FIR functions. Standard UART transmit. (output)	Hi-Z - Note [1]	Note [3]
MMC Controller	Pins			
MMCMD	ICOCZ	Multimedia Card Command. (bidirectional)	Hi-Z	Hi-Z
MMDAT	ICOCZ	Multimedia Card Data. (bidirectional)	Hi-Z	Hi-Z
GPIO[53]	ICOCZ	MMC clock. (output) Clock signal for the MMC Controller.	Hi-Z - Note [1]	Note [5]
L_DD[9]/ GPIO[67]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. MMC chip select 0. (output) Chip select 0 for the MMC Controller.	Hi-Z - Note [1]	Note [3]
L_DD[10]/ GPIO[68]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. MMC chip select 1. (output) Chip select 1 for the MMC Controller.	Hi-Z - Note [1]	Note [3]
L_DD[11]/ GPIO[69]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. MMC clock. (output) Clock for the MMC Controller.	Hi-Z - Note [1]	Note [3]
FFRXD/ GPIO[34]	ICOCZ	Full Function UART Receive. (input) MMC chip select 0. (output) Chip select 0 for the MMC Controller.	Hi-Z - Note [1]	Note [3]
FFTXD/ GPIO[39]	ICOCZ	Full Function UART Transmit. (output) MMC chip select 1. (output) Chip select 1 for the MMC Controller.	Hi-Z - Note [1]	Note [3]
SSP Pins				
SSPSCLK/ GPIO[23]	ICOCZ	Synchronous Serial Port Clock. (output)	Hi-Z - Note [1]	Note [3]

Table 2-9. Pin & Signal Descriptions for the PXA210 Application Processor (Sheet 5 of 7)

Pin Name	Туре	Signal Descriptions	Reset State	Sleep State
SSPSFRM/ GPIO[24]	ICOCZ	Synchronous Serial Port Frame. (output)	Hi-Z - Note [1]	Note [3]
SSPTXD/ GPIO[25]	ICOCZ	Synchronous Serial Port Transmit. (output)	Hi-Z - Note [1]	Note [3]
SSPRXD/ GPIO[26]	ICOCZ	Synchronous Serial Port Receive. (input)	Hi-Z - Note [1]	Note [3]
SSPEXTCLK/ GPIO[27]	ICOCZ	Synchronous Serial Port External Clock. (input)	Hi-Z - Note [1]	Note [3]
USB Client Pins	;			
USB_P	IAOAZ	USB Client Positive. (bidirectional)	Hi-Z	Hi-Z
USB_N	IAOAZ	USB Client Negative pin. (bidirectional)	Hi-Z	Hi-Z
AC97 Controller	and I ² S C	Controller Pins		
BITCLK/ GPIO[28]	ICOCZ	AC97 Audio Port bit clock. (input) AC97 clock is generated by Codec 0 and fed into the PXA210 and Codec 1. AC97 Audio Port bit clock. (output) AC97 clock is generated by the PXA210 application processor. I²S bit clock. (input) I²S clock is generated externally and fed into PXA210 application processor. I²S bit clock. (output) I²S clock is generated by the PXA210 application processor.	Hi-Z - Note [1]	Note [3]
SDATA_IN0/ GPIO[29]	ICOCZ	AC97 Audio Port data in. (input) Input line for Codec 0. I ² S data in. (input) Input line for the I ² S Controller.	Hi-Z - Note [1]	Note [3]
SDATA_IN1/ GPIO[32]	ICOCZ	AC97 Audio Port data in. (input) Input line for Codec 1. I ² S system clock. (output) System clock from I ² S Controller.	Hi-Z - Note [1]	Note [3]
SDATA_OUT/ GPIO[30]	ICOCZ	AC97 Audio Port data out. (output) Output from the PXA210 application processor to codecs 0 and 1. 12S data out. (output) Output line for the I2S Controller.	Hi-Z - Note [1]	Note [3]
SYNC/ GPIO[31]	ICOCZ	AC97 Audio Port sync signal. (output) Frame sync signal for the AC97 Controller. I ² S sync. (output) Frame sync signal for the I ² S Controller.	Hi-Z - Note [1]	Note [3]
nACRESET	ОС	AC97 Audio Port reset signal. (output)	Driven Low	Driven Low
I ² C Controller P	ins			
SCL	ICOCZ	I ² C clock. (bidirectional)	Hi-Z	Hi-Z
SDA	ICOCZ	I ² C data. (bidirectional).	Hi-Z	Hi-Z
PWM Pins	'			
PWM[1:0]/ GPIO[17:16]	ICOCZ	Pulse Width Modulation channels 0 and 1. (outputs)	Hi-Z - Note [1]	Note [3]
GPIO Pins	'			
GPIO[1:0]	ICOCZ	General Purpose I/O. Wakeup sources on both rising and falling edges on nRESET.	Hi-Z - Note [1]	Note [3]
		· ·	t	1

Table 2-9. Pin & Signal Descriptions for the PXA210 Application Processor (Sheet 6 of 7)

Pin Name	Туре	Signal Descriptions	Reset State	Sleep State
GPIO[57:48]	ICOCZ	General Purpose I/O. Additional general purpose I/O pins.	Hi-Z - Note [1]	Note [3]
Crystal and Clo	ck Pins			
PXTAL	IA	3.6864 Mhz crystal input.	Note [2]	Note [2]
PEXTAL	OA	3.6864 Mhz crystal output.	Note [2]	Note [2]
TXTAL	IA	32.768 khz crystal input.	Note [2]	Note [2]
TEXTAL	OA	32.768 khz crystal output.	Note [2]	Note [2]
L_DD[12]/ GPIO[70]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel.	Hi-Z - Note [1]	Note [3]
L_DD[13]/ GPIO[71]	ICOCZ	RTC clock. (output) Real time clock 1 Hz tick. LCD display data. (output) Transfers the pixel information from the LCD Controller to the external LCD panel. 3.6864 MHz clock. (output) Output from 3.6864 MHz oscillator.	Hi-Z - Note [1]	Note [3]
L_DD[14]/ GPIO[72]	ICOCZ	LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. 32 kHz clock. (output) Output from the 32 kHz oscillator.	Hi-Z - Note [1]	Note [3]
Miscellaneous F	Pins			
BOOT_SEL [2:0]	IC	Boot select pins. (input) Indicates type of boot device.	Input	Input
PWR_EN	ос	Power Enable for the power supply. (output) When negated, it signals the power supply to remove power to the core because the system is entering Sleep Mode.	Driven High	Driven low while entering Sleep Mode. Driven high when sleep exit sequence begins.
nBATT_FAULT	IC	Main Battery Fault. (input) Signals that main battery is low or removed. Assertion causes the PXA210 application processor to enter Sleep Mode or force an Imprecise Data Exception, which cannot be masked. The PXA210 application processor will not recognize a wakeup event while this signal is asserted. Minimum assertion time for nBATT_FAULT is 1 ms.	Input	Input
nVDD_FAULT	IC	VDD Fault. (input) Signals that the main power source is going out of regulation. nVDD_FAULT causes the PXA210 application processor to enter Sleep Mode or force an Imprecise Data Exception, which cannot be masked. nVDD_FAULT is ignored after a wakeup event until the power supply timer completes (approximately 10 ms). Minimum assertion time for nVDD_FAULT is 1 ms.	Input	Input
nRESET	IC	Hard reset. (input) Level sensitive input used to start the processor from a known address. Assertion causes the current instruction to terminate abnormally and causes a reset. When nRESET is driven high, the processor starts execution from address 0. nRESET must remain low until the power supply is stable and the internal 3.6864 MHz oscillator has stabilized.	Input	Input. Driving low during sleep will cause normal reset sequence and exit from sleep mode.
nRESET_OUT	ос	Reset Out. (output) Asserted when nRESET is asserted and deasserts after nRESET is deasserted but before the first instruction fetch. nRESET_OUT is also asserted for "soft" reset events: sleep, watchdog reset, or GPIO reset.	Driven low during any reset sequence - driven high prior to first fetch.	Driven Low

Table 2-9. Pin & Signal Descriptions for the PXA210 Application Processor (Sheet 7 of 7)

Pin Name	Type	Signal Descriptions	Reset State	Sleep State
JTAG and Test	Pins			
nTRST	IC	JTAG Test Interface Reset. Resets the JTAG/Debug port. If JTAG/Debug is used, drive nTRST from low to high either before or at the same time as nRESET. If JTAG is not used, nTRST must be either tied to nRESET or tied low.	Input	Input
TDI	IC	JTAG test data input. (input) Data from the JTAG controller is sent to the PXA210 application processor using this pin. This pin has an internal pull-up resistor.	Input	Input
TDO	OCZ	JTAG test data output. (output) Data from the PXA210 application processor is returned to the JTAG controller using this pin.	Hi-Z	Hi-Z
TMS	IC	JTAG test mode select. (input) Selects the test mode required from the JTAG controller. This pin has an internal pull-up resistor.	Input	Input
TCK	IC	JTAG test clock. (input) Clock for all transfers on the JTAG test interface.	Input	Input
TEST	IC	Test Mode. (input) Reserved. Must be grounded.	Input	Input
TESTCLK	IC	Test Clock. (input) Reserved. Must be grounded.	Input	Input
Power and Gro	ound Pins			
VCC	SUP	Positive supply for internal logic. Must be connected to the low voltage (.85 - 1.3 V) supply on the PCB.	Powered	Note [5]
VSS	SUP	Ground supply for internal logic. Must be connected to the common ground plane on the PCB.	Grounded	Grounded
PLL_VCC	SUP	Positive supply for PLLs and oscillators. Must be connected to the common low voltage supply.	Powered	Note [5]
PLL_VSS	SUP	Ground supply for the PLL. Must be connected to common ground plane on the PCB.	Grounded	Grounded
VCCQ	SUP	Positive supply for all CMOS I/O except memory bus. Must be connected to the common 3.3v supply on the PCB.	Powered	Note [6]
VSSQ	SUP	Ground supply for all CMOS I/O except memory bus. Must be connected to the common ground plane on the PCB.	Grounded	Grounded
VCCN	SUP	Positive supply for memory bus. Must be connected to the common 3.3v or 2.5v supply on the PCB.	Powered	Note [6]
VSSN	SUP	Ground supply for memory bus and some GPIO pins. Must be connected to the common ground plane on the PCB.	Grounded	Grounded

Table 2-10. Pin Description Notes

Note	Description
[1]	GPIO Reset Operation: Configured as GPIO inputs by default after any reset. The input buffers for these pins are disabled to prevent current drain and must be enabled prior to use by clearing the Read Disable Hold (RDH) bit described in Section 3.5.7, "Power Manager Sleep Status Register" on page 3-27.
[2]	Crystal oscillator pins: These pins are used to connect the external crystals to the on-chip oscillators. Refer to Section 3.3.1, "32.768 kHz Oscillator" on page 3-4 and Section 3.3.2, "3.6864 MHz Oscillator" on page 3-4 for details on Sleep Mode operation.
[3]	GPIO Sleep operation: During the transition into sleep mode, the state of these pins is determined by the corresponding PGSRn. See Section 3.5.9, "Power Manager GPIO Sleep State Registers" and Section 4.1.3.2, "GPIO Pin Direction Registers (GPDR)" on page 4-8. If selected as an input, this pin does not drive during sleep. If selected as an output, the value contained in the Sleep State Register is driven out onto the pin and held there while the PXA210 is in Sleep Mode.
	GPIOs configured as inputs after exiting Sleep Mode cannot be used until PSSR[RDH] is cleared.
[4]	Static Memory Control Pins: During Sleep Mode, these pins can be programmed to either drive the value in the Sleep State Register or to be placed in Hi-Z. To select the Hi-Z state, software must set the FS bit in the Power Manager General Configuration Register. If PCFR[FS] is not set, then during the transition to sleep these pins function as described in [3], above. For nWE, nOE, and nCS[0], if PCFR[FS] is not set, they are driven high by the Memory Controller before entering sleep. If PCFR[FS] is set, these pins are placed in Hi-Z.
[5]	During sleep, this supply can driven low.
[6]	Remains powered in sleep mode.

2.13 Processor Options

The PXA250 application processor is a 17x17 mm PBGA. The PXA210 application processor is a 13x13 mm T-PBGA.

The PXA250 application processor contains all signals. Table 2-11 indicates the signals that are **not supported** for the PXA210 application processor. The type of application processor may be read by software

Table 2-11. Signals Not Supported for the PXA210 Application Processor (Sheet 1 of 2)

Pin Name	Pin Function	If Accessed
MD[31:16]	Upper data bus	Not accessible
DQM[3:2]	SDRAM Byte select	Not accessible
nSDCS[3:2]	SDRAM bank chip selects	Not accessible
nSDCLK[2]	SDRAM clock	Not accessible
DREQ[1:0]/ GPIO[20:19]	DMA Requests	Not accessible
FFCTS/GPIO[35]	Modem Flow Control - Clear to Send	Reads return zero. Writes ignored.
FFDCD/GPIO[36]	Modem Flow Control - Carrier Detect	Reads return zero. Writes ignored.
FFDSR/GPIO[37]	Modem Flow Control - Data Set Ready	Reads return zero. Writes ignored.
FFRI/GPIO[38]	Modem Flow Control - Ring Indicate	Reads return zero. Writes ignored.

Table 2-11. Signals Not Supported for the PXA210 Application Processor (Sheet 2 of 2)

Pin Name	Pin Function	If Accessed
FFDTR/GPIO[40]	Modem Flow Control - Data Terminal Ready	Reads return zero. Writes ignored.
FFRTS/GPIO[41]	Modem Flow Control - Ready to Send	Reads return zero. Writes ignored.
GPIO[14:2][22:21]	General Purpose I/O pins.	Reads return zero. Writes ignored.

Note: The PXA210 application processor does not support PCMCIA, but it does support additional GPIOs through the pins that the PXA250 application processor uses for PCMCIA.

2.14 Memory Map

Figure 2-3 on page 2-29 and Figure 2-2 on page 2-28 show the full the application processor memory map.

Any unused register space from 0x4000 0000 to 0x4BFF FFFF is reserved.

Note: Accessing reserved portions of the memory map will give unpredictable results.

The PCMCIA interface is divided into Socket 0 and Socket 1 space. These two partitions are each subdivided into I/O, memory and attribute space. Each is allocated 128 MB of memory space.

Figure 2-2. Memory Map (Part One) — From 0x8000 0000 to 0xFFFF FFFF

y wap (Fait C	
0xFFFF FFFF 0xFC00 0000	Reserved (64 MB)
0xF800 0000	Reserved (64 MB)
0xF400 0000	Reserved (64 MB)
0xF000 0000	Reserved (64 MB)
0xEC00 0000	Reserved (64 MB)
0xE800 0000	Reserved (64 MB)
0xE400 0000	Reserved (64 MB)
	Reserved (64 MB)
0xE000 0000	Reserved (64 MB)
0xDC00 0000	
0xD800 0000	Reserved (64 MB)
0xD400 0000	Reserved (64 MB)
0xD000 0000	Reserved (64 MB)
0xCC00 0000	Reserved (64 MB)
0xC800 0000	Reserved (64 MB)
0xC400 0000	Reserved (64 MB)
0xC000 0000	Reserved (64 MB)
0xBC00 0000	Reserved (64 MB)
0xB800 0000	Reserved (64 MB)
0xB400 0000	Reserved (64 MB)
0xB000 0000	Reserved (64 MB)
0xAC00 0000	SDRAM Bank 3 (64 MB)
0xA800 0000	SDRAM Bank 2 (64 MB)
0xA400 0000	SDRAM Bank 1 (64 MB)
0xA000 0000	SDRAM Bank 0 (64 MB)
0x9C00 0000	Reserved (64 MB)
0x9800 0000	Reserved (64 MB)
0x9400 0000	Reserved (64 MB)
0x9000 0000	Reserved (64 MB)
0x8C00 0000	Reserved (64 MB)
0x8800 0000	Reserved (64 MB)
0x8400 0000	Reserved (64 MB)
	Reserved (64 MB)
0x8000 0000	

Figure 2-3. Memory Map (Part Two) — From 0x0000 0000 to 0x7FFF FFFF

0x7FFF FFFF	Decembed (CA MD)
0x7C00 0000	Reserved (64 MB)
0x7800 0000	Reserved (64 MB)
0x7400 0000	Reserved (64 MB)
0x7000 0000	Reserved (64 MB)
0x6C00 0000	Reserved (64 MB)
0x6800 0000	Reserved (64 MB)
0x6400 0000	Reserved (64 MB)
0x6000 0000	Reserved (64 MB)
0x5C00 0000	Reserved (64 MB)
0x5800 0000	Reserved (64 MB)
0x5400 0000	Reserved (64 MB)
0x5000 0000	Reserved (64 MB)
0x4C00 0000	Reserved (64 MB)
0x4800 0000	Memory Mapped registers (Memory Ctl)
0x4400 0000	Memory Mapped registers (LCD)
0x4000 0000	Memory Mapped registers (Peripherals)
0x3C00 0000	
0x3C00 0000 0x3800 0000	PCMCIA/CF- Slot 1 (256 MB)
	PCMCIA/CF- Slot 1 (256 MB)
0x3800 0000	PCMCIA/CF- Slot 1 (256 MB)
0x3800 0000 0x3400 0000	PCMCIA/CF- Slot 1 (256 MB)
0x3800 0000 0x3400 0000 0x3000 0000	
0x3800 0000 0x3400 0000 0x3000 0000 0x2C00 0000	PCMCIA/CF - Slot 0 (256MB)
0x3800 0000 0x3400 0000 0x3000 0000 0x2C00 0000 0x2800 0000	
0x3800 0000 0x3400 0000 0x3000 0000 0x2C00 0000 0x2800 0000 0x2400 0000	
0x3800 0000 0x3400 0000 0x3000 0000 0x2C00 0000 0x2800 0000 0x2400 0000 0x2000 0000	PCMCIA/CF - Slot 0 (256MB)
0x3800 0000 0x3400 0000 0x3000 0000 0x2C00 0000 0x2800 0000 0x2400 0000 0x2000 0000	PCMCIA/CF - Slot 0 (256MB) Reserved (64 MB)
0x3800 0000 0x3400 0000 0x3000 0000 0x2C00 0000 0x2800 0000 0x2400 0000 0x2000 0000 0x1C00 0000 0x1800 0000 0x1400 0000	PCMCIA/CF - Slot 0 (256MB) Reserved (64 MB) Reserved (64 MB)
0x3800 0000 0x3400 0000 0x3000 0000 0x2C00 0000 0x2800 0000 0x2400 0000 0x1C00 0000 0x1800 0000 0x1400 0000 0x1000 0000	PCMCIA/CF - Slot 0 (256MB) Reserved (64 MB) Reserved (64 MB) Static Chip Select 5 (64 MB)
0x3800 0000 0x3400 0000 0x3000 0000 0x2C00 0000 0x2800 0000 0x2400 0000 0x1C00 0000 0x1800 0000 0x1400 0000 0x1000 0000 0x0C00 0000	PCMCIA/CF - Slot 0 (256MB) Reserved (64 MB) Reserved (64 MB) Static Chip Select 5 (64 MB) Static Chip Select 4 (64 MB)
0x3800 0000 0x3400 0000 0x3000 0000 0x2C00 0000 0x2800 0000 0x2400 0000 0x1C00 0000 0x1800 0000 0x1400 0000 0x1000 0000 0x0C00 0000	PCMCIA/CF - Slot 0 (256MB) Reserved (64 MB) Reserved (64 MB) Static Chip Select 5 (64 MB) Static Chip Select 4 (64 MB) Static Chip Select 3 (64 MB)
0x3800 0000 0x3400 0000 0x3000 0000 0x2C00 0000 0x2800 0000 0x2400 0000 0x1C00 0000 0x1800 0000 0x1400 0000 0x1000 0000 0x0C00 0000	PCMCIA/CF - Slot 0 (256MB) Reserved (64 MB) Reserved (64 MB) Static Chip Select 5 (64 MB) Static Chip Select 4 (64 MB) Static Chip Select 3 (64 MB) Static Chip Select 2 (64 MB)

2.15 Register Address Summary

Table 2-12. Register Address Summary (Sheet 1 of 11)

Unit	Address	Register Symbol	Register Description
DMA Controller	0x4000 0000		
	0x4000 0000	DCSR0	DMA Control / Status Register for Channel 0
	0x4000 0004	DCSR1	DMA Control / Status Register for Channel 1
	0x4000 0008	DCSR2	DMA Control / Status Register for Channel 2
	0x4000 000C	DCSR3	DMA Control / Status Register for Channel 3
	0x4000 0010	DCSR4	DMA Control / Status Register for Channel 4
	0x4000 0014	DCSR5	DMA Control / Status Register for Channel 5
	0x4000 0018	DCSR6	DMA Control / Status Register for Channel 6
	0x4000 001C	DCSR7	DMA Control / Status Register for Channel 7
	0x4000 0020	DCSR8	DMA Control / Status Register for Channel 8
	0x4000 0024	DCSR9	DMA Control / Status Register for Channel 9
	0x4000 0028	DCSR10	DMA Control / Status Register for Channel 10
	0x4000 002C	DCSR11	DMA Control / Status Register for Channel 11
	0x4000 0030	DCSR12	DMA Control / Status Register for Channel 12
	0x4000 0034	DCSR13	DMA Control / Status Register for Channel 13
	0x4000 0038	DCSR14	DMA Control / Status Register for Channel 14
	0x4000 003C	DCSR15	DMA Control / Status Register for Channel 15
	0x4000 00f0	DINT	DMA Interrupt Register
	0x4000 0100	DRCMR0	Request to Channel Map Register for DREQ 0
	0x4000 0104	DRCMR1	Request to Channel Map Register for DREQ 1
	0x4000 0108	DRCMR2	Request to Channel Map Register for I2S receive Request
	0x4000 010C	DRCMR3	Request to Channel Map Register for I2S transmit Request
	0x4000 0110	DRCMR4	Request to Channel Map Register for BTUART receive Request
	0x4000 0114	DRCMR5	Request to Channel Map Register for BTUART transmit Request.
	0x4000 0118	DRCMR6	Request to Channel Map Register for FFUART receive Request
	0x4000 011C	DRCMR7	Request to Channel Map Register for FFUART transmit Request
	0x4000 0120	DRCMR8	Request to Channel Map Register for AC97 microphone Request
	0x4000 0124	DRCMR9	Request to Channel Map Register for AC97 modem receive Request
	0x4000 0128	DRCMR10	Request to Channel Map Register for AC97 modem transmit Request
	0x4000 012C	DRCMR11	Request to Channel Map Register for AC97 audio receive Request
	0x4000 0130	DRCMR12	Request to Channel Map Register for AC97 audio transmit Request
	0x4000 0134	DRCMR13	Request to Channel Map Register for SSP receive Request
	0x4000 0138	DRCMR14	Request to Channel Map Register for SSP transmit Request
	0x4000 013C	DRCMR15	Reserved
	0x4000 0140	DRCMR16	Reserved
	0x4000 0144	DRCMR17	Request to Channel Map Register for ICP receive Request
	0x4000 0148	DRCMR18	Request to Channel Map Register for ICP transmit Request

Table 2-12. Register Address Summary (Sheet 2 of 11)

Unit	Address	Register Symbol	Register Description
	0x4000 014C	DRCMR19	Request to Channel Map Register for STUART receive Request
	0x4000 0150	DRCMR20	Request to Channel Map Register for STUART transmit Request
	0x4000 0154	DRCMR21	Request to Channel Map Register for MMC receive Request
	0x4000 0158	DRCMR22	Request to Channel Map Register for MMC transmit Request
	0x4000 015C	DRCMR23	Reserved
	0x4000 0160	DRCMR24	Reserved
	0x4000 0164	DRCMR25	Request to Channel Map Register for USB endpoint 1 Request
	0x4000 0168	DRCMR26	Request to Channel Map Register for USB endpoint 2 Request
	0x4000 016C	DRCMR27	Request to Channel Map Register for USB endpoint 3 Request
	0x4000 0170	DRCMR28	Request to Channel Map Register for USB endpoint 4 Request
	0x4000 0174	DRCMR29	Reserved
	0x4000 0178	DRCMR30	Request to Channel Map Register for USB endpoint 6 Request
	0x4000 017C	DRCMR31	Request to Channel Map Register for USB endpoint 7 Request
	0x4000 0180	DRCMR32	Request to Channel Map Register for USB endpoint 8 Request
	0x4000 0184	DRCMR33	Request to Channel Map Register for USB endpoint 9 Request
	0x4000 0188	DRCMR34	Reserved
	0x4000 018C	DRCMR35	Request to Channel Map Register for USB endpoint 11 Request
	0x4000 0190	DRCMR36	Request to Channel Map Register for USB endpoint 12 Request
	0x4000 0194	DRCMR37	Request to Channel Map Register for USB endpoint 13 Request
	0x4000 0198	DRCMR38	Request to Channel Map Register for USB endpoint 14 Request
	0x4000 019C	DRCMR39	Reserved
	0x4000 0200	DDADR0	DMA Descriptor Address Register Channel 0
	0x4000 0204	DSADR0	DMA Source Address Register Channel 0
	0x4000 0208	DTADR0	DMA Target Address Register Channel 0
	0x4000 020C	DCMD0	DMA Command Address Register Channel 0
	0x4000 0210	DDADR1	DMA Descriptor Address Register Channel 1
	0x4000 0214	DSADR1	DMA Source Address Register Channel 1
	0x4000 0218	DTADR1	DMA Target Address Register Channel 1
	0x4000 021C	DCMD1	DMA Command Address Register Channel 1
	0x4000 0220	DDADR2	DMA Descriptor Address Register Channel 2
	0x4000 0224	DSADR2	DMA Source Address Register Channel 2
	0x4000 0228	DTADR2	DMA Target Address Register Channel 2
	0x4000 022C	DCMD2	DMA Command Address Register Channel 2
	0x4000 0230	DDADR3	DMA Descriptor Address Register Channel 3
	0x4000 0234	DSADR3	DMA Source Address Register Channel 3
	0x4000 0238	DTADR3	DMA Target Address Register Channel 3
	0x4000 023C	DCMD3	DMA Command Address Register Channel 3
	0x4000 0240	DDADR4	DMA Descriptor Address Register Channel 4
	0x4000 0244	DSADR4	DMA Source Address Register Channel 4
	0x4000 0248	DTADR4	DMA Target Address Register Channel 4

Table 2-12. Register Address Summary (Sheet 3 of 11)

Unit	Address	Register Symbol	Register Description
	0x4000 024C	DCMD4	DMA Command Address Register Channel 4
	0x4000 0250	DDADR5	DMA Descriptor Address Register Channel 5
	0x4000 0254	DSADR5	DMA Source Address Register Channel 5
	0x4000 0258	DTADR5	DMA Target Address Register Channel 5
	0x4000 025C	DCMD5	DMA Command Address Register Channel 5
	0x4000 0260	DDADR6	DMA Descriptor Address Register Channel 6
	0x4000 0264	DSADR6	DMA Source Address Register Channel 6
	0x4000 0268	DTADR6	DMA Target Address Register Channel 6
	0x4000 026C	DCMD6	DMA Command Address Register Channel 6
	0x4000 0270	DDADR7	DMA Descriptor Address Register Channel 7
	0x4000 0274	DSADR7	DMA Source Address Register Channel 7
	0x4000 0278	DTADR7	DMA Target Address Register Channel 7
	0x4000 027C	DCMD7	DMA Command Address Register Channel 7
	0x4000 0280	DDADR8	DMA Descriptor Address Register Channel 8
	0x4000 0284	DSADR8	DMA Source Address Register Channel 8
	0x4000 0288	DTADR8	DMA Target Address Register Channel 8
	0x4000 028C	DCMD8	DMA Command Address Register Channel 8
	0x4000 0290	DDADR9	DMA Descriptor Address Register Channel 9
	0x4000 0294	DSADR9	DMA Source Address Register Channel 9
	0x4000 0298	DTADR9	DMA Target Address Register Channel 9
	0x4000 029C	DCMD9	DMA Command Address Register Channel 9
	0x4000 02A0	DDADR10	DMA Descriptor Address Register Channel 10
	0x4000 02A4	DSADR10	DMA Source Address Register Channel 10
	0x4000 02A8	DTADR10	DMA Target Address Register Channel 10
	0x4000 02AC	DCMD10	DMA Command Address Register Channel 10
	0x4000 02B0	DDADR11	DMA Descriptor Address Register Channel 11
	0x4000 02B4	DSADR11	DMA Source Address Register Channel 11
	0x4000 02B8	DTADR11	DMA Target Address Register Channel 11
	0x4000 02BC	DCMD11	DMA Command Address Register Channel 11
	0x4000 02C0	DDADR12	DMA Descriptor Address Register Channel 12
	0x4000 02C4	DSADR12	DMA Source Address Register Channel 12
	0x4000 02C8	DTADR12	DMA Target Address Register Channel 12
	0x4000 02CC	DCMD12	DMA Command Address Register Channel 12
	0x4000 02D0	DDADR13	DMA Descriptor Address Register Channel 13
	0x4000 02D4	DSADR13	DMA Source Address Register Channel 13
	0x4000 02D8	DTADR13	DMA Target Address Register Channel 13
	0x4000 02DC	DCMD13	DMA Command Address Register Channel 13
	0x4000 02E0	DDADR14	DMA Descriptor Address Register Channel 14
	0x4000 02E4	DSADR14	DMA Source Address Register Channel 14
	0x4000 02E8	DTADR14	DMA Target Address Register Channel 14

Table 2-12. Register Address Summary (Sheet 4 of 11)

Unit	Address	Register Symbol	Register Description
	0x4000 02EC	DCMD14	DMA Command Address Register Channel 14
	0x4000 02F0	DDADR15	DMA Descriptor Address Register Channel 15
	0x4000 02F4	DSADR15	DMA Source Address Register Channel 15
	0x4000 02F8	DTADR15	DMA Target Address Register Channel 15
	0x4000 02FC	DCMD15	DMA Command Address Register Channel 15
Full Function UART	0x4010 0000		
	0x4010 0000	FFRBR	Receive Buffer Register (read only)
	0x4010 0000	FFTHR	Transmit Holding Register (write only)
	0x4010 0004	FFIER	Interrupt Enable Register (read/write)
	0x4010 0008	FFIIR	Interrupt ID Register (read only)
	0x4010 0008	FFFCR	FIFO Control Register (write only)
	0x4010 000C	FFLCR	Line Control Register (read/write)
	0x4010 0010	FFMCR	Modem Control Register (read/write)
	0x4010 0014	FFLSR	Line Status Register (read only)
	0x4010 0018	FFMSR	Modem Status Register (read only)
	0x4010 001C	FFSPR	Scratch Pad Register (read/write)
	0x4010 0020	FFISR	Infrared Selection Register (read/write)
	0x4010 0000	FFDLL	Divisor Latch Low Register (DLAB = 1) (read/write)
	0x4010 0004	FFDLH	Divisor Latch High Register (DLAB = 1) (read/write)
Bluetooth UART	0x4020 0000		
	0x4020 0000	BTRBR	Receive Buffer Register (read only)
	0x4020 0000	BTTHR	Transmit Holding Register (write only)
	0x4020 0004	BTIER	Interrupt Enable Register (read/write)
	0x4020 0008	BTIIR	Interrupt ID Register (read only)
	0x4020 0008	BTFCR	FIFO Control Register (write only)
	0x4020 000C	BTLCR	Line Control Register (read/write)
	0x4020 0010	BTMCR	Modem Control Register (read/write)
	0x4020 0014	BTLSR	Line Status Register (read only)
	0x4020 0018	BTMSR	Modem Status Register (read only)
	0x4020 001C	BTSPR	Scratch Pad Register (read/write)
	0x4020 0020	BTISR	Infrared Selection Register (read/write)
	0x4020 0000	BTDLL	Divisor Latch Low Register (DLAB = 1) (read/write)
	0x4020 0004	BTDLH	Divisor Latch High Register (DLAB = 1) (read/write)
I2C	0x4030 0000		
	0x4030 1680	IBMR	I2C Bus Monitor Register - IBMR
	0x4030 1688	IDBR	I2C Data Buffer Register - IDBR
	0x4030 1690	ICR	I2C Control Register - ICR
	0x4030 1698	ISR	I2C Status Register - ISR
	0x4030 16A0	ISAR	I2C Slave Address Register - ISAR

Table 2-12. Register Address Summary (Sheet 5 of 11)

Unit	Address	Register Symbol	Register Description
I2S	0x4040 0000		
	0x4040 0000	SACR0	Global Control Register
	0x4040 0004	SACR1	Serial Audio I ² S/MSB-Justified Control Register
	0x4040 0008	-	Reserved
	0x4040 000C	SASR0	Serial Audio I ² S/MSB-Justified Interface and FIFO Status Register
	0x4040 0010	-	Reserved
	0x4040 0014	SAIMR	Serial Audio Interrupt Mask Register
	0x4040 0018	SAICR	Serial Audio Interrupt Clear Register
	0x4040 001C		
	through	-	Reserved
	0x4040 005C		
	0x4040 0060	SADIV	Audio Clock Divider Register.
	0x4040 0064		
	through	-	Reserved
	0x4040 007C		
	0x4040 0080	SADR	Serial Audio Data Register (TX and RX FIFO access Register).
AC97	0x4050 0000		
	0x4050 0000	POCR	PCM Out Control Register
	0x4050 0004	PICR	PCM In Control Register
	0x4050 0008	MCCR	Mic In Control Register
	0x4050 000C	GCR	Global Control Register
	0x4050 0010	POSR	PCM Out Status Register
	0x4050 0014	PISR	PCM In Status Register
	0x4050 0018	MCSR	Mic In Status Register
	0x4050 001C	GSR	Global Status Register
	0x4050 0020	CAR	CODEC Access Register
	0x4050 0024		
	through	-	Reserved
	0x4050 003C		
	0x4050 0040	PCDR	PCM FIFO Data Register
	0x4050 0044		P
	through 0x4050 005C	-	Reserved
	0x4050 003C	MCDR	Mic-in FIFO Data Register
	0x4050 0060 0x4050 0064	WICDIX	INITERITO Data Negister
	through	_	Reserved
	0x4050 00FC		
	0x4050 0100	MOCR	Modem Out Control Register
	0x4050 0104	-	Reserved
	0x4050 0108	MICR	Modem In Control Register
	0x4050 010C	-	Reserved
	0x4050 0110	MOSR	Modem Out Status Register

Table 2-12. Register Address Summary (Sheet 6 of 11)

Unit	Address	Register Symbol	Register Description
	0x4050 0114	-	Reserved
	0x4050 0118	MISR	Modem In Status Register
	0x4050 011C		
	through	-	Reserved
	0x4050 013C		
	0x4050 0140	MODR	Modem FIFO Data Register
	0x4050 0144		
	through 0x4050 01FC	-	Reserved
	0x4050 01PC		
	through	_	Primary Audio codec Registers
	0x4050 02FC		Timary Addio codec Registers
	0x4050 0300		
	through	-	Secondary Audio codec Registers
	0x4050 03FC		
	0x4050 0400		
	through	-	Primary Modem codec Registers
	0x4050 04FC		
	0x4050 0500		
	through 0x4050 05FC	-	Secondary Modem codec Registers
UDC	0x4060 0000		
ODC	0x4060 0000 0x4060 0000	UDCCR	UDC Control Register
		UDCCS0	7
	0x4060 0010 0x4060 0014	UDCCS0	UDC Endpoint 0 Control/Status Register UDC Endpoint 1 (IN) Control/Status Register
	0x4060 0014 0x4060 0018	UDCCS1	
		UDCCS2	UDC Endpoint 2 (OUT) Control/Status Register
	0x4060 001C	UDCCS3	UDC Endpoint 3 (IN) Control/Status Register UDC Endpoint 4 (OUT) Control/Status Register
	0x4060 0020 0x4060 0024	UDCCS4	
		UDCCS6	UDC Endpoint 5 (Interrupt) Control/Status Register
	0x4060 0028	UDCCS6	UDC Endpoint 6 (IN) Control/Status Register UDC Endpoint 7 (OUT) Control/Status Register
	0x4060 002C 0x4060 0030	UDCCS7	UDC Endpoint 8 (IN) Control/Status Register
		UDCCS9	
	0x4060 0034 0x4060 0038	UDCCS9	UDC Endpoint 9 (OUT) Control/Status Register UDC Endpoint 10 (Interrupt) Control/Status Register
	0x4060 0038 0x4060 003C		
		UDCCS11	UDC Endpoint 11 (IN) Control/Status Register
	0x4060 0040	UDCCS12	UDC Endpoint 12 (OUT) Control/Status Register
	0x4060 0044	UDCCS13	UDC Endpoint 13 (IN) Control/Status Register
	0x4060 0048	UDCCS14	UDC Endpoint 14 (OUT) Control/Status Register
	0x4060 004C	UDCCS15	UDC Endpoint 15 (Interrupt) Control/Status Register
	0x4060 0060	UFNRH	UDC Frame Number Register High
	0x4060 0064	UFNRL	UDC Frame Number Register Low
	0x4060 0068	UBCR2	UDC Byte Count Register 2

Table 2-12. Register Address Summary (Sheet 7 of 11)

Unit	Address	Register Symbol	Register Description
	0x4060 006C	UBCR4	UDC Byte Count Register 4
	0x4060 0070	UBCR7	UDC Byte Count Register 7
	0x4060 0074	UBCR9	UDC Byte Count Register 9
	0x4060 0078	UBCR12	UDC Byte Count Register 12
	0x4060 007C	UBCR14	UDC Byte Count Register 14
	0x4060 0080	UDDR0	UDC Endpoint 0 Data Register
	0x4060 0100	UDDR1	UDC Endpoint 1 Data Register
	0x4060 0180	UDDR2	UDC Endpoint 2 Data Register
	0x4060 0200	UDDR3	UDC Endpoint 3 Data Register
	0x4060 0400	UDDR4	UDC Endpoint 4 Data Register
	0x4060 00A0	UDDR5	UDC Endpoint 5 Data Register
	0x4060 0600	UDDR6	UDC Endpoint 6 Data Register
	0x4060 0680	UDDR7	UDC Endpoint 7 Data Register
	0x4060 0700	UDDR8	UDC Endpoint 8 Data Register
	0x4060 0900	UDDR9	UDC Endpoint 9 Data Register
	0x4060 00C0	UDDR10	UDC Endpoint 10 Data Register
	0x4060 0B00	UDDR11	UDC Endpoint 11 Data Register
	0x4060 0B80	UDDR12	UDC Endpoint 12 Data Register
	0x4060 0C00	UDDR13	UDC Endpoint 13 Data Register
	0x4060 0E00	UDDR14	UDC Endpoint 14 Data Register
	0x4060 00E0	UDDR15	UDC Endpoint 15 Data Register
	0x4060 0050	UICR0	UDC Interrupt Control Register 0
	0x4060 0054	UICR1	UDC Interrupt Control Register 1
	0x4060 0058	USIR0	UDC Status Interrupt Register 0
	0x4060 005C	USIR1	UDC Status Interrupt Register 1
Standard UART	0x4070 0000		
	0x4070 0000	STRBR	Receive Buffer Register (read only)
	0x4070 0000	STTHR	Transmit Holding Register (write only)
	0x4070 0004	STIER	Interrupt Enable Register (read/write)
	0x4070 0008	STIIR	Interrupt ID Register (read only)
	0x4070 0008	STFCR	FIFO Control Register (write only)
	0x4070 000C	STLCR	Line Control Register (read/write)
	0x4070 0010	STMCR	Modem Control Register (read/write)
	0x4070 0014	STLSR	Line Status Register (read only)
	0x4070 0018	STMSR	Reserved
	0x4070 001C	STSPR	Scratch Pad Register (read/write)
	0x4070 0020	STISR	Infrared Selection Register (read/write)
	0x4070 0000	STDLL	Divisor Latch Low Register (DLAB = 1) (read/write)
	0x4070 0004	STDLH	Divisor Latch High Register (DLAB = 1) (read/write)

Table 2-12. Register Address Summary (Sheet 8 of 11)

Unit	Address	Register Symbol	Register Description
ICP	0x4080 0000		
	0x4080 0000	ICCR0	ICP Control Register 0
	0x4080 0004	ICCR1	ICP Control Register 1
	0x4080 0008	ICCR2	ICP Control Register 2
	0x4080 000C	ICDR	ICP Data Register
	0x4080 0010	-	Reserved
	0x4080 0014	ICSR0	ICP Status Register 0
	0x4080 0018	ICSR1	ICP Status Register 1
RTC	0x4090 0000		
	0x4090 0000	RCNR	RTC Count Register
	0x4090 0004	RTAR	RTC Alarm Register
	0x4090 0008	RTSR	RTC Status Register
	0x4090 000C	RTTR	RTC Timer Trim Register
OS Timer	0x40A0 0000		
	0x40A0 0000	OSMR<0>	
	0x40A0 0004	OSMR<1>	OC Times Match Basistana 200
	0x40A0 0008	OSMR<2>	OS Timer Match Registers<3:0>
	0x40A0 000C	OSMR<3>	
	0x40A0 0010	OSCR	OS Timer Counter Register
	0x40A0 0014	OSSR	OS Timer Status Register
	0x40A0 0018	OWER	OS Timer Watchdog Enable Register
	0x40A0 001C	OIER	OS Timer Interrupt Enable Register
PWM 0	0x40B0 0000		
	0x40B0 0000	PWM_CTRL0	PWM 0 Control Register
	0x40B0 0004	PWM_PWDUTY0	PWM 0 Duty Cycle Register
	0x40B0 0008	PWM_PERVAL0	PWM 0 Period Control Register
PWM 1	0x40C0 0000		
	0x40C0 0000	PWM_CTRL1	PWM 1Control Register
	0x40C0 0004	PWM_PWDUTY1	PWM 1 Duty Cycle Register
	0x40C0 0008	PWM_PERVAL1	PWM 1 Period Control Register
Interrupt Control	0x40D0 0000		
	0x40D0 0000	ICIP	Interrupt Controller IRQ Pending Register
	0x40D0 0004	ICMR	Interrupt Controller Mask Register
	0x40D0 0008	ICLR	Interrupt Controller Level Register
	0x40D0 000C	ICFP	Interrupt Controller FIQ Pending Register
	0x40D0 0010	ICPR	Interrupt Controller Pending Register
	0x40D0 0014	ICCR	Interrupt Controller Control Register
GPIO	0x40E0 0000		
	0x40E0 0000	GPLR0	GPIO Pin-Level Register GPIO<31:0>
	0x40E0 0004	GPLR1	GPIO Pin-Level Register GPIO<63:32>

Table 2-12. Register Address Summary (Sheet 9 of 11)

Unit	Address	Register Symbol	Register Description
	0x40E0 0008	GPLR2	GPIO Pin-Level Register GPIO<80:64>
	0x40E0 000C	GPDR0	GPIO Pin Direction Register GPIO<31:0>
	0x40E0 0010	GPDR1	GPIO Pin Direction Register GPIO<63:32>
	0x40E0 0014	GPDR2	GPIO Pin Direction Register GPIO<80:64>
	0x40E0 0018	GPSR0	GPIO Pin Direction Register GPIO<31:0>
	0x40E0 001C	GPSR1	GPIO Pin Output Set Register GPIO<63:32>
	0x40E0 0020	GPSR2	GPIO Pin Output Set Register GPIO<80:64>
	0x40E0 0024	GPCR0	GPIO Pin Output Clear Register GPIO<31:0>
	0x40E0 0028	GPCR1	GPIO Pin Output Clear Register GPIO <63:32>
	0x40E0 002C	GPCR2	GPIO Pin Output Clear Register GPIO <80:64>
	0x40E0 0030	GRER0	GPIO Rising-Edge Detect Register GPIO<31:0>
	0x40E0 0034	GRER1	GPIO Rising-Edge Detect Register GPIO<63:32>
	0x40E0 0038	GRER2	GPIO Rising-Edge Detect Register GPIO<80:64>
	0x40E0 003C	GFER0	GPIO Falling-Edge Detect Register GPIO<31:0>
	0x40E0 0040	GFER1	GPIO Falling-Edge Detect Register GPIO<63:32>
	0x40E0 0044	GFER2	GPIO Falling-Edge Detect Register GPIO<80:64>
	0x40E0 0048	GEDR0	GPIO Edge Detect Status Register GPIO<31:0>
	0x40E0 004C	GEDR1	GPIO Edge Detect Status Register GPIO<63:32>
	0x40E0 0050	GEDR2	GPIO Edge Detect Status Register GPIO<80:64>
	0x40E0 0054	GAFR0_L	GPIO Alternate Function Select Register GPIO<15:0>
	0x40E0 0058	GAFR0_U	GPIO Alternate Function Select Register GPIO<31:16>
	0x40E0 005C	GAFR1_L	GPIO Alternate Function Select Register GPIO<47:32>
	0x40E0 0060	GAFR1_U	GPIO Alternate Function Select Register GPIO<63:48>
	0x40E0 0064	GAFR2_L	GPIO Alternate Function Select Register GPIO<79:64>
	0x40E0 0068	GAFR2_U	GPIO Alternate Function Select Register GPIO 80
Power Manager and Reset Control	0x40F0 0000		
	0x40F0 0000	PMCR	Power Manager Control Register
	0x40F0 0004	PSSR	Power Manager Sleep Status Register
	0x40F0 0008	PSPR	Power Manager Scratch Pad Register
	0x40F0 000C	PWER	Power Manager Wake-up Enable Register
	0x40F0 0010	PRER	Power Manager GPIO Rising-Edge Detect Enable Register
	0x40F0 0014	PFER	Power Manager GPIO Falling-Edge Detect Enable Register
	0x40F0 0018	PEDR	Power Manager GPIO Edge Detect Status Register
	0x40F0 001C	PCFR	Power Manager General Configuration Register
	0x40F0 0020	PGSR0	Power Manager GPIO Sleep State Register for GP[31-0]
	0x40F0 0024	PGSR1	Power Manager GPIO Sleep State Register for GP[63-32]
	0x40F0 0028	PGSR2	Power Manager GPIO Sleep State Register for GP[84-64]
	0x40F0 002C	-	Reserved

Table 2-12. Register Address Summary (Sheet 10 of 11)

Unit	Address	Register Symbol	Register Description
	0x40F0 002C	-	Reserved
	0x40F0 0030	RCSR	Reset Controller Status Register
SSP	0x4100 0000		
	0x4100 0000	SSCR0	SSP Control Register 0
	0x4100 0004	SSCR1	SSP Control Register 1
	0x4100 0008	SSSR	SSP Status Register
	0x4100 000C	SSITR	SSP Interrupt Test Register
	0x4100 0010	SSDR (Write / Read)	SSP Data Write Register/SSP Data Read Register
MMC Controller	0x4110 0000		
	0x4110 0000	MMC_STRPCL	Control to start and stop MMC clock
	0x4110 0004	MMC_STAT	MMC Status Register (read only)
	0x4110 0008	MMC_CLKRT	MMC clock rate
	0x4110 000C	MMC_SPI	SPI mode control bits
	0x4110 0010	MMC_CMDAT	Command/response/data sequence control
	0x4110 0014	MMC_RESTO	Expected response time out
	0x4110 0018	MMC_RDTO	Expected data read time out
	0x4110 001C	MMC_BLKLEN	Block length of data transaction
	0x4110 0020	MMC_NOB	Number of blocks, for block mode
	0x4110 0024	MMC_PRTBUF	Partial MMC_TXFIFO FIFO written
	0x4110 0028	MMC_I_MASK	Interrupt Mask
	0x4110 002C	MMC_I_REG	Interrupt Register (read only)
	0x4110 0030	MMC_CMD	Index of current command
	0x4110 0034	MMC_ARGH	MSW part of the current command argument
	0x4110 0038	MMC_ARGL	LSW part of the current command argument
	0x4110 003C	MMC_RES	Response FIFO (read only)
	0x4110 0040	MMC_RXFIFO	Receive FIFO (read only)
	0x4110 0044	MMC_TXFIFO	Transmit FIFO (write only)
Clocks Manager	0x4130 0000		
	0x4130 0000	CCCR	Core Clock Configuration Register
	0x4130 0004	CKEN	Clock Enable Register
	0x4130 0008	OSCC	Oscillator Configuration Register
LCD Controller	0x4400 0000		
	0x4400 0000	LCCR0	LCD Controller Control Register 0
	0x4400 0004	LCCR1	LCD Controller Control Register 1
	0x4400 0008	LCCR2	LCD Controller Control Register 2
	0x4400 000C	LCCR3	LCD Controller Control Register 3
	0x4400 0200	FDADR0	DMA Channel 0 Frame Descriptor Address Register

Table 2-12. Register Address Summary (Sheet 11 of 11)

Unit	Address	Register Symbol	Register Description
	0x4400 0204	FSADR0	DMA Channel 0 Frame Source Address Register
	0x4400 0208	FIDR0	DMA Channel 0 Frame ID Register
	0x4400 020C	LDCMD0	DMA Channel 0 Command Register
	0x4400 0210	FDADR1	DMA Channel 1 Frame Descriptor Address Register
	0x4400 0214	FSADR1	DMA Channel 1 Frame Source Address Register
	0x4400 0218	FIDR1	DMA Channel 1 Frame ID Register
	0x4400 021C	LDCMD1	DMA Channel 1 Command Register
	0x4400 0020	FBR0	DMA Channel 0 Frame Branch Register
	0x4400 0024	FBR1	DMA Channel 1 Frame Branch Register
	0x4400 0038	LCSR	LCD Controller Status Register
	0x4400 003C	LIIDR	LCD Controller Interrupt ID Register
	0x4400 0040	TRGBR	TMED RGB Seed Register
	0x4400 0044	TCR	TMED Control Register
Memory Controller	0x4800 0000		
	0x4800 0000	MDCNFG	SDRAM Configuration Register 0
	0x4800 0004	MDREFR	SDRAM Refresh Control Register
	0x4800 0008	MSC0	Static Memory Control Register 0
	0x4800 000C	MSC1	Static Memory Control Register 1
	0x4800 0010	MSC2	Static Memory Control Register 2
	0x4800 0014	MECR	Expansion Memory (PCMCIA/Compact Flash) Bus Configuration Register
	0x4800 001C	SXCNFG	Synchronous Static Memory Control Register
	0x4800 0024	SXMRS	MRS value to be written to SMROM
	0x4800 0028	мсмемо	Card interface Common Memory Space Socket 0 Timing Configuration
	0x4800 002C	MCMEM1	Card interface Common Memory Space Socket 1 Timing Configuration
	0x4800 0030	MCATT0	Card interface Attribute Space Socket 0 Timing Configuration
	0x4800 0034	MCATT1	Card interface Attribute Space Socket 1 Timing Configuration
	0x4800 0038	MCIO0	Card interface I/O Space Socket 0 Timing Configuration
	0x4800 003C	MCIO1	Card interface I/O Space Socket 1 Timing Configuration
	0x4800 0040	MDMRS	MRS value to be written to SDRAM
	0x4800 0044	BOOT_DEF	Read-Only Boot-Time Register. Contains BOOT_SEL and PKG_SEL values.

Clocks and Power Manager

The Clocks and Power Manager controls the clock frequency to each module and manages transitions between the different power manager operating modes to optimize both computing performance and power consumption.

3.1 Clock Manager Introduction

The Clocks and Power Manager provides fixed clocks for each peripheral unit. Many of the devices' peripheral clocks can be disabled using the Clock Enable Register (CKEN), or through bits in the peripheral's control registers. To minimize power consumption, turn off the clock to any unit that is not being used. The Clocks and Power Manager also provides the programmable-frequency clocks for the LCD controller, Memory controller, and CPU. These clocks are related to each other because they come from the same internal Phase Locked Loop (PLL) clock source. To program the PLL's frequency, follow these steps (for information on the factors L, M, and N, see Section 3.6.1, "Core Clock Configuration Register" on page 3-32):

- 1. Determine the fastest synchronous memory requirement (SDRAM frequency).
- 2. If the SDRAM frequency is less than 99.5 MHz, the Memory Frequency must be twice the SDRAM Frequency and the SDRAM clock ratio in the memory controller must be set to two. If the SDRAM frequency is 99.5 MHz, the Memory Frequency is equal to the SDRAM frequency.
- 3. Round the Memory Frequency down to the nearest value of 99.5 MHz (L=0x1B), 118.0 MHz (L=0x20), 132.7 MHz (L=0x24), 147.5 MHz (L=0x28), or 165.9 MHz (L=0x2D), and program the value of L in the Core Clock Configuration register. This frequency (or half, if the SDRAM clock ratio is 2) is the External Synchronous Memory Frequency.
- 4. Determine the required Core Frequency for normal (Run Mode) operation. This mode is used during normal processing, when the application must make occasional fetches to external memory. The possible values are one, two, or four times the Memory Frequency. Program this value (M) in the Core Clock Configuration register.
- 5. Determine the required Core Frequency for Turbo Mode operation. This mode is generally used when the application runs entirely from the caches, because any fetches to external memory slow the Core's performance. This value is a multiple (1.0, 1.5, 2.0, or 3.0) of the Run Mode Frequency. Program the value (N) in the Core Clock Configuration register.
- 6. Configure the LCD Controller and Memory Controller for the new Memory Frequency and enter the Frequency Change Sequence (described in Section 3.4.7, "Frequency Change Sequence" on page 3-12).

Note: Not all frequency combinations are valid. See Section 3.3.3, "Core Phase Locked Loop" for valid combinations.

3.2 Power Manager Introduction

The Clocks and Power Manager can place the application processor in one of three resets.

- Hardware Reset (nRESET asserted) is a nonmaskable total reset. It is used at power up or when no system information requires preservation.
- Watchdog Reset is asserted through the Watchdog Timer and resets the system except the Clocks and Power Manager. This reset is used as a code monitor. If code fails to complete a specified sequence, the application processor assumes a fatal system error has occurred and causes a Watchdog Reset.
- GPIO Reset is enabled through the GPIO alternate function registers. It is used as an
 alternative to Hardware Reset that preserves the Memory Controller registers and a few critical
 states in the Clocks and Power Manager and the Real Time Clock (RTC).

The Clocks and Power Manager also controls the entry into and exit from any of the low power or special clocking modes on application processor. These modes are:

- Turbo Mode: the Core runs at its peak frequency. In this mode, make very few external memory accesses because the Core must wait on the external memory.
- Run Mode: the Core runs at its normal frequency. In this mode, the Core is assumed to be
 doing frequent external memory accesses, so running slower is optimum for the best power/
 performance trade-off.
- Idle Mode: the Core is not being clocked, but the rest of the system is fully operational. This mode is used during brief lulls in activity, when the external system must continue operation but the Core is idle.
- Sleep Mode: places the application processor in its lowest power state but maintains I/O state, RTC, and the Clocks and Power Manager. Wake-up from Sleep Mode requires re-booting the system, since most internal state was lost. The core power must be grounded in sleep to prevent current leakage.

The Clocks and Power Manager also controls the application processor's actions during the Frequency Change Sequence. The Frequency Change Sequence is a sequence that changes the Core Frequency (Run and Turbo) and Memory Frequency from the previously stored values to the new values in the Core Clock Configuration register. This sequence takes time to complete due to PLL relock time, but it allows dynamic frequency changes without compromising external memory integrity. Any peripherals that rely on the Core or Memory Controller must be configured to withstand a data flow interruption.

3.3 Clock Manager

The application processor's clocking system incorporates five major clock sources:

- 32.768 kHz Oscillator
- 3.6864 MHz Oscillator
- Programmable Frequency Core PLL
- 95.85 MHz Fixed Frequency Peripheral PLL
- 147.46 MHz Fixed Frequency PLL

The Clocks Manager also contains clock gating for power reduction.

Figure 3-1 shows a functional representation of the clocking network. "L" is in the core PLL.

The PXbus is the internal bus between the Core, the DMA/Bridge, the LCD Controller, and the Memory Controller as shown in Figure 3-1. This bus is clocked at 1/2 the Run mode frequency. For optimal performance, the PXbus should be clocked as fast as possible. For example, if a target core frequency of 200 MHz is desired use 200 MHz Run mode instead of 200 MHz Turbo mode with Run at 100 MHz. Increasing the PXbus frequency may help reduce the latency involved in accessing non-cacheable memory.

3.6864 3.6864 3.6864 3.6864 32.768 k 32.768 k PWR MGR **RTC PWM** SSP **GPIO** OST CPU CORE 100-400 MHz PLL* /N /112 /1 32.768 147.46 MEM kHz MHz Controller OSC **PLL** /M 95.846 3.6864 MHz MHz /4 ◀ ▶ /2 OSC PLL DMA LCD RETAINS POWER IN SLEEP Controller Bridge USB **FICP** I2C MMC **UARTs** AC97 I2S 12.288 47.923 47.923 31.949 19.169 14.746 5.672

Figure 3-1. Clocks Manager Block Diagram

* For the PXA210 application processor: 100-200 MHz. For the PXA250 application processor: 100-400 MHz.

3.3.1 32.768 kHz Oscillator

The 32.768 kHz oscillator is a low power, low frequency oscillator that clocks the RTC and Power Manager. This oscillator is disabled out of Hardware Reset and the RTC and Power Manager blocks use the 3.6864 MHz oscillator instead. Software writes the Oscillator On bit in the Oscillator Configuration Register to enable the 32.768 kHz. This configures the RTC and Power Manager to use the 32.768 kHz oscillator after it stabilizes.

32.768 kHz oscillator use is optional and provides the lowest power consumption during Sleep Mode. In less power-sensitive applications, disable the 32.768 kHz oscillator in the Oscillator Configuration Register (OSCC) and leave the external pins floating (no external crystal required) for cost savings. If the 32.768 kHz oscillator is not in the system, the frequency of the RTC and Power Manager will be 3.6864 MHz divided by 112 (32.914 kHz). In Sleep, the 3.6864 MHz oscillator consumes hundreds of microamps of extra power when it stays enabled. See Section 3.5.2, "Power Manager General Configuration Register" on page 3-22 for information on The Oscillator Power Down Enable (OPDE) bit, which determines if the 3.6864 MHz oscillator is enabled in Sleep Mode. No external capacitors are required.

3.3.2 3.6864 MHz Oscillator

The 3.6864 MHz oscillator provides the primary clock source for the application processor. The on-chip PLL frequency multipliers, Synchronous Serial Port (SSP), Pulse Width Modulator (PWM), and the Operating System Timer (OST) use the 3.6864 MHz oscillator as a reference. Out of Hardware Reset, the 3.6864 MHz oscillator also drives the RTC and Power Manager (PM). The user may then enable the 32.768 kHz oscillator, which will drive the RTC and PM after it is stabilized. The 3.6864 MHz oscillator can be disabled during Sleep Mode by setting the OPDE (see Section 3.5.2) bit but only if the 32.768 kHz oscillator is enabled and stabilized (both the OON and OOK bits in the OSCC set). See Section 3.6.3 for more information. No external capacitors are required.

3.3.3 Core Phase Locked Loop

The Core PLL is the clock source of the CPU Core, the Memory Controller, the LCD Controller, and DMA Controller. The Core PLL uses the 3.6864 MHz oscillator as a reference and multiplies its frequency by the following variables:

- L: Crystal Frequency to Memory Frequency Multiplier, set to 27, 32, 36, 40, or 45.
- M: Memory Frequency to Run Mode Frequency Multiplier, set to 1 or 2.
- N: Run Mode Frequency to Turbo Mode Frequency Multiplier, set to 1.0, 1.5, 2.0, or 3.0.

The output frequency selections are shown in Table 3-1, "Core PLL Output Frequencies for 3.6864 MHz Crystal". See Section 3.6.1 for programming information on the L, M, and N factors. See Section 3.6.1, "Core Clock Configuration Register" for the hexadecimal settings.

Do not choose a combination that generates a frequency that is not supported in the voltage range and package in which the application processor is operating.

SDCLK must not be greater than 100 MHz. If MEMCLK is greater than 100 MHz, the SDCLK to MEMCLK ratio must be set to 1:2 in the Memory Controller.

Table 3-1. Core PLL Output Frequencies for 3.6864 MHz Crystal

L	М	Configu	"N" and C uration Reg	ncy (MHz) f core Clock lister (CCC or Values of	R[15:0])	PXbus Frequency	MEM, LCD Frequency (MHz)	SDRAM max Freq
		1.00 (Run)	1.50	2.00	3.00		(IVITIZ)	
27	1	99.5 @.85v	_	199.1 @1.0 V	298.6 @1.1v	50	99.5	99.5
32	1	118.0 @1.0v	_	235.9 @1.1 V	353.9 @1.3v	59	118.0	59.0
36	1	132.7 @1.0v	_	265.4 @1.1v	398.1 @1.3v	66	132.7	66
40	1	147.5 @1.0v	_	294.9 @1.1v	_	74	147.5	74
45	1	165.9 1.0v	_	331.8 1.3v	_	83	165.9	83
27	2	199.1 @1.0v	298.6 @1.1v	398.1 @1.3v	_	99.5	99.5	99.5
32	2	235.9 @1.1v	_	_	_	118	118.0	59.0
36	2	265.4 @1.1v	_	_	_	132.7	132.7	66
40	2	294.9 @1.1v	_	_	_	147.5	147.5	74
45	2	331.9 @1.3v	_	_	_	165.9	165.9	83

3.3.4 95.85 MHz Peripheral Phase Locked Loop

The 95.85 MHz PLL is the clock source for many of the peripheral blocks' external interfaces. These interfaces require \sim 48 MHz (UDC/USB, FICP), \sim 33 MHz (I²C), and \sim 20 MHz (MMC). The generated frequency is not exactly the required frequency due to the chosen crystal and the lack of a perfect Least Common Multiple between the units. The chosen frequencies keep each unit's clock frequency within the unit's clock tolerance. If a crystal other than 3.6864 MHz is used, the clock frequencies to the peripheral blocks' interfaces may not yield the desired baud rates (or protocol's rate).

Table 3-2. 95.85 MHz Peripheral PLL Output Frequencies for 3.6864 MHz Crystal

Unit Name	Nominal Frequency	Actual Frequency
USB (UDC)	48 MHz	47.923 MHz
FICP	48 MHz	47.923 MHz
I ² C	33 MHz	31.949 MHz
MMC	20 MHz	19.169 MHz

3.3.5 147.46 MHz Peripheral Phase Locked Loop

The 147.46 MHz PLL is the clock source for many of the peripheral blocks' external interfaces. These interfaces require ~14.75 MHz (UARTs), 12.288 MHz (AC97), and variable frequencies (I²S). The generated frequency may not exactly match the required frequency due to the choice of crystal and the lack of a perfect Least Common Multiple between the units. The chosen frequencies keep each unit's clock frequency within the unit's clock tolerance. If a crystal other than 3.6864 MHz is used, the clock frequencies to the peripheral blocks' interfaces may not yield the desired baud rates (or other protocol's rate)

Table 3-3. 147.46 MHz Peripheral PLL Output Frequencies for 3.6864 MHz Crystal

Unit Name	Nominal Frequency	Actual Frequency
UARTs	14.746 MHz	14.746 MHz
AC97	12.288 MHz	12.288 MHz
I ² S	146.76 MHz	147.46 MHz

3.3.6 Clock Gating

The Clocks Manager contains the CKEN register. This register contains configuration bits that can disable the clocks to individual units. The configuration bits are used when a module is not being used. After Hardware Reset, any module that is not being used must have its clock disabled. If a module is temporarily quiescent but does not have clock gating functionality, the CKEN register can be used to disable the unit's clock.

When a module's clock is disabled, the registers in that module are still readable and writable. The AC97 is an exception and is completely inaccessible if the clock is disabled.

3.4 Resets and Power Modes

The Clocks and Power Manager Unit determines the application processor's Resets, Power Sequences and Power Modes. Each behaves differently during operation and has specific entry and exit sequences. The resets and power modes are:

- · Hardware Reset
- · Watchdog Reset
- GPIO Reset
- Run Mode
- Turbo Mode
- Idle Mode
- Frequency Change Sequence
- Sleep Mode

3.4.1 Hardware Reset

To invoke the Hardware Reset and reset all units in the application processor to a known state, assert the nRESET pin. Hardware Reset is only intended to be used for power up and complete resets.

3.4.1.1 Invoking Hardware Reset

Hardware Reset is invoked when the nRESET pin is pulled low by an external source. The application processor does not provide a method of masking or disabling the propagation of the external pin value. When the nRESET pin is asserted, Hardware Reset is invoked, regardless of the mode of operation. The nRESET_OUT pin is asserted when the nRESET pin is asserted. To enter Hardware Reset, nRESET must be held low for t_{DHW_NRESET} to allow the system to stabilize and the reset state to propagate. Refer to the *Intel*® *PXA250* and *PXA210* Application Processors Electrical, Mechanical, and Thermal Specification for details.

3.4.1.2 Behavior During Hardware Reset

During Hardware Reset, all internal registers and units are held at their defined reset conditions. While the nRESET pin is asserted, nothing inside the application processor is active except the 3.6864 MHz oscillator. The internal clocks are stopped and the chip is static. All pins return to their reset conditions and the nBATT_FAULT and nVDD_FAULT pins are ignored. Because the memory controller receives a full reset, all dynamic RAM contents are lost during Hardware Reset.

3.4.1.3 Completing Hardware Reset

To complete Hardware Reset, deassert the nRESET pin. All power supplies must be stable for t_{D_NRESET} before nRESET is deasserted. Refer to the *Intel® PXA250 and PXA210 Application Processors Electrical, Mechanical, and Thermal Specification* for details. After the nRESET pin is deasserted, the following sequence occurs:

- 1. The 3.6864 MHz oscillator and internal PLL clock generators wait for stabilization.
- 2. The nRESET_OUT pin is deasserted.
- 3. The normal boot-up sequence begins. All application processor units return to their predefined reset conditions. Software must examine the Reset Controller Status register (RCSR) to determine the cause for the boot.

3.4.2 Watchdog Reset

Watchdog Reset is invoked when software fails to properly prevent the Watchdog Time-out Event from occurring. It is assumed that Watchdog Resets are only generated when software is not executing properly and has potentially destroyed data. In Watchdog Reset all units in the are reset except the Clocks and Power Manager.

3.4.2.1 Invoking Watchdog Reset

Watchdog Reset is invoked when the Watchdog Enable bit (WE) in the OWER is set and the OSMR[3] matches the OS timer counter. When these conditions are met, they invoke Watchdog Reset, regardless of the previous mode of operation. Watchdog Reset asserts nRESET_OUT.

3.4.2.2 Behavior During Watchdog Reset

During Watchdog Reset, all units except the Real Time Clock and parts of the Clocks and Power Manager maintain their defined reset conditions. All pins except the oscillator pins assume their reset conditions and the nBATT_FAULT and nVDD_FAULT pins are ignored. All dynamic RAM contents are lost during Watchdog Reset because the memory controller receives a full reset,.

Refer to Table 2-7, "Pin & Signal Descriptions for the PXA250 Application Processor" on page 2-10 and Table 2-9, "Pin & Signal Descriptions for the PXA210 Application Processor" on page 2-19. for the pin states during Watchdog and other Resets.

3.4.2.3 Completing Watchdog Reset

Watchdog Reset immediately reverts to Hardware Reset when the nRESET pin is asserted. Otherwise, the completion sequence for Watchdog Reset is:

- 1. The Watchdog Reset Source is deasserted after t_{DHW_OUT}. Refer to the *Intel® PXA250* and *PXA210 Application Processors Electrical, Mechanical, and Thermal Specification*.
- The 3.6864 MHz oscillator and internal Phase Locked Loop clock generators wait for stabilization. The 32.768 kHz oscillator's configuration and status are not affected by Watchdog Reset.
- 3. The nRESET_OUT pin is deasserted. Refer to the *Intel® PXA250 and PXA210 Application Processors Electrical, Mechanical, and Thermal Specification*.
- 4. The normal boot-up sequence begins. All application processor units except the RTTR in the Real Time Clock and parts of the Clocks and Power Manager return to their predefined reset conditions. Software must examine the RCSR to determine the cause for the reboot.

3.4.3 GPIO Reset

GPIO Reset is invoked when GP[1] is properly configured as a Reset source and is asserted low for greater than four*N (where N is the Turbo Mode Clock Multiplier factor programmed in the Core Clock Configuration register - see Section 3.6.1) processor clock cycles. In GPIO Reset all the application processor units except the Real Time Clock, parts of the Clocks and Power Manager, and the Memory Controller return to their predefined, known states.

3.4.3.1 Invoking GPIO Reset

To use the GPIO Reset function, set it up through the GPIO Controller. The GP[1] pin must be configured as an input and set to its alternate GPIO Reset function in the GPIO Controller. The GPIO Reset alternate function is level-sensitive and not edge-triggered. To ensure no spurious resets are generated when the alternate GPIO Reset function is set, follow these steps:

- 1. GP[1] must be set up as an output with its data register set to a 1.
- 2. Externally drive the GP[1] pin to a high state.
- 3. Configure GP[1] as an input.
- 4. Configure GP[1] for its Alternate (Reset) Function.

The previous mode of operation does not affect a GPIO Reset. When GPIO Reset is invoked, nRESET_OUT is asserted. If GP[1] is asserted for less than 4*N cycles, the application processor may remain in its previous mode or enter GPIO Reset.

GPIO Reset does not function in Sleep Mode because all GPIO pins' Alternate Function Inputs are disabled. External wake-up sources must be routed through one of the enabled GPIO wake-up sources (see Section 3.5.3 for details) during Sleep Mode. GP[1] may be enabled as a wake-up source.

3.4.3.2 Behavior During GPIO Reset

During GPIO Reset, most, but not all, internal registers and processes are held at their defined reset conditions. The exceptions are the RTC, the Clocks and Power Manager (unless otherwise noted), and the Memory Controller. During GPIO Reset, the clocks unit continues to operate with its previously programmed values, so the application processor enters and exits GPIO Reset with the same clock configurations. All pins except the oscillator and Memory Controller pins return to their reset conditions and the nBATT_FAULT and nVDD_FAULT pins are ignored.

GPIO Reset does not reset the Memory Controller Configuration registers. This creates the possibility that the contents of external memories may be preserved if the external memories are properly configured before GPIO Reset is entered. To preserve SDRAM contents during a GPIO Reset, software must correctly configure the Memory Control and the time spent in GPIO Reset must be shorter than the SDRAM refresh interval. The amount of time spent in GPIO Reset depends on the CPU's mode before GPIO Reset. See Section 6, "Memory Controller" for details.

Refer to Table 2-7, "Pin & Signal Descriptions for the PXA250 Application Processor" on page 2-10 for the states of all the PXA250 application processor pins during GPIO Reset and other resets. Refer to Table 2-9, "Pin & Signal Descriptions for the PXA210 Application Processor" on page 2-19 for the states of all the PXA210 application processor pins during GPIO Reset and other resets.

3.4.3.3 Completing GPIO Reset

GPIO Reset immediately reverts to Hardware Reset when the nRESET pin is asserted. Otherwise, the completion sequence for GPIO Reset is:

- 1. The GPIO Reset Source is deasserted because the internal reset has propagated to the GPIO Controller and its registers, which are set back to their reset states.
- 2. The nRESET_OUT pin is deasserted.
- The normal boot-up sequence begins. All application processor units except the Real Time Clock, parts of the Clocks and Power Manager, and the Memory Controller return to their predefined reset conditions. Software must examine the RCSR to determine the cause for the reset.

3.4.4 Run Mode

Run mode is the application processor's normal operating mode. All power supplies are enabled and all functionally enabled clocks are running. Run Mode is entered after any Power Mode, Power Sequence, or Reset completes its sequence. Run Mode is exited when any other Power Mode, Power Sequence, or Reset begins.

3.4.5 Turbo Mode

Turbo Mode allows the user to clock the processor core at a higher frequency during peak processing requirements. It allows a synchronous switch in frequencies without disrupting the Memory Controller, LCD Controller, or any peripheral.

3.4.5.1 Entering Turbo Mode

The ratio between the Run Mode processor clock frequency and the Turbo Mode processor clock frequency is programmed in CCCR[N]. The value in CCCR[N], and any other appropriate clock configurations, must be programmed through the Frequency Change Sequence. To simultaneously change Turbo Mode and enter the Frequency Change Sequence, use the steps to change the Frequency Change Sequence.

Turbo Mode is invoked when software sets the TURBO bit in the Clock Config (CCLKCFG) Register (See Section 3.7.1). After software sets the TURBO bit, the CPU waits for all instructions currently in the pipeline to complete. When the instructions are completed, the CPU resumes operation at the higher Turbo Mode Frequency.

Software can set or clear other bits in the CCLKCFG in the same write that sets the TURBO bit. The other bits in the register take precedence over Turbo Mode, so, if another bit is set, that mode's sequence is followed before the CPU enters Turbo Mode. When the CPU exits the other mode, it enters either Run or Turbo Mode, based on the state of the CCLKCFG [TURBO] bit.

Do not confuse the CCLKCFG Register, which is in Coprocessor 14, with the CCCR (See Section 3.6.1), which is in the application processor's Clocks and Power Manager.

3.4.5.2 Behavior in Turbo Mode

The application processor's behavior in Turbo Mode is identical to its behavior in Run Mode, except that the processor's clock frequency relative to the memory and peripherals is increased by N, the value in the CCCR (see Section 3.6.1). Turbo mode is intended for use during peak processing, when there are very few accesses to external memory. The higher Core to external memory clock ratio increases the relative delay for each external memory access. This increased delay lowers the application processor's power efficiency. For optimum performance, software must load applications in the caches in Run Mode and execute them in Turbo Mode.

3.4.5.3 Exiting Turbo Mode

To exit Turbo Mode, software clears the TURBO bit in the CCLKCFG Register. After software clears the TURBO bit, the CPU waits for all instructions in the pipeline to complete. When the instructions are completed, the CPU enters Run Mode.

Other bits in the CCLKCFG may be set or cleared in the write that clears CCLKCFG [TURBO]. All other bits in the register take precedence over Turbo Mode, so the new mode's proper sequence is followed.

Idle, Sleep, Frequency Change Sequence, and Reset have precedence over Turbo Mode and cause the application processor to exit Turbo Mode. When the CPU exits of one of these modes, it enters either Run or Turbo Mode, based on the state of CCLKCFG [TURBO].

3.4.6 Idle Mode

Idle Mode allows the user to stop the CPU core clock during periods of processor inactivity and continue to monitor on- and off-chip interrupt service requests. Idle mode does not change clock generation, so when an interrupt occurs the CPU is quickly reactivated in the state that preceded Idle Mode.

During Idle mode these resources are active:

- System unit modules (real-time clock, operating system timer, interrupt controller, general-purpose I/O, and clocks and power manager)
- Peripheral unit modules (DMA controller, LCD controller, and all other peripheral units)
- Memory Controller resources

3.4.6.1 Entering Idle Mode

During Idle Mode, the clocks to the CPU core stop. All critical applications must be finished and peripherals must be set up to generate interrupts when they require CPU attention. To enter the Idle Mode, software selects Idle Mode in PWRMODE[M] (See Section 3.7.2). An interrupt immediately aborts Idle Mode and normal processing resumes. After software selects Idle Mode, the CPU waits until all instructions in the pipeline are completed. When the instructions are completed, the CPU clock stops and Idle Mode begins. In Idle Mode, interrupts are recognized as wake-up sources.

3.4.6.2 Behavior in Idle Mode

In Idle Mode the CPU clocks are stopped, but the remainder of the application processor operates normally. For example, the LCD controller can continue refreshing the screen with the same frame buffer data in memory.

When ICCR[DIM] is cleared, any enabled interrupt wakes up the application processor. When ICCR[DIM] is set, only unmasked interrupts cause wake-up.

Enabled interrupts are interrupts that are allowed at the unit level. Masked interrupts are interrupts that are prevented from interrupting the core based on the Interrupt Controller Mask Register.

3.4.6.3 Exiting Idle Mode

Idle Mode exits when any Reset is asserted. Reset entry and exit sequences take precedence over Idle Mode. When the Reset exit sequence is completed, the CPU is not in Idle Mode. If the Watchdog Timer is enabled, software must set the Watchdog Match Registers before it sets Idle Mode to ensure that another interrupt will bring the application processor out of Idle Mode before the Watchdog Reset is asserted. Use an RTC alarm or another OS timer channel for this purpose.

Any enabled interrupt causes Idle Mode to exit. When ICCR[DIM] is cleared, the Interrupt Controller Mask register (ICMR) is ignored during Idle Mode. This means that an interrupt does not have to be unmasked to cause Idle Mode to exit. Idle Mode exits in the following sequence:

- 1. A valid, enabled Interrupt asserts.
- 2. The CPU clocks restart and the CPU resumes operation at the state indicated by CCLKCFG [TURBO].

Idle Mode also exits when the nBATT_FAULT or nVDD_FAULT pin is asserted. When either pin is asserted, Idle Mode exits in the following sequence:

- 1. The nBATT_FAULT or nVDD_FAULT pin is asserted.
- 2. If the Imprecise Data Abort Enable (IDAE) bit in the Power Manager Control Register (PMCR) is clear (not recommended), the application processor enters Sleep Mode immediately.

3. If the IDAE bit is set, the nBATT_FAULT or nVDD_FAULT assertion is treated as a valid interrupt to the clocks module and Idle Mode exits using its normal, interrupt-driven sequence. Software must then shut down the system and enter Sleep Mode. See Section 3.4.8.3, "Entering Sleep Mode" for more details.

3.4.7 Frequency Change Sequence

The Frequency Change Sequence is used to change the processor clock frequency. During the Frequency Change Sequence, the CPU, Memory Controller, LCD Controller, and DMA clocks stop. The other peripheral units continue to function during the Frequency Change Sequence. This mode is intended to be used to change the frequency from the default condition at initial boot-up. It may also be used as a power-saving feature used to allow the application processor to run at the minimum required frequency when the software requires major changes in frequency.

3.4.7.1 Preparing for the Frequency Change Sequence

Software must complete the following steps before it initiates the Frequency Change Sequence:

- 1. Configure the Memory Controller to ensure SDRAM contents are maintained during the Frequency Change Sequence. The Memory Controller's refresh timer must be programmed to match the maximum refresh time associated with the slower of two frequencies (current and desired). The SDRAM divide by two must be set to a value that prevents the SDRAM frequency from exceeding the specified frequency. For example, to change from 100/100 to 133/66, the SDRAM bus must be set to divide by two before the frequency change. To change from 133/66 to 100/100, the SDRAM must be set to one-to-one after the frequency change sequence is completed. See Section 6, "Memory Controller" for more details.
- 2. Disable the LCD Controller or configure it to avoid the effects of an interruption in the LCD clocks and data from the application processor.
- 3. Configure peripheral units to handle a lack of DMA service for up to 500 µs. If a peripheral unit can not function for 500 µs without DMA service, it must be disabled.
- 4. Disable peripheral units that can not accommodate a 500 μs interrupt latency. The interrupts generated during the Frequency Change Sequence are serviced when the sequence exits.
- 5. Program the CCCR (Section 3.6.1, "Core Clock Configuration Register") to reflect the desired frequency.

3.4.7.2 Invoking the Frequency Change Sequence

To invoke the Frequency Change Sequence, software must set FCS in the CCLKCFG (See Section 3.7.1). When software sets FCS, it may also set or clear other bits in CCLKCFG. If software sets the TURBO bit in the same write, the CPU enters Turbo Mode when the Frequency Change Sequence exits.

After software sets the FCS:

- 1. The CPU clock stops and interrupts to the CPU are gated.
- 2. The Memory Controller completes all outstanding transactions in its buffers and from the CPU. New transactions from the LCD or DMA controllers are ignored.
- 3. The Memory Controller places the SDRAM in self-refresh mode.

Note: Program the Memory Controller to ensure the correct self-refresh time for SDRAM, given the slower of the current and desired clock frequencies.

3.4.7.3 Behavior During the Frequency Change Sequence

In the Frequency Change Sequence, the processor's PLL clock generator is in the process of locking to the correct frequency and cannot be used. This means that interrupts cannot be processed. Interrupts that occur during the Frequency Change Sequence are serviced after the processor's PLL has locked. The 95.85 MHz and 147.46 MHz PLL clock generators are active and peripherals, except Memory Controller, LCD Controller, and DMA, may continue to operate normally, provided they can accommodate the inability to process DMA or Interrupt requests. DMA or Interrupt requests are not recognized until the Frequency Change Sequence is complete.

The Imprecise Data Abort is also not recognized and if nVDD_FAULT or nBATT_FAULT is asserted, the assertion is ignored until the Frequency Change Sequence exits. This means that the processor does not enter Sleep Mode until the Frequency Change Sequence is complete.

3.4.7.4 Completing the Frequency Change Sequence

The Frequency Change Sequence exits when any Reset is asserted. In Hardware and Watchdog Resets, the Reset entry and exit sequences take precedence over the Frequency Change Sequence and the PLL resumes in its Reset condition. In GPIO Reset, the Reset exit sequence is delayed while the PLL relocks and the frequency is set to the desired frequency of the Frequency Change Sequence.

If the Watchdog Timer is enabled during the Frequency Change Sequence, set the Watchdog Match Register to ensure that the Frequency Change Sequence completes before the Watchdog Reset is asserted.

If Hardware or Watchdog Reset is asserted during the Frequency Change Sequence, the DRAM contents are lost because all states, including Memory Controller configuration and information about the previous Frequency Change Sequence, are reset. If GPIO Reset is asserted during the Frequency Change Sequence, the SDRAM contents will be lost during the GPIO Reset exit sequence if the SDRAM is not in self-refresh mode and the exit sequence exceeds the refresh interval.

Normally, the Frequency Change Sequence exits in the following sequence:

1. The processor's PLL clock generator is reprogrammed with the desired values, which are in the CCCR, and begins to relock to those values.

Note: This sequence occurs even if the before and after frequencies are the same.

- 2. The internal PLL clock generator for the processor clock waits for stabilization. Refer to the *Intel® PXA250 and PXA210 Application Processors Electrical, Mechanical, and Thermal Specification* for details.
- 3. The CPU clocks restart and the CPU resumes operation at the state indicated by the TURBO bit (either Run or Turbo Mode). Interrupts to the CPU are no longer gated.
- 4. The FCS bit is not automatically cleared. To prevent an accidental return to the Frequency Change Sequence, software must not immediately clear the FCS bit. The bit must be cleared on the next required write to the register.
- 5. Values may be written to the CCCR, but they are ignored until the Frequency Change Sequence is re-entered.

6. The SDRAM must transition out of self-refresh mode and into its idle state. See Section 6, "Memory Controller" for details on configuring the SDRAM interface.

3.4.8 Sleep Mode

Sleep Mode offers lower power consumption at the expense of the loss of most of the internal processor state. In Sleep Mode, the application processor goes through an orderly shut-down sequence and power is removed from the core. The Power Manager watches for a wake-up event and, after it receives one, re-establishes power and goes through a reset sequence. During Sleep Mode, the RTC and Power Manager continue to function. Pin states can be controlled throughout Sleep Mode and external SDRAM is preserved because it is in self-refresh mode.

Because all activity on the application processor except the RTC stops when Sleep Mode starts, peripherals must be disabled to allow an orderly shutdown. When Sleep Mode exits, the processor's state resets and processing resumes in a boot-up mode.

3.4.8.1 Sleep Mode External Voltage Regulator Requirements

To implement Sleep Mode in the simplest manner, the External Voltage Regulator, which supplies power to the application processor's internal elements, must have the following characteristics:

- A power enable pin that enables the primary voltage supply output to be connected to VCC and PLL_VCC. This pin must be connected to the application processor's PWR_EN pin. The regulator's output should be driven low when PWR_EN is driven low. If VCC and PLL_VCC are floated or driven at their nominal values when the PWR_EN pin is low, the application processor operates normally, but at a higher rate of power consumption.
- Higher-voltage outputs connected to VCCQ and VCCN. These regulator outputs are continuously driven and do not change when the PWR_EN pin is asserted.

3.4.8.2 Preparing for Sleep Mode

Before Sleep Mode starts, software must take the following steps:

- 1. The Memory Controller must be configured to ensure SDRAM contents are maintained during Sleep Mode. See Section 6, "Memory Controller" for details.
- 2. If a graceful shutdown is required for a peripheral, the peripheral must be disabled before Sleep Mode asserts. This includes monitoring DMA transfers to and from peripherals or memories to ensure they are completed. All other peripherals need not be disabled, since they are held in their reset states internally during Sleep Mode.
- 3. The following Power Manager registers must be set up for proper sleep entry and exit:
 - PM GPIO Sleep State registers (PGSR0, PGSR1, PGSR2). To avoid contention on the bus when the application processor attempts to wake up, ensure that the chip selects are not set to 0 during sleep mode. If a GPIO is used as an input, it must not be allowed to float during sleep mode. The GPIO can be pulled up or down externally or changed to an output and driven with the unasserted value.
 - PM General Configuration Register Float bits [FS/FP] must be configured appropriately for the system. The General Configuration Register Float bits must be cleared on wake up. To avoid contention on the bus when the application processor attempts to wake up, ensure that the chip selects are not set to 0 during sleep mode.

- 4. The following Power Manager registers must be set up to detect wake-up sources and oscillator activity:
 - PM GPIO Sleep State registers (PGSR0, PGSR,1 and PGSR2).
 - PM Wake-up Enable register (PWER)
 - PM GPIO Falling-edge Detect Enable and PM GPIO Rising-edge Detect Enable registers (PFER and PRER)
 - OPDE bit in the Power Manager Configuration register (PCFR)
 - IDAE bit in PMCR
- 5. Before the IDAE bit is set, software must ensure that Sleep Mode starts when an Imprecise Data Abort occurs. An abort occurs when nVDD_FAULT or nBATT_FAULT is asserted. It indicates that the application processor is in peril of losing its main power supply.

3.4.8.3 Entering Sleep Mode

Software uses the PWRMODE register to enter Sleep Mode (See Section 3.7.2).

If the External Voltage Regulator (EVR) is failing or the main battery is low or missing, some systems must enter sleep mode quickly. When nBATT_FAULT or nVDD_FAULT is asserted, the system is required to shut down immediately.

To allow the assertion of nVDD_FAULT or nBATT_FAULT to cause an imprecise data abort, set the Imprecise Data Abort Enable (IDAE) bit in the PMCR. Setting the IDAE bit in the PMCR will result in software executing the data abort handler routine as part of entering sleep mode. If the IDAE bit is clear, the application processor enters sleep mode immediately without executing the abort handler routine.

PSSR[VFS] and PSSR[BFS] can not be used prior to entering Sleep Mode to determine which type of fault occurred, VDD fault or battery fault, respectively. If either nVDD_FAULT or nBATT_FAULT signals are asserted or if both are asserted at the same time (and the IDAE bit of the PMCR is set), the software data abort handler will be called. Since there is only one common data abort handler, software must first determine if one of the two nVDD_FAULT or nBATT_FAULT assertion events resulted in an imprecise data abort by reading Coprocessor 7, Register 4, Bit 5 (PSFS). If the PSFS bit is cleared, neither a nVDD_FAULT or nBATT_FAULT assertion occurred and the data abort handler was called for some other reason. If the PSFS bit is set, this indicates either a nVDD_FAULT or nBATT_FAULT assertion occurred, but it is not possible to determine which of the two faults was asserted. For either case, nVDD_FAULT or nBATT_FAULT assertion, software should shut the system down as quickly as possible by performing the steps outlined below to enter Sleep Mode.

All addresses (data and instruction) used in the abort handler routines should be resident and accessible in the memory page tables, i.e. system software developers should ensure no further aborts occur while executing an abort handler. The application processor does not support recursive (nested) aborts. The system must not assert nBATT_FAULT or nVDD_FAULT signals more than once before nRESET_OUT is asserted. System software can not return to normal execution following a nBATT_FAULT or nVDD_FAULT. If a battery or VDD fault occurs while executing in the abort mode, the abort handler will be reentered. This condition of a recursive abort occurrence can be detected in software by reading the Saved Program Status Register (SPSR) to see if the previous context was executing in abort mode.

To enter Sleep Mode, software must complete the following sequence:

- 1. Software uses external memory and the Power Manager Scratch Pad Register (PSPR) to preserve critical states.
- 2. Software sets Sleep Mode in PWRMODE[M]. An interrupt immediately aborts Sleep Mode and normal processing resumes.
- 3. The CPU waits until all instructions in the pipeline are complete.
- 4. The Memory Controller completes outstanding transactions in its buffers and from the CPU. New transactions from the LCD or DMA controllers are ignored.
- 5. The Memory Controller places the SDRAM in self-refresh mode.
- 6. The Power Manager switches the GPIO output pins to their sleep state. This sleep state is programmed in advance by loading the Power Manager GPIO Sleep State registers (PGSR0, PGSR1, and PGSR2). To avoid contention on the bus when the application processor attempts to wake up, ensure that the chip selects are not set to 0 during sleep mode.
- 7. The CPU clock stops and power is removed from the Core.
- 8. PWR_EN is deasserted.

When the Power Manger get the indication from the Memory Controller that it has finished its outstanding transactions and has put the SDRAM into self-refresh, there are eight core clock cycles before the GPIOs latch the PGSR values and four core clock cycles after that, nRESET_OUT asserts low.

In some systems the Imprecise Data Abort latency lasts longer than the residual charge in the failed power supply can sustain operation. This normally only occurs when the application processor is in a Power Mode or Sequence that requires that the application processor exit before Sleep Mode starts. Frequency Change Sequence is an example of such a Power Sequence. In these Power Modes and Sequences, the IDAE bit must not be set. This allows the application processor to enters Sleep Mode immediately but any critical states in the processor are lost.

If the IDAE bit is not set and the nVDD_FAULT or nBATT_FAULT pin is asserted, the Sleep Sequence begins at Step 4.

3.4.8.4 Behavior in Sleep Mode

In Sleep Mode, all processor and peripheral clocks are disabled, except the RTC. The application processor does not recognize interrupts or external pin transitions except valid wake-up signals, Reset signals, and the nBATT_FAULT signal.

If the nBATT_FAULT signal is asserted while in Sleep Mode, GPIO[1:0] are set as the only valid wake-up signals.

The Power Manager watches for wake up events programmed by the CPU before Sleep Mode starts or set by the Power Manager it detects a fault condition. In order to detect a rising-edge or falling-edge on a GPIO pin, the rising- or falling-edge must be held for more than one full 32.768 kHz clock cycle. The Power Manager takes three 32.768 kHz clock cycles to acknowledge the GPIO edge and begin the wake up sequence.

Refer to Table 2-7, "Pin & Signal Descriptions for the PXA250 Application Processor" on page 2-10 for the PXA250 application processor's pin states during Sleep Mode Reset and other resets. Refer to Table 2-9, "Pin & Signal Descriptions for the PXA210 Application Processor" on page 2-19 for the PXA210 application processor's pin states during Sleep Mode Reset and other resets.

3.4.8.5 Exiting Sleep Mode

Sleep Mode exits when Hardware Reset is asserted. Hardware Reset's entry and exit sequences take precedence over Sleep Mode.

Note:

If Hardware Reset is asserted during Sleep Mode, the DRAM contents are lost because all states, including Memory Controller configuration and information about the previous Sleep Mode, are reset.

Normally, Sleep Mode exits in the following sequence. Any time the nBATT_FAULT pin is asserted, the application processor returns to Sleep Mode. The nVDD_FAULT pin is ignored until the external power supply stabilization timer expires.

- 1. A pre-programmed wake up event from an enabled GPIO or RTC source occurs. If the nBATT_FAULT pin is asserted, the wake up source is ignored.
- 2. The PWR_EN signal is asserted and the Power Manager waits for the external power supply to stabilize. If nVDD_FAULT is asserted after the external power supply timer expires, the application processor returns to Sleep Mode.
- 3. If PCFR[OPDE] and OSCC[OON] were set when Sleep Mode started, the 3.6864 MHz oscillator is enabled and stabilizes. Otherwise, the 3.6864 MHz oscillator is already stable and this step is bypassed.
- The processor's PLL clock generator is reprogrammed with the values in the CCCR and stabilizes.
- 5. The Sleep Mode configuration in PWRMODE[M] is cleared.
- 6. The application processor's internal reset is deasserted and the CPU begins a normal boot sequence. When the normal boot sequence begins, all of the application processor's units, except the RTC and portions of the Clocks and Power Manager and the Memory Controller, return to their predefined reset settings.
- 7. The nRESET_OUT pin is deasserted. This indicates that the application processor is about to perform a fetch from the Reset vector.
- 8. Clear PSSR[PH] before accessing GPIOs, including chip selects that are muxed with GPIOs.
- 9. Clear PCFR[FS] and PCFR[FP] if either was set before Sleep Mode was triggered.
- 10. The SDRAM must transition out of self-refresh mode and into its idle state. See Section 6, "Memory Controller" for details on configuring the SDRAM interface.
- 11. Software must examine the RCSR, to determine what caused the reboot, and the Power Manager Sleep Status register (PSSR), to determine what triggered Sleep Mode.
- 12. If the PSPR was used to preserve any critical states during Sleep Mode, software can now recover the information.

If the nVDD_FAULT or nBATT_FAULT pin is asserted during the Sleep Mode exit sequence, the system re-enters Sleep Mode in the following sequence:

- 1. Regardless of the state of the IDAE bit:
 - All GPIO edge detects and the RTC alarm interrupt are cleared.
 - The Power Manager wake-up source registers (PWER, PRER, and PFER) are loaded with 0x0000 0003, their wake-up fault state. This limits the potential wake-up sources to a rising or falling edge on GPIO[0] or GPIO[1]. The wake-up fault state prevents spurious

events from causing an unwanted wake-up while the battery is low or the power supply is at risk. The fault state is also the default state after a Hardware Reset.

- 2. The PLL clock generators are disabled.
- 3. If the OPDE bit in the PCFR is set and the OON bit in the OSCC is set, the 3.6864 MHz oscillator is disabled. If the oscillator is disabled, Sleep Mode consumes less power. If it is enabled, Sleep Mode exits more quickly.
- 4. An internal reset is generated to the core and most peripheral modules. This reset asserts the nRESET_OUT pin.
- 5. The PWR_EN pin is deasserted. The system responds by disabling the VCC and VCC_PLL power supplies. To consume the lowest amount of power, the regulator's output must be driven low when PWR_EN is driven low. If VCC and VCC_PLL are floated or driven at their nominal values when the PWR_EN pin is low, the application processor operates normally, but at slightly higher level of power consumption.

3.4.9 Power Mode Summary

Table 3-4 shows the actions that occur when a Power Mode is entered. Table 3-5 shows the actions that occur when a Power Mode is exited. In the tables, an empty cell means that the Power Mode skips that step. Table 3-6 shows the expected behavior for power supplies in each Power Mode.

Table 3-4. Power Mode Entry Sequence Table

Step	Description of Action	Turbo	Run (from Turbo)	əlpi	Freq Change	Sleep	Fault¹ Sleep
1	Software writes a bit in CP14	Х	Х	Х	Х	Х	
2	The CPU waits until all instructions to be completed	Х	Х	х	х	х	
3	Wake up sources are cleared and limited to GP[1:0]						Х
4	The Power Manager places GPIOs in their sleep states					х	Х
5	The Memory Controller finishes all outstanding transactions				х	х	Х
6	The Memory Controller places SDRAMs in self-refresh				х	х	Х
7	The PLL is disabled				х	х	Х
8	If OPDE and OOK bits are set, disable 3.6864 MHz oscillator					Х	Х
9	Internal Reset to most modules. nRESET_OUT asserted					х	х
10	PWR_EN is deasserted. Power is cut off					х	х
11	Power to most I/O pins is cut off						

^{1:} Fault Sleep Mode starts if IDAE is clear and nBATT_FAULT or nVDD_FAULT is asserted.

Table 3-5. Power Mode Exit Sequence Table

Step	Description of Action	Turbo	Run (from Turbo)	ldle	Freq Change	Sleep	Fault ¹ Sleep
1	Wake up source or Interrupt is received			х		х	х
2	Power to I/O pins restored						
3	PWR_EN is asserted					Х	Х
4	External power ramp					х	х
5	Enable 3.6864 MHz oscillator if OPDE and OOK are set					Х	Х
6	Wait for 3.6864 MHz oscillator to stabilize if OPDE and OOK are set					х	х
7	Enable PLL with new frequency				х	Х	Х
8	Wait for PLL stabilization				х	х	х
9	Wait for internal stabilization					х	х
10	Clear CP14 bit			х		Х	
11	Deassert nRESET_OUT					х	х
12	Restart CPU clocks, enable interrupts	Х	х	Х	Х	Х	х

^{1:} Fault Sleep Mode starts if IDAE is clear and nBATT_FAULT or nVDD_FAULT is asserted.

Table 3-6. Power and Clock Supply Sources and States During Power Modes

						Р	ower	Mod	le			
Module	Supp	ly Source	Tui	rbo	Rı	un	Id	le		eq nge	Sle	ер
	Pw	Ck	Pw	Ck	Pw	Ck	Pw	Ck	Pw	Ck	Pw	Ck
CPU, Caches, Buffers		Run/ Turbo (R/T)		Т		R		Off				
Memory Controller										changing		
LCD Controller	vcc	Mem	On		On		On		On	cha	Off	Off
DMA Controller				On		On		On				
General Periphs.		PLL										
OS timer		3.686								On		
Interrupts		MHz Osc										
Real Time Clock	VCC/ Reg	32.768	V	On	V	On	V	On	V	On	ı	On
Power Manager	(V/R)	kHz Osc	V	On	v	On	v	Oii	V	Oii	'	Oii
GP[3:0], PM pads, Osc pads	HV/ Batt (H/B)	Dynamic/ Static (D/S)	Н	D	Н	D	Н	D	Н	D	Н	S
General IO	Н											

KEY:

- T: Turbo clock
- R: Run clock
- V: Module powered off VCC.
 I: Module powered off internal regulator
- H: Module powered off VCCQ or VCCN
- D: Module is dynamic or actively clocked
- S: Module is static or clocks are gated.

Power Manager Registers 3.5

This section describes the 32-bit registers that control the Power Manager.

3.5.1 Power Manager Control Register

The PMCR is used to select the manner in which Sleep Mode is entered when the nVDD_FAULT or the nBATT_FAULT pin is asserted low. When the IDAE bit is set, an Imprecise Data Abort indication is sent to the CPU. The CPU then performs an abort routine. Software must ensure that the abort routine sets the Sleep Mode configuration in the PWRMODE register (see Section 3.7.2, "PWRMODE Register (CP14 Register 7)"). The IDAE bit is cleared in any Reset and when Sleep Mode exits. Software may also clear the IDAE bit when necessary. The PMCR must be protected through Memory Management Unit (MMU) permissions.

Table 3-7. Power Manager Control Register

				0x4	40F	0 0	000				Po	we	r Ma		_	Cor ICR		l Re	gis	ter				F	Pow	er I	Man	age	er			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																Reserved																IDAE
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		[31	:1]			_	_						ed a	nd ı	mus	t alv	vays	s be	wri	tten	wit	h ze	roe	s.								
	0 IDAE 1 =												ned pred DD_	iate ise FAI	ent data JLT	ry to a ab or r	ort s	ign: TT_I	al to FAL	CF JLT	PU t is a	o all ssei	ow ted	soft . Re	war	e to nme	ent ende	er S	Slee node	р М Э.		

3.5.2 Power Manager General Configuration Register

The PCFR contains bits used to configure functions in the application processor. When the OPDE bit is set, it allows the 3.6864 MHz oscillator to be disabled during Sleep Mode. The OPDE bit is cleared in Hardware, Watchdog, and GPIO Resets. The Float PCMCIA (FP) and Float Static Memory (FS) bits control the state of the PCMCIA control pins and the static memory control pins during Sleep Mode.

Table 3-8. PCFR Register Bitmap and Bit Definitions

		Reserved FS																														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															Reserved															FS	FP	OPDE
Reset	0	0	0	0	0	Reserved. Read undefined and must always be written with zeroes. Float Static Chip Selects during Sleep Mode. 0 = Static Chip Select pins are not floated in Sleep Mode. nCS[5:1] are driven to														0	0											
		[31:	Reserved. Read undefined and must always be written with zeroes. Float Static Chip Selects during Sleep Mode. 0 = Static Chip Select pins are not floated in Sleep Mode. nCS[5:1] are driven to to state of the appropriate PGSR register bits. nCS[1], nWE, and nOE are driven to the state of the appropriate PGSR register bits. nCS[1], nWE, and nOE are driven to the state of the appropriate PGSR register bits. nCS[1], nWE, and nOE are driven to the state of the appropriate PGSR register bits. nCS[1], nWE, and nOE are driven to the state of the appropriate PGSR register bits. nCS[1], nWE, and nOE are driven to the state of the appropriate PGSR register bits. nCS[1], nWE, and nOE are driven to the state of the appropriate PGSR register bits. nCS[1], nWE, and nOE are driven to the state of the appropriate PGSR register bits. nCS[1], nWE, and nOE are driven to the state of the appropriate PGSR register bits. nCS[1], nWE, and nOE are driven to the state of the appropriate PGSR register bits. nCS[1], nWE, and nOE are driven to the state of the appropriate PGSR register bits. nCS[1], nWE, and nOE are driven to the state of the appropriate PGSR register bits. nCS[1], nWE, and nOE are driven to the state of the appropriate PGSR register bits. nCS[1], nWE, and nOE are driven to the state of the appropriate PGSR register bits. nCS[1], nWE, and nOE are driven to the state of the appropriate PGSR register bits.																													
	[31:3] — Reserved. Read undefined and must always be written with zeroes. Float Static Chip Selects during Sleep Mode. 0 = Static Chip Select pins are not floated in Sleep Mode. nCS[5:1] are driven to the state of the appropriate PGSR register bits. nCS[1], nWE, and nOE are driven high 1 = Static Chip Select pins are floated in Sleep Mode. The pins nCS[5:0], nWE, and nOE are affected. Cleared on Hardware, Watchdog, and GPIO Resets. Float PCMCIA controls during Sleep Mode.														gh.																	
		1				F	Р		0 =	P(ap Th SI th	OMC opro ne P eep e sta	CIA pria CM Mo ate	pins Ite F ICIA de. of th	s are PGS sig nPS ne a	e no R r nal SKT ddi	ot flo regis ls: nl rSEL ress	ated ter b POE and bus	d in pits. , nF d nF dur	Slee PWE PRE ring	ep N E, nl G a Sle	PIC re d ep)W, i deriv Mod	nPIC ed f e.)R,	and	nP(CE[2	2:1]	are	floa	ted	
		0				OP	DE		If the Cordinate of the	ne 3 nfigi able Do St	2.76 urati ed. o no op t	686 ion ot sto	kHz Reg op t 3.68	z cry jiste he c 864 l	· /sta er is osci MH		disa DPD or du scilla	bled E is ring tor	l be ign Sle duri	cau ore eep ng S	d a Mo Slee	nd tl de. ep M	ne 3 lode	.686						not		

3.5.3 Power Manager Wake-Up Enable Register

Table 3-9 shows the location of all wake up source enable bits in the Power Manager Wake-Up Enable Register (PWER). If a GPIO is to be used as a wake up source from Sleep, it must be programmed as an input in the GPDR and either one or both of the corresponding bits in the PRER and PFER must be set. When the IDAE bit is zero and a fault condition is detected on the nVDD_FAULT or nBATT_FAULT pin, PWER is set to 0x0000 0003 and only allows GP[1:0] as wake-up sources. When the IDAE bit is set, fault conditions on the nVDD_FAULT or nBATT_FAULT pins do not affect wake-up sources. PWER is also set to 0x0000 0003 in Hardware, Watchdog, or GPIO Resets.

Table 3-9. PWER Register Bitmap and Bit Definitions

				0x4	10F(0 00	0C				Po	wer					ce-U VEF	lp Ei	nab	ole				Р	owe	er N	lana	age	r			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	WERTC								Reserved								WE15	WE14	WE13	WE12	WE11	WE10	WE9	WE8	WE7	WE6	WE5	WE4	WE3	WE2	WE1	WE0
Reset	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														0	1	1															
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																															
		[30:	16]			_	_		Res			fine	d a	nd r	nust	t alw	vays	be '	writ	tten	with	ı zei	oes	S.								
		[15	:0]			W	Ex		0 = 1 =	W W	ake-	up up	due due	to (GPx GPx	edo edo	ge d ge d	etec letec tchd	ct er	nabl	ed.	NO I	Res	ets.								

3.5.4 Power Manager Rising-Edge Detect Enable Register

The Power Manager Rising-edge Detect Enable register (PRER) determines whether the GPIO pin enabled with the PWER register causes a wake up from Sleep Mode on that GPIO pin's rising edge. When the IDAE bit is zero and a fault condition is detected on the nVDD_FAULT or nBATT_FAULT pin, PRER is set to 0x0000 0003. This enables rising edges on GP[1:0] to act as wake up sources. When the IDAE bit is set, fault conditions on the nVDD_FAULT or nBATT_FAULT pins do not affect wake-up sources. PRER is also set to 0x0000 0003 in Hardware, Watchdog, and GPIO Resets.

Table 3-10. PRER Register Bitmap and Bit Definitions

				0x-	40F	0 00)10				Po					Risin ister				ect				F	ow	er N	/lana	ageı	r			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															RE1	RE0																
Reset	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														1	1																
		[31	:16]			_	_				ed. Inde	efine	ed a	nd r	nus	st alv	vays	s be	writ	tten	with	n ze	roes	S.								
		[15	5:0]			RI	Ex		0 = 1 =	W	ake ake	up up	due due	to (GP:	Wal x risi x risi are,	ng-e	edge edge	e de e de	tect tect	ena	able	d.	ets.								

3.5.5 Power Manager Falling-Edge Detect Enable Register

The Power Manager Falling-edge Detect Enable register (PFER) determines if the GPIO pin enabled with the PWER register causes a wake up from Sleep Mode on that GPIO pin's falling edge. When the IDAE bit is zero and a fault condition is detected on the nVDD_FAULT or nBATT_FAULT pin, PFER is set to 0x0000 0003. This enables falling edges on GP[1:0] to act as wake up sources. When the IDAE bit is set, fault conditions on the nVDD_FAULT or nBATT_FAULT pins do not affect wake-up sources. PFER is also set to 0x0000 0003 in Hardware, Watchdog, and GPIO Resets.

Table 3-11. PFER Register Bitmap and Bit Definitions

				0x	40F	0 0	014									er F Reg								F	ow	er N	Man	age	r			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														FE1	FE0																
Reset	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															1	1															
		[31	:16]			_	_				red. Inde		ed a	nd r	nu	st alv	vays	s be	wri	tten	witl	h ze	roe	S.								
		[15	5:0]			F	Ex		0 = 1 =	W W	ake ake	up up	due due	to (GP GP	e Wa x fall x fall are,	ing- ing-	edg edg	e de	etec	t en	able	ed.	ets.								

3.5.6 Power Manager GPIO Edge Detect Status Register

The Power Manager Edge Detect Status register (PEDR) indicates which of the GPIO pins enabled through the PWER, PRER, and PFER registers caused a wake up from Sleep Mode. The bits in PEDR can only be set on a rising or falling edge on a given GPIO pin. If PRER is set, the bits in PEDR can only be set on a rising edge. If PFER is set, the bits in PEDR can only be set on a falling edge. To reset a bit in PEDR to zero, write a 1 to it. The PEDR bits are reset to zero in Hardware, Watchdog, and GPIO Resets.

Table 3-12. PEDR Register Bitmap and Bit Definitions

				0x-	40F	0 00)18				Ро	wer				dge r (PE			Stat	us				F	Pow	er N	/lana	ageı	•			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															ED1	ED0																
Reset															0	0																
		[31	:16]			_	_			ser\ ad ι		efine	ed a	nd r	nus	st alv	vays	s be	writ	tten	with	n ze	roes	S.								
		[15	5:0]			EI	Эx		0 = 1 =	: W	ake ake	up up	on (GPx to	no edg	t Sta t det e on atch	ecte GP	x d				sets	. Cl	eare	ed b	y wi	ritinç	g a ˈ	1.			

3.5.7 Power Manager Sleep Status Register

The PSSR contains the following status flags:

- Software Sleep Status (SSS) flag is set when the Sleep Mode configuration in the PWRMODE register is set and Sleep Mode starts (see Section 3.7.2, "PWRMODE Register (CP14 Register 7)").
- Battery Fault Status (BFS) bit is set after wake up any time the nBATT_FAULT pin is asserted (even when the application processor is already in Sleep Mode).
- VDD Fault Status (VFS) bit is set after wake up when the nVDD_FAULT pin is asserted and causes the application processor to enter Sleep Mode. The VFS bit is not set if software starts the Sleep Mode and then the nVDD_FAULT pin is asserted.
- Peripheral Control Hold (PH) bit is set when Sleep Mode starts and indicates that the GPIO pins are retaining their Sleep Mode state values.
- Read Disable Hold (RDH) bit is set in Hardware, GPIO, and Watchdog Resets and Sleep
 Mode. The RDH bit indicates that all the application processor's GPIO input paths are
 disabled. To allow a GPIO input pin to be enabled, software must reset the RDH bit by writing
 a one to it.

To clear a status flags write a 1 to it. Writing a 0 to a status bit has no effect. Hardware, Watchdog, and GPIO Resets clear or set the PSSR bits.

Table 3-13. PSSR Register Bitmap and Bit Definitions (Sheet 1 of 2)

				0x4	40F0	00 (04				J	Pow				ger S er (P\$			tus					ı	Pow	er N	/lana	ageı	r			
Bit	31	30	29	28	27	26	25	24	23 2	2	21	20	19	18	17	7 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													Doggood	000000000000000000000000000000000000000													RDH	PH	Reserved	VFS	BFS	SSS
Reset	0	0	0	0	0	0	0	0	0	О	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
		[31	:6]			_	_		Rese			fine	d a	nd r	nu	st alv	vays	s be	wri	tten	wit	h ze	roe	s.								
		5	5			RE	Н		1 =	GI Re the	PIO eceiv e pro ey a	pins vers oces re u	s ar of sso	e co all (r aft d.	GP er	igure IO pi the p	ns t erip	hat o	al a	act nd (as GPI	inpu O in	ts a terfa	re c	lisal are	bled e co	. Mu nfigi	urec	d bu	t bef	fore	
		4	1			Pl	Н		1 =	GI GI M	PIO PIO ust b	pins pins be c ured	s ar s ar lea d bu	e co e be red ut be	onf ein by efo	igure g hel the p re the	d in proc ey a	thei esso re a	r Si or a ctua	eep fter ally	Mo the use	de s peri d by	state phe the	e. S ral i e pro	et w nte	/hen rface ssor	Sle es h	ave	bee		arts	i.
		3	3			_	-		Rese			fine	d a	nd r	nu	st alv	vays	s be	wri	tten	wit	h a () .									

Table 3-13. PSSR Register Bitmap and Bit Definitions (Sheet 2 of 2)

				0x4	40F(00 0	04				Pow			nage ster				atus					F	ow	er N	/lana	agei	r			
Bit	31	30	29	28	27	26	25	24	23 22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												Reserved														RDH	PH	Reserved	VFS	BFS	SSS
Reset	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
		1	2			VF			1 = n S This b Cleare Batter 0 = n C 1 = n	VDE PU. VDE leep it is d by Fa BAT PU. BAT	D_FAID_FAID D_FAID D_MOO DOOR DOOR DOOR DOOR DOOR DOOR DOOR D	ULT ULT le; let w dwaratu	Γ pii bit i whe are, is. Τ p	n was se n n\ Wasin ha	as and the state of the state o	sseily a	rted fter AUL , an	l in F wal T is d G	Run ke u ass PIO sert	or I p. erte Re: ed s	dle led we sets	Mod hile e it v	in S vas	nd o	p M clea	ode arec	the o	chip	to e	ente	r
		()			SS	ss		This b Cleare Softwa 0 = S W 1 = C Cleare	re software la	Har Sleep are h ast cl was p	Sta as ear	are, atus not ed ced	Was. ent by a in S	ered res	dog, d Slo set o p Mo	eep or th	Mo ne C	de t PU.	Re:	sets ugh the \$	the	Sle	ep N	Лod	e bit		ce t	he S	SSS	;

3.5.8 Power Manager Scratch Pad Register

The Power Manager contains a 32-bit register that can be used to save processor configuration information in any desired format. The PSPR is a holding register that is powered during Sleep Mode and is reset by Hardware, Watchdog, and GPIO Resets. During Run and Turbo Modes, any value can be written to PSPR. The value can be read after Sleep Mode exits. The value in PSPR can be used to represent the processor's configuration before Sleep Mode is invoked.

Table 3-14. PSPR Register Bitmap and Bit Definitions

				0x4	10F(00	800					Pov				er S (PS		ch F)	Pad					F	ow	er N	/lan	age	r			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																۵	5															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		[31	:0]			S	Р		32-	atch bit v	vorc	l is I					•			PIO	Re	sets										

3.5.9 Power Manager GPIO Sleep State Registers

The PM GPIO Sleep State registers (PGSR0, PGSR1, PGSR2) allow software to select the output state of each GPIO pin when the application processor goes into Sleep Mode. When a transition to Sleep Mode is required (through software or the nBATT_FAULT or nVDD_FAULT pin), the contents of the PGSR registers are loaded into the GPIO output data registers that software normally controls through the GPSR and GPCR registers. Only pins that are already configured as outputs reflect the new state. All bits in the output registers are loaded. When the application processor re-enters the Run Mode, these GPIO pins retain the programmed Sleep state until software resets the PSSR's PH bit. If a pin is reconfigured from an input to an output, the register's last contents are driven onto the pin.

Table 3-15. PGSR0 Register Bitmap and Bit Definitions

				0x4	l0F0	00	20				Po	wer			er 0				Sta	ite				F	Powe	er N	/lana	ageı	r			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SS31	SS30	SS29	SS28	SS27	SS26	SS25	SS24	SS23	SS22	SS21	SS20	SS19	SS18	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10	888	SS8	SS7	SS6	SS 5	SS4	SS3	SS2	SS1	SS0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		[31	:0]			SS	Sx		0 = 1 =	Pii Pii	n is n is	med driv driv Ha	en t en t	o a	zero one	du du	ring ing	Sle	ep ep N	Mod Mod	de e	sets	-									

Table 3-16. PGSR1 Register Bitmap and Bit Definitions

				0x4	10FC	00	24				Po	wer			er C er 1				Sta	ate				F	ow	er N	/lana	agei	r			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SS63	SS62	SS61	SS60	SS59	SS58	SS57	SS56	SS55	SS54	SS53	SS52	SS51	SS50	SS49	SS48	SS47	SS46	SS45	SS44	SS43	SS42	SS41	SS40	SS39	SS38	SS37	SS36	SS35	SS34	SS33	SS32
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		[31	:0]			SS	Sx		0 = 1 =	Pii Pii	n is n is	med driv driv Ha	en t	o a	zero one	du du	ring ring	Sle	ep ep l	Mod Mod	de le		•									

Table 3-17. PGSR2 Register Bitmap and Bit Definitions

				0x4	40F	0 0	028				Р	owe				GPIO			Sta	ite				F	ow	er N	1ana	ager				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								Reserved								SS80	8879	SS78	SS77	SS76	SS75	SS74	SS73	SS72	SS71	SS70	8869	8988	SS67	SS66	SS65	SS64
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		[31:	17]			-	_			serv ad u			ed a	nd	mus	t alv	ays	s be	writ	ten	with	n zei	roes	S.								
		[16	:0]			S	Sx		0 = 1 =	: Pi : Pi	n is n is	driv driv	/en	to a	zer	out, out, out, out, out, out, out, out,	ring ring	Sle	eep ep l	Mod Mod	de le											

3.5.10 Reset Controller Status Register

The CPU uses the RCSR to determine a reset's last cause or causes. The application processor can be reset in four ways:

- Hardware Reset
- · Watchdog Reset
- Sleep Mode
- GPIO Reset

Refer to Table 2-5, "Effect of Each Type of Reset on Internal Register State" on page 2-8 for details of the behavior of different modules during each type of reset.

Each RCSR status bit is set by a different reset source and can be cleared by writing a 1 back to the bit. The RCSR status bits for Watchdog Reset, Sleep Mode, and GPIO Resets have a Hardware Reset state of zero. Table 3-18 shows the status bits in RCSR.

Table 3-18. RCSR Register Bitmap and Bit Definitions

				0x4	40F	0 00	030				Re	eset	t Co			ler S	Statu R)	s F	Reg	gis	ter					F	ow	er N	/lan	age	r			
Bit	31	30	29	28	27	26	25	24	23 2	2 2	1 :	20	19	18	1	17 1	6 1	5 ′	14	13	3 12	11	10) 9		8	7	6	5	4	3	2	1	0
														7000	Reserved																GPR	SMR	WDR	HWR
Reset	0	0	0	0	0	0	0	0	0 (0	1	0	0	0	(0	0 0		0	0	0	0	0	C	(0	0	0	0	0	0	0	0	1
		[31	:4]			-	_		Rese			fine	d a	nd ı	mı	ust a	alwa	/S	be	W	ritter	ı wi	h z	ero	es.									
		;	3			G	PR		1 =	GPIC clea GPIC his	O I	Res d th Res	is b	it. has	0	ccu	rred	sin	nce	th	e las	st tir	ne											d
		2	2			SI	MR		1 =	Slee clea Slee his	p red p bit	Mod d thi Mod	is b de l	it. has	00	ccui	red :	sin	ice	th	e las	t tir	ne t											d
		,	1			W	DR		1 = '	Nato clea Nato clea	choreo	dog d th dog d th	Re is b Re is b	oit. eset oit.	t h	ias (occui	re	d s	ind	ce th	e la	st t											et
		()			H\	ΝR		Hard 0 = 1 = Set b	Haro Haro	lw lw	are	Re Re	set	ha	as c	ccur	red	d si	inc	ce th	e la	st ti										t.	

3.5.11 Power Manager Register Locations

Table 3-19 shows the registers associated with the Power Manager and the physical addresses used to access them.

Table 3-19. Power Manager Register Locations (Sheet 1 of 2)

Address	Name	Description
0x40F0 0000	PMCR	Power Manager Control register
0x40F0 0004	PSSR	Power Manager Sleep Status register
0x40F0 0008	PSPR	Power Manager Scratch Pad register
0x40F0 000C	PWER	Power Manager Wake-up Enable register
0x40F0 0010	PRER	Power Manager GPIO Rising-edge Detect Enable register
0x40F0 0014	PFER	Power Manager GPIO Falling-edge Detect Enable register

Table 3-19. Power Manager Register Locations (Sheet 2 of 2)

Address	Name	Description
0x40F0 0018	PEDR	Power Manager GPIO Edge Detect Status register
0x40F0 001C	PCFR	Power Manager General Configuration register
0x40F0 0020	PGSR0	Power Manager GPIO Sleep State register for GP[31-0]
0x40F0 0024	PGSR1	Power Manager GPIO Sleep State register for GP[63-32]
0x40F0 0028	PGSR2	Power Manager GPIO Sleep State register for GP[84-64]
0x40F0 0030	RCSR	Reset controller status register

3.6 Clocks Manager Registers

The Clocks Manager contains three registers:

- Core Clock Configuration Register (CCCR)
- Clock Enable Register (CKEN)
- Oscillator Configuration Register (OSCC)

3.6.1 Core Clock Configuration Register

The CCCR controls the Core Clock Frequency, from which the Core, Memory Controller, LCD Controller, and DMA Controller frequencies are derived. The Crystal Frequency to Memory Frequency Multiplier (L), Memory Frequency to Run Mode Frequency Multiplier (M), and Run Mode Frequency to Turbo Mode Frequency Multiplier (N) are set in this register. The clock frequencies are shown below.

Memory Frequency = 3.6864 MHz Crystal Freq. * Crystal Frequency to Memory Frequency Multiplier (L)

Run Mode Frequency = Memory Frequency * Memory Frequency to Run Mode Frequency Multiplier (M)

Turbo Mode Frequency = Run Mode Frequency * Run Mode Frequency to Turbo Mode Frequency Multiplier (N)

The value for L is chosen based on External Memory or LCD requirements and can be constant while M and N change to allow Run and Turbo Mode frequency changes without disrupting memory settings. The value for M is chosen based on bus bandwidth requirements and minimum Core performance requirements. The value for N is chosen based on peak Core performance requirements.

Table 3-20. CCCR Register Bitmap and Bit Definitions

				0x4	1130	0 00	000			C	ore C	lock (onfigur CCCR		n Re	egis	ter				(Cloc	ks N	Man	age	er			
Bit	31	30	29	28	27	26	25	24	23 22	21	20	19 18	} ′	17 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										3	מפוע מיי											z		2	Ξ			_		
Reset	0	0	0	0	0	0	0	0	0 0	0	0	0 0		0 0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1
		[31:	10]			-	_		Reser Read		efined	d and	m	nust al	way	s be	wri	tten	witl	h ze	roe	s.								
		[9:	7]			I	N		Run M Turbo 000 – 001 – 010 – 011 – 100 – 111 – 111 – Set to	Mod Res Mult Mult Res Mult Res	de Free ervectiplier ervectiplier ervectiplier ervectiplier ervectiplier ervectiplier	eq. = d d d d d d d d d d d d d d d d d d	Rı	un Mo	de F	requ	uen	cy *	N	y M	ultip	lier								
		[6:	5]			ſ	М		Memo 00 - R 01 - N 10 - N 11 - R Set to	ry F lese lultip lultip ese	req. = rved olier = olier = rved	= Crys = 1 (R = 2 (R	eta ur ur	al Fred n Mod n Mod	ı. * L e Fr e Fr	eque	enc	y is y is	equ 2 tir	al to	э Ме		-							
		[4:	0]				L		Crysta 00000 00001 00010 00011 00100 00101 00110 Set to	- R - N - N - N - N - N - N - N - N	eserv lultipl lultipl lultipl lultipl lultipl	/ed ier = 3 ier = 3 ier = 4 ier = 4	27 32 36 40 45 se	7 (Men 2 (Men 6 (Men) (Men 5 (Men erved	nory nory nory nory nory	Fre Fre Fre Fre Fre	que que que que	ency ency ncy ency	is 9 is 1 is 1 is 1	99.5 117. 32. 47. 65.	96N 71N 46N	IHz IHz IHz	fron fron fron	n 3.6 n 3.6 n 3.6	686 686 686	4 N 4 N 4 N	1Hz 1Hz 1Hz	crys crys crys	tal) tal) tal)	

3.6.2 Clock Enable Register

CKEN enables or disables the clocks to most of the peripheral units. For lowest power consumption, the clock to any unit that is not being used must be disabled by writing a 0 to the appropriate bit.

Table 3-21. CKEN Register Bitmap and Bit Definitions (Sheet 1 of 2)

				0x	413	0 00	04				C	loc	k Eı	nab	le R	egis	ter ((CK	EN))				C	Clock	ks N	/lana	age	r			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								Reserved								CKEN16	Reserved	CKEN14	CKEN13	CKEN12	CKEN11	Reserved	Reserved	CKEN8	CKEN7	CKEN6	CKEN5	Reserved	CKEN3	CKEN2	CKEN1	CKENO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1
		[31	:17]			_	_		Res			fine	ed a	nd r	nus	t alw	ays	be	writ	ten	with	n zei	roes	S.								
		1	6		(CKE	N16	ć	1 =	Clo	ock ock	to t	he ι he ι	unit unit	is d is e	isab nabl tchd	ed.	Res	ets													
		1	5			_	_		Res			efin	ed a	and	mu	st al	way	s be	e wr	ittei	n wi	th a	zer	0.								
		1	4		(CKE	N14	ı	1 =	Clo	ock ock	to t to t	he ι he ι	unit unit	is d is e	isab nabl tchd	ed.	Res	ets													
		1	3		(CKE	N13	3	1 =	Clo	ock ock	to t	he ι he ι	unit unit	is d is e	isab nabl dwa	ed.	ese	et or	Wa	itch	dog	Res	set								
		1	2		(CKE	N12	2	1 =	Clo	ock ock	to t	he ι he ι	unit unit	is d is e	isab nabl dwa	ed.	ese	et or	Wa	itch	dog	Res	set								
		1	1		(CKE	:N11		1 = Set	Clo Clo by I	ock ock Hard	to t to t	he u he u are a	unit unit and	is d is e Wa	isab nabl tchd ow tl	ed. og F			clocl	k ou	tput	on	GP:	7 Alt	tern	ate	Fun	ctio	n 1.		
		[10):9]			_	_		Res			efin	ed a	and	mu	st al	way	s be	e wr	ittei	n wi	th a	zer	0.								
		8	8			CKE	EN8		1 =	Clo	ock ock	to t to t	he ι he ι	unit unit	is d is e	isab nabl tchd	ed.	Res	ets													

Table 3-21. CKEN Register Bitmap and Bit Definitions (Sheet 2 of 2)

				0x	413	00 00	004				(Cloc	k E	nab	le R	egis	ster	(CK	ΈN)				C	Cloc	ks N	/lana	agei	-			
Bit	31	30	29	9 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								Reserved								CKEN16	Reserved	CKEN14	CKEN13	CKEN12	CKEN11	Reserved	Reserved	CKEN8	CKEN7	CKEN6	CKEN5	Reserved	CKEN3	CKEN2	CKEN1	CKENO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1
		-	7			CKI	EN7		BTU 0 = 1 = The	CI CI	ock ock	to t	he ເ he ເ	unit unit	is d is e	isab nabl	ed.	lese	et o	r Wa	itch	dog	Res	set								
		(6			CKI	EN6		FFU 0 = 1 = Set	CI	ock ock	to t	he ι he ι	unit unit	is d is e	isab nabl	ed.	Res	ets													
			5			CKI	EN5		STU 0 = 1 = Set	CI	ock ock	to t	he ເ he ເ	unit unit	is d is e	isab nabl	ed.	Res	ets													
			4			_	_		Res Rea			lefir	ed :	and	mu	st al	way	s b	e w	ritter	n wi	th ze	ero.									
		;	3			CKI	EN3		SSF 0 = 1 = Set	CI	ock ock	to t	he ι he ι	unit unit	is d is e	nabl	ed.	Res	ets													
		;	2			CKI	EN2		AC9 0 = 1 = Set	CI	ock ock	to t	he ເ he ເ	unit unit	is d is e	nabl	ed.	Res	ets													
		,	1			CKI	EN1		PW 0 = 1 = Set	CI CI	ock ock	to t	he ເ he ເ	unit unit	is e	nabl	ed.	Res	ets													
		(0			CKI	EN0		PW 0 = 1 = Set	CI	ock ock	to t	he ι he ι	unit unit	is e	nabl	ed.	Res	ets													

3.6.3 Oscillator Configuration Register

The OSCC controls the 32.768 kHz oscillator configuration. It contains two bits, the set-only 32.768 kHz OON and the read-only 32.768 kHz OOK. The OON bit enables the external 32.768 kHz oscillator and can only be set by software. When the oscillator is enabled, it takes up to 10 seconds for to stabilize. When the oscillator is stabilized, the application processor sets the OOK bit.

When the OOK bit is set, the RTC and Power Manager are clocked from the 32.768 kHz oscillator. Otherwise, the 3.6864 MHz oscillator is used. The OPDE bit, which allows the 3.6864 MHz oscillator to be disabled in Sleep Mode, is ignored (treated as if it were clear) if the OOK bit is clear. OOK can only be reset by Hardware Reset.

Table 3-22. OSCC Register Bitmap and Bit Definitions

				0x4	1130	00	80		Oscillator Configuration Register (OSCC)													Clocks Manager											
Bit	31	30 2	29	28	27 2	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
										Reserved															00N	00K							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		[31:	2]			_	-		Reserved. Read undefined and must always be written with zeroes.																								
		1				oc	Ν		 32.768 kHz OON (write-once only bit) 0 = 32.768kHz oscillator is disabled. The 3.6864 MHz oscillator (divided by 112) clock the Real Time Clock and Power Manager. 1 = 32.768 kHz oscillator is enabled. OON can not be cleared once written except by Hardware Reset. Cleared by Hardware Reset. 																								
		0			OOK 32.768 kHz OOK (read-only bit) 0 = 32.768 kHz oscillator is disabled or not stable. The 3.686 by 112) clocks the Real Time Clock and Power Manager. 1 = 32.768 kHz oscillator has been enabled (OON=1) and star Real Time Clock and Power Manager. Cleared by Hardware Reset.												er.					`		d									

3.6.4 Clocks Manager Register Locations

Table 3-23 shows the registers associated with the Clocks Manager and the physical addresses used to access them.

Table 3-23. Clocks Manager Register Locations

Address	Name	Description
0x4130 0000	CCCR	Core Clock Configuration Register
0x4130 0004	CKEN	Clock Enable Register
0x4130 0008	oscc	Oscillator Configuration Register

3.7 Coprocessor 14: Clock and Power Management

Coprocessor 14 contains two registers that control the Power Modes and Sequences:

- CP14 register 6 CCLKCFG Register
- CP14 register 7 PWRMODE Register

Table 3-24. Coprocessor 14 Clock and Power Management Summary

Function	Data in Rd	Instruction
Read CCLKCFG	_	MRC p14, 0, Rd, c6, c0, 0
Enter Turbo Mode	TURBO = 1	MCR p14, 0, Rd, c6, c0, 0
Enter Frequency Change Sequence	FCS = 1 (Turbo Mode bit may be set or cleared in the same write)	MCR p14, 0, Rd, c6, c0, 0
Enter Idle Mode	M = 1	MCR p14, 0, Rd, c7, c0, 0
Enter Sleep Mode	M = 3	MCR p14, 0, Rd, c7, c0, 0

3.7.1 CCLKCFG Register (CP14 Register 6)

The CCLKCFG register is used to enter the Turbo Mode and Frequency Change Sequence. To enter the mode or sequence, software executes the appropriate function from Table 3-24. All Coreinitiated memory requests are completed before the Clocks and Power Manager initiates the desired mode or sequence.

To ensure that the Turbo bit does not change when entering the Frequency Change Sequence, software must do a read-modify-write.

Table 3-25. CCLKCFG Register Bitmap and Bit Definitions

			C	CP14	4 Re	egist	er 6	6		CCLKCFG											CP14												
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
															Doynosad	ועפפועפת															FCS	TURBO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		[31	:2]			_	-		Reserved. Read undefined and must always be written with zeroes. Cleared on Hardware, Watchdog, and GPIO Reset and when Sleep Mode exits.																								
		1	1			FC	s		Frequency Change Sequence 0 = Do not enter Frequency Change Sequence 1 = Enter Frequency Change Sequence Cleared on Hardware, Watchdog, and GPIO Reset and when Sleep Mode exits.																								
	0				-	ΓUR	во		1 =	Do Er	nc nter	t er Tur	bo N	Nod	е			kit Tu , an				set	and	wh	en S	Slee	рΜ	ode	exi	ts.			

3.7.2 PWRMODE Register (CP14 Register 7)

The PWRMODE register is used to enter Idle and Sleep Modes. To select a mode, software writes to PWRMODE[M]. All Core-initiated memory requests are completed before the Clocks and Power Manager initiates the desired Mode.

Table 3-26. PWRMODE Register Bitmap and Bit Definitions

			C	P14	1 R€	egis	ter 7	7			PWRMODE											CP14											
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		Reserved																					Σ										
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		[31:	:2]			_			Reserved. Read undefined and must always be written with zeroes.																								
		[1:	0]			M	1		Low 00 : 01 : 10 : 11 : Set	= Ru = Idl = Re = Sle	ın/1 e M esei eep	urb lode rvec Mo	o M e l de																				

3.8 External Hardware Considerations

The Clocks and Power Manager controls the timing in and out of resets and the voltage ramp and stabilization. As a result, the hardware that is used with the application processor must meet certain requirements to operate properly. This section describes those requirements.

3.8.1 Power Supply Sequencing

To avoid high current difficulties, the application processor's power supplies must be powered up in the following order:

- 1. VCCQ
- 2. VCCN
- 3. VCC and PLL_VCC

Note: VCCN must not be powered up before VCCQ.

3.8.2 Power-On-Reset Considerations

The nRESET and nTRST pins must be held low while the Power Supplies initialize and for a fixed time after power is stable. This can be controlled with an external Power-On-Reset device or another circuit.

To ensure that the internal ESD protection devices do not activate during power up, a minimum rise time must be observed. Refer to the *Intel® PXA250 and PXA210 Application Processors Electrical, Mechanical, and Thermal Specification* for details.

3.8.3 Power Supply Connectivity

The application processor requires two or three externally-supplied voltage levels. VCCQ requires 3.3 V (+/- 10%), VCCN requires 3.3 V (+/- 10%) or 2.5 V (+15/-5%), and VCC and PLL_VCC shall be connected together and require .85-1.3 V. PLL_VCC must be separated from other low voltage supplies. Depending on the availability of independent regulator outputs and the desired memory voltage, VCCQ may have to be separated from VCCN.

3.8.4 Driving the Crystal Pins from an External Clock Source

The information in this section is provided as a guideline. The electrical specifications for the crystal oscillator pins are in *Intel*® *PXA250* and *PXA210* Application Processors Electrical, Mechanical, and Thermal Specification.

A 3.6864 MHz crystal must be connected between the PXTAL and PEXTAL pins. A 32.768 kHz crystal is normally connected between the TXTAL and TEXTAL pins. This configuration gives the lowest overall power consumption because the crystal's resonant nature provides better power efficiency than an external source that drives the crystal pins. Some applications have other clock sources of the same frequency and can reduce overall cost by driving the crystal pins externally.

Refer to the Oscillator Electrical Specifications in the *Intel*® *PXA250 and PXA210 Design Guide* for more information.

Note: No external capacitors are required.

3.8.5 Noise Coupling Between Driven Crystal Pins and a Crystal Oscillator

The two pairs of crystal pins are located near each other on the application processor. When crystal oscillators are connected to the pins, this proximity leads to low signal swings and slow edges that result in limited noise coupling between the pins. If one of the crystal oscillators is replaced by an independent signal source and the other is not, the noise coupling may increase. To limit this effect, reduce the slew rate on the pins driven by the independent source.

intel® System Integration Unit

This chapter describes the System Integration Unit (SIU). The SIU controls several processor-wide system functions. The units contained in the SIU are:

- General-purpose I/O ports
- Interrupt controller
- · Real-time clock
- Operating system timer
- Pulse Width modulator

4.1 **General-Purpose I/O**

The PXA250 application processor enables and controls its 81 general purpose I/O (GPIO) pins through the use of 27 registers which configure the pin direction (input or output), pin function, pin state (outputs only), pin level detection (inputs only), and selection of alternate functions. See Table 2-11, "Signals Not Supported for the PXA210 Application Processor" on page 2-26 for a list of the signals not supported for the PXA210. A portion of the GPIOs can be used to bring the application processor out of Sleep mode. Take care when choosing which GPIO pin is assigned as a GPIO function because many of the GPIO pins have alternate functions and can be configured to support application processor peripherals.

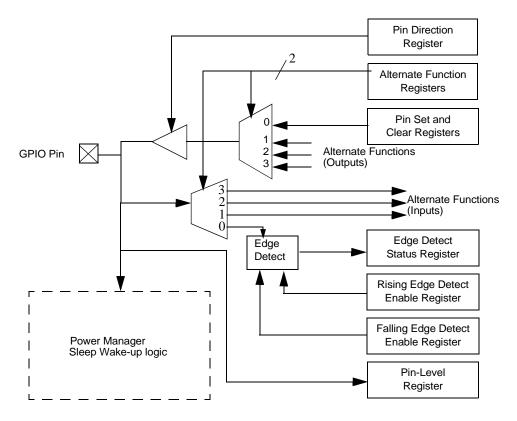
Configure all unused GPIOs as outputs to minimize power consumption.

4.1.1 **GPIO Operation**

The PXA250 application processor provides 81 GPIO pins for use in generating and capturing application-specific input and output signals. Each pin can be programmed as either an input or output. When programmed to be an input, a GPIO can also serve as an interrupt source. All 81 pins are configured as inputs during the assertion of all resets, and remain as inputs until they are configured otherwise.

Use the GPIO Pin Direction register (GPDR) to set whether the GPIO pins are outputs or inputs. When programmed as an output, the pin can be set high by writing to the GPIO Pin Output Set register (GPSR) and cleared low by writing to the GPIO Pin Output Clear register (GPCR). The set and clear registers can be written regardless of whether the pin is configured as an input or an output. If a pin is configured as an input, the programmed output state occurs when the pin is reconfigured to be an output.

Validate each GPIO pin's state by reading the GPIO Pin Level register (GPLR). You can read this register any time to confirm the state of a pin. In addition, use the GPIO Rising Edge Detect Enable register (GRER) and GPIO Falling Edge Detect Enable register (GFER) to detect either a rising edge or falling edge on each GPIO pin. Use the GPIO Edge Detect Status register (GEDR) to read edge detect state. You may program these edge detects to generate interrupts (see Section 4.2,



"Interrupt Controller"). Also use GPIO[15:0] to generate wake-up events that bring the PXA250 application processor out of sleep mode (refer to Section 3.4.8.5, "Exiting Sleep Mode" on page 3-17).

When the application processor enters sleep mode, the contents of the Power Manager Sleep State registers (PGSR0, PGSR1 and PGSR2) are loaded into the output data registers. If the particular pin is programmed as an output, then the value in the PGSR is driven onto the pin before entering sleep mode. When the application processor exits sleep mode, these values remain driven until the GPIO pins are reprogrammed by writing to the GPDR, GPSR or GPCR, and setting the GPIO bit in the Power Manager Sleep Status register (PSSR) to indicate that the GPIO registers have been reinitialized after sleep mode. This is necessary since the GPIO logic loses power during sleep mode

Most GPIO pins can also serve an alternate function within the application processor. Certain modes within the serial controllers and LCD controller require extra pins. These functions are hardwired into specific GPIO pins and their use is described in the following paragraphs. Even though a GPIO pin is used for an alternate function, you must still program the proper direction of that pin through the GPDR. Details on alternate functions are provided in Section 4.1.2, "GPIO Alternate Functions". Figure 4-1 shows a block diagram of a single GPIO pin.

Figure 4-1. General-Purpose I/O Block Diagram

4.1.2 **GPIO Alternate Functions**

GPIO pins are capable of having as many as six alternate functions that can be set to enable additional functionality within the application processor. If a GPIO is used for an alternate function, then it cannot be used as a GPIO at the same time. GPIO[0] is reserved because of its

special use during sleep mode and is not available for alternate functions. GPIO[15:0] are used for wakeup from sleep mode. The wakeup functionality is described in Section 3.4.8.5, "Exiting Sleep Mode" on page 3-17. Table 4-1 shows each GPIO pin and its corresponding alternate functions.

For more information on alternate functions, refer to the Source Unit column in Table 4-1 for the appropriate section of this document.

Note: Shaded selections in the table are not supported for the PXA210 application processor.

Table 4-1. GPIO Alternate Functions (Sheet 1 of 4)

Pin	Alternate Function Name	Alternate Function Assignment	AF{n} encoding	Source Unit	Signal Description and comments
GP1	GP_RST	ALT_FN_1_IN	01	Clocks & Power Manager Unit	Active low GP_reset
GP6	MMCCLK	ALT_FN_1_OUT	01	Multimedia Card (MMC) Controller	MMC Clock
GP7	48 MHz clock [†]	ALT_FN_1_OUT	01	Clocks & Power Manager Unit	48 MHz clock output
GP8	MMCCS0	ALT_FN_1_OUT	01	Multimedia Card	MMC Chip Select 0
GP9	MMCCS1	ALT_FN_1_OUT	01	(MMC) Controller	MMC Chip Select 1
GP10	RTCCLK	ALT_FN_1_OUT	01	System Integation Unit	real time clock (1 Hz)
GP11	3.6 MHz	ALT_FN_1_OUT	01	Clocks & Power	3.6 MHz oscillator out
GP12	32 kHz	ALT_FN_1_OUT	01	Manager Unit	32 kHz out
GP13	MBGNT	ALT_FN_2_OUT	10		memory controller grant
GP14	MBREQ	ALT_FN_1_IN	01	Memory Controller	memory controller alternate bus master request
GP15	nCS_1	ALT_FN_2_OUT	10	Memory Controller	Active low chip select 1
GP16	PWM0	ALT_FN_2_OUT	10	System Integration	PWM0 output
GP17	PWM1	ALT_FN_2_OUT	10	System integration	PWM1 output
GP18	RDY	ALT_FN_1_IN	01	Memory Controller	Ext. Bus Ready
GP19	DREQ[1]	ALT_FN_1_IN	01	Memory Controller	External DMA Request
GP20	DREQ[0]	ALT_FN_1_IN	01	Memory Controller	External DMA Request
GP23	SCLK	ALT_FN_2_OUT	10		SSP clock
GP24	SFRM	ALT_FN_2_OUT	10		SSP Frame
GP25	TXD	ALT_FN_2_OUT	10	SSP Serial Port	SSP transmit
GP26	RXD	ALT_FN_1_IN	01		SSP receive
GP27	EXTCLK	ALT_FN_1_IN	01		SSP ext_clk
GP28	BITCLK	ALT_FN_1_IN	01	AC97 Controller Unit	AC97 bit_clk
	BITCLK	ALT_FN_2_IN	10	I2S Controller	I2S bit_clk
GP28	BITCLK	ALT_FN_1_OUT	01	123 CONTROLLE	I2S bit_clk
	BITCLK	ALT_FN_2_OUT	10	AC97 Controller Unit	AC97 bit_clk
GP29	SDATA_IN0	ALT_FN_1_IN	01	AC97 Controller Unit	AC97 Sdata_in0
GFZ8	SDATA_IN	ALT_FN_2_IN	10	I2S Controller	I2S Sdata_in

Table 4-1. GPIO Alternate Functions (Sheet 2 of 4)

		A11 . = .1	.=. >		
Pin	Alternate Function Name	Alternate Function Assignment	AF{n} encoding	Source Unit	Signal Description and comments
GP30	SDATA_OUT	ALT_FN_1_OUT	01	I2S Controller	I2S Sdata_out
GI 30	SDATA_OUT	ALT_FN_2_OUT	10	AC97 Controller Unit	AC97 Sdata_out
GP31	SYNC	ALT_FN_1_OUT	01	I2S Controller	I2S sync
GF31	SYNC	ALT_FN_2_OUT	10	AC97 Controller Unit	AC97 sync
CD22	SDATA_IN1	ALT_FN_1_IN	01	AC97 Controller Unit	AC97 Sdata_in1
GP32	SYSCLK	ALT_FN_1_OUT	01	I2S Controller	I2S System Clock
GP33	nCS[5]	ALT_FN_2_OUT	10	Memory Controller	Active low chip select 5
	FFRXD	ALT_FN_1_IN	01	UARTs	FFUART receive
GP34	MMCCS0	ALT_FN_2_OUT	10	Multimedia Card (MMC) Controller	MMC Chip Select 0
GP35	CTS	ALT_FN_1_IN	01		FFUART Clear to send
GP36	DCD	ALT_FN_1_IN	01		FFUART Data carrier detect
GP37	DSR	ALT_FN_1_IN	01	UARTs	FFUART data set ready
GP38	RI	ALT_FN_1_IN	01		FFUART Ring Indicator
GP39	MMCCS1	ALT_FN_1_OUT	01	Multimedia Card (MMC) Controller	MMC Chip Select 1
	FFTXD	ALT_FN_2_OUT	10	UARTs	FFUART transmit data
GP40	DTR	ALT_FN_2_OUT	10	LIA D.T.	FFUART data terminal Ready
GP41	RTS	ALT_FN_2_OUT	10	UARTs	FFUART request to send
GP42	BTRXD	ALT_FN_1_IN	01	UARTs	BTUART receive data
GP43	BTTXD	ALT_FN_2_OUT	10	UARTs	BTUART transmit data
GP44	CTS	ALT_FN_1_IN	01	LIADT	BTUART clear to send
GP45	RTS	ALT_FN_2_OUT	10	UARTs	BTUART request to send
GP46	ICP_RXD	ALT_FN_1_IN	01	Infrared Communication Port	ICP receive data
	RXD	ALT_FN_2_IN	10	UARTs	STD_UART receive data
	TXD	ALT_FN_1_OUT	01	UARTs	STD_UART transmit data
GP47	ICP_TXD	ALT_FN_2_OUT	10	Infrared Communication Port	ICP transmit data
GP48	nPOE	ALT_FN_2_OUT	10		Output Enable for Card Space
GP49	nPWE	ALT_FN_2_OUT	10		Write Enable for Card Space
GP50	nPIOR	ALT_FN_2_OUT	10	Mars and Cantuallan	I/O Read for Card Space
GP51	nPIOW	ALT_FN_2_OUT	10	Memory Controller	I/O Write for Card Space
GP52	nPCE[1]	ALT_FN_2_OUT	10		Card Enable for Card Space
GP53	nPCE[2]	ALT_FN_2_OUT	10		Card Enable for Card Space
GP53	MMCCLK	ALT_FN_1_OUT	01	Multimedia Card (MMC) Controller	MMC Clock
GP54	MMCCLK	ALT_FN_1_OUT	01	Multimedia Card (MMC) Controller	MMC Clock
0.01	WWW.COLK	7.21_1.1_1_001	01	(MMC) Controller	IIIII GIGGK

Table 4-1. GPIO Alternate Functions (Sheet 3 of 4)

Pin	Alternate Function Name	Alternate Function Assignment	AF{n} encoding	Source Unit	Signal Description and comments
GP54	nPSKTSEL	ALT_FN_2_OUT	10	Memory Controller	Socket Select for Card Space
GP55	nPREG	ALT_FN_2_OUT	10	Marrani Cantrallar	Card Address bit 26
GP56	nPWAIT	ALT_FN_1_IN	01	Memory Controller	Wait signal for Card Space
GP57	nIOIS16	ALT_FN_1_IN	01	Memory Controller	Bus Width select for I/O Card Space
GP58	LDD[0]	ALT_FN_2_OUT	10		LCD data pin 0
GP59	LDD[1]	ALT_FN_2_OUT	10		LCD data pin 1
GP60	LDD[2]	ALT_FN_2_OUT	10		LCD data pin 2
GP61	LDD[3]	ALT_FN_2_OUT	10	LCD Controller	LCD data pin 3
GP62	LDD[4]	ALT_FN_2_OUT	10	LCD Controller	LCD data pin 4
GP63	LDD[5]	ALT_FN_2_OUT	10		LCD data pin 5
GP64	LDD[6]	ALT_FN_2_OUT	10		LCD data pin 6
GP65	LDD[7]	ALT_FN_2_OUT	10		LCD data pin 7
	LDD[8]	ALT_FN_2_OUT	10	LCD Controller	LCD data pin 8
GP66	MBREQ	ALT_FN_1_IN	01	Memory Controller	memory controller alternate bus master req
	LDD[9]	ALT_FN_2_OUT	10	LCD Controller	LCD data pin 9
GP67	MMCCS0	ALT_FN_1_OUT	01	Multimedia Card (MMC) Controller	MMC Chip Select 0
GP68	MMCCS1	ALT_FN_1_OUT	01	Multimedia Card (MMC) Controller	MMC Chip Select 1
	LDD[10]	ALT_FN_2_OUT	10	LCD Controller	LCD data pin 10
GP69	MMCCLK	ALT_FN_1_OUT	01	Multimedia Card (MMC) Controller	MMC_CLK
	LDD[11]	ALT_FN_2_OUT	10	LCD Controller	LCD data pin 11
GP70	RTCCLK	ALT_FN_1_OUT	01	System Integation Unit	Real Time clock (1 Hz)
	LDD[12]	ALT_FN_2_OUT	10	LCD Controller	LCD data pin 12
GP71	3.6 MHz	ALT_FN_1_OUT	01	Clocks & Power Manager Unit	3.6 MHz Oscillator clock
	LDD[13]	ALT_FN_2_OUT	10	LCD Controller	LCD data pin 13
GP72	32 kHz	ALT_FN_1_OUT	01	Clocks & Power Manager Unit	32 kHz clock
	LDD[14]	ALT_FN_2_OUT	10	LCD Controller	LCD data pin 14
CD70	LDD[15]	ALT_FN_2_OUT	10	LCD Controller	LCD data pin 15
GP73	MBGNT	ALT_FN_1_OUT	01	Memory Controller	Memory controller grant
GP74	LCD_FCLK	ALT_FN_2_OUT	10		LCD Frame clock
GP75	LCD_LCLK	ALT_FN_2_OUT	10	I OD Carrier II a	LCD line clock
GP76	LCD_PCLK	ALT_FN_2_OUT	10	LCD Controller	LCD Pixel clock
GP77	LCD_ACBIAS	ALT_FN_2_OUT	10	1	LCD AC Bias

Table 4-1. GPIO Alternate Functions (Sheet 4 of 4)

Pin	Alternate Function Name	Alternate Function Assignment	AF{n} encoding	Source Unit	Signal Description and comments
GP78	nCS[2]	ALT_FN_2_OUT	10		Active low chip select 2
GP79	nCS[3]	ALT_FN_2_OUT	10	Memory Controller	Active low chip select 3
GP80	nCS[4]	ALT_FN_2_OUT	10		Active low chip select 4

NOTE: Shaded selections are not supported for the PXA210.

4.1.2.1 Operational Restrictions in the PXA210 Application Processor

In the PXA210, the following GPIO pins are not available:

- GPIO[14:2]
- GPIO[22:19]
- GPIO[38:35]
- GPIO[41:40]

Note: Because GPIO[14:2] are not available in the PXA210 application processor, only GPIO[15] and GPIO[1:0] can be used for wakeup from the Sleep mode.

4.1.3 **GPIO** Register Definitions

There are a total of twenty-seven 32-bit registers within the GPIO control block. There are nine distinct register functions and there are three sets of each of the nine registers to serve the 81 GPIOs. The various functions of the nine registers corresponding to each GPIO pin are described here:

- Three monitor pin state (GPLR)
- Six control output pin state (GPSR, GPCR)
- Three control pin direction (GPDR)
- Six control whether rising edges and/or falling edges are detected (GRER & GFER)
- Three indicate when specified edge types have been detected on pins (GEDR).
- Six determine whether a pin is used as a normal GPIO or whether it is to be taken over by one of three possible alternate functions (GAFR_L, GAFR_U).

Table 4-2. GPIO Register Definitions

Register Type	Register Function	GPIO[15:0]	GPIO[31:16]	GPIO[47:32]	GPIO[63:48]	GPIO[79:64]	GPIO[80]
GPLR	Monitor Pin State	GP	LR0	GPI	_R1	GPI	LR2
GPSR	Control Output	GP:	SR0	GP:	SR1	GPS	SR2
GPCR	Pin State	GP	CR0	GPO	CR1	GPO	CR2
GPDR	Set Pin Direction	GPI	DR0	GPI	DR1	GPI	DR2

[†] CKEN[11] - USB Unit Clock Enable bit must be enabled to allow the 48 MHz clock output on GP7

Table 4-2. GPIO Register Definitions

Register Type	Register Function	GPIO[15:0]	GPIO[31:16]	GPIO[47:32]	GPIO[63:48]	GPIO[79:64]	GPIO[80]
GRER	Detect Rising/Falling	GRI	ER0	GRI	ER1	GRI	ER2
GFER	Edge	GFE	ER0	GF	ER1	GFE	R2
GEDR	Detect Edge Type	GE	DR0	GEI	DR1	GE	DR2
GAFR	Set Alternate Functions	GAFR0_L	GAFR0_U	GAFR1_L	GAFR1_U	GAFR2_L	GAFR2_U

NOTE: For the alternate function registers, the designator _L signifies that the lower 16 GPIOs' alternate functions are configured by that register and _U designates that the upper 16 GPIOs' alternate functions are configured by that register.

Note: GPLR2[31:17], GPSR2[31:17], GPCR2[31:17], GPDR2[31:17], GRER2[31:17], GFER2[31:17], GEDR2[31:17] and GAFR2 U[31:2] are reserved bits. Write zeros to these bits and ignore all

reads to these bits.

Note: All GPIO registers are initialized to 0x0 at reset, which results in all GPIO pins being initialized as inputs.

4.1.3.1 GPIO Pin-Level Registers (GPLR)

Check the state of each of the GPIO pins by reading the GPIO Pin Level register (GPLR). Each bit in the GPLR corresponds to one pin in the GPIO. GPLR0[31:0] correspond to GPIO[31:0], GPLR1[31:0] correspond to GPIO[63:32] and GPLR2[16:0] correspond to GPIO[80:64]. Use the GPLR0—2 read-only registers to determine the current value of a particular pin (regardless of the programmed pin direction). For reserved bits (GPLR2[31:17]), reads return zero.

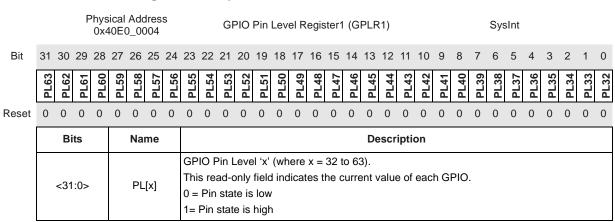

Table 4-3 through Table 4-5 show the bitmaps of the GPIO Pin Level registers.

Table 4-3. GPLR0 Register Bitmap

				,		Add		8			GP	Olo	Pin I	Leve	el R	egis	ter0	(GI	PLR	0)						Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PL31	PL30	PL29	PL28	PL27	PL26	PL25	PL24	PL23	PL22	PL21	PL20	PL19	PL18	PL17	PL16	PL15	PL14	PL13	PL12	PL11	PL10	PL9	PL8	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bits Name Description																															
		<31	:0>			PL	[x]		0 =	s rea Pin	ad-o	nly e is	field low	lind						alue	e of	eacl	n GF	PIO.								

Table 4-4. GPLR1 Register Bitmap

Table 4-5. GPLR2 Register Bitmap

			F			Add	dres 008	S			GI	910	Pin	Lev	el R	egis	ter2	2 (GI	PLR	2)						Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Re	ser	ved							PL80	PL79	PL78	PL77	PL76	PL75	PL74	PL73	PL72	PL71	PL70	PL69	PL68	PL67	PL66	PL65	PL64
Reset	0	0 0 0 0 0 0 0 0 0 0 0 0 Bits Name								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		<31	:17>			_	_		Re	serv	ed																					
		<16	6:0>			PL	.[x]		Thi	s re	ad-	only		inc		x = tes t			,	alue	e of	eacl	n GI	PIO.								

4.1.3.2 GPIO Pin Direction Registers (GPDR)

1= Pin state is high

Whether a pin is an input or an output is controlled by programming the GPIO pin direction registers (GPDR0, GPDR1, GPDR2). The GPDR registers contain one direction control bit for each of the 81 GPIO pins. If a direction bit is programmed to a one, the GPIO is an output. If it is programmed to a zero, it is an input. Reserved bits (GPDR2[31:17]), must be written to zeros and reads to the reserved bits must be ignored.

Note: A reset clears all bits in the CPDR0-2 registers and configures all GPIO pins as inputs.

Table 4-6 through Table 4-8 show the bitmaps of the GPIO Pin Direction registers.

Table 4-6. GPDR0 Register Bitmap

						Add 0_00		3				GPI	IO F			ction DR0)		gist	er0							Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PD31	PD30	PD29	PD28	PD27	PD26	PD25	PD24	PD23	PD22	PD21	PD20	PD19	PD18	PD17	PD16	PD15	PD14	PD13	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		<31	:0>			PD	[x]		0 =	Pin	con	nfigu	red	as a	àn in	ere :		0 to	31).													

Table 4-7. GPDR1 Register Bitmap

						Add 0_00		3				GPI	IO F			ction DR1)		gist	er1							Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PD63	PD62	PD61	PD60	PD59	PD58	PD57	PD56	PD55	PD54	PD53	PD52	PD51	PD50	PD49	PD48	PD47	PD46	PD45	PD44	PD43	PD42	PD41	PD40	PD39	PD38	PD37	PD36	PD35	PD34	PD33	PD32
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Naı	me												De	scr	iptio	on										
	<31:0> PD[x] 0 =										con	figu	red	as a	` an ir	ere : nput. utpu		32 t	0 63).												

Table 4-8. GPDR2 Register Bitmap

							_				-																					
			F			al Ado E0_0		S				GP	IO F			ctior DR2		giste	er2							Sys	sInt					
Bit	31	30	29	28	2	7 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Re	serv	/ed							PD80	PD79	PD78	PD77	PD76	PD75	PD74	PD73	PD72	PD71	PD70	PD69	PD68	PD67	PD66	PD65	PD64
Reset	0 0 0 0 0 0 0 0 0										0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		В	its			Na	me												De	scr	iptic	on										
		<31	:17>	•		_			Res	serv	ed																					
											cor	x' Di nfigu nfigu	red	as a	àn ir	nput		64 to	o 80)).												

4.1.3.3 GPIO Pin Output Set Registers (GPSR) and Pin Output Clear Registers (GPCR)

When a GPIO is configured as an output, you control the state of the pin by writing to either the GPIO Pin Output Set registers (GPSR) or the GPIO Pin Output Clear registers (GPCR). An output pin is set high by writing a one to its corresponding bit within the GPSR. To clear an output pin, a one is written to the corresponding bit within the GPCR. GPSR and GPCR are write-only registers. Reads return unpredictable values.

Writing a zero to any of the GPSR or GPCR bits has no effect on the state of the pin. Writing a one to a GPSR or GPCR bit corresponding to a pin that is configured as an input is effective only after the pin is configured as an output. Reserved bits (GPSR2[31:17] and GPCR2[31:17]), must be written with zeros and reads must be ignored.

Table 4-9 through Table 4-11 show the bitmaps of the GPIO Pin Output Set registers. Table 4-12 through Table 4-14 show the bitmaps of the GPIO Pin Output Clear registers.

Table 4-9. GPSR0 Register Bitmap

				,		Add 0_00		3			(GPI) Pi		utpu GPS			egis	ter0							Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PS31	PS30	PS29	PS28	PS27	PS26	PS25	PS24	PS23	PS22	PS21	PS20	PS19	PS18	PS17	PS16	PS15	PS14	PS13	PS12	PS11	PS10	PS9	PS8	PS7	PS6	PS5	PS4	PS3	PS2	PS1	PS0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Naı	me												De	scr	ipti	on										
		<31	:0>			PS	[x]		0 =	Pin	leve	el ur	affe	ecte	d.						-	31). gh (c										

Table 4-10, GPSR1 Register Bitmap

		•		•	•	٠		,				P																				
						Add 0_00		S			(GPIC) Pi		utpu GPS			egis	ter1							Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PS63	PS62	PS61	PS60	PS59	PS58	PS57	PS56	PS55	PS54	PS53	PS52	PS51	PS50	PS49	PS48	PS47	PS46	PS45	PS44	PS43	PS42	PS41	PS40	PS39	PS38	PS37	PS36	PS35	PS34	PS33	PS32
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Naı	me												De	scr	iptio	on										
		<31	:0>			PS	[x]		0 =	Pin	leve	el un	affe	ecte	d.	,			= 32 pin l		Ū	,										

Table 4-11. GPSR2 Register Bitmap

Physical Address 0x40E0_0020

GPIO Pin Output Set Register2

(GPSR2)

SysInt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

							Re	ser	/ed							PS80	PS79	PS78	PS77	PS76	PS75	PS74	PS73	PS72	PS71	PS70	PS69	PS68	PS67	PS66	PS65	PS64
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits Name Description <31:17> Reserved GPIO Pin 'x' Output Pin Set (where x= 64 through 80). <16:0> PS[x] 0 = Pin level unaffected. 1 = If pin configured as an output, set pin level high (one).

Table 4-12. GPCR0 Register Bitmap

Physical Address 0x40E0_0024

0

0 0

0

GPIO Pin Output Clear Register0 (GPCR0)

SysInt

0 0 0

0 0

0 0 0

0

0 0

0 0

0 0

0

0

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

Reset

0 0

Bits Name Description GPIO Pin 'x' Output Pin Clear (where x= 0 through 31). <31:0> PC[x] 0 = Pin level unaffected. 1 = If pin configured as an output, clear pin level low (zero).

Table 4-13. GPCR1 Register Bitmap

0 0

0 0 0 0

0

0

0 0 0 0 0 0 0 0 0 0

Physical Address 0x40E0_0028

0

0

GPIO Pin Output Clear Register1 (GPCR1)

SysInt

0 0

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 3 **PC45** PC39 PC38 PC36 PC35

0 0 0

0 0

Reset

0 0

Bits	Name	Description
<31:0>	PC[x]	GPIO Pin 'x' Output Pin Clear (where x= 32 through 63). 0 = Pin level unaffected. 1 = If pin configured as an output, clear pin level low (zero).

0 0 0

Table 4-14. GPCR2 Register Bitmap

			ı				dres 02C				C	SPIC) Piı			t Cle		Regi	ster	2						Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Re	serv	ved							PC80	PC79	PC78	PC77	PC76	PC75	PC74	PC73	PC72	PC71	PC70	PC69	PC68	PC67	PC66	PC65	PC64
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Е	Bits			Na	ıme												De	scr	iptio	on										
		<3′	1:17:	>		-			Re	serv	ed.																					
		<1	6:0>			P	C[x]		0 =	Pin	lev	el u	naff	ecte	d.	lear out	`					•	,	o).								

4.1.3.4 GPIO Rising Edge detect Enable Registers (GRER) and Falling Edge detect Enable Registers (GFER)

Each GPIO can also be programmed to detect a rising-edge, falling-edge, or either transition on a pin. When an edge is detected that matches the type of edge programmed for the pin, a status bit is set. The interrupt controller can be programmed so that an interrupt is signalled to the core when any of these status bits are set. Additionally, the interrupt controller can be programmed so that a subset of the status bits causes the application processor to wake from Sleep mode when they are set. Refer to Section 3.4.8, "Sleep Mode" on page 3-14 and Section 3.5.6, "Power Manager GPIO Edge Detect Status Register" on page 3-26 for more information on which status bits can cause a wake up from Sleep mode.

Use the GPIO Rising Edge Detect Enable register (GRER) and Falling Edge Detect Enable register (GFER) to select the type of transition on a GPIO pin that causes a bit within the GPIO Edge Detect Enable Status register (GEDR) to be set. For a given GPIO pin, its corresponding GRER bit is set causing a GEDR status bit to be set when the pin transitions from logic level zero to logic level one. Likewise, GFER is used to set the corresponding GEDR status bit when a transition from logic level one to logic level zero occurs. When the corresponding bits are set in both registers, either a falling- or a rising-edge transition causes the corresponding GEDR status bit to be set.

Note: The minimum pulse width duration to guarantee edge detection is 1μ S.

Table 4-15 through Table 4-17 show the bitmaps of the GPIO Rising Edge Detect Enable registers. Table 4-18 through Table 4-20 show the bitmaps of the GPIO Falling Edge Detect Enable registers.

Note: For reserved bits in GRER2 and GFER2, writes must be zeros and reads must be ignored.

Table 4-15. GRER0 Register Bitmap

				,		Add 0_00		S			G	PIO			Edg er0				nabl	е						Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RE31	RE30	RE29	RE28	RE27	RE26	RE25	RE24	RE23	RE22	RE21	RE20	RE19	RE18	RE17	RE16	RE15	RE14	RE13	RE12	RE11	RE10	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Naı	me												De	scr	iptio	on										
		<31	:0>			RE	[x]		0 =	Dis	able	risi	ng-e	, edge	e det	tect	ena	ble.	`			= 0 sing		Ü		,	ed o	n th	e Gl	PIO	pin	

Table 4-16. GRER1 Register Bitmap

				,		Add 0_00		S			G	PIO			Edg er1				nable	е						Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RE63	RE62	RE61	RE60	RE59	RE58	RE57	RE56	RE55	RE54	RE53	RE52	RE51	RE50	RE49	RE48	RE47	RE46	RE45	RE44	RE43	RE42	RE41	RE40	RE39	RE38	RE37	RE36	RE35	RE34	RE33	RE32
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Naı	me												De	scr	iptio	on										
		<31	:0>			RE	[x]		GPI 0 = 1 =	Dis	able	risi	ng-e	edge	e det	ect	ena	ble.	`							,	ed o	n th	e Gl	PIO	pin	

Table 4-17. GRER2 Register Bitmap

			F	,		Ado 0_0	dres 038	S			G	PIC				ge D (GF			nabl	е						Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Re	ser	ved							RE80	RE79	RE78	RE77	RE76	RE75	RE74	RE73	RE72	RE71	RE70	RE69	RE68	RE67	RE66	RE65	RE64
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		В	its			Na	me												De	scr	iptio	on										
		<31	:17>	•		_			Res	serv	ed																					
		<16	6:0>			RE	Ξ[x]		0 =	Dis	able	ris	ing-	edge	e de	Dete	ena	ıble.	. `							,	ed o	n the	e GI	PIO	pin	

Table 4-18. GFER0 Register Bitmap

Physical Address GPIO Falling Edge Detect Enable SysInt Register0 (GFER0) 0x40E0_003C 6 5 4 3 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2 0 FE10 FE11 즲 FE3 띮 FE7 FE6 FE5 FE₂ FE1 핊 핊 FF1 핊 FE1 띮 FE1 띮 Reset 0 0 0 0 0 0 0 0 0 0 0 0 **Bits** Name Description GPIO Pin 'x' Falling Edge Detect Enable (where x = 0 through 31). <31:0> FE[x] 0 = Disable falling-edge detect enable. 1 = Set corresponding GEDR status bit when a falling edge is detected on the GPIO pin

Table 4-19. GFER1 Register Bitmap

Physical Address GPIO Falling Edge Detect Enable SysInt 0x40E0 0040 Register1 (GFER1) Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 0 8 6 5 3 2 FE33 FE38 FE32 FE49 FE43 FE39 FE36 FE35 FE34 FE62 **FE60 FE59** FE58 **FE57 FE56** FE55 FE54 FE53 FE52 FE50 FE48 **FE47 FE45 FE44** FE42 FE40 FE37 FE41 **FE61** FE51 Reset 0 Bits Name Description GPIO Pin 'x' Falling Edge Detect Enable (where x = 32 through 63). FE[x] <31:0> 0 = Disable falling-edge detect enable. 1 = Set corresponding GEDR status bit when a falling edge is detected on the GPIO pin

Table 4-20. GFER2 Register Bitmap

GPIO Falling Edge Detect Enable Physical Address SysInt 0x40E0 0044 Register2 (GFER2) Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 3 2 0 4 FE69 FE70 **FE67** FE73 Reserved FE7 FE7. FE7 FE7 FE7 FE7 0 Reset 0

Bits	Name	Description
<31:17>		Reserved
<16:0>		GPIO Pin 'x' Falling Edge Detect Enable (where x = 64 through 80). 0 = Disable falling-edge detect enable. 1 = Set corresponding GEDR status bit when a falling edge is detected on the GPIO pin

4.1.3.5 GPIO Edge Detect Status Register (GEDR)

The GPIO Edge Detect Status registers (GEDR0, GEDR1, GEDR2) contain a total of 81 status bits that correspond to the 81 GPIO pins. When an edge detect occurs on a pin that matches the type of edge programmed in the GRER and/or GFER registers, the corresponding status bit is set in GEDR. Once a GEDR bit is set by an edge event the bit remains set until the user clears it by writing a one to the status bit. Writing a zero to a GEDR status bit has no effect.

Each edge detect that sets the corresponding GEDR status bit for GPIO[80:0] can trigger an interrupt request. GPIO[80:2] together form a group that can cause one interrupt request to be triggered when any one of GEDR[80:2] are set. GPIO[0] and GPIO[1] cause independent first-level interrupts. Refer to Section 4.2, "Interrupt Controller" on page 4-22, for a description of the programming of GPIO interrupts.

Table 4-21 through Table 4-23 show the bitmaps of the GPIO Edge Detect Status registers.

Table 4-21. GEDR0 Register Bitmap

					ical I0E0			S			GP	'IO E	Edg		etect GED			Reg	giste	erO						Sys	Int					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ED31	ED30	ED29	ED28	ED27	ED26	ED25	ED24	ED23	ED22	ED21	ED20	ED19	ED18	ED17	ED16	ED15	ED14	ED13	ED12	ED11	ED10	ED9	ED8	ED7	ED6	ED5	ED4	ED3	ED2	ED1	ED0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Na	me												De	scr	iptic	on										

Bits	Name	Description
<31:0>	ED[x]	GPIO Pin 'x' Edge Detect Status (where x= 0 through 31). READ 0 – No edge detect has occurred on pin as specified in GRER and/or GFER. 1 – Edge detect has occurred on pin as specified in GRER and/or GFER. WRITE 0 – No effect. 1 – Clear edge detect status field.

Table 4-22. GEDR1 Register Bitmap

Physical Address GPIO Edge Detect Status Register1 SysInt 0x40E0_004C (GEDR1) Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 ED39 **ED33** ED48 ED47 ED45 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bits** Name Description GPIO Pin 'x' Edge Detect Status (where x= 32 through 63). 0 - No edge detect has occurred on pin as specified in GRER and/or GFER. <31:0> ED[x] 1 - Edge detect has occurred on pin as specified in GRER and/or GFER. WRITE 0 - No effect. 1 - Clear edge detect status field.

Table 4-23. GEDR2 Register Bitmap

Physical Address GPIO Edge Detect Status Register2 SysInt (GEDR2)

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ED74 ED69 ED68 ED71 ED67 **ED77** Reserved Reset 0

Bits Name Description

<31:17> — Reserved

GPIO Pin 'x' Edge Detect Status (where x=64 through 80).

READ

0 – No edge detect has occurred on pin as specified in GRER and/or GFER.

1 – Edge detect has occurred on pin as specified in GRER and/or GFER.

WRITE

0 – No effect.

1 – Clear edge detect status field.

4.1.3.6 GPIO Alternate Function Register (GAFR)

The GPIO alternate function registers (GAFR2, GAFR1, GAFR0) contain select bits that correspond to the 81 GPIO pins. Each GPIO can be configured to be either a generic GPIO pin, one of 3 alternate input functions, or one of 3 alternate output functions. To select any of the alternate functions, the GPDR register must configure the GPIO to be an input. Similarly, only GPIOs configured as outputs by the GPDR can be configured for alternate output functions. Each GPIO pin has a pair of bits assigned to it whose values determine which function (normal GPIO, alternate function 1, alternate function 2 or alternate function 3) the GPIO performs. The function selected is determined by writing the GAFR bit pair as below:

- "00" indicates normal GPIO function
- "01" selects alternate input function 1 (ALT_FN_1_IN) or alternate output function 1 (ALT_FN_1_OUT)
- "10" selects alternate input function 2 (ALT_FN_2_IN) or alternate output function 2 (ALT_FN_2_OUT)
- "11" selects alternate input function 3 (ALT_FN_3_IN) or alternate output function 3 (ALT_FN_3_OUT)

Warning: Configuring a GPIO to map to an alternate function that is not available causes indeterminate results.

Table 4-24. GAFR0_L Register Bitmap

			F			Add 0_00	dres: 054	S			GI	PIO					tion F (0_L)		iste	r0						Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15 ′	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AF	15	AF	14	AF	13	AF	12	AF	11	AF	10	Al	F9	Al	F8	AF	7	AF	6	Al	F5	Al	F4	Al	F3	Al	F2	Al	F1	Al	0

Bits	Name	Description
<31:0>	AF[x]	GPIO Pin 'x' Alternate Function Select Bits (where x=0 through 15). A bit-pair in this register determines the corresponding GPIO pin's functionality as one of the alternate functions that is mapped to it or as a generic GPIO pin. 00 – The corresponding GPIO pin (GPIO[x]) is used as a general purpose I/O. 01 – The corresponding GPIO pin (GPIO[x]) is used for its alternate function 1.
		10 – The corresponding GPIO pin (GPIO[x]) is used for its alternate function 2. 11 – The corresponding GPIO pin (GPIO[x]) is used for its alternate function 3.

0

Table 4-25. GAFR0_U Register Bitmap

0

Physical Address 0x40E0_0058

0

GPIO Alternate Function Register0 Upper(GAFR0_U)

SysInt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit AF31 AF30 AF29 AF28 AF27 AF26 AF25 AF24 AF23 AF22 AF21 AF19 AF18 AF16 AF20 AF17

0 0

0 0

0

0

0

Reset

Bits	Name	Description
<31:0>	AF[x]	GPIO Pin 'x' Alternate Function Select Bits (where x=16 through 31). A bit-pair in this register determines the corresponding GPIO pin's functionality as one of the alternate functions that is mapped to it or as a generic GPIO pin. 00 – The corresponding GPIO pin (GPIO[x]) is used as a general purpose I/O. 01 – The corresponding GPIO pin (GPIO[x]) is used for its alternate function 1. 10 – The corresponding GPIO pin (GPIO[x]) is used for its alternate function 2.
		11 – The corresponding GPIO pin (GPIO[x]) is used for its alternate function 3.

Table 4-26. GAFR1_L Register Bitmap

Physical Address 0x40E0_005C

GPIO Alternate Function Register1 Lower(GAFR1_L)

SysInt

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AF47 AF46 AF45 AF44 AF43 AF42 AF41 AF40 AF39 AF38 AF37 AF36 AF35 AF34 AF33 AF32 0

Reset

	Bits
GPIO Pin 'x' Alternate Function Select Bits (where x=32 through 47). A bit-pair in this register determines the corresponding GPIO pin's functionality as one the alternate functions that is mapped to it or as a generic GPIO pin. On - The corresponding GPIO pin (GPIO[x]) is used as a general purpose I/O. On - The corresponding GPIO pin (GPIO[x]) is used for its alternate function 1. The corresponding GPIO pin (GPIO[x]) is used for its alternate function 2. The corresponding GPIO pin (GPIO[x]) is used for its alternate function 3.	<31:0>

Table 4-27. GAFR1_U Register Bitmap

Physical Address 0x40E0_0060 GPIO Alternate Function Register1 Upper(GAFR1_U)

SysInt

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AF	63	AF6	2	AF	61	AF	60	AF	59	AF5	8	AF5	7	AF	56	AF	55	FA	54	AF	53	AF	52	AF	51	AF	50	AF	49	AF	48
Λ	Λ	Λ	Λ	Λ	Λ	Λ	0	Λ	Λ	0 (1	0	\cap	0	Λ	Λ	0	Λ	Λ	Λ	0	Λ	0	Λ	Λ	0	0	Λ	0	Λ	0

Reset

Bits	Name	Description
		GPIO Pin 'x' Alternate Function Select Bits (where x=48 through 63).
		A bit-pair in this register determines the corresponding GPIO pin's functionality as one of the alternate functions that is mapped to it or as a generic GPIO pin.
<31:0>	AF[x]	00 – The corresponding GPIO pin (GPIO[x]) is used as a general purpose I/O.
		01 – The corresponding GPIO pin (GPIO[x]) is used for its alternate function 1.
		10 – The corresponding GPIO pin (GPIO[x]) is used for its alternate function 2.
		11 – The corresponding GPIO pin (GPIO[x]) is used for its alternate function 3.

Table 4-28. GAFR2_L Register Bitmap

Physical Address 0x40E0_0064 GPIO Alternate Function Register2 Lower(GAFR2_L)

SysInt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AF78 AF76 AF75 AF74 AF73 AF72 AF71 AF70 AF69 AF68 AF67 AF66 AF65 AF64

Bits	Name	Description
<31:0>	AF[x]	GPIO Pin 'x' Alternate Function Select Bits (where x=64 through 79). A bit-pair in this register determines the corresponding GPIO pin's functionality as one of the alternate functions that is mapped to it or as a generic GPIO pin. 00 – The corresponding GPIO pin (GPIO[x]) is used as a general purpose I/O. 01 – The corresponding GPIO pin (GPIO[x]) is used for its alternate function 1. 10 – The corresponding GPIO pin (GPIO[x]) is used for its alternate function 2. 11 – The corresponding GPIO pin (GPIO[x]) is used for its alternate function 3.

<1:0>

Table 4-29. GAFR2_U Register Bitmap

AF[80]

Physical Address

	0x40E0_0068 31 30 29 28 27 26 25										G	PIO		Jppe				J)	Jiste	12						Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														R	lese	erve	d														AF	80
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		В	its			Na	me												De	escr	ipti	on										
		<31	:2>			_	_		Re	serv	ed																					
									_	_		-						elec														
	A bit-pair in this register determines the corresponding GPIO pin's functionality as one of the alternate functions that is mapped to it or as a generic GPIO pin.																															

CDIO Alternate Function Pogister?

4.1.3.7 Example Procedure for Configuring the Alternate Function Registers

00 - GPIO[80] is used as a general purpose I/O.

01 - GPIO[80] is used for its alternate function 1.
10 - GPIO[80] is used for its alternate function 2.
11 - GPIO[80] is used for its alternate function 3.

In this example, GP0 is used as a generic GPIO and GP(15:1) are configured as their alternate functions. Refer to Table 4-1 for the list of alternate functions. No other GPIOs are configured. After the de-assertion of any RESET, GPDR0(15:0) configures GPIO pins in this example to be inputs. GAFR00(31:0) will be 0x0000_0000 to indicate normal GPIO function. For simplicity, assume that GP(16-31) are inputs configured as normal GPIOs.

In this example,

- GPIO[0] is configured as a normal GPIO input
- GPIO[1] is an input configured to alternate function 1 (ALT_FN_1_IN)
- GPIO[5:2] are reserved and configured as normal GPIOs inputs
- GPIO[12:6] are outputs configured to alternate function 1 (ALT_FN_1_OUT)
- GPOI[13] is an output configured to alternate function 2 (ALT_FN_2_OUT)
- GPIO[14] is an input configured to alternate function 1 (ALT_FN_1_IN)
- GPIO[15] is an output configured to alternate function 2 (ALT_FN_2_OUT)

This programming sequence is required for programming the GPIO alternate functions out of reset:

- **1. WRITE GPSR0** 0x0000_8000 this sets GPIO15 (active low chip select) when it is configured as an output.
- **2. WRITE GPDR0** 0x0000_BFC0 GPIO[12:6], GPIO[13] and GPIO[15] as outputs. This drives GPIO[15] high until the alternate function information is programmed. This is required for active low outputs.
- **3. WRITE GAFRO_L** 0x9955_5004 this maps the alternate functions of GPIO[15:0]

For GPIOs that need to be configured as outputs, you must first program the GPSR and GPCR signals so the pin direction is changed. Change pin direction by setting the bit in the GPDR register—a '0' is driven for active high signals and '1' for active low signals.

Note: For more information on alternate functions, refer to the Source Unit column in Table 4-1 for the appropriate section of this document.

Table 4-24 through Table 4-29 show the bitmaps of the GPIO Alternate Function registers.

4.1.4 GPIO Register Locations

Table 4-30 shows the registers associated with the GPIO block and their physical addresses.

Table 4-30. GPIO Register Addresses (Sheet 1 of 2)

Address	Name	Description
0x40E0_0000	GPLR0	GPIO pin level register GPIO[31:0]
0x40E0_0004	GPLR1	GPIO pin level register GPIO[63:32]
0x40E0_0008	GPLR2	GPIO pin level register GPIO[80:64]
0x40E0_000C	GPDR0	GPIO pin direction register GPIO[31:0]
0x40E0_0010	GPDR1	GPIO pin direction register GPIO[63:32]
0x40E0_0014	GPDR2	GPIO pin direction register GPIO[80:64]
0x40E0_0018	GPSR0	GPIO pin output set register GPIO[31:0]
0x40E0_001C	GPSR1	GPIO pin output set register GPIO[63:32]
0x40E0_0020	GPSR2	GPIO pin output set register GPIO[80:64]
0x40E0_0024	GPCR0	GPIO pin output clear register GPIO[31:0]
0x40E0_0028	GPCR1	GPIO pin output clear register GPIO[63:32]
0x40E0_002C	GPCR2	GPIO pin output clear register GPIO[80:64]
0x40E0_0030	GRER0	GPIO rising-edge detect enable register GPIO[31:0]
0x40E0_0034	GRER1	GPIO rising-edge detect enable register GPIO[63:32]
0x40E0_0038	GRER2	GPIO rising-edge detect enable register GPIO[80:64]
0x40E0_003C	GFER0	GPIO falling-edge detect enable register GPIO[31:0]
0x40E0_0040	GFER1	GPIO falling-edge detect enable register GPIO[63:32]
0x40E0_0044	GFER2	GPIO falling-edge detect enable register GPIO[80:64]
0x40E0_0048	GEDR0	GPIO edge detect status register GPIO[31:0]
0x40E0_004C	GEDR1	GPIO edge detect status register GPIO[63:32]
0x40E0_0050	GEDR2	GPIO edge detect status register GPIO[80:64]
0x40E0_0054	GAFR0_L	GPIO alternate function select register GPIO[15:0]
0x40E0_0058	GAFR0_U	GPIO alternate function select register GPIO[31:16]

Table 4-30. GPIO Register Addresses (Sheet 2 of 2)

0x40E0_005C	GAFR1_L	GPIO alternate function select register GPIO[47:32]
0x40E0_0060	GAFR1_U	GPIO alternate function select register GPIO[63:48]
0x40E0_0064	GAFR2_L	GPIO alternate function select register GPIO[79:64]
0x40E0_0068	GAFR2_U	GPIO alternate function select register GPIO[80]

4.2 Interrupt Controller

The Interrupt Controller controls the interrupt sources available to the application processor and also contains the location to determine the first level source of all interrupts. It also determines whether interrupts cause an IRQ or an FIQ to occur and masks the interrupts. The interrupt controller only supports a single priority level, however, interrupts can be routed to either IRQs or FIQ, with FIQs having priority over IRQs.

4.2.1 Interrupt Controller Operation

The Interrupt Controller provides masking capability for all interrupt sources and generates either an FIQ or IRQ processor interrupt. The interrupt hierarchy of the application processor is a two-level structure.

- The first level identifies the interrupts from all the enabled and unmasked interrupt sources in the Interrupt Controller Mask register (ICMR). First level interrupts are controlled by these registers:
 - Interrupt Controller Pending register (ICPR) identifies all the active interrupts within the system
 - Interrupt Controller IRQ Pending register (ICIP) contains the interrupts from all sources that can generate an IRQ interrupt. The Interrupt Controller Level register (ICLR) is programmed to send interrupts to the ICIP to generate an IRQ.
 - Interrupt Controller FIQ Pending register (ICFP) contains the interrupts from all sources that can generate an FIQ interrupt. The Interrupt Controller Level register (ICLR) is programmed to send interrupts to the ICFP to generate an FIQ.
- The second level uses registers contained in the source device (the device generating the first-level interrupt bit). The second-level interrupt status gives additional information about the interrupt and is used inside the interrupt service routine. In general, multiple second-level interrupts are OR'ed to produce a first-level interrupt bit.

In most cases, the root cause of an interrupt can be determined by reading two register locations: the ICIP for an IRQ interrupt or the ICFP for an FIQ interrupt to determine the interrupting device. You then read the status register within that device to find the exact function requesting service.

When the ICCR[DIM] bit is zero, the Interrupt Mask Register is ignored during IDLE mode, and all enabled interrupts cause the processor to exit from idle mode. Otherwise, only unmasked interrupts cause the processor to exit from idle mode. The reset state of ICCR[DIM] is zero.

Figure 4-2, "Interrupt Controller Block Diagram" on page 4-23 shows a block diagram of the Interrupt Controller.

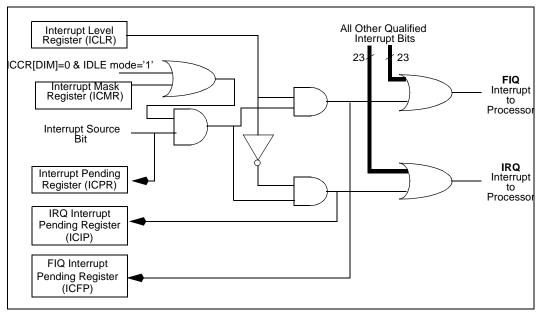


Figure 4-2. Interrupt Controller Block Diagram

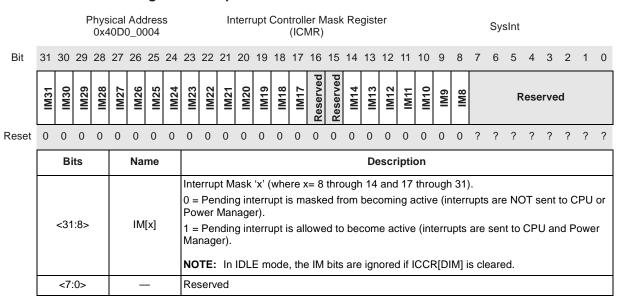
4.2.2 Interrupt Controller Register Definitions

The interrupt controller contains the following registers:

- Interrupt Controller IRQ Pending register (ICIP)
- Interrupt Controller FIQ Pending register (ICFP)
- Interrupt Controller Pending register (ICPR)
- Interrupt Controller Mask register (ICMR)
- Interrupt Controller Level register (ICLR)
- Interrupt Controller Control register (ICCR)

After a reset, the FIQ and IRQ interrupts are disabled within the CPU, and the states of all of the interrupt controller registers are set to 0x0. The interrupt controller registers must be initialized by software before interrupts are again enabled within the CPU.

4.2.2.1 Interrupt Controller Mask Register (ICMR)


The Interrupt Controller Mask register (ICMR) contains one mask bit per pending interrupt bit (22 total). The mask bits control whether a pending interrupt bit generates a processor interrupt (IRQ or FIQ). When a pending interrupt becomes active, it is only processed by the CPU if the corresponding ICMR mask bit is set to 1. While in IDLE mode, ICCR[DIM] must be set for the mask to be effective, otherwise any interrupt source that makes a request sets the corresponding pending bit and the interrupt is automatically processed, regardless of the state of its mask bit.

Mask bits allow periodic software polling of interruptible sources while preventing them from actually causing an interrupt. The ICMR register is initialized to zero at reset, indicating that all interrupts are masked and the ICMR has to be configured by the user to select the desired interrupts.

Table 4-31 shows the bitmap of the Interrupt Controller Mask Register. Table 4-37 on page 4-29 describes the available first-level interrupts and their location in the ICPR register.

Table 4-31. ICMR Register Bitmap

4.2.2.2 Interrupt Controller Level Register (ICLR)

The Interrupt Controller Level register (ICLR) controls whether a pending interrupt generates an FIQ or an IRQ interrupt. If a pending interrupt is unmasked, the corresponding ICLR bit field is decoded to select which processor interrupt is asserted. If the interrupt is masked, then the corresponding bit in the ICLR has no effect. At reset the ICLR register is initialized to all zeros, and software must configure the ICLR to reflect the normal operation value.

Table 4-32 shows the bitmap of the Interrupt Controller Level register. Table 4-37 on page 4-29 describes the available first-level interrupts and their location in the ICPR register.

Table 4-32. ICLR Register Bitmap

					ical IOD0			S			In	terrı	upt (Con	troll (ICI		evel	Reg	giste	er						Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IL31	IL30	IL29	IL28	IL27	IL26	IL25	IL24	IL23	IL22	IL21	IL20	IL19	IL18	IL17	Reserved	Reserved	IL14	IL13	IL12	IL11	IL10	IL9	IL8			R	lese	rve	d		
Reset	set 0 0 0 0 0 0 0								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	?	?	?	?	?	?	?	?
		Bit	ts			Naı	me												De	escr	iptio	on										
	<31:8>					IL[[x]		0 =	Inte	errup	ot ro	uted	d to	IRQ	inte	errup	ough ot inp	put.		d 17	' thro	oug	h 31).							
	<7:0>						_		Res	erv	ed																					

4.2.2.3 Interrupt Controller Control Register (ICCR)

The Interrupt Controller Control register (ICCR) contains a single control bit, Disable IDLE Mask (DIM). When set, this bit inhibits the IDLE mode operation. In normal IDLE mode any enabled interrupt can bring the application processor out of idle mode regardless of the value in ICMR. If this bit is set, then the interrupts that can bring the application processor out of IDLE mode are defined by the ICMR.

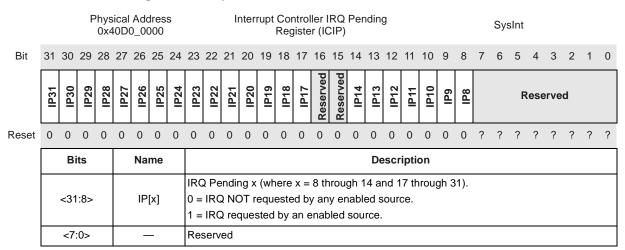
Note: This register is cleared during all resets.

Table 4-33 shows the bitmap of the Interrupt Controller Control Register. Table 4-37 on page 4-29 describes the available first-level interrupts and their location in the ICPR register.

Table 4-33. ICCR Register Bitmap

			F	hys 0x4				S			Int	erru	pt C	ont	rolle (IC	r Co CR)	ontro	l Re	egist	ter						Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															Re	serv	/ed															DIM
Reset	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	0
		Bi	its			Na	me												De	scr	iptic	n										
		<31	:1>			_			D																							
									Res	serv	ed																					
									Dis	able	DI																					
									Dis	able	DI				pts I	orinç	g the	e ap	plica	atio	n pro	oces	ssor	out	of II	DLE	mc	ode.				
		<(0>			DI	М		Disa 0 = 1 =	able All On	IDI ena	bled nabl	inte	erru							n pro								ion	proc	ess	or

4.2.2.4 Interrupt Controller IRQ Pending Register (ICIP) and FIQ Pending Register (ICFP)


The ICIP and the ICFP contain one bit per interrupt (22 total.) These bits indicate an interrupt request has been made by a unit. Inside the interrupt service routine, read the ICIP and ICFP to determine the interrupt source. In general, software then reads status registers within the interrupting device to determine how to service the interrupt. Bits within the ICPR (see Section 4.2.2.5 on page 4-26) are read only, and represent the logical OR of the status bits in the ICIP and ICFP for a given interrupt. Once an interrupt has been serviced, the handler writes a one to the required status bit, clearing the pending interrupt at the source.

Clearing the interrupt status bit at the source, automatically clears the corresponding ICIP or ICFP flag, provided there are no other interrupt status bits set within the source unit.

Table 4-34 shows the bitmap of the Interrupt Controller IRQ Pending Register. Table 4-35 shows the bitmap of the Interrupt FIQ Pending Register. Table 4-37 on page 4-29 describes the available first-level interrupts and their location in the ICPR register.

Table 4-34. ICIP Register Bitmap

Table 4-35. ICFP Register Bitmap

				hys 0x4				S			lı	nter		Cor Reg					ding)						Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	FP31	FP30	FP29	FP28	FP27	FP26	FP25	FP24	FP23	FP22	FP21	FP20	FP19	FP18	FP17	Reserved	Reserved	FP14	FP13	FP12	FP11	FP10	FP9	FP8			R	Rese	rve	d		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	?	?	?	?	?	?	?	?
		Bi	ts			Naı	me												De	scr	iptio	on										
	FIQ Pending x (where x = 8 through 14 and 17 through 31). (31:8) FP[x] FIQ NOT requested by any enabled source. 1 = FIQ requested by an enabled source.																															
<7:0> — Reserved																																

4.2.2.5 Interrupt Controller Pending Register (ICPR)

The ICPR is a 32-bit read-only register that shows all active interrupts in the system. These bits are not affected by the state of the mask register (ICMR). Clearing the interrupt status bit at the source, automatically clears the corresponding ICPR flag, provided there are no other interrupt status bits set within the source unit. Table 4-36 shows the bitmap of the Interrupt Controller Pending Register.

Table 4-37 on page 4-29 shows the pending interrupt source assigned to each bit position in the ICPR. Also included in the table are the source units for the interrupts and the number of second-level interrupts associated with each. For more information on the second-level interrupts, see the section that corresponds to its name in the Source Unit column.

Table 4-36. ICPR Register Bitmap (Sheet 1 of 2)

Interrupt Controller Pending Register Physical Address SysInt 0x40D0_0010 (ICPR) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved 1830 1528 1826 1825 **IS23** 1820 1S19 1518 **IS17** 1514 1513 1812 1510 1829 **IS24** 1822 **IS27** 1521 1311 189 <u>88</u>

Bits	Name	Description
<31>	IS31	RTC Alarm Match Register Interrupt Pending 0 = Interrupt NOT pending due to RTC Alarm Match Register. 1 = Interrupt pending due to RTC Alarm Match Register.
<30>	IS30	RTC HZ Clock Tick Interrupt Pending 0 = Interrupt NOT pending due to RTC HZ Clock Tick. 1 = Interrupt pending due to RTC HZ Clock Tick.
<29>	IS29	OS Timer Match Register 3 Interrupt Pending 0 = Interrupt NOT pending due to OS Timer Match Register 3. 1 = Interrupt pending due to OS Timer Match Register 3.
<28>	IS28	OS Timer Match Register 2 Interrupt Pending 0 = Interrupt NOT pending due to OS Timer Match Register 2. 1 = Interrupt pending due to OS Timer Match Register 2.
<27>	IS27	OS Timer Match Register 1 Interrupt Pending 0 = Interrupt NOT pending due to OS Timer Match Register 1. 1 = Interrupt pending due to OS Timer Match Register 1.
<26>	IS26	OS Timer Match Register 0 Interrupt Pending 0 = Interrupt NOT pending due to OS Timer Match Register 0. 1 = Interrupt pending due to OS Timer Match Register 0.
<25>	IS25	DMA Channel Service Request Interrupt Pending 0 = Interrupt NOT pending due to DMA Channel Service Request. 1 = Interrupt pending due to DMA Channel Service Request.
<24>	IS24	SSP Service Request Interrupt Pending 0 = Interrupt NOT pending due to SSP Service Request. 1 = Interrupt pending due to SSP Service Request.
<23>	IS23	MMC Status/Error Detection Interrupt Pending 0 = Interrupt NOT pending due to MMC Status/Error Detection. 1 = Interrupt pending due to MMC Status/Error Detection.
<22>	IS22	FFUART Transmit/Receive/Error Interrupt Pending 0 = Interrupt NOT pending due to FFUART Transmit/Receive/Error. 1 = Interrupt pending due to FFUART Transmit/Receive/Error.
<21>	IS21	BTUART Transmit/Receive/Error Interrupt Pending 0 = Interrupt NOT pending due to BTUART Transmit/Receive/Error. 1 = Interrupt pending due to BTUART Transmit/Receive/Error.

Table 4-36. ICPR Register Bitmap (Sheet 2 of 2)

	Physical Address 0x40D0_0010 31 30 29 28 27 26 25 24 23										Inte	errup	ot Co	ontr		r Pe PR)	ndin	g Re	egis	ter						Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IS31	1830	1S29	1S28	1827	1826	1825	1S24	1S23	1S22	1S21	1S20	1S19	1S18	IS17	Bosonyad	>	1S14	IS13	IS12	IS11	1S10	6SI	IS8				Bosorvod	neael ver			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
<20>	IS20	STUART Transmit/Receive/Error Interrupt Pending 0 = Interrupt NOT pending due to STUART Transmit/Receive/Error. 1 = Interrupt pending due to STUART Transmit/Receive/Error.
<19>	IS19	ICP Transmit/Receive/Error Interrupt Pending 0 = Interrupt NOT pending due to ICP Transmit/Receive/Error. 1 = Interrupt pending due to ICP Transmit/Receive/Error.
<18>	IS18	I2C Service Request Interrupt Pending 0 = Interrupt NOT pending due to I2C Service Request. 1 = Interrupt pending due to I2C Service Request.
<17>	IS17	LCD Controller Service Request Interrupt Pending 0 = Interrupt NOT pending due to LCD Controller Service Request. 1 = Interrupt pending due to LCD Controller Service Request.
<16:15>	_	Reserved
<14>	IS14	AC97 Interrupt Pending 0 = Interrupt NOT pending due to AC97 unit 1 = Interrupt pending due to AC97 unit.
<13>	IS13	I2S Interrupt Pending 0 = Interrupt NOT pending due to I2S unit 1 = Interrupt pending due to I2S unit.
<12>	IS12	Performance Monitoring Unit (PMU) Interrupt Pending 0 = Interrupt NOT pending due to PMU unit. 1 = Interrupt pending due to PMU unit.
<11>	IS11	USB Service Interrupt Pending 0 = Interrupt NOT pending due to USB service request. 1 = Interrupt pending due to USB service request.
<10>	IS10	GPIO[80:2] Edge Detect Interrupt Pending 0 = Interrupt NOT pending due to edge detect on one (or more) of GPIO[80:2]. 1 = Interrupt pending due to edge detect on one (or more) of GPIO[80:2].
<9>	IS9	GPIO[1] Edge Detect Interrupt Pending 0 = Interrupt NOT pending due to edge detect on GPIO[1]. 1 = Interrupt pending due to edge detect on GPIO[1].
<8>	IS8	GPIO[0] Edge Detect Interrupt Pending 0 = Interrupt NOT pending due to edge detect on GPIO[0]. 1 = Interrupt pending due to edge detect on GPIO[0].
<7:0>	_	Reserved

Table 4-37. List of First-Level Interrupts

Bit Position	Source Unit	# of Level 2 Sources	Bit Field Description
IS<31>	Doel time a short	1	RTC equals alarm register.
IS<30>	Real-time clock	1	One Hz clock TIC occurred.
IS<29>		1	OS timer equals match register 3.
IS<28>	Operating system	1	OS timer equals match register 2.
IS<27>	timer	1	OS timer equals match register 1.
IS<26>		1	OS timer equals match register 0.
IS<25>	DMA controller	16	DMA Channel service request.
IS<24>	Synchronous Serial Port	3	SSP service request.
IS<23>	MUlti Media Card	9	MMC status / error detection
IS<22>	FFUART	5	x-mit, receive, error in FFUART.
IS<21>	BTUART	5	x-mit, receive, error in BTUART
IS<20>	STUART	4	x-mit, receive, error in STUART
IS<19>	ICP	6	x-mit, receive, error in ICP.
IS<18>	I2C	6	I2C service request.
IS<17>	LCD controller	15	LCD controller service request.
IS<16>			Reserved
IS<15>			Reserved
IS<14>	AC97	10	AC97 interrupt
IS<13>	I2S	5	I2S interrupt
IS<12>	Core	1	PMU (Performance Monitor) interrupt
IS<11>	USB	7	USB interrupt
IS<10>		79	"OR" of GPIO edge detects 80-2
IS<9>		1	GPIO<1> edge detect
IS<8>		1	GPIO<0> edge detect
IS<7>			Reserved
IS<6>			Reserved
IS<5>			Reserved
IS<4>			Reserved
IS<3>			Reserved
IS<2>			Reserved
IS<1>			Reserved
IS<0>			Reserved
	Total level 2 interrupt sources	179	

Several units have more than one source per interrupt signal. When an interrupt is signalled from one of these units, the interrupt handler routine identifies which interrupt was signalled using the interrupt controller's pending register. This identifies the unit that made the request, but not the

exact source. The handler then reads the interrupting unit's status register to identify which source within the unit signalled the interrupt. For all interrupts that have one corresponding source, the interrupt handler routine needs to use only the interrupt controller's registers to identify the exact cause of the interrupt. ICPR[16:15] and ICPR(7:0) are reserved bits and must be written as zeros. Reads to these bits must be ignored.

4.2.3 Interrupt Controller Register Locations

Table 4-38 shows the registers associated with the interrupt controller block and their physical addresses.

Table 4-38. Interrupt Controller Register Addresses

Address	Name	Description
0x40D0_0000	ICIP	Interrupt controller IRQ pending register
0x40D0_0004	ICMR	Interrupt controller mask register
0x40D0_0008	ICLR	Interrupt controller level register
0x40D0_000C	ICFP	Interrupt controller FIQ pending register
0x40D0_0010	ICPR	Interrupt controller pending register
0x40D0_0014	ICCR	Interrupt controller control register

4.3 Real-Time Clock

Use the Real-Time Clock to configure a clock source with a wide range of frequencies. Typically, the RTC is set to be a 1 Hz output and is utilized as a system time keeper. There is also an alarm feature that enables an interrupt or a wake up event when the RTC output clock increments to a preset value.

4.3.1 Real-Time Clock Operation

The real-time clock (RTC) provides a general-purpose real-time reference for your design. The RTC Counter register (RCNR) is initialized to zero after a hardware reset or a watchdog reset. It is a free running counter and starts incrementing the count value after the deassertion of reset. The counter is incremented on rising edges of the HZ clock. Set this counter to the desired value. If the counter is set to a value other than zero, write the desired value to the RCNR. The value of the counter is unaffected by transitions into and out of Sleep or IDLE mode.

In addition to the RCNR, the RTC incorporates a 32-bit, RTC Alarm register (RTAR). The RTAR may be programmed with a value that is compared against the RCNR. On each rising edge of the HZ clock, the counter is incremented and then compared to the RTAR. If the values match, and the enable bit is set, then the RTC Status register alarm match bit (RTSR[AL]) is set. This status bit is also routed to the interrupt controller and may be unmasked in the interrupt controller to generate a processor interrupt. Another available interruptible status bit that can be set whenever the HZ clock transitions is the RTC Status register (RTSR). By writing a one to the AL or HZ bit in the RTSR, the status bit is cleared.

The HZ clock is generated by dividing one of two selectable clock sources, both approximately 32.768 kHz in frequency. The first source is the output of the 3.6864 MHz crystal oscillator further divided by 112 to approximately 32.914 kHz. The other source is the optional 32.768 kHz crystal

oscillator output itself. Your system may be built with both the 32.768 kHz crystal oscillator and the 3.6864 MHz crystal oscillator. ALternately, your system may only use the 3.6864 MHz crystal oscillator, if the additional power consumption during sleep mode is acceptable.

The divider logic for generating the HZ clock is programmable. This lets you trim the counter to adjust for inherent inaccuracies in the crystal's frequency and the inaccuracy caused by the division of the 3.6864 MHz oscillator which yields only an approximate 32 kHz frequency. The trimming mechanism lets you adjust the RTC to an accuracy of +/- 5 seconds per month. The trimming procedure is described in a later paragraph.

All registers in the RTC, with the exception RTTR, are reset by hardware reset and the watchdog reset. The trim register, RTTR is reset only by hardware reset.

4.3.2 RTC Register Definitions

The following sections provide register descriptions for the Real-Time Clock.

4.3.2.1 RTC Trim Register (RTTR)

Program the RTTR to set the frequency of the HZ clock. The reset value of this register (0x0000_7FFF) (assuming a perfect 32.768 kHz crystal) would produce an HZ clock output of exactly 1 Hz. However, by using values other than 0x0000_7FFF, a different HZ clock frequency is possible. Additionally, you may use a crystal that is not exactly 32.768 kHz and compensate by writing a value other than 0x0000_7FFF to the RTTR. Section 4.3.3, "Trim Procedure" on page 4-34 describes how to calculate the value in this register.

Table 4-39 shows the bitmap of the RTC Trim Register. All reserved bits must be written to zeros and reads to these bits must be ignored. You can only reset the RTTR with a hardware reset. To safeguard the validity of the data written into the trim register, bit 31 is used as a Lock Bit. The data in RTTR may be changed only if RTTR(31) is 0. Once, RTTR(31) is set to be a one, only a hardware reset can clear the RTTR.

Table 4-39. RTTR Register Bitmap

	S.		Re	serv	ed						DI	EL												CK_	DIV	,						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Physical Address 0x4090_000C 31 30 29 28 27 26 25 24 2										R	TC	Trim	Re	giste	er (F	RTTI	R)							Sys	sInt					

к	е	S	е	τ

Bits	Name	Description
<31>	LCK	Locking bit for the trim value. 0 = RTTR value is allowed to be altered. 1 = RTTR value is not allowed to be altered.
<30:26>	_	Reserved
<25:16>	DEL	Trim delete count. This value represents the number of 32 kHz clocks to delete when clock trimming begins.
<15:0>	CK_DIV	Clock divider count. This value is the number of 32 kHz clock cycles, plus 1, per HZ clock cycle.

4.3.2.2 RTC Alarm Register (RTAR)

The real-time clock alarm register is a 32-bit register. The application processor can both read and write to this register. Following each rising edge of the HZ clock, this register is compared to the RCNR. If the two are equal and RTSR[ALE] is set, then RTSR[AL] is set.

Because of the asynchronous nature of the HZ clock relative to the processor clock, writes to this register are controlled by a hardware mechanism that delays the actual write to the register by two 32 kHz clock cycles after the processor store is performed.

The RTAR register is initialized to 0x0 at reset.

Table 4-40 shows the bitmap of the RTC Alarm Register.

Table 4-40. RTAR Register Bitmap

			F	hys 0x4		Add 0_00		S				RT	C A	larn	n R	egist	ter (RTA	ıR)							Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																RT	MV															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Ві	its			Na	me												De	escr	ipti	on										
		<31	:0>			RT	ΜV			C Ta e va	•					nst t	he F	RTC	cou	ınte	r.											

4.3.2.3 RTC Counter Register (RCNR)

The RTC Counter register (RCNR) is a read/write register. The counter may be written by the processor at any time although it is recommended that the operating system prevent inadvertent writes to the RCNR through the use of the MMU protection mechanisms (refer to the *Megacell User's Manual* for details of MMU operation.)

Because of the asynchronous nature of the HZ clock relative to the processor clock, writes to this counter are controlled by a hardware mechanism that delays the actual write to the counter after the processor store is performed by approximately two 32 kHz clock cycles. In case of multiple writes to RCNR in quick succession, the final update to the RCNR counter may be delayed by up to two 32 kHz clock cycles.

The RCNR may be read at any time. Reads reflect the value in the counter after it increments or has been written and does not have the two 32 kHz clock cycle delay.

Table 4-41 shows the bitmap of the RTC Counter Register.

Table 4-41. RCNR Register Bitmap

			F		ical 1090			S				RTC	: Co	unte	er R	egis	ter	(RC	NR)							Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																RO	CV															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Na	me												De	scr	ipti	on										
	Bits <31:0>					RC	CV					t Val t va		of th	e R	тс (cour	nter.														

4.3.2.4 RTC Status Register (RTSR)

The RTC Status register (RTSR) is cleared to all zeroes at hardware reset. The ALE and HZE bits enable both the interrupt for the functions as well as the updating the AL and HZ bits. The AL and HZ bits are status bits and are set by the RTC logic if the ALE and HZE bits are set respectively. They are cleared by writing ones to the AL and HZ bits. The AL and HZ bits are routed to the interrupt controller where they may be enabled to cause a first level interrupt. Write zeros to all reserved bits and ignore all reads to the reserved bits.

In Sleep mode, only AL events set the status bit in the RTSR register. The HZ bit is not set in Sleep mode since it is a recurring event.

Table 4-42 shows the bitmap of the RTC Status Register.

Table 4-42. RTSR Register Bitmap

			F		ical 4090		dres 008	S				RT	c s	tatu	s Re	egist	ter (RTS	SR)							Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													R	Rese	erve	d													HZE	ALE	НΖ	AL
Reset	?	?	?	?	?	?	?	?	?	?	?	?	/	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	0	0	0	0

Bits	Name	Description
<31:4>	_	Reserved
<3>	HZE	HZ interrupt enable. 0 = The HZ interrupt is not enabled. 1 = The HZ interrupt is enabled.
<2>	ALE	RTC alarm interrupt enable. 0 = The RTC alarm interrupt is not enabled. 1 = The RTC alarm interrupt is enabled.
<1>	HZ	HZ rising-edge detected. 0 = No rising edge has been detected. 1= A rising edge has been detected and HZE bit is set.
<0>	AL	RTC alarm detected. 0 = No RTC alarm has been detected. 1 = An RTC alarm has been detected (RTNR matches RCAR).and ALE bit is set

4.3.3 Trim Procedure

The HZ clock driving the RTC is generated by dividing the output of the oscillator multiplexor. The inherent inaccuracies of crystals, aggravated by varying capacitance of the board connections, as well as other variables, may cause the time base to be somewhat inaccurate. This requires a slight adjustment in the desired clock period. The application processor, through the RTTR, lets you adjust (or trim) the HZ time base to an error of less than 1ppm. Such that if the HZ clock is set to be 1 Hz, there would be an error of less than 5 seconds per month.

The RTTR is reset to its default value of 0x0000_7FFF each time the nRESET signal is asserted. This yields approximately a 1 Hz clock.

When the clock divisor count (RTTR[15:0]) is set to 0x0, the HZ clock feeding the RTC maintains a high level signal - essentially disabling the RTC. For all non-zero values programmed into the clock divisor count, the HZ clock frequency will be the 32 kHz clock source divided by the clock divisor count plus 1.

4.3.3.1 Oscillator Frequency Calibration

To determine the value programmed into the RTTR, you must first measure the output frequency at the oscillator multiplexor (approximately 32 kHz) using an accurate time base, such as a frequency counter. This clock is externally visible by selecting the alternate function for GPIO[12] or GPIO[72] in 32-bit systems, or by selecting the alternate function for GPIO[72] in the PXA210. To gain access to the clock, program this pin as an output and then switch to the alternate function.

Refer to Section 4.1 on page 4-1, for details on how to make the clock externally visible. To trim the clock, divide the output of the oscillator by an integer value and fractional adjust it by periodically deleting clocks from the stream driving this integer divider.

4.3.3.2 RTTR Value Calculations

After the true frequency of the oscillator is known, it must be divided by the desired HZ clock frequency and this value split into integer and fractional portions. The integer portion of the value (minus one) is loaded into the Clock Divider Count field of the RTTR. This value is compared against a 16-bit counter clocked by the output of the oscillator multiplexor at approximately 32 kHz. When the two values are equal, the counter resets and generates a pulse which constitutes the raw HZ clock signal.

The fractional part of the adjustment is done by periodically deleting clocks from the clock stream driving the integer counter. The trim interval period is hardwired to be 2^{10} -1 periods of the HZ clock. If the HZ clock is programed to be 1 Hz the trim interval would be approximately 17 minutes. The number of clocks deleted (the trim delete value) is a 10-bit programmable counter allowing from 0 to 2^{10} -1 32 kHz clocks to be deleted from the input clock stream once per trim interval. RTTR[25:16] represents the number of 32 kHz clocks deleted per trim operation.

In summary, every 2^{10} -1 HZ clock periods, the integer counter stops clocking for a period equal to the fractional error that has accumulated. If this fractional error is programmed to be zero, then no trim operations occur and the RTC is clocked with the raw 32 kHz clock. The relationship between the HZ clock frequency and the nominal 32 kHz clock (f1 and f32K, respectively) is shown in the following equation.

$$f1 = \frac{(2^{10-1})^*(RTTR[CK_DIV]+1) - RTTR[DEL]}{(2^{10-1})^*(RTTR[CK_DIV]+1)} \quad * \quad \frac{f32k}{(RTTR[CK_DIV]+1)}$$

f1 = HZ clock frequency

f32k = RTC internal clock - either the 32.678 kHz crystal output or the 3.68 MHz crystal output divided down to 32.914 kHz

RTTR[DEL] = RTTR(25:16)

 $RTTR[CK_DIV] = RTTR(15:0)$

4.3.3.2.1 Trim Example #1 – Measured Value Has No Fractional Component

In this example, the desired HZ clock frequency is 1 Hz. The oscillator output is measured as 36045.000 cycles/s (Hz). This output is exactly 3277 cycles over the nominal frequency of the crystal (32.768 kHz) and has no fractional component. As such, only the integer trim function is needed - no fractional trim is required. Accordingly, RTTR[15:0] is loaded with the binary equivalent of 36045-1, or 0x0000_8CCC. RTTR[25:16] is left at zero (power-up state) to disable fractional trimming. This trim exercise leaves an error of zero in trimming.

4.3.3.2.2 Trim Example #2 – Measured Value Has a Fractional Component

This example is more common in that the measured frequency of the oscillator has a fractional component. Again, the desired HZ clock output frequency is 1 Hz. If the oscillator output is measured as 32768.92 cycles/s (Hz), an integer trim is necessary so that the *average* number of

cycles counted before generating one 1 Hz clock is 32768.92. Similar to the previous example, the integer field RTTR[15:0] is loaded with the hexadecimal equivalent of 32768-1 or 0x0000_7FFF (reset value).

Because the actual clock frequency is 0.92 cycles per second faster than the integer value, the HZ clock generated by just the integer trimming is slightly faster than needed and must be slowed down. Accordingly, program the fractional trim to delete 0.92 cycles per second on average to bring the HZ output frequency down to the proper value. Since the trimming procedure is performed every 1023 (2^{10} -1) seconds, the trim must be set to delete 941.16 clocks every 1023 seconds ($.92 \times 1023 = 941.16$). Load the counter with the hexadecimal equivalent of 941, or 0x3AD. The fractional component of this value cannot be trimmed out and constitutes the error in trimming, described below.

This trim setting leaves an error of. 16 cycles per 1023 seconds. The error calculation yields (in parts-per-million or ppm):

Error =
$$\frac{0.16 \text{ cycles}}{1023 \text{ sec}} X \frac{1 \text{ sec}}{32768 \text{ cycles}} = 0.002 \text{ ppm}$$

4.3.3.2.3 Maximum Error Calculation Versus Real-Time Clock Accuracy

As seen from trim example #2, the maximum possible error approaches 1 clock per 2¹⁰-1 seconds. Calculating the ppm error for this scenario yields:

Error (maximum) =
$$\frac{1 \text{ cycle}}{1023 \text{ sec}} X \frac{1 \text{ sec}}{32768 \text{ cycles}} = 0.03 \text{ ppm}$$

To maintain an accuracy of +/- 5 seconds per month, the required accuracy is calculated to be:

Error =
$$\frac{5 \text{ sec}}{\text{month}} X \frac{1 \text{ month}}{2592000 \text{ sec}} = 1.9 \text{ ppm}$$

This calculation indicates that the HZ clock output can be made very accurate through the use of the trim procedure. Likewise, use the trim procedure to compensate for a range of factors that can affect crystal oscillators. Such factors can include, but are not limited to:

- Manufacturing and supplier variance in the crystals
- Crystal aging effects
- · System voltage differences
- System manufacturing variance

The trim procedure can counteract these factors by providing a highly accurate mechanism to remove the variance and shifts from the manufacturing and static environment variables on an individual system level. However, since this is a calibration solution, it is not a practical solution for dynamic changes in the system and environment and can most likely only be done in a factory setting due the equipment required.

4.3.4 Real-Time Clock Register Locations

Table 4-43 describes the location of the real-time clock registers.

Table 4-43. RTC Register Addresses

Address	Name	Description
0x4090_0000	RCNR	RTC count register
0x4090_0004	RTAR	RTC alarm register
0x4090_0008	RTSR	RTC status register
0x4090_000C	RTTR	RTC trim register

4.4 Operating System (OS) Timer

The application processor contains a 32-bit operating system timer that is clocked by the 3.6864 MHz oscillator. The Operating System Count register (OSCR) is a free running up-counter. The OS timer also contains four 32-bit match registers (OSMR3, OSMR2, OSMR1, OSMR0). You can read and write to each register. When the value in the OSCR is equal to the value within any of the match registers, and the interrupt enable bit is set, the corresponding bit in the OSSR is set. These bits are also routed to the interrupt controller where they can be programmed to cause an interrupt. OSMR3 also serves as a watchdog match register that resets the application processor when a match occurs provided the OS Timer Watchdog Match Enable Register (OWER) is set. You must initialize the OSCR and OSMR registers and clear any set status bits before the FIQ and IRQ interrupts are enabled within the CPU.

4.4.1 Watchdog Timer Operation

You may also use the OSMR3 as a watchdog compare register. This function is enabled by setting OWER[0]. When a compare against this register occurs and the watchdog is enabled, reset is applied to the application processor and most internal states are cleared. Internal reset is asserted for 256 processor clocks and then removed, allowing the application processor to boot. See Section 3.4.2, "Watchdog Reset" on page 3-7 for details on reset functionality.

The following procedure is suggested when using OSMR3 as a watchdog – each time the operating system services the register:

- 1. The current value of the counter is read.
- 2. An offset is then added to the read value. This offset corresponds to the amount of time before the next time-out (care must be taken to account for counter wraparound).
- 3. The updated value is written back to OSMR3.

The OS code must repeat this procedure periodically before each match occurs. If a match occurs, the OS timer asserts a reset to the application processor.

4.4.2 **OS Timer Register Definitions**

4.4.2.1 OS Timer Match Register 0-3 (OSMR0, OSMR1, OSMR2, OSMR3)

These registers are 32-bits wide and are readable and writable by the processor. They are compared against the OSCR after every rising edge of the 3.6864 MHz clock. If any of these registers match the counter register, and the appropriate interrupt enable bit is set, then the corresponding status bit in the OSSR is set. The status bits are routed to the interrupt controller where they can be unmasked to cause a CPU interrupt. You may also use the OSMR3 as a watchdog timer.

Table 4-44 shows the bitmap of the OS Timer Match register. All four registers are identical, except for location. A single, generic OS Timer match register is described, but all information is common to all four OS Timer Match Registers.

Table 4-44. OSMR[x] Register Bitmap

Physical Addres	S
0x40A0_0000)
0x40A0_0004	ŀ
0x40A0_0008	3
0x40A0_000C	;

OS Timer Match Registers (OSMR3, OSMR2, OSMR1, OSMR0)

SysInt

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																os	MV															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

R	es	et

Bits	Name	Description
<31:0>	OSMV	OS Timer Match Value. The value compared against the OS timer counter.

4.4.2.2 OS Timer Interrupt Enable Register (OIER)

This register contains four enable bits that indicate whether a match between one of the match registers and the OS timer counter sets a status bit in the OSSR. Each match register has a corresponding enable bit. Clearing an enable bit does not clear the corresponding interrupt status bit if it is already set.

Table 4-45 shows the bitmap of the OS Timer Interrupt Enable register.

Table 4-45. OIER Register Bitmap

Physical Address	OS Timer Interrupt Enable Register	SysInt
0x40A0_001C	(OIFR)	Sysiiii

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

													R	lese	erve	d													E3	E2	E1	E0
Reset	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	0	0	0	0

Bits	Name	Description
<31:4>	_	Reserved
<3>	E3	Interrupt enable channel 3. 0 = A match between OSMR3 and the OS Timer will NOT assert OSSR[M3]. 1 = A match between OSMR3 and the OS Timer asserts OSSR[M3].
<2>	E2	Interrupt enable channel 2. 0 = A match between OSMR2 and the OS Timer will NOT assert OSSR[M2]. 1 = A match between OSMR2 and the OS Timer asserts OSSR[M2].
<1>	E1	Interrupt enable channel 1. 0 = A match between OSMR1 and the OS Timer will NOT assert OSSR[M1]. 1 = A match between OSMR1 and the OS Timer asserts OSSR[M1].
<0>	E0	Interrupt enable channel 0. 0 = A match between OSMR0 and the OS Timer will NOT assert OSSR[M0]. 1 = A match between OSMR0 and the OS Timer asserts OSSR[M0].

4.4.2.3 **OS Timer Watchdog Match Enable Register (OWER)**

The watchdog enable register contains a single control bit (bit 0) that enables the watchdog function. This bit is set by writing a one to it and can only be cleared by one of the reset functions such as, hardware reset, sleep reset, watchdog reset, and GPIO reset.

Table 4-46 shows the bitmap of the OS Watchdog Match Enable register.

Table 4-46. OWER Register Bitmap

Physical Address OS Timer Watchdog Match Enable SysInt 0x40A0_0018 Register (OWER)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

WME Reserved

Bits	Name	Description
<31:1>	_	Reserved
		Watchdog Match Enable
<0>	WME	0 = OSMR3 match will NOT cause a reset of the application processor
		1 = OSMR3 match causes a reset of the application processor.

4.4.2.4 OS Timer Count Register (OSCR)

The OS Timer Count register is a 32-bit counter that increments on rising edges of the 3.6864 MHz clock. This counter can be read or written at any time. It is recommended that the system write-protect this register through the MMU protection mechanisms.

After the OSCR is written, there is a delay before the register is actually updated. Software must make sure the register has changed to the new value before relying on the contents of the register.

Table 4-47 shows the bitmap of the OS Timer Count register.

Table 4-47. OSCR Register Bitmap

			Physical Address 0x40A0_0010					S	OS Timer Count Register (OSCR)													SysInt										
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																os	CV															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Na	me												De	scr	ipti	on										
		<31	:0>			os	CV		OS The							S tir	mer	cou	nter													

4.4.2.5 OS Timer Status Register (OSSR)

This status register contains status bits that indicate a match has occurred between any of the four match registers and the OSCR. These bits are set when the match event occurs (following the rising edge of the 3.6864 MHz clock) and the corresponding interrupt enable bit is set in the OIER register. The OSSR bits are cleared by writing a one to the proper bit position. Writing zeros to this register has no effect. Write all reserved bits as zeros and ignore all reads.

Table 4-47 shows the bitmap of the OS Timer Status register.

OSSR Register Bitmap

Physical Address OS Timer Status Register (OSSR) SysInt 0x40A0_0014

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

8 Reserved

Bits	Name	Description
<31:4>	_	Reserved
<3>	M3	Match status channel 3. If OIER[3] is set then: 0 = OSMR[3] has NOT matched the OS timer counter since last being cleared. 1 = OSMR[3] has matched the OS timer counter.
<2>	M2	Match status channel 2. If OIER[2] is set then: 0 = OSMR[2] has NOT matched the OS timer counter since last being cleared. 1 = OSMR[2] has matched the OS timer counter.
<1>	M1	Match status channel 1. If OIER[1] is set then: 0 = OSMR[1] has NOT matched the OS timer counter since last being cleared. 1 = OSMR[1] has matched the OS timer counter.
<0>	МО	Match status channel 0. If OIER[0] is set then: 0 = OSMR[0] has NOT matched the OS timer counter since last being cleared. 1 = OSMR[0] has matched the OS timer counter.

OS Timer Register Locations 4.4.3

Table 4-48 shows the registers associated with the OS timer and the physical addresses used to access them.

Table 4-48. OS Timer Register Locations

Address	Name	Description
0x40A0_0000	OSMR0	OS timer match register 0
0x40A0_0004	OSMR1	OS timer match register 1
0x40A0_0008	OSMR2	OS timer match register 2
0x40A0_000C	OSMR3	OS timer match register 3
0x40A0_0010	OSCR	OS timer counter register
0x40A0_0014	OSSR	OS timer status register
0x40A0_0018	OWER	OS timer watchdog enable register
0x40A0_001C	OIER	OS timer interrupt enable register

4.5 Pulse Width Modulator

Use the Pulse Width Modulator (PWM) to generate as many as two signals to be output from the application processor. The signals are based on the 3.6864 MHz clock and must be a minimum of 2 clock cycles wide. These signals are output from the application processor by configuring the GPIOs.

4.5.1 Pulse Width Modulator Operation

The application processor contains two pulse width modulators: PWM0 and PWM1. Each PWM operates independently of the other, is controlled by its own set of registers. They provide a pulse width modulated signal on an external pin. Since each PWM contains identical circuitry, a generic PWMn, where n is 0 or 1, is described.

Each PWM contains:

- Two Pulse Width Modulator channels
- Enhanced Period control through 6-Bit Clock divider and 10-Bit Period counter
- 10-Bit Pulse control

A block diagram of one of the PWMs is shown in Figure 4-3.

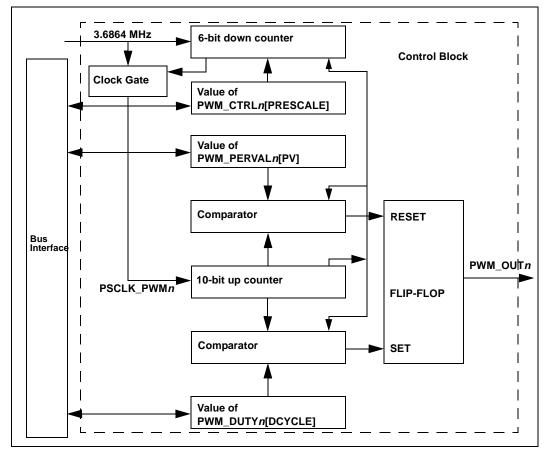


Figure 4-3. PWMn Block Diagram

4.5.1.1 Interdependencies

The PWM unit is clocked off the 3.6864 MHz oscillator output.

Each Pulse Width Modulator Unit (PWMn) is controlled by three registers:

- Pulse Width Control Register (PWM_CTRL)
- Duty Cycle Control Register (PWM_DUTY)
- Period Control Register (PWM_PERVAL)

By setting the values in these registers the PWMn unit produces a pulse width modulated output signal. The registers contain the values for PWMn's counters and PWMn power management mode.

Each register contains one or more fields which determine an attribute of the PWM_OUTn waveform. PWM_CTRLn[PRESCALE] specifies the divisor for the PWM module clock. Note that the actual PWM module clock divisor used is 1 greater than the value programmed into PWM_CTRLn[PRESCALE]. This divided PWM module clock drives a 10 bit up-counter. This upcounter feeds 2 separate comparators. The first comparator contains the value of PWM_DUTYn[DCYCLE]. When the values match, the PWM_OUT signal is set high. The other

comparator contains PWM_PERVALn[PV] and clears the PWM_OUT signal low when PWM_PERVALn[PV] + 1 and the 10-bit up counter are equal. Both PWM_PERVALn[PV] and PWM_DUTYn[DCYCLE] are 10 bit fields.

Note: Take care to ensure that the value of the PWM_PERVAL*n* register remains larger than PWM_DUTY*n* register. In the case where PWM_PERVAL*n* is less than PWM_DUTY*n* the output maintains a high state.

4.5.1.2 Reset Sequence

A system reset results in no pulse width modulated signal. During system reset the PWM_CTRLn and PWM_DUTYn registers are reset to 0x0 and the PWM_PERVALn register is set to 0x004. This sets the PWM_OUTn pin low with a zero duty cycle. The six bit down-counter is reset to 0x0 and thus the 3.68 MHz input clock directly drives the 10 bit up-counter. The PWM_OUTn pin remains reset low until the PWM_DUTYn register is programmed with a non zero value.

A basic pulse width waveform is shown in Figure 4-4 on page 4-47.

4.5.1.3 Power Management Requirements

Each PWM may be disabled through a pair of clock enable bits (see Section 3.6.2, "Clock Enable Register" on page 3-34). If the clock is disabled, the unit shuts down in one of two ways:

- Abrupt the PWM stops immediately.
- Graceful the PWM completes the current duty cycle before stopping.

Shutdown is selected by PWM_CTRL[PWM_SD] and described in Section 4.5.2.1, "PWM Control Registers (PWM_CTRLn)" on page 4-44.

4.5.2 Register Descriptions

The following paragraphs provide register descriptions for the Pulse Width Modulator.

4.5.2.1 PWM Control Registers (PWM_CTRLn)

The PWMn Control Register, PWM_CTRLn, contains two fields:

• PRESCALE – The PRESCALE field contains the 6-bit prescale counter load value. This field allows the 3.6864 MHz input clock PSCLK_PWMn, to be divided by values between 1 (PWM_CTL[PRESCALE] = 0) and 64 (PWM_CTL[PRESCALE] = 63).

Note: The value of the divisor is one greater than the value programmed into the PRESCALE field.

• PWM_SD – PWMn can shut down in one of two ways, gracefully or abruptly, depending on the setting of PWM_CTRLn[PWM_SD]. If gracefully is chosen, then the duty cycle counter completes its count before PWMn is shut down. If abruptly is chosen, then the prescale counter and the duty cycle counter are reset to the reload values in their associated registers and PWMn is immediately shut down.

Note: During abrupt shut down the PWM_OUT*n* signal may be delayed by up to one PSCLK_PWM*n* clock period.

Table 4-49 shows the bitmap of the PWM Control registers.

Table 4-49. PWM_CTRLn Register Bitmap

			F	0x4	10B(Add 0_00 0_00						(P	PWN PWM_0			ntrol R .0, PW										Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	0 19	18	1	7 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												R	Reserv	/ed												PWM_SD		PR	ES	CAL	.E	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	(0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Na	me												De	scr	ipti	on										
		<31	:9>			_			Res	serv	ed																					
		<8	3>	·	F	PWN	1_SI	 D					down N shutdo				Λnv	vhe	n the	e clo	ock (enab	ole b	it in	the	СК	EN	regis	ster	is c	lear	ed.

4.5.2.2 PWM Duty Cycle Registers (PWM_DUTYn)

The PWM Duty Cycle register, PWM_DUTY*n*, contains two fields:

PWMn Prescale Divisor.

• FDCYCLE

PRESCALE

• DCYCLE

<5:0>

The FDCYCLE bit determines whether or not PWM_OUT*n* is a function of the DCYCLE bits in the PWM_DUTY*n* register or is set high. When the FDCYCLE bit is cleared low (normal operation), the output waveform of PWM_OUT*n* is cyclic, with PWM_OUT*n* being high for the number of PSCLK_PWMn periods equal to DCYCLE.

PSCLK_PWMn = 3.6864 MHz / (PWM_CTRL[PRESCALE] + 1)

1 = Abrupt shutdown of PWMn when the clock enable bit in the CKEN register is cleared.

Determines the frequency of the PWM module clock (in terms of the 3.86 MHz clock)

If FDCYCLE=0x0 and DCYCLE=0x0, PWM_OUTn is set low and does not toggle.

Note: If FDCYCLE is 0b1, PWM_OUT*n* is high for the entire period and is not influenced by the value programmed in the DCYCLE bits.

Table 4-50 shows the bitmap of the PWM Duty registers.

Table 4-50. PWM_DUTYn Register Bitmap

ıα	DIC	•	50.		v		0.	• • • •	110	gis	···	ים		αр																		
			F	0x4	40B	0_0	dres 004 004							Dut DUT)						Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										Re	ser	ved										FDCYCLE					DCY	CLE	E			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		В	its			Na	ıme												De	escr	ipti	on										
		<31	:11>			-			Re	serv	ed.																					
		<1	0>		F	DC	YCL	.E	0 =	Р۷	/M d	clock	(P	ycle WM s se	_Ol	,							ed b	y D	CYC	CLE	field	d.				
		<9	:0>		ı	DC	/CLI	E				ty C			lock	., i.e	. the	nu	mbe	er of	PS	CLK	_PV	VM	cycl	es F	PWN	√n is	s as	serte	ed	

4.5.2.3 PWM Period Control Register (PWM_PERVAL*n*)

within one cycle of PWMn.

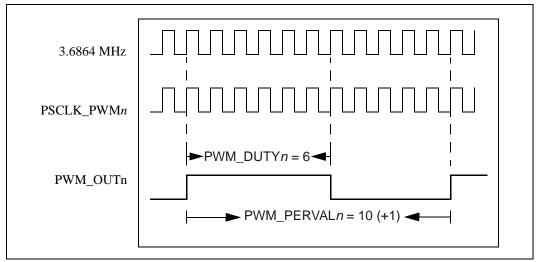
The PWM Period Control register (PWM_PERVAL*n*) contains a 10 bit field called PV. This field determines the period of the PWM_OUT*n* waveform in terms of the PSCLK_PWM*n* clock. If this field is cleared to zero PWM*n* is effectively turned off and PWM_OUT*n* remains in a high state. For any non-zero value written to the PV field, the output frequency of PWM*n* is the frequency of the PSCLK_OUT*n* divided by the value of (PV + 1). The range of the clock gate extends from a pass-through of the PSCLK_PWM*n* to a clock delay of 2⁶ or 64 input clocks per output pulse.

When the value of the 10 bit up-counter equals the value of (PV +1), the up-counter and the flipflop are reset and the values of PWM_CTRLn, PWM_PERVALn and PWM_DUTYn are loaded into the internal versions of these registers. Resetting this flip-flop causes PWM_OUTn to go low and the PWM cycle to start again.

Writing all zeroes to this register results in the output maintaining a high state unless FDCYCLE=0x0 and DCYCLE=0x0. If FDCYCLE=0x0 and DCYCLE=0x0, the output maintains a low state regardless of the value in the PV bit field.

Note: Due to internal timing requirements, all changes to any of the PWM registers must be complete a minimum of 4 core clock cycles before the start of end of a PWM clock cycle in order to guarantee that the following PWM cycle implements the new values.

Table 4-51 shows the bitmap of the PWM Period Control registers.


Table 4-51. PWM_PERVALn Register Bitmap

			F	0x4	10B(Add 0_00 0_00		S											sters RVAI							Sys	sInt					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										R	ese	erve	d														Ρ	V				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
		Bi	its			Na	me												De	scr	ipti	on										
		<31	:10>	•		-	_		Res	serv	ed																					
		<9	:0>			Р	V		The	nu	mbe If I	er of PV = DCY	PS = 0x	0, th ==0×	(_P\ e P (0 a	WM nd [n clo DCY	ock CLI	(PW	/M_ (0. I	OÜ7 n thi	n) i	s se	t hiç	gh a	nd c	n cy does n is	, not	t tog			

4.5.3 Pulse Width Modulator Output Wave Example

Figure 4-4 is an example of the output of a Pulse Width Modulator for reference.

Figure 4-4. Basic Pulse Width Waveform

PWM_PERVAL[PV] = 0xA PWM_DUTY[FDCYCLE] = 0x0 PWM_DUTY[DCYCLE] = 0x6 PWM_CTRL[PRESCALE] = 0x0

The output waveform in Figure 4-4 is created by writing PWM_PERVALn[PV] with a decimal value of 10 (11 clocks) and PWM_DUTYn[DCYCLE] with 6. Figure 4-4 also shows that PWM_CTRLn[PRESCALE] is configured with a value of 0x0 loaded, which results in the PSCLK_PWMn having the same frequency as the 3.6864 MHz input clock.

4.5.4 Register Summary

Table 4-48 shows the registers associated with the OS timer and the physical addresses used to access them.

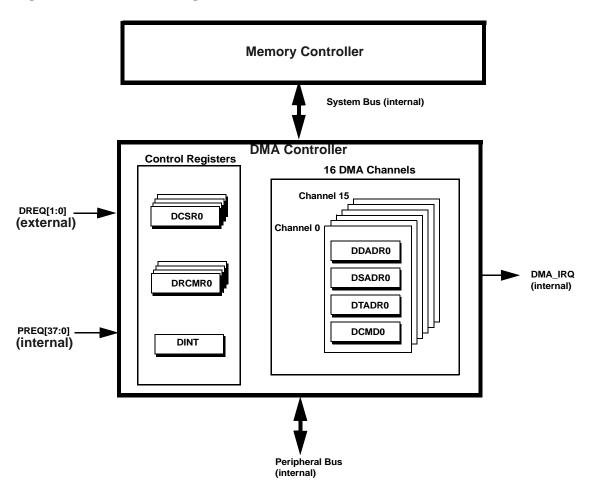
Table 4-52. PWM Register Locations

Address	Name	Description
0x40B0_0000	PWM_CTRL0	PWM0 Control Register
0x40B0_0004	PWM_PWDUTY0	PWM0 Duty Cycle Register
0x40B0_0008	PWM_PERVAL0	PWM0 Period Control Register
0x40C0_0000	PWM_CTRL1	PWM1 Control Register
0x40C0_0004	PWM_PWDUTY1	PWM1 Duty Cycle Register
0x40C0_0008	PWM_PERVAL1	PWM1 Period Control Register

5

This chapter describes the on-chip DMA controller (DMAC) for the PXA250 and PXA210 application processors. The DMAC transfers data to and from main memory in response to requests generated by internal and external peripherals. The peripherals do not directly supply addresses and commands to the memory system. The DMAC has 16 DMA channels, 0 through 15, and every DMA request from the peripheral generates at least one memory bus cycle.

5.1 DMA Description


The DMAC only supports flow-through transfers.

Flow-through data passes through the DMAC before the data is latched by the destination in its buffers/memory. This DMA Controller can perform memory-to-memory moves with flow-through transfers.

Figure 5-1, "DMAC Block Diagram" on page 5-2 provides an overview of the DMAC. Table 5-1, "DMAC Signal List" on page 5-3 provides a list of the DMAC signals and descriptions.

Figure 5-1. DMAC Block Diagram

5.1.1 DMAC Channels

The DMAC has 16 channels, each controlled by four 32-bit registers. Each channel can be configured to service any internal peripheral or one of the external peripherals for flow-through transfers. Each channel is serviced in increments of the peripheral device's burst size and is delivered in the granularity appropriate to that device's port width. The burst size and port width for each device is programmed in the channel registers and is based on the device's FIFO depth and bandwidth needs. Due to performance issues, it is highly recommended that the user set the burst size equal to the FIFO DMA interrupt trigger level, also called the FIFO threshold level. When multiple channels are actively executing, the DMAC services each channel is serviced with a burst of data. After the data burst is sent, the DMAC may perform a context switch to another active channel. The DMAC performs context switches based on a channel's activity, whether its target device is currently requesting service, and where that channel lies in the priority scheme.

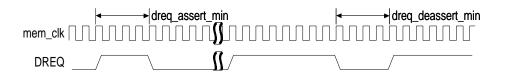
Channel information must be maintained on a per-channel basis and is contained in the DMAC registers see in Table 5-13, "DMA Controller Registers" on page 5-28. The DMAC supports two methods of loading the DMAC register, No-Descriptor and Descriptor Fetch Modes. The fetch modes are discussed in further detail in Section 5.1.4, "DMA Descriptors" on page 5-6.

Software must ensure cache coherency when it configures the DMA channels. The DMAC does not check the cache so target and source addresses must be configured as non-cacheable in the Memory Management Unit.

Each demand for data that a peripheral generates results in a read or write to memory data. A peripheral must not request a DMA transfer unless it is prepared to read or write the full data block (8, 16, or 32 bytes) and it is equipped to handle reads and writes less than a full data block. Reads and writes less than a full data block can occur at the end of a DMA transfer.

5.1.2 Signal Descriptions

The DREQ[1:0], PREQ[37:0] and DMA_IRQ signals are controlled by the DMAC as indicated in Table 5-1.


Table 5-1. DMAC Signal List

Signal	Signal Type In/Out	To/From	Definition
DREQ[1:0]	Input	Pins	External companion chip request lines. DMA detects the positive edge of this signal as a request.
DMA_IRQ	Output	Interrupt Controller	Active high signal indicating an interrupt.
PREQ[37:0]	Input	On-chip peripherals	Internal peripheral DMA request lines. On chip peripherals send requests using the PREQ signals. The DMAC does not sample the PREQ signals until it completely finishes the data transfer from peripheral to the memory.

5.1.2.1 DREQ[1:0] and PREQ[37:0] Signals

The external companion chip asserts the positive edge triggered DREQ[1:0] signals when a DMA transfer request is needed. The DREQ[1:0] signal must remain asserted for four MEMCLKs to allow the DMA to recognize the 0 to 1 transition. When the DREQ[1:0] signals are deasserted, they must remain deasserted for at least four MEMCLKs. The DMAC registers the transition from 0 to 1 to identify a new request. The external companion chip must not assert another DREQ until the previous DMA data transfer starts.

Figure 5-2. DREQ timing requirements

The PREQ[37:0] bits are the active high internal signals from the on-chip peripherals. Unlike DREQ[1:0], they are level sensitive. The DMAC does not sample the PREQ[37:0] signals until it completely finishes the current data transfer. For a write request to the on-chip peripheral, the DMAC begins to sample the PREQ[37:0] signals after it sends the last byte of the write request. For a read request, the DMAC begins to sample the PREQ[37:0] signals after it sends the last byte that pertains to the read on the internal bus.

The DCSR[REQPEND] bit indicates the status of the pending request for the channel.

If a DREQx assertion sets the DCSR[REQPEND] bit and software resets the DCSR[RUN] bit to stop the channel, the DCSR[REQPEND] bit and the internal registers that hold the DREQx assertion information may remain set even though the channel has stopped. To reset the DCSR[REQPEND] bit, software must send a dummy descriptor that transfers some data.

5.1.2.2 DMA_IRQ Signal

The application processor has 16 IRQ signals, one for each DMA channel. Each DMA IRQ can be read in the DINT register that is shown in Figure 5-6, "DINT Register Bitmap and Bit Definitions" on page 5-17. The user can mask some bits that cause interrupts on a channel, such as ENDIRQEN, STARTIRQEN, and STOPIRQEN.

When DMA interrupt occurs, it is visible in Pending Interrupt Register Bit 25 (see Section 4.2.2.5, "Interrupt Controller Pending Register (ICPR)" on page 4-26). When a pending interrupt becomes active, it is sent to the CPU if its corresponding ICMR mask Bit 25 (see Section 4.2.2.1, "Interrupt Controller Mask Register (ICMR)" on page 4-23) is set to a one.

5.1.3 DMA Channel Priority Scheme

The DMA channel priority scheme allows peripherals that require high bandwidth to be serviced more often than those requiring less bandwidth. The DMA channels are internally divided into four sets. Each set contains four channels. The channels get a round-robin priority in each set. Set zero has the highest priority. Set 1 has higher priority than sets two and three. Sets two and three are low priority sets. Refer to Table 5-2 for details. High bandwidth peripherals must be programmed in set zero. Memory-to-memory moves and low bandwidth peripherals must be programmed in set two or three. When all channels are running concurrently, set zero is serviced four times out of any eight consecutive channel servicing instances. Set one is serviced twice and sets two and three are each serviced once.

If two or more channels are active and request a DMA, the priority scheme in Table 5-2 applies.

Request priority does not affect requests that have already started. The DMAC priority scheme is considered when the smaller dimension of the DCMDx[WIDTH] or DCMDx[LENGTH] is complete.

If all channels request data transfers, the Sets are prioritized in following order:

- Set zero
- Set one
- · Set zero
- Set two
- Set zero
- Set one
- · Set zero
- Set three

The pattern repeats for the next eight channel services. In each set, the channels are given round-robin priority.

Table 5-2. Channel Priority (if all channels are running concurrently)

Set	Channels	Priority	Number of times served
0	0,1,2,3	Highest	4/8
1	4,5,6,7	Higher	2/8
2	8,9,10,11	Low	1/8
3	12,13,14,15	Low	1/8

The state machine used to determine the priority of the DMA channels is shown in Table 5-3. Use this table to determine the exact sequence the DMA controller gives to each channel when not all channels are running concurrently.

Table 5-3. Channel Priority

State Machine State	DMA Set Priority within each State Machine State
0	S0 > S1 > S2 > S3
1	S1 > S0 > S3 > S2
2	S0 > S1 > S2 > S3
3	S2 > S3 > S0 > S1
4	S0 > S1 > S2 > S3
5	S1 > S0 > S3 > S2
6	S0 > S1 > S2 > S3
7	S3 > S2 > S1 > S0

The channels get a round-robin priority in each set. Out of reset, the state machine state is zero. If a channel in set zero has a pending request, that channel is serviced. If a channel in set one has a pending request, that channel is serviced and so on. Once a request is serviced, the state machine state is incremented, wrapping around from state machine state seven back to state machine state zero. If there is no pending request, the state machine stays in the current state machine state until there is a pending request. See Table 5-4 for priority scheme examples.

Table 5-4. Priority Schemes Examples

Channels Programmed	DMA Channel Priority
ch0, ch1	0,1,0,1,0,1,0,1,etc.
ch0, ch15	0,0,0,15,0,0,0,15,etc.
ch0, ch4, ch8, ch12	0,4,0,8,0,4,0,12,etc.
ch0, ch1, ch8, ch12	0,1,0,8,0,1,0,12,etc.
ch0, ch4	0,4,0,0,0,4,0,4,etc.
ch8, ch12	8,12,8,8,8,12,8,12,etc.

5.1.4 DMA Descriptors

The DMAC operates in two distinct modes: Descriptor Fetch Mode and No-Descriptor Fetch Mode. The mode used is determined by the DCSRx[NODESCFETCH] bit.

The Descriptor Fetch and No-Descriptor modes can be used simultaneously on different channels. This means that some DMA channels can be active in one mode while other channels are active in the other mode.

A channel must be stopped before it can be switched from one mode to the other.

If an error occurs in a channel, it returns to its stopped state and remains there until software clears the error condition and writes a 1 to the DCSR[RUN] register.

5.1.4.1 No-Descriptor Fetch Mode

In No-Descriptor Fetch Mode, the DDADRx is reserved. Software must not write to the DDADRx and must load the DSADRx, DTADRx, and DCMDx registers. When the Run bit is set, the DMAC immediately begins to transfer data. No-Descriptor fetches are performed at the beginning of the transfer. The channel stops when it finishes the transfer.

Ensure that the software does not program the channel's DDADx No-Descriptor Fetch Mode.

A typical No-Descriptor Fetch Mode (DCSR[NODESCFETCH] = 1) operation follows:

- 1. The channel is in an uninitialized state after reset.
- 2. The DCSR[RUN] bit is set to a 0 and the DCSR[NODESCFETCH] bit is set to a 1.
- 3. The software writes a source address to the DSADR register, a target address to the DTADR register, and a command to the DCMD register. The DDADR register is reserved in this No-Descriptor Fetch Mode and must not be written.
- 4. The software writes a 1 to the DCSR[RUN] bit and the No-Descriptor fetches are performed.
- 5. The channel waits for the request or starts the data transfer, as determined by the DCMD[FLOW] source and target bits.
- The channel transmits a number of bytes equal to the smaller of DCMD[SIZE] and DCMD[LENGTH].
- 7. The channel waits for the next request or continues with the data transfer until the DCMD[LENGTH] reaches zero.
- 8. The DDADR[STOP] is set to a 1 and the channel stops.

Figure 5-3 summarizes typical No-Descriptor Fetch Mode operation.

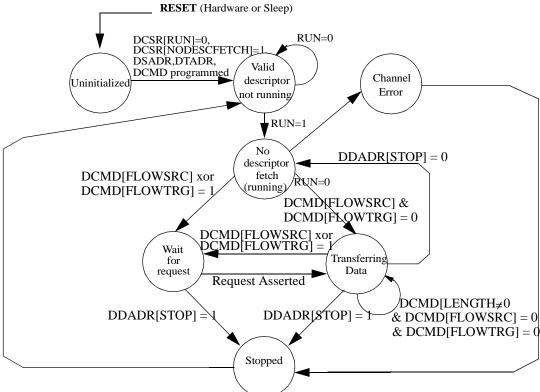


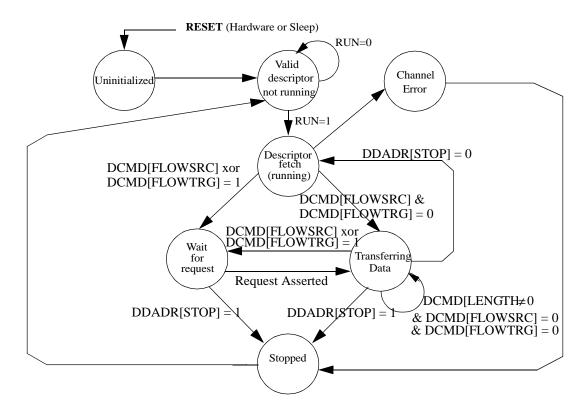
Figure 5-3. No-Descriptor Fetch Mode Channel State

5.1.4.2 Descriptor Fetch Mode

In Descriptor Fetch Mode, the DMAC registers are loaded from DMA descriptors in main memory. Multiple DMA descriptors can be chained together in a list. This allows a DMA channel to transfer data to and from a number of locations that are not contiguous. The descriptor's protocol design allows descriptors to be added efficiently to the descriptor list of a running DMA stream.

A typical Descriptor Fetch Mode (DCSR[NODESCFETCH] = 0) operation follows:

- 1. The channel is in an uninitialized state after reset.
- The software writes a descriptor address (aligned to a 16-byte boundary) to the DDADR register.
- 3. The software writes a 1 to the DCSR[RUN] bit.
- 4. The DMAC fetches the four-word descriptor (assuming that the memory is already set up with the descriptor chain) from the memory indicated by DDADR.
- 5. The four-word DMA descriptor, aligned on a 16-byte boundary in main memory, loads the following registers:
 - a. Word [0] -> DDADRx register and a single flag bit. Points to the next four-word descriptor.
 - b. Word [1] -> DSADRx register for the current transfer.
 - c. Word [2] -> DTADRx register for the current transfer.


- d. Word [3] -> DCMDx register for the current transfer.
- 6. The channel waits for the request or starts the data transfer, as determined by the DCMD[FLOW] source and target bits.
- 7. The channel transmits a number of bytes equal to the smaller of DCMD[SIZE] and DCMD[LENGTH].
- 8. The channel waits for the next request or continues with the data transfer until the DCMD[LENGTH] reaches zero.
- 9. The channel stops or continues with a new descriptor fetch from the memory, as determined by the DDADR[STOP] bit.

Bit [0] (STOP) of Word [0] in a DMA descriptor (the low bit of the DDADRx field) marks the descriptor at the end of a descriptor list. The value of the STOP bit does not affect the manner in which the channel's registers load the descriptor's fields. If a descriptor with its STOP bit set is loaded into a channel's registers, the channel stops after it completely transfers the data that pertains to that descriptor. Figure 5-4, "Descriptor Fetch Mode Channel State" on page 5-8 summarizes this operation.

Software must set the DCSR[RUN] bit to 1 after it loads the DDADR. The channel descriptor fetch does not take place unless the DDADR register is loaded and the DCSR[RUN] bit is set to a 1.

The DMAC priority scheme does not affect DMA descriptor fetches. The next descriptor is fetched immediately after the previous descriptor is serviced.

Figure 5-4. Descriptor Fetch Mode Channel State

5.1.5 Channel States

A DMA channel can go through any of the following states:

- Uninitialized: Channel is in an uninitialized state after reset.
- Valid Descriptor, Not Running: Software has loaded a descriptor in the DDADR of the channel, in the Descriptor Fetch Mode, or has programmed DSADR, DTADR and DCMD values, in No-Descriptor Fetch Mode, but the corresponding run bit in the DCSR[RUN] register is not set to a 1.
- Descriptor Fetch, Running: Fetching four words of descriptors from the memory.
- Wait for Request: Channel is waiting for a request before it starts to transfer the data.
- Transfer Data: Channel is transferring data.
- Channel Error: Channel has an error. It remains in the stopped state until software clears the error condition, re-initializes the channel, and writes a 1 to the DCSR[RUN] bit. See Section 5.3.1 and Section 5.3.2 for details.
- Stopped: Channel is stopped.

Figure 5-3 and Figure 5-4 show the progression from state to state.

5.1.6 Read and Write Order

The DMAC does not ensure the order of programmed I/O reads and writes made from the processor to the I/O devices (including the on-chip I/O devices). Software must ensure the order.

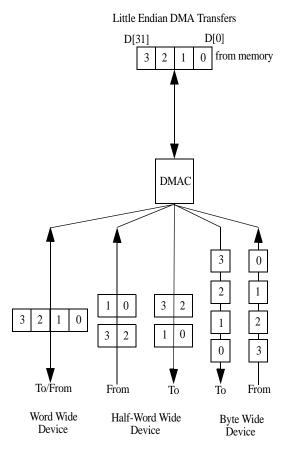
The DMAC ensures that all memory references made by a single DMA data stream are presented to main memory in the order in which they were made. The descriptor fetches occurs between the data blocks. This allows self-modifying DMA descriptor chains to function correctly (see Example 4 on page 5-27). It also allows schemes in which a DMA stream writes data blocks followed by status blocks and schemes in which another DMA stream (probably from the processor) polls the same field in the status block.

The DMAC ensures that data is not retained in per-channel buffers between descriptors. When a descriptor is completely processed, any read data that is buffered in the channel is discarded and any write data that is buffered in the channel is sent to memory (although it may not be there yet). The DMA interrupt is not posted until the descriptor is completely processed.

5.1.7 Byte Transfer Order

The DCMD[ENDIAN] bit indicates the byte ordering in a word when data is read from or written to memory. Refer to Figure 5-5 on page 5-10 for details. The DCMD[ENDIAN] bit must be set to 0, which is little endian transfers.

Figure 5-5, "Little Endian Transfers" on page 5-10 shows the order which data is transferred as determined by the DCMD[ENDIAN] and DCMD[SIZE] bits.


If data is being transferred from an internal device to memory, DCMD[ENDIAN] is set to a 0, and DCMD[SIZE] is set to a 1, the memory receives the data in the following order:

- 1. Byte[0]
- 2. Byte[1]

- 3. Byte[2]
- 4. Byte[3]

Figure 5-5. Little Endian Transfers

5.1.8 Trailing Bytes

The DMA normally transfers bytes equal to the transaction size specified by DCMD[SIZE]. As the descriptor nears the end its data, the number of trailing bytes in the DCMD[LENGTH] field may be smaller than the transfer size. The DMA can transfer the exact number of trailing bytes if the DCMD[FLOWSRC] and DCMD[FLOWTRG] bits are both 0 or if it receives a corresponding request from a peripheral or companion chip.

Trailing bytes must be considered in the following cases:

- Memory-to-Memory Moves: The DMA transfers a number bytes equal to the smaller of DCMD[LENGTH] or DCMD[SIZE].
- Companion-Chip Related Transfers: The companion-chip must assert the request if the DMAC must handle the trailing bytes. If the request is asserted, the DMA transfers a number of bytes equal to the smaller of DCMD[LENGTH] or DCMD[SIZE].
- Memory to Internal Peripheral Transfers: Most peripherals send a request for trailing bytes during memory to internal peripheral transfers. Refer to the appropriate section in this

document for details of a peripheral's operation. The DMA transfers bytes equal to the smaller of DCMD[LENGTH] or DCMD[SIZE].

- Internal Peripheral to Memory Transfers: Most peripherals do not send a request for trailing
 bytes for on-chip peripheral to memory transfers. Refer to the appropriate section in this
 document for details of a peripheral's operation. If the peripheral sends out a request, the DMA
 transfers the number of bytes equal to the smaller of DCMD[LENGTH] or DCMD[SIZE]. If
 software must us programmed I/O to handle the trailing bytes, it must follow this sequence of
 operation:
- 1. Writing a 0 to the DCSR[RUN] bit to stop the DMA channel.
- 2. Wait until the channel to stops.
- 3. Make reads the channel's registers to check the channel's status.
- 4. Perform the programmed I/O transfers to the peripheral.
- 5. Set the DCSR[RUN] bit to a 1 and reset the DMA channel for future data transfers.

5.2 Transferring Data

The internal peripherals are connected to the DMAC via the peripheral bus and use flow-through data transfers. The DMAC can also transfer data to and from any memory location with memory-to-memory moves in flow-through transfer mode. External devices, such as companion chips, that are directly connected to the external data pins must use flow-through data transfers.

Main memory includes any memory that the application processor supports, except writes to flash. Writes to flash are not supported and cause a bus error.

In flow-through transfer mode, data passes through the DMAC before it is latched by the destination in its buffers/memory. The DMAC can also perform memory-to-memory moves in flow-through transfer mode.

5.2.1 Servicing Internal Peripherals

The DMAC provides the DMA Request to Channel Map Registers (DRCMRx) that contain four bits used to assign a channel number for each possible DMA request. An internal peripheral can be mapped to any of the 16 available channels. See Table 5-5, "DMA Quick Reference for Internal Peripherals" on page 5-13 to configure the internal peripherals for DMA accesses. Internal peripherals assert the request bit through the peripheral request bus (PREQ). The signals from the PREQ are sampled on every peripheral clock (PCLK) and if any of the PREQ signals are not zeroes, a lookup is performed on the corresponding bits of the DRCMRx. This allows the request to be mapped to one of the channels.

If the internal peripheral address is in the DSADR, the DCMDx[FLOWSRC] bit must be set to a 1. This allows the application processor to wait for the request before it initiates the transfer. If the internal peripheral address is in the DTADR, the DCMDx[FLOWTRG] bit must be set to a 1.

If DCMDx[IRQEN] is set to a 1, a DMA interrupt is requested at the end of the last cycle associated with the byte that caused DCMDx[LENGTH] to decrement to 0.

5.2.1.1 Using Flow-Through DMA Read Cycles to Service Internal Peripherals

A flow-through DMA read for an internal peripheral begins when the internal peripheral sends a request, via the PREQ bus, to a DMAC channel that is running and configured for a flow-through read. The number of bytes to be transferred is specified with DCMDx[SIZE]. When the request is the highest priority request, the following process begins:

- 1. The DMAC sends the memory controller a request to read the number of bytes addressed by DSADRx[31:0] into a 32-byte staging buffer in the DMAC.
- 2. The DMAC transfers the data to the I/O device addressed in DTADRx[31:0]. DCMD[WIDTH] specifies the width of the internal peripheral to which the data is transferred.
- 3. At the end of the transfer, DSADRx is increased by the smaller value of DCMDx[LENGTH] and DCMD[SIZE]. DCMDx[LENGTH] is decreased by the same value.

For a flow-through DMA read to an internal peripheral, use the following settings for the DMAC register bits:

- DSADR[SRCADDR] = external memory address
- DTADR[TRGADDR] = internal peripheral's address
- DCMD[INCSRCADDR] = 1
- DCMD[FLOWSRC] = 0
- DCMD[FLOWTRG] = 1

5.2.1.2 Using Flow-Through DMA Write Cycles to Service Internal Peripherals

A flow-through DMA write for an internal peripheral begins when the internal peripheral sends a request, via the PREQ bus, to a DMAC channel that is running and configured for a flow-through write. The number of bytes to be transferred are specified with DCMDx[SIZE]. When the request is the highest priority request, the following process begins:

- The DMAC transfers the required number of bytes from the I/O device addressed by DSADRx[31:0] to the DMAC write buffer.
- 2. The DMAC transfers the data to the memory controller via the internal bus. DCMD[WIDTH] specifies the width of the internal peripheral to which the transfer is being made.
- 3. At the end of the transfer, DTADRx is increased by the smaller value of DCMDx[LENGTH] and DCMD[SIZE]. DCMDx[LENGTH] is decreased by the same number.

For a flow-through DMA write to an internal peripheral, use the following settings for the DMAC register bits:

- DSADR[SRCADDR] = internal peripheral address
- DTADR[TRGADDR] = external memory address
- DCMD[INCTRGADDR] = 1
- DCMD[FLOWSRC] = 1
- DCMD[FLOWTRG] = 0

5.2.2 Quick Reference for DMA Programming

Use Table 5-5 as a quick reference sheet for programming the DMA.

Table 5-5. DMA Quick Reference for Internal Peripherals (Sheet 1 of 2)

			1			_	
Unit	Function	FIFO Address	Width (bytes)	DCMD. Width (binary)	Burst Size (bytes)	Source or Target	DRCMR
12S	receive	0x40400080	4	11	8, 16, 32	Source	0x4000 0108
123	transmit	0x40400080	4	11	8, 16, 32	Target	0x4000 010c
	receive	0x40200000	1	01	8, 16, 32	Source	0x4000 0110
BTUART	transmit	0x40200000	1	01	8, 16, 32 or trailing	Target	0x4000 0114
	receive	0x40100000	1	01	8, 16, 32	Source	0x4000 0118
FFUART	transmit	0x40100000	1	01	8, 16, 32 or trailing	Target	0x4000 011c
	microphone	0x40500060	4	11	8, 16, 32	Source	0x4000 0120
	modem receive	0x40500140	4	11	8, 16, 32	Source	0x4000 0124
AC97	modem transmit	0x40500140	4	11	8, 16, 32	Target	0x4000 0128
	audio receive	0x40500040	4	11	8, 16, 32	Source	0x4000 012c
	audio transmit	0x40500040	4	11	8, 16, 32	Target	0x4000 0130
SSP	receive	0x41000010	2	10	8, 16	Source	0x4000 0134
337	transmit	0x41000010	2	10	8, 16	Target	0x4000 0138
	receive	0x4080000C	1	01	8, 16, 32	Source	0x4000 0144
FICP	transmit	0x4080000C	1	01	8, 16, 32 or trailing	Target	0x4000 0148
	receive	0x40700000	1	01	8, 16, 32	Source	0x4000 014c
STUART	transmit	0x40700000	1	01	8, 16, 32, or trailing	Target	0x4000 0150
MMC	receive	0x41100040	1	01	32 or trailing	Source	0x4000 0154
IVIIVIC	transmit	0x41100044	1	01	32 or trailing	Target	0x4000 0158

Table 5-5. DMA Quick Reference for Internal Peripherals (Sheet 2 of 2)

Unit	Function	FIFO Address	Width (bytes)	DCMD. Width (binary)	Burst Size (bytes)	Source or Target	DRCMR
	endpoint 1 transmit	0x40600100	1	01	32	Target	0x4000 0164
	endpoint 2 receive	0x40600180	1	01	32	Source	0x4000 0168
	endpoint 3 transmit	0x40600200	1	01	32	Target	0x4000 016C
	endpoint 4 receive	0x40600400	1	01	32	Source	0x4000 0170
	endpoint 6 transmit	0x40600600	1	01	32	Target	0x4000 0178
USB	endpoint 7 receive	0x40600680	1	01	32	Source	0x4000 017C
036	endpoint 8 transmit	0x40600700	1	01	32	Target	0x4000 0180
	endpoint 9 receive	0x40600900	1	01	32	Source	0x4000 0184
	endpoint 11 transmit	0x40600B00	1	01	32	Target	0x4000 018C
	endpoint 12 receive	0x40600B80	1	01	32	Source	0x4000 0190
	endpoint 13 transmit	0x40600C00	1	01	32	Target	0x4000 0194
	endpoint 14 receive	0x40600E00	1	01	32	Source	0x4000 0198

5.2.3 Servicing Companion Chips and External Peripherals

Companion chips and external peripherals can be serviced with flow-through transfers. The DMAC provides DMA Request to Channel Map Registers (DRCMRx) that contain four bits that assign a channel number for each of the possible DMA requests. The companion-chip requests are DREQ[1:0]. The DREQ signal can be mapped to one of the 16 available channels. The DREQ signals are sampled on every peripheral clock (PCLK) and if any of the DREQ signals are sampled non-zero, a lookup is performed on the corresponding bits in the DRCMRx. This allows requests to one of the channels to be mapped. If the external peripheral address is in the DSADR, the DCMDx[FLOWSRC] bit must be set to a 1. If the external peripheral address is in the DTADR, the DCMDx[FLOWTRG] bit must be set to a 1. This allows the application processor to wait for the request before it initiates the transfer.

If DCMDx[IRQEN] is set to a 1, a DMA interrupt can be requested at the end of the last cycle associated with the byte that caused DCMDx[LENGTH] to decrease from a 1 to a 0.

5.2.3.1 Using Flow-Through DMA Read Cycles to Service External Peripherals

A flow-through DMA read for an external peripheral begins when the external peripheral sends a request, via the DREQ[1:0] bus, to a DMAC channel that is running and configured for a flow-through read. DCMDx[SIZE] specifies the number of bytes to be transferred. When the request is the highest priority request, the follow process begins.

- 1. The DMAC sends a request to the memory controller to read the number of bytes addressed by DSADRx[31:0] into a 32-byte staging buffer in the DMAC.
- 2. The DMAC transfers the data in the buffer to the external device addressed in DTADRx[31:0].
- 3. At the end of the transfer, DSADRx is increased by the smaller value of DCMDx[LENGTH] and DCMD[SIZE]. DCMDx[LENGTH] is decreased by the same value.

Note: The process shown for a flow-through DMA read to an external peripheral indicates that the external address increases. Some external peripherals, such as FIFOs, do not require an increment in the external address.

For a flow-through DMA read to an external peripheral, use the following settings for the DMAC register bits:

- DSADR[SRCADDR] = external memory address
- DTADR[TRGADDR] = companion chip's address
- DCMD[INCSRCADDR] = 1
- DCMD[INCTRGADDR] = 0
- DCMD[FLOWSRC] = 0
- DCMD[FLOWTRG] = 1

5.2.3.2 Using Flow-Through DMA Write Cycles to Service External Peripherals

A flow-through DMA write to an external peripheral begins when the external peripheral sends a request, via the DREQ bus, to a DMAC channel that is running and configured for a flow-through write. DCMDx[SIZE] specifies the number of bytes to be transferred. When the request is the highest priority request, the following process begins:

- The DMAC transfers the required number of bytes from the I/O device addressed by DSADRx[31:0] to the DMAC write buffer.
- 2. The DMAC transfers the data to the memory controller via the internal bus.
- 3. At the end of the transfer, DTADRx is increased by the smaller value of DCMDx[LENGTH] and DCMD[SIZE]. DCMDx[LENGTH] is decreased by the same number.

Note: The process shown for a flow-through DMA write to an external peripheral indicates that the external address increases. Some external peripherals, such as FIFOs, do not require an increment in the external address.

For a flow-through DMA write to an external peripheral, use the following settings for the DMAC register bits:

- DSADR[SRCADDR] = companion chip address
- DTADR[TRGADDR] = external memory address.
- DCMD[INCSRCADDR] = 0
- DCMD[INCTRGADDR] = 1
- DCMD[FLOWSRC] = 1
- DCMD[FLOWTRG] = 0

5.2.4 Memory-to-Memory Moves

Memory-to-memory moves do not involve the DREQ and PREQ request signals. The processor writes to the DCSR[RUN] bit and a channel is configured for a memory-to-memory move. The DCMDx[FLOWSRC] and the DCMD[FLOWTRG] bits must be set to 0.

If DCMD[IRQEN] is set to a 1, a DMA interrupt is requested at the end of the last cycle associated with the byte that caused DCMDx[LENGTH] to decrease from 1 to 0.

A flow-through DMA memory-to-memory read or write goes through the following steps:

- The processor writes to the DCSR[RUN] register bit and starts the memory-to-memory moves.
- 2. If the application processor is in the Descriptor Fetch Mode, the channel configured for the move fetches the four-word descriptor. The channel transfers data without waiting for PREQ or DREQ to be asserted. The smaller value of DCMDx[SIZE] or DCMDx[LENGTH] specifies the number of bytes to be transferred.
- 3. The DMAC sends a request to the memory controller to read the number of bytes addressed by DSADRx[31:0] into a 32-byte staging buffer in the DMAC.
- 4. The DMAC generates a write cycle to the location addressed in DTADRx[31:0].
- 5. At the end of the transfer, DSADRx and DTADRx are increased by the smaller value of DCMD[SIZE] and DCMDx[LENGTH]. If DCMD[SIZE] is smaller than DCMDx[LENGTH], DCMDx[LENGTH] is decreased by DCMD[SIZE]. If DCMD[SIZE] is equal to or larger than DCMDx[LENGTH], DCMDx[LENGTH] is zero.

Note: The process shown for a memory-to-memory transfer indicates that the external address increases. Some external peripherals, such as FIFOs, do not require an increment in the external address.

For a memory-to-memory read or write, use the following settings for the DMAC registers:

- DSADR[SRCADDR] = external memory address
- DTADR[TRGADDR] = external memory address
- DCMD[INCSRCADDR] = 1
- DCMD[INCTRGADDR] = 1
- DCMD[FLOWSRC] = 0
- DCMD[FLOWTRG] = 0
- DCSR[RUN] =1

5.3 DMAC Registers

The section describes the DMAC registers.

5.3.1 DMA Interrupt Register

The read-only DMA Interrupt Register (DINT) (Figure 5-6) logs the interrupts for each channel.

An interrupt is generated if any of the following events occur:

- Any kind of transaction error on the internal bus that is associated with the relevant channel.
- The current transfer finishes successfully and the DCMD:ENDIRQEN bit is set to a 1.
- The current descriptor loads successfully and the DCMD:STARTIRQEN bit is set to a 1.
- The DCSR:STOPIRQEN is set to a 1 and the relevant channel is in the uninitialized or stopped state.

Software must write a 1 to the corresponding DCSR register error bit to reset the interrupt.

Table 5-6. DINT Register Bitmap and Bit Definitions

			F			Add 0_00	dres)F0	S				DM.	A In	terrı	upt F	Regi	ister	(DII	NT)							D۱	ЛΑ					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							R	lese	rve	d							Chlintr15	Chlintr14	ChlIntr13	Chlintr12	Chlintr11	Chlintr10	Chlintr9	Chlintr8	Chllntr7	Chlintr6	Chlintr5	Chlintr4	Chlintr3	Chlintr2	Chlintr1	Chlintr0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Ві	ts			Na	me												De	scr	iptio	on										
		31	:16		F	Rese	erve	d	Rea	ad a	s u	nkno	own	and	mu	st b	e wr	itter	n as	zer	0.											
		15	5:0		С	HLII	NTF	Хх	0 =	no		' Interrup		pt (r	ead	-onl	y).															

5.3.2 DMA Channel Control/Status Register

The read/write DMA Channel Control/Status Register (DCSRx) (Figure 5-7) contains the control and status bit for each channel. Read this register to find the source of an interrupt. Write the read value back to the register to clear the interrupt.

Bit

Table 5-7. DMA Channel Control/Status Register Bitmap and Bit Definitions (Sheet 1 of 2)

Physical Address 0x4000_0000 - 0x4000_003C DMA Channel Control/Status Register (DCSRx)

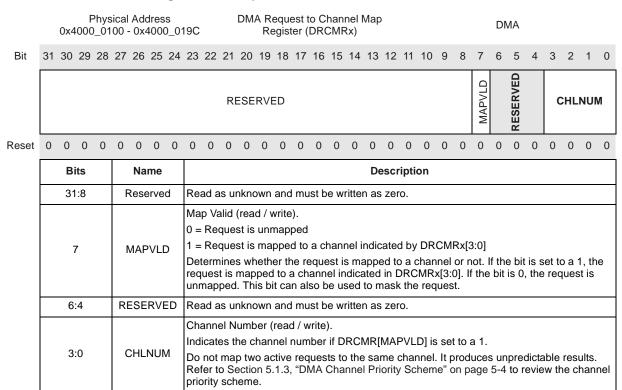
DMA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 NODESCFETCH BUSERRINTR STOPIRGEN STOPSTATE STARTINTR REQPEND **ENDINTR** RUN RESERVED **RESERVED**

Bits	Name	Description
		Run Bit (read / write).
		0 = stops the channel
		1 = starts the channel
		Lets software start or stop the channel. If the run bit is cleared in the middle of the burst, the burst will complete before the channel is stopped.
31	RUN	Software must write to DDADRx before it sets this bit for Descriptor Fetch Mode.
31	KON	After the channel stops, the DCSR[STOPSTATE] bit is set to 1. Software must poll the DCSR[STOPSTATE] bit to determine the channel's status or set the STOPIRQEN to force an interrupt after the channel stops. Software must write a 1 to the bit to restart a stopped channel.
		After clearing the run bit to stop the channel, an end interrupt is not guaranteed to happen if the length bits, DCMDx[LENGTH], is zero. Software must determine if the transfer is done after clearing the run bit.
		No-Descriptor Fetch (read / write).
		0 = Descriptor Fetch Mode
		1 = No-Descriptor Fetch Mode
30	NODESC	Determines if the channel has a descriptor.
	FETCH	If this bit is set to a 0, the channel is in Descriptor Fetch Mode. See Section 5.1.4.2, "Descriptor Fetch Mode" on page 5-7 for information on the DMAC registers.
		If this bit is set to a 1, the channel is in No-Descriptor Fetch Mode. See Section 5.1.4.1, "No-Descriptor Fetch Mode" on page 5-6 for information on the DMAC registers.
		Stop Interrupt Enable (read / write).
		0 = no interrupt if the channel is in uninitialized or stopped state
29	STOPIRQEN	1 = enables an interrupt if the channel is in uninitialized or stopped state
		Allows an interrupt to pass to the interrupt controller if the DCSR[STOPSTATE] bit is 1. If the DCSR[STOPINTEN] bit is 0, the interrupt is not generated after the channel stops. If software writes a 1 to this bit before the channel starts, an interrupt is generated.
28:9	RESERVED	Read as unknown and must be written as zero.
		Request Pending (read-only).
8	REQPEND	0 = no pending request
	INEQI LIVE	1 = the channel has a pending request
		Indicates that the DMA channel has a pending request.
7:4	RESERVED	Read as unknown and must be written as zero.

Table 5-7. DMA Channel Control/Status Register Bitmap and Bit Definitions (Sheet 2 of 2)

		0x4					dres 4000		03C			DΝ	/IA C				ntrol SR:		tus							D۱	ЛA					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RUN	NODESCFETCH	STOPIRGEN									RI	ESE	RVI	ED									REQPEND	RE	SE	RVE	ΞD	STOPSTATE	ENDINTR	STARTINTR	BUSERRINTR


		_																										_			
Reset	0	0	0 0	0	0	0	0	0	0 0		0	0)	0	0	0	0	0	0	0) () (0	C	0	0	0	1	0	0	0
		Ві	its		Na	ame												De	escr	rip	tior	1									
								Stop	Stat	e (r	ead	d-onl	y).																		
								0 = 0	hanr	nel	is r	unnii	ng																		
								1 = 0	hanı	nel	ii si	n uni	niti	aliz	ed c	or st	орр	ed s	state	Э.											
		;	3	S	TOF	PSTA	ΤE	If the DCS desc	R[S]	OF	PIR	QEN] is	se	t to	1, th	ne D	MA	Ċ g	en	era	es a	ın in						ates	are	
								Softv chan							the I	DDA	ADR	x aı	nd v	vrit	e a	1 to	the	DC	SR[I	RUN	I] bit	to	resta	art th	ne
								Softv	vare	mu	st v	write	a (O to	the	DC	SR[STO	OPIF	RQ	ΕN] bit	to re	set	the	inte	rrup	t			
								End	Inter	rup	t (re	ead /	W	rite)																	
								0 = r	o int	err	upt																				
		2	2		END	TNIC	R	1= in DCM						cau	se tl	ne c	urre	ent t	rans	sac	ctio	n wa	s su	cce	ssfu	lly c	omp	lete	ed ar	nd	
								DCM bit to																				writ	e a 1	l to t	this
								Start	Inte	rup	ot (r	read	/ w	rite).																
								0 = r	o int	err	upt																				
		•	1	S	TAR	RTIN'	TR	1 = i		•										•											
								DCM this I																					vrite	a 1	to
								Bus	Erro	Int	err	upt (rea	ad /	write	e).															
								0 = r			•																				
								1= b							•																
		(0	BUS IN	R	Indic occu cons write Only upda repro	rs wildere a 1 one ated a	nened betoet te	the bad his or i	e cha whe bit to ncide	ann n it o re enc of t	nel h t po eset ce p he t	nas a ints the er c rans	a ba to a cor han sfer	nd d no resp nel and	esci n-bu oond is lo	riptousab ding ogge acce	or, sole ole olin ed. ess	sou loc terr The	rce, atior upt. e ch	or ta or i Writ anne	arge rese ing el th	et ad erved a 0 t at ca	dres	ss. A ace. is bi ed th	n a So it ha ie e	ddre ftwai as no rror	ss is re m	ust		

5.3.3 DMA Request to Channel Map Registers

The read/write DMA Request to Channel Map Registers (DRCMRx) (Figure 5-8) map each DMA request to a channel. Refer to Table 5-13 for details.

Table 5-8. DRCMRx Registers Bitmap Bit Definitions

5.3.4 DMA Descriptor Address Registers

The DMA Descriptor Address Registers (DDADRx) (see Table 5-9, "DMA Descriptor Address Register Bit Definitions" on page 5-21) contain the memory address of the next descriptor for a specific channel. On power up, the bits in this register are undefined. The address must be aligned to a 16-byte boundary. This means that bits [3:1] of the address are reserved and must be read and written as zeroes. DDADR must not contain the address of any other internal peripheral register or DMA register.

DDADR is reserved if the channel is No-Descriptor Fetch Mode.

Table 5-9. DMA Descriptor Address Register Bit Definitions

		0x	:4000_0:	2x0			DI	MA De			Add ADR:		s Re	gist	er						DM	IAC					
Bit	31 30 29	28	27 26	25	24	23 22	21	20 19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DE	SCRIP	TOF	R AI	DDR	ESS	S												RESERVED		STOP
Reset									U	Jnin	nitiali	zed															0
	Bits		Na	ıme										De	esci	ipti	on										
	31:4		DESCI ADD			Addres	s of	next de	escri	ipto	r (re	ad /	wri	te).													
	3:1		Res	erved	b	Reserv	ed,	Read a	s un	nkno	own	and	mu	st be	e wr	itte	n as	zer	0.								
	0		ST	OP.		Stop (r 0 = Ru 1 = Sto descrip If this b it fetch on the	n cha p ch otor, oit is es th	annel. annel a i.e., DC set, the ne next	after CMD e cha desc	(LE anne crip	NGT el to tor. I	H]= stop f the	0. os a e DI	fter i DAD	t co Rx[mpl ST(etely	y pro	oces s 0, a	ses a ne	the	des	scrip ripto	otor	and l	befo	ore

5.3.5 DMA Source Address Registers

The DMA Source Address Registers (DSADRx) are read only in the Descriptor Fetch Mode and are read/write in the No-Descriptor Fetch Mode.

The DSADRx (see Figure 5-10) contain the Source Address for the current descriptor of a specific channel. The Source Address is the address of the internal peripheral or a memory location. On power up, the bits in this register are undefined. If the Source Address is the address of a companion chip or external peripheral, the source address must be aligned to an 8-byte boundary. This allows bits [2:0] of the address to be reserved. If the source address is the address for an internal peripheral, the address must be 32-bit aligned, so bits [1:0] are reserved. DSADR cannot contain the address of any other internal DMA, LCD, or MEMC registers.

Table 5-10. DSADRx Register Bitmap Bit Definitions

	0x	4000_02x4	DMA Source Addr Register DMAC (DSADRx)		
Bit	31 30 29 28	27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	3 2	1 0
			SOURCE ADDRESS		RESERVED
Reset			Uninitialized		
	Bits	Name	Description		
	31:3	SRCADDR	Source Address (read / write). Address of the internal peripheral or address of a memory location.		
		CITOREDIT	Address of a memory location for companion -chip transfer		
	2	SRCADDR			

5.3.6 DMA Target Address Registers

To software, the DMA Target Address Registers (DTADRx) (Figure 5-11) are read only in the Descriptor Fetch Mode and are read/write in the No-Descriptor Fetch Mode.

These registers contain the Target Address for the current descriptor in a channel. The Target Address is the address of an internal peripheral or a memory location. On power up, the bits in this register are undefined. If the target address is the address of a companion chip or external peripheral, the target address must be aligned to an 8-byte boundary. This allows bits [2:0] of the address to be reserved. If the Target Address is the address for an internal peripheral, the address must be 32-bit aligned so that bits [1:0] are reserved. DTADR must not contain the address of any other internal DMA, LCD, or MEMC register.

The DTADR must not contain a flash address because writes to flash from the DMAC are not supported.

Table 5-11. DTADRx Register Bitmap Bit Definitions

			0x4	4000	_02	2x8				DM	A Ta	arge	t Ad	ldr I	Regi	ster	(DT	ΓAD	Rx)						DN	IAC				
Bit	31	30 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0
												TA	RGI	ΞΤ /	ADD	RES	SS													RESERVED
Reset														Uı	niniti	alize	ed													
		Bits			Naı	me												De	scr	ipti	on									
		31:3		TR	RGA	DD	R	Add	dres	s of	the	on	ad / chip ory I	pe	riphe									y lo	catio	on				
		2		TR	RGA	DD	R	RE		VE	D if	DTA	2 ADR ADR	_								•			vrite)).				
		1:0		RE	SEI	RVE	Đ	Rea	ad a	s ur	nknc	own	and	mι	st b	e wi	itte	n as	zer	ο.										

5.3.7 DMA Command Registers

For software, the DMA Command Registers (DCMDx) (Figure 5-12) are read only in Descriptor Fetch Mode and are read/write in No-Descriptor Fetch Mode.

These registers contain the channel's control bits and the length of the current transfer in that channel. On power up, the bits in this register are set to 0.

Table 5-12. DCMDx Register Bitmap and Bit Definitions (Sheet 1 of 2)

				0x	4000	0_02	xC				DI	ИА (Com	ımaı	nd Re	egis	ster (l	OCI	MDx	()						DM	AC					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17 ′	16	15 1	4 ′	13 1	12	11	10	9	8	7	6	5	4	3	2	1	0
	INCSRCADDR	INCTRGADDR	FLOWSRC	FLOWTRG			RESERVED			STARTIRGEN	ENDIRGEN	RESERVED	RESERVED	ENDIAN	SIZE		WIDTH		RESERVED							LENGTH						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
		Source Address Increment Setting. (read / write).
		0 = Do not increment Source Address
31	INCSRCADDR	1 = Increment Source Address at the end of each internal bus transaction initiation by DCMD[SIZE]
		If the source address is an internal peripheral's FIFO address or external IO address, the address is not incremented on each successive access. In this case, this bit must be 0.
		Target Address Increment Setting. (read / write).
		0 = Do not increment Target Address
30	INCTRGADDR	1 = Increment Target Address at the end of each internal bus transaction initiated by DCMD[SIZE]
		If the target address is an internal peripheral's FIFO address or external IO address, the address is incremented on each successive access. In this cases the bit must be 0.
		Flow Control by the source. (read / write).
		0 = Start the data transfer immediately.
		1 = Wait for a request signal before initiating the data transfer.
29	FLOWSRC	Indicates the flow control of the source. This bit must be '1' if the source is an onchip or external peripheral.
		If either the DCMD[FLOWSRC] or DCMD[FLOWTRG] bit is set, the current DMA does not initiate a transfer until it receives a request. Do not set both the DCMD[FLOWTRG] and DCMD[FLOWSRC] bit to1.
		Flow Control by the target. (read / write).
		0 = Start the data transfer immediately.
		1 = Wait for a request signal before initiating the data transfer.
28	FLOWTRG	Indicates the Flow Control of the target. This bit must be '1' if the target is an onchip or external peripheral.
		If either the DCMD[FLOWSRC] or DCMD[FLOWTRG] bit is set, the current DMA does not initiate a transfer until it receives a request. Do not set both the DCMD[FLOWTRG] and DCMD[FLOWSRC] bit to 1.
27:23	RESERVED	Read as unknown and must be written as zero
22	STARTIRQEN	Start Interrupt Enable (read / write), Reserved for the No-Descriptor Fetch Mode 0 = no interrupt is generated. 1 = Allow interrupt to pass when the descriptor (i.e., 4 words) for the channel are loaded. Sets DCSR[StartIntr] interrupt for the channel when this descriptor is loaded.
21	ENDIRQEN	End Interrupt Enable (read / write). 0 = no interrupt is generated. 1 = set DCSR[EndIntr] interrupt for the channel when DCMD[LENGTH] is decreased to zero. Indicates that the interrupt is enabled as soon as the data transfer is completed.

Table 5-12. DCMDx Register Bitmap and Bit Definitions (Sheet 2 of 2)

				0x	4000	0_02	2xC				D۱	ИΑ	Com	ıma	nd R	egi	ster	(DC	CMD	x)						DM	AC					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	INCSRCADDR	INCTRGADDR	FLOWSRC	FLOWTRG			RESERVED			STARTIRGEN	ENDIRGEN	RESERVED	RESERVED	ENDIAN	SIZE		HLCIM		RESERVED							LENGTH						
Docot	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	0	Λ	Λ	Λ	Λ	Λ	Λ

Reset	^	^	^	^	^	^	^	^	^	^	^	^	\sim	^	^	\sim	^	^	^	^	^	_	_	-	•	^	\sim	^	^	^	_	_	 \sim

Bits	Name	Description
20	Reserved	Read as unknown and must be written as zero.
19	Reserved	Read as unknown and must be written as zero.
18	ENDIAN	Device Endian-ness. (read / write). 0 = Byte ordering is little endian 1 = RESERVED
17:16	SIZE	Maximum Burst Size of each data transferred (read / write). 00 = RESERVED 01 = 8 Bytes 10 = 16 Bytes 11 = 32 Bytes If DCMDx[LENGTH] is less than DCMDx[SIZE] the data transfer size equals DCMDx[LENGTH].
15:14	WIDTH	Width of the on-chip peripheral. (read / write/). 00 = Reserved 01 = 1 byte 10 = HalfWord (2 bytes) 11 = Word (4 Bytes) Must be programmed 00 for memory-to-memory moves or companion-chip related operations.
13	Reserved	Read as unknown and must be written as zero
12:0	LENGTH	Length of transfer in bytes. (read / write). Indicates the length of transfer in bytes. DCMD[LENGTH] = 0 means zero bytes for Descriptor Fetch Mode only. DCMD[LENGTH] = 0 is an invalid setting for the No-Descriptor Fetch Mode. The maximum transfer length is (8K-1) bytes. If the transfer involves any of the internal peripherals, the length of the transfer must be an integer multiple of the width of that peripheral.

5.4 Examples

This section contains examples that show how to:

- · Set up and start a channel
- Initialize a descriptor list for a channel that is running
- Add a descriptor to the end of a descriptor list for a channel that is running
- Initialize a channel that is going to be used by a direct DMA master

Example 1. How to set up and start a channel:

The following example shows how to set up a channel to transfer LENGTH words from the address DSADR to the I/O address DTADR. The example also shows how to start the transfer. The example sets the stop bit in the DDADR, so the DMA channel stops after it completely transfers LENGTH bytes of data.

```
// build real descriptor
desc[0].ddadr = STOP
desc[0].dsadr = DSADR
desc[0].dtadr = DTADR
desc[0].dcmd = DCMD

// start the channel
DMANEXT[CHAN] = &desc[0]
DRUN = 1
```

Example 2. How to initialize a descriptor list for a channel that is running:

```
// Allocate a new descriptor, and make it an end
// descriptor whose "ddadr" field points back at itself
newDesc = New Desc()
newDesc->ddadr = newDesc | STOP
// make it a zero length descriptor
newDesc->dcmd = ZERO
// Start the channel
DMANEXT[CHAN] = newDesc
DRUN = 1
```

The channel starts, loads the descriptor in its registers, and stops because the transfer length is 0 and the STOP bit is set. No data is transferred in this example. The channel can be restarted by writing to its DDADR and writing a 1 to the DCSR[RUN] bit.

Example 3. How to add a descriptor to the end of a descriptor list for a channel that is running:

The example in this section assumes that the Descriptor Fetch Mode is active.

DMA descriptor lists are used as queues of full buffers for network transmitters and as queues of empty buffers for network receivers. Because the buffers in a queue are often small (in particular, as small as an ATM cell), on-the-fly DMA descriptor lists manipulation must be efficient.

- 1. Write a 0 to DCSR[RUN].
- 2. Wait until the channel stops. The channel stop state is reflected in the DCSR:STOPSTATE bit.

- 3. In memory, create the descriptor to be added and set its stop bit to a 1.
- 4. In the memory, manipulate the DDADR of the current chain's last descriptor such that its DDADR points to the descriptor created in Step 3.
- In the memory, create a new descriptor that has the same DDADR, DSADR, DTADR, and CMD as those of the stopped DMA channel. The new descriptor is the next descriptor for the list.
- 6. Examine the DMA channel registers and determine if the channel stopped in the chain's last descriptor of the chain. If it did, manipulate the DDADR of the last descriptor in the memory so that its DDADR points to the descriptor created in Step 3. Otherwise, continue to Step 7.
- 7. Program the channel's DDADR with the descriptor created in Step 5.
- 8. Set the DCSR[RUN] to a 1.

Example 4. How to initialize a channel that is going to be used by a direct DMA master:

The most efficient way to move data between an I/O device and main memory is the application processor's descriptor-based DMA system. Each application has different requirements, so a descriptor-based DMA may be best for some applications while a non-descriptor-based DMA is best for others. For applications that can not tolerate the time needed to fetch a descriptor before each DMA transfer, choose the non descriptor-based DMA method. For applications that can tolerate it, a descriptor-based DMA method can reduce the amount of core intervention.

Self-Modifying Descriptors: The descriptor-based DMA system can be used to provide true direct memory access to devices that require it.

In this example, a companion chip has the following requirements:

- 1. When the companion chip asserts DREQ from 0 to 1, the DMA must fetch four words of the descriptor from one of the chip's ports.
- 2. Based on the information contained in the four descriptor words, the DMA must transfer data from the source address to the destination address without waiting for another request from the companion chip.
- 3. After it transfers the number of bytes in DCMD:LENGTH, the DMA returns to Step 1.

An external device with these requirements can use a constant descriptor in memory.

```
struct {longddadr;
       longdsadr;
       longdtadr;
       shortlength;
       shortdcmd;
} desc[2];
desc[0].ddadr = &desc[1]
desc[0].dsadr = I_ADR + I_DESC_OFFS
desc[0].dtadr = &desc[1].dsadr
desc[0].length = 8;
desc[0].dcmd = CMD_IncTrgAdr | CMD_FlowThru;
desc[1].ddadr = &desc[0]
desc[1].dtadr = I_ADR + I_DATA_OFFS
desc[1].dsadr = 0
desc[1].length = 0
desc[1].dcmd = 0
```


When the external device has data to transfer, it makes a DMA request in the standard way. The DMAC wakes up and reads four words from the device's I_DESC_OFFS address (the DMAC only transfers four words because the first descriptor has an 8-byte count.). The four words from the external device are written in the DSADR, DTADR, and DCMD fields of the next descriptor. The DMAC then steps into the next (dynamically modified) descriptor and, using the I_DATA_OFFS address on the external device, starts the transfer that the external device requested. When the transfer is finished, the DMAC steps back into the first descriptor and the process is repeated.

This example lends itself to any number of variations. For example, a DMA channel that is programmed in this way can be used to transfer messages from a network device directly into client buffers. Each block of data would be preceded by its final destination address and a count.

5.5 DMAC Registers

This section describes the DMAC Registers. Refer to Table 5-13.

Table 5-13. DMA Controller Registers (Sheet 1 of 5)

Address	Name	Description
0x4000 0000	DCSR0	DMA Control / Status Register for Channel 0
0x4000 0004	DCSR1	DMA Control / Status Register for Channel 1
0x4000 0008	DCSR2	DMA Control / Status Register for Channel 2
0x4000 000C	DCSR3	DMA Control / Status Register for Channel 3
0x4000 0010	DCSR4	DMA Control / Status Register for Channel 4
0x4000 0014	DCSR5	DMA Control / Status Register for Channel 5
0x4000 0018	DCSR6	DMA Control / Status Register for Channel 6
0x4000 001C	DCSR7	DMA Control / Status Register for Channel 7
0x4000 0020	DCSR8	DMA Control / Status Register for Channel 8
0x4000 0024	DCSR9	DMA Control / Status Register for Channel 9
0x4000 0028	DCSR10	DMA Control / Status Register for Channel 10
0x4000 002C	DCSR11	DMA Control / Status Register for Channel 11
0x4000 0030	DCSR12	DMA Control / Status Register for Channel 12
0x4000 0034	DCSR13	DMA Control / Status Register for Channel 13
0x4000 0038	DCSR14	DMA Control / Status Register for Channel 14
0x4000 003C	DCSR15	DMA Control / Status Register for Channel 15
0x4000 00F0	DINT	DMA Interrupt Register
0x4000 0100	DRCMR0	Request to Channel Map Register for DREQ 0 (companion chip request 0)
0x4000 0104	DRCMR1	Request to Channel Map Register for DREQ 1 (companion chip request 1)
0x4000 0108	DRCMR2	Request to Channel Map Register for I2S receive Request
0x4000 010C	DRCMR3	Request to Channel Map Register for I2S transmit Request

Table 5-13. DMA Controller Registers (Sheet 2 of 5)

	•	•
0x4000 0110	DRCMR4	Request to Channel Map Register for BTUART receive Request
0x4000 0114	DRCMR5	Request to Channel Map Register for BTUART transmit Request.
0x4000 0118	DRCMR6	Request to Channel Map Register for FFUART receive Request
0x4000 011C	DRCMR7	Request to Channel Map Register for FFUART transmit Request
0x4000 0120	DRCMR8	Request to Channel Map Register for AC97 microphone receive Request
0x4000 0124	DRCMR9	Request to Channel Map Register for AC97 modem receive Request
0x4000 0128	DRCMR10	Request to Channel Map Register for AC97 modem transmit Request
0x4000 012C	DRCMR11	Request to Channel Map Register for AC97 audio receive Request
0x4000 0130	DRCMR12	Request to Channel Map Register for AC97 audio transmit Request
0x4000 0134	DRCMR13	Request to Channel Map Register for SSP receive Request
0x4000 0138	DRCMR14	Request to Channel Map Register for SSP transmit Request
0x4000 013C	DRCMR15	Reserved
0x4000 0140	DRCMR16	Reserved
0x4000 0144	DRCMR17	Request to Channel Map Register for FICP receive Request
0x4000 0148	DRCMR18	Request to Channel Map Register for FICP transmit Request
0x4000 014C	DRCMR19	Request to Channel Map Register for STUART receive Request
0x4000 0150	DRCMR20	Request to Channel Map Register for STUART transmit Request
0x4000 0154	DRCMR21	Request to Channel Map Register for MMC receive Request
0x4000 0158	DRCMR22	Request to Channel Map Register for MMC transmit Request
0x4000 015C	DRCMR23	RESERVED
0x4000 0160	DRCMR24	RESERVED
0x4000 0164	DRCMR25	Request to Channel Map Register for USB endpoint 1 Request
0x4000 0168	DRCMR26	Request to Channel Map Register for USB endpoint 2 Request
0x4000 016C	DRCMR27	Request to Channel Map Register for USB endpoint 3 Request
0x4000 0170	DRCMR28	Request to Channel Map Register for USB endpoint 4 Request
0x4000 0174	DRCMR29	RESERVED
	1	<u> </u>

Table 5-13. DMA Controller Registers (Sheet 3 of 5)

	•	-
0x4000 0178	DRCMR30	Request to Channel Map Register for USB endpoint 6 Request
0x4000 017C	DRCMR31	Request to Channel Map Register for USB endpoint 7 Request
0x4000 0180	DRCMR32	Request to Channel Map Register for USB endpoint 8 Request
0x4000 0184	DRCMR33	Request to Channel Map Register for USB endpoint 9 Request
0x4000 0188	DRCMR34	RESERVED
0x4000 018C	DRCMR35	Request to Channel Map Register for USB endpoint 11 Request
0x4000 0190	DRCMR36	Request to Channel Map Register for USB endpoint 12 Request
0x4000 0194	DRCMR37	Request to Channel Map Register for USB endpoint 13 Request
0x4000 0198	DRCMR38	Request to Channel Map Register for USB endpoint 14 Request
0x4000 019C	DRCMR39	RESERVED
0x4000 0200	DDADR0	DMA Descriptor Address Register channel 0
0x4000 0204	DSADR0	DMA Source Address Register channel 0
0x4000 0208	DTADR0	DMA Target Address Register channel 0
0x4000 020C	DCMD0	DMA Command Address Register channel 0
0x4000 0210	DDADR1	DMA Descriptor Address Register channel 1
0x4000 0214	DSADR1	DMA Source Address Register channel 1
0x4000 0218	DTADR1	DMA Target Address Register channel 1
0x4000 021C	DCMD1	DMA Command Address Register channel 1
0x4000 0220	DDADR2	DMA Descriptor Address Register channel 2
0x4000 0224	DSADR2	DMA Source Address Register channel 2
0x4000 0228	DTADR2	DMA Target Address Register channel 2
0x4000 022C	DCMD2	DMA Command Address Register channel 2
0x4000 0230	DDADR3	DMA Descriptor Address Register channel 3
0x4000 0234	DSADR3	DMA Source Address Register channel 3
0x4000 0238	DTADR3	DMA Target Address Register channel 3
0x4000 023C	DCMD3	DMA Command Address Register channel 3
0x4000 0240	DDADR4	DMA Descriptor Address Register channel 4
0x4000 0244	DSADR4	DMA Source Address Register channel 4
0x4000 0248	DTADR4	DMA Target Address Register channel 4
0x4000 024C	DCMD4	DMA Command Address Register channel 4
0x4000 0250	DDADR5	DMA Descriptor Address Register channel 5
0x4000 0254	DSADR5	DMA Source Address Register channel 5
0x4000 0258	DTADR5	DMA Target Address Register channel 5
0x4000 025C	DCMD5	DMA Command Address Register channel 5

Table 5-13. DMA Controller Registers (Sheet 4 of 5)

	-	
0x4000 0260	DDADR6	DMA Descriptor Address Register channel 6
0x4000 0264	DSADR6	DMA Source Address Register channel 6
0x4000 0268	DTADR6	DMA Target Address Register channel 6
0x4000 026C	DCMD6	DMA Command Address Register channel 6
0x4000 0270	DDADR7	DMA Descriptor Address Register channel 7
0x4000 0274	DSADR7	DMA Source Address Register channel 7
0x4000 0278	DTADR7	DMA Target Address Register channel 7
0x4000 027C	DCMD7	DMA Command Address Register channel 7
0x4000 0280	DDADR8	DMA Descriptor Address Register channel 8
0x4000 0284	DSADR8	DMA Source Address Register channel 8
0x4000 0288	DTADR8	DMA Target Address Register channel 8
0x4000 028C	DCMD8	DMA Command Address Register channel 8
0x4000 0290	DDADR9	DMA Descriptor Address Register channel 9
0x4000 0294	DSADR9	DMA Source Address Register channel 9
0x4000 0298	DTADR9	DMA Target Address Register channel 9
0x4000 029C	DCMD9	DMA Command Address Register channel 9
0x4000 02A0	DDADR10	DMA Descriptor Address Register channel 10
0x4000 02A4	DSADR10	DMA Source Address Register channel 10
0x4000 02A8	DTADR10	DMA Target Address Register channel 10
0x4000 02AC	DCMD10	DMA Command Address Register channel 10
0x4000 02B0	DDADR11	DMA Descriptor Address Register channel 11
0x4000 02B4	DSADR11	DMA Source Address Register channel 11
0x4000 02B8	DTADR11	DMA Target Address Register channel 11
0x4000 02BC	DCMD11	DMA Command Address Register channel 11
0x4000 02C0	DDADR12	DMA Descriptor Address Register channel 12
0x4000 02C4	DSADR12	DMA Source Address Register channel 12
0x4000 02C8	DTADR12	DMA Target Address Register channel 12
0x4000 02CC	DCMD12	DMA Command Address Register channel 12
0x4000 02D0	DDADR13	DMA Descriptor Address Register channel 13
0x4000 02D4	DSADR13	DMA Source Address Register channel 13
0x4000 02D8	DTADR13	DMA Target Address Register channel 13
0x4000 02DC	DCMD13	DMA Command Address Register channel 13
0x4000 02E0	DDADR14	DMA Descriptor Address Register channel 14
0x4000 02E4	DSADR14	DMA Source Address Register channel 14
0x4000 02E8	DTADR14	DMA Target Address Register channel 14
0x4000 02EC	DCMD14	DMA Command Address Register channel 14
0x4000 02F0	DDADR15	DMA Descriptor Address Register channel 15
	•	· · · · · · · · · · · · · · · · · · ·

Table 5-13. DMA Controller Registers (Sheet 5 of 5)

0x4000 02F4	DSADR15	DMA Source Address Register channel 15
0x4000 02F8	DTADR15	DMA Target Address Register channel 15
0x4000 02FC	DCMD15	DMA Command Address Register channel 15

Memory Controller

6

This chapter describes the external memory interface structures and memory-related registers that the PXA250 and PXA210 application processor support.

6.1 Overview

The application processor External Memory Bus interface supports Synchronous Dynamic Memory (SDRAM), Synchronous and Asynchronous Burst modes, Page-mode Flash, Synchronous Mask ROM (SMROM), Page Mode ROM, SRAM, SRAM-like Variable Latency I/O (VLIO), 16-bit PC Card expansion memory, and Compact Flash. Memory types can be programmed through the Memory Interface Configuration registers. Figure 6-1 is a block diagram of the maximum configuration of the Memory controller.

Note: The PXA210 application processor does not support the 16-bit PC Card or Compact Flash.

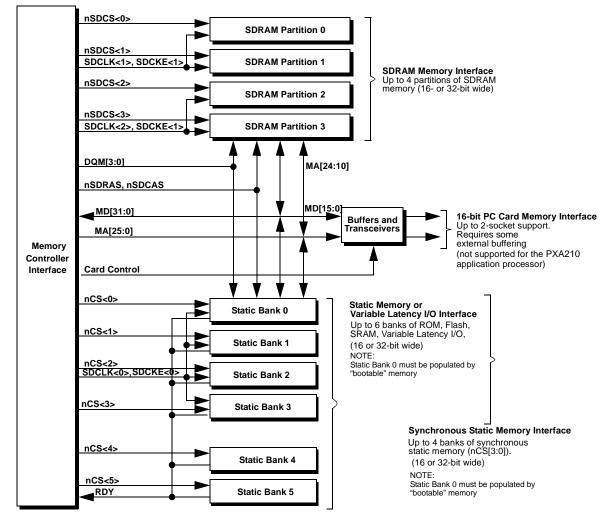


Figure 6-1. General Memory Interface Configuration

6.2 Functional Description

The application processor has three different memory spaces: SDRAM, Static Memory, and Card Memory.

SDRAM has four partitions, Static Memory has six, and Card space has two. When memory access attempts to burst across the boundary between adjacent partitions, ensure that the configurations for the partitions are identical. The configurations must be identical in every aspect, including external bus width and burst length.

6.2.1 SDRAM Interface Overview

The application processor supports the SDRAM interface, which supports four 16- and 32-bit-wide SDRAM partitions. Each partition is allocated 64 Mbytes of the internal memory map, but the actual size of each partition depends on the SDRAM configuration. The four partitions are divided

into two partition pairs: the 0/1 pair and the 2/3 pair. The partitions in a pair must be identical in size and configuration. The two pairs may be different (for example, the 0/1 pair can be 100 MHz SDRAM on a 32-bit data bus, while the 2/3 pair can be 50 MHz SDRAM on a 16-bit data bus).

The application processor SDRAM Controller includes the following signals:

- 4 partition selects (nSDCS[3:0])
- 4 byte selects (DQM[3:0])
- 15 multiplexed bank/row/column address signals (MA[24:10])
- 1 write enable (nWE)
- 1 column-address strobe (nSDCAS)
- 1 row-address strobe (nSDRAS)
- 1 clock enable (SDCKE[1])
- 2 clocks (SDCLK[2:1])
- 32 data (MD[31:0])

The application processor performs auto-refresh (CBR) during normal operation, and supports self-refreshing SDRAM during Sleep mode. An SDRAM *auto-power-down mode* bit can be set so that the clock and clock enable to SDRAM are automatically de-asserted whenever none of the corresponding partitions is being accessed.

The application processor supports x8, x16, and x32 SDRAM chips.

Upon enabling an SDRAM partition, a mode register set command (MRS), see Section 6.6.6, "SDRAM Command Overview" on page 6-27, is sent to the SDRAM devices by writing to the MDMRS register.

MRS commands always configure SDRAM internal mode registers for sequential burst type and a burst length of four.

The CAS latency is determined by the DTC0 or DTC2 field of MDCNFG.

6.2.2 Static Memory Interface / Variable Latency I/O Interface

The static memory and variable latency I/O interface has six chip selects (nCS[5:0]) and 26 bits of byte address (MA[25:0]) for accesses of up to 64 Mbytes of memory in each of six banks. Each chip select is individually programmed for selecting one of the supported static memory types:

- Non-burst ROM or Flash memory is supported on nCS[5:0]
- Burst ROM or Flash (with non-burst writes) is supported on nCS[5:0]
- Burst and non-burst SRAM is supported on nCS[5:0]
- Variable Latency I/O is supported on nCS[5:0]
- Synchronous static memory is supported on nCS[3:0]

The Variable Latency I/O interface differs from SRAM in that it allows the data-ready input signal, RDY, to insert a variable number of wait states. For all static memory types, each chip select can be individually configured to a 16-bit or 32-bit-wide data bus. nOE is asserted on all reads, nPWE is

asserted on writes to Variable Latency I/O devices, and nWE is asserted on writes to all other static devices, both synchronous and asynchronous. For SRAM and variable latency I/O, DQM[3:0] are byte selects for both reads and writes.

When the application processor comes out of reset, it starts fetches and executes instructions at address 0x00, which corresponds to memory selected by nCS<0>. The boot ROM must be located at this address. The BOOT_SEL pins determine the type of boot memory (refer to Section 6.11.1, "Alternate Booting" on page 6-71.

6.2.3 16-Bit PC Card / Compact Flash Interface

The application processor card interface is based on *The PC Card Standard - Volume 2 - Electrical Specification, Release 2.1*, and *CF+ and CompactFlash Specification Revision 1.4*. The 16-bit PC Card/Compact Flash interface provides control signals to support any combination of 16-bit PC Card/Compact Flash for two card sockets, using address line (MA[25:0]) and data lines (MD[15:0]).

The application processor 16-bit PC Card / Compact Flash Controller provides the following signals.

- nPREG is muxed with MA[26] and selects register space (I/O or attribute) versus memory space
- nPOE and nPWE allow memory and attribute reads and writes
- nPIOR, nPIOW, and nIOIS16 control I/O reads and writes
- nPWAIT allows extended access times
- nPCE2 and nPCE1 are byte select high and low for a 16-bit data bus
- PSKTSEL selects between two card sockets

Note: The PXA210 application processor does not support the 16-bit PC Card or the Compact Flash Interface.

6.3 Memory System Examples

This section provides examples of memory configurations that are possible with the application processor. Figure 6-2 shows a system that uses 1M x 16-bit x 4-bank SDRAM devices for a total of 48 Mbytes.

nSDRAS, nSDCAS, nWE, CKE(1) SDCLK(2:1) MA(23:10) 4Mx16 SDRAM 4Mx16 SDRAM 4Mx16 SDRAM 2 nCS nCS nCS nRAS nRAS nRAS nCAS nCAS nCAS nWE nWE nWE CKE CKE CKE 1 2 CLK CLK CLK 21:10 addr(11:0) 21:10 addr(11:0) 21:10 addr(11:0) 23:22 23:22 BA(1:0) 23:22 BA(1:0) BA(1:0) 0 0 0 DQML DQML DQML 1 DQMH DQMH DQMH 15:0 15:0 15:0 DQ(15:0) DQ(15:0) DQ(15:0) MD(31:0) DQM(3:0) 4Mx16 SDRAM 4Mx16 SDRAM 4Mx16 SDRAM nCS nCS nCS nRAS nRAS nRAS nCAS nCAS nCAS nWE nWE nWE CKE CKE CKE CLK CLK CLK 21:10 21:10 21:10 addr(11:0) addr(11:0) addr(11:0) 23:22 23:22 23:22 BA(1:0) BA(1:0) BA(1:0) 2 DQML DQML DQML 3 3 3 DQMH DQMH DQMH 31:16 31:16 31:16 DQ(15:0) DQ(15:0) DQ(15:0)

Figure 6-2. SDRAM Memory System Example

Figure 6-3 shows an alternate memory configuration. This system uses 2M x 16 SMROM devices in static banks 0 and 1, and RAM devices in static bank 2.

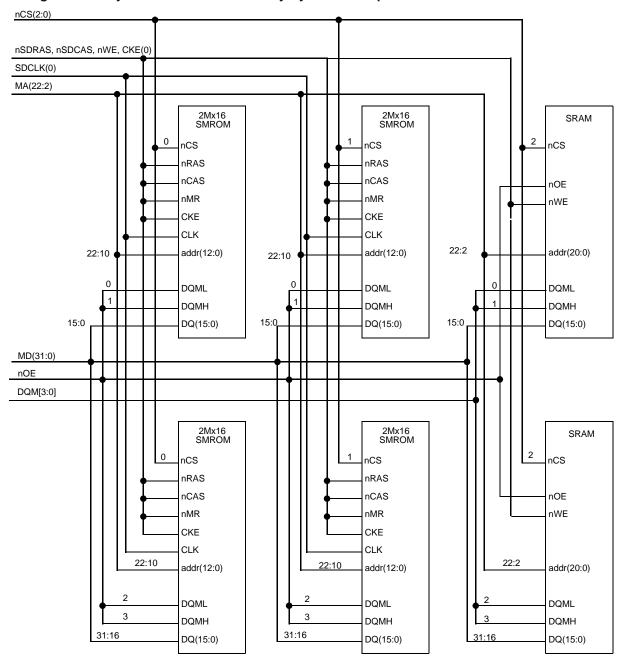


Figure 6-3. Asynchronous Static Memory System Example

6.4 Memory Accesses

If a memory access is followed by an idle bus period, the control signals return to their inactive state. The address and data signals remain at their previous values to avoid unnecessary bus transitions and eliminate the need for multiple pull-up resistors.

Table 6-1 lists all the transactions that the application processor can generate. No burst can cross an aligned 32-byte boundary. On a 16-bit data bus, each full word access becomes a two half-word burst, with address bit 1 set to a 0. Each write access to Flash memory space must take place in one non-burst operation, regardless of the bus size.

Table 6-1. Device Transactions

Bus Operation	Burst Size (Words)	Start Address Bits [4:2]	Description
Read single	1	Any	Generated by core, DMA, or LCD request.
Read burst	4	0 4	Generated by DMA or LCD request.
Read burst	8	0	Generated by cache line fills.
Write single	1	Any	14 bytes are written as specified by the byte mask. Generated by DMA request.
Write burst	2	0,1,2 4,5,6	All 4 bytes of each word are written. Generated by DMA request.
Write burst	3	0,1 4,5	All 4 bytes of each word are written. Generated by DMA request.
Write burst	4	0 4	All 4 bytes of each word are written. Generated by DMA request.
Write burst	8	0	Cacheline copyback. All 32 bytes are written.

6.4.1 Reads and Writes

DQM<3:0> are data masking bits. When asserted (high), the corresponding bit masks the associated byte of data on the MD<31:0> bus. When deasserted (low), the corresponding bit does not mask the associated byte of data on the MD<31:0> bus.

- DQM<3> corresponds to MD<31:24>
- DOM<2> corresponds to MD<23:16>
- DQM<1> corresponds to MD<15:8>
- DQM<0> corresponds to MD<7:0>

For writes to SDRAM, SRAM, or Variable Latency I/O memory spaces, the DQM<3:0> lines enable the corresponding byte of the data bus. Flash memory space stores must be exactly the width of the Flash data bus, either 16- or 32-bits. See Section 6.8.6, "FLASH Memory Interface" on page 6-55 for more information.

For reads to all memory types, the DQM<3:0> lines are deasserted (set low so data is not masked).

6.4.2 Aborts and Nonexistent Memory

Accessing reserved portions of the memory map results in a data abort exception.

Hardware does not detect reads and writes from or to enabled and nonexistent memory. If memory in an enabled partition is not present, a read returns indeterminate data.

If memory does not occupy all 64 MB of the partition, reads and writes from or to the unoccupied portion are processed as if the memory occupies the entire 64 MB of the memory partition.

A single word (or half-word if the data bus width is defined as 16-bits) access to a disabled SDRAM partition (MDCNFG:DEx=0) causes a CBR refresh cycle to all four partitions. This technique is used in the hardware initialization procedure. Read return data is indeterminate and writes are not executed on the external memory bus.

A burst read access to a disabled SDRAM partition results in a target-abort exception. Target aborts are also generated for burst writes to Flash/ROM space and bursts to configuration space. Attempted single beat writes to ROM are not aborted. Bursts to configuration space also result in target aborts. Target aborts can be either Data or Prefetch abort depending on the source of the attempted burst transaction.

6.5 Memory Configuration Registers

Table 6-2 shows the registers associated with the memory interface and the physical addresses used to access them. These registers must be mapped as non-cacheable and non-bufferable and can only be a single word access. They are grouped together in one page and all have the same memory protections.

Table 6-2. Memory Interface Control Registers

Physical Address	Symbol	Register Name
0x4800 0000	MDCNFG	SDRAM Configuration Register
0x4800 0004	MDREFR	SDRAM Refresh Control Register
0x4800 0008	MSC0	Static Memory Control Register 0
0x4800 000C	MSC1	Static Memory Control Register 1
0x4800 0010	MSC2	Static Memory Control Register 2
0x4800 0014	MECR	Expansion Memory (16-bit PC Card / Compact Flash) Bus Configuration register
0x4800 001C	SXCNFG	Synchronous Static Memory Control Register
0x4800 0024	SXMRS	MRS value to be written to SMROM
0x4800 0028	мсмемо	Card interface Common Memory Space Socket 0 Timing Configuration
0x4800 002C	MCMEM1	Card interface Common Memory Space Socket 1 Timing Configuration
0x4800 0030	MCATT0	Card interface Attribute Space Socket 0 Timing Configuration
0x4800 0034	MCATT1	Card interface Attribute Space Socket 1 Timing Configuration
0x4800 0038	MCIO0	Card interface I/O Space Socket 0 Timing Configuration
0x4800 003C	MCIO1	Card interface I/O Space Socket 1 Timing Configuration
0x4800 0040	MDMRS	MRS value to be written to SDRAM
0x4800 0044	BOOT_DEF	Read-Only Boot-time register. Contains BOOT_SEL and PKG_SEL values.

6.6 Synchronous DRAM Memory Interface

Each possible SDRAM portion of the Memory Map is referred to as a partition, to distinguish them from banks internal to SDRAM devices.

The signals used to control the SDRAM memory are listed in Section 6.2.1, "SDRAM Interface Overview".

6.6.1 SDRAM MDCNFG Register

MDCNFG is a read/write register and contains control bits for configuring the SDRAM. Both SDRAM partitions in a pair (0/1 or 2/3) must be implemented with the same type of SDRAM devices, but the two partition pairs may differ. Refer to Table 6-3

Table 6-3. MDCNFG Register Bitmap and Bit Definitions (Sheet 1 of 3)

				0x4	480	0 00	000					Λ	1DC	NFC	3															
Bit	31	30	29	28	27	26	25	24	23	22 21	20 19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved		DSA1111_2	АТСН2	DADDR2	DTC2	- 1	DNB2	DRAC2	DCAC2	DWID2	DE3	DE2		Reserved		DSA1111_0	DLATCH0	DADDR0	DTC0		DNB0	טטעפט	RAC	טטעטט	2	DWID0	DE1	DE0
Reset	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0	DE0	SDRAM enable for partition 0 For each SDRAM partition, there is an enable bit. A single (non-burst) 32-bit (or 16-bit if MDCNFG:DWID0='1') access (read or write) to a disabled SDRAM partition triggers a CBR refresh cycle to all partitions. When all partitions are disabled, the refresh counter is disabled. 0 – SDRAM partition disabled
		1 – SDRAM partition enabled
1	DE1	SDRAM enable for partition 1 For each SDRAM partition, there is an enable bit. A single (non-burst) 32-bit (or 16-bit if MDCNFG:DWID0='1') access (read or write) to a disabled SDRAM partition triggers a CBR refresh cycle to all partitions. When all partitions are disabled, the refresh counter is disabled.
		0 – SDRAM partition disabled 1 – SDRAM partition enabled
2	DWID0	SDRAM data bus width for partition pair 0/1 0 – 32 bits 1 – 16 bits
43	DCAC0[1:0]	Number of Column Address bits for partition pair 0/1 00 - 8 column address bits 01 - 9 column address bits 10 - 10 column address bits 11 - 11 column address bits
65	DRAC0[1:0]	SDRAM row address bit count for partition pair 0/1 00 – 11 row address bits 01 – 12 row address bits 10 – 13 row address bits 11 – Reserved
7	DNB0	Number of banks in lower partition pair 0 - 2 internal SDRAM banks 1 - 4 internal SDRAM banks

Table 6-3. MDCNFG Register Bitmap and Bit Definitions (Sheet 2 of 3)

0x4800 0000 MDCNFG

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved DSA1111_2 DLATCH2 DADR2 DTC2 DNB2 DRAC2 DCAC2	DWID2 DE3 DE2 Reserved DSA1111_0	ATCHC ADDRO DTCO DNBO	DCAC0 DWID0 DE1 DE0
--	----------------------------------	--------------------------------	---------------------

Bits	Name	Description
		Timing Category for SDRAM pair 0/1.
		00 - tRP = 2 clks, CL = 2, tRCD = 1 clks, tRAS(min) = 3 clks, tRC = 4 clks
		01 - tRP = 2 clks, CL = 2, tRCD = 2 clks, tRAS(min) = 5 clks, tRC = 8 clks
		10 - tRP = 3 clks, CL = 3, tRCD = 3 clks, tRAS(min) =7 clks, tRC=10 clks
98	DTC0[1:0]	11 - tRP = 3 clks, CL = 3, tRCD = 3 clks, tRAS(min) = 7 clks, tRC = 11 clks
		tWR (write recovery time) is fixed at 2 clocks.
		Used to configure the SDRAM timings to the SDRAM manufacturer's specifications. Clocks referred to in the timings above are the number of SDCLKs. SDCLKs may not be equivalent to memory clocks based on the MDREFRx[KxDB2].
		See Figure 6-5 for a description of these timing numbers.
10	DADDR0	Use alternate addressing for pair 0/1
10	DADDRO	For an explanation on how the alternate addressing works, see Figure 6-4
		Return Data from SDRAM latching scheme for pair 0/1
		0 - Latch return data using fixed delay from MEMCLK
11	DLATCH0	1 - Latch return data with return clock
		This bit must always be written with a '1' to enable using the return clock SDCLK for latching data. For more detail on this return data latching, see Section 6.6.4
12	DSA1111_0	Use SA1111 Addressing Muxing Mode for pair 0/1. Setting this bit will override the addressing bit programmed in MDCNFG:DADDR0.
		For an explanation on how the SA1111 addressing works, see Table 6-8.
1513	-	Reserved
		SDRAM enable for partition 2
16	DE2	For each SDRAM partition, there is an enable bit. A single (non-burst) 32-bit (or 16-bit if MDCNFG:DWID2='1') access (read or write) to a disabled SDRAM partition triggers a CBR refresh cycle to all partitions. When all partitions are disabled, the refresh counter is disabled. 0 – SDRAM partition disabled 1 – SDRAM partition enabled
		SDRAM enable for partition 3
17	DE3	For each SDRAM partition, there is an enable bit. A single (non-burst) 32-bit (or 16-bit if MDCNFG:DWID2='1') access (read or write) to a disabled SDRAM partition triggers a CBR refresh cycle to all partitions. When all partitions are disabled, the refresh counter is disabled. 0 – SDRAM partition disabled
		1 – SDRAM partition enabled
		SDRAM data bus width for partition pair 2/3
18	DWID2	0 – 32 bits 1 – 16 bits

Table 6-3. MDCNFG Register Bitmap and Bit Definitions (Sheet 3 of 3)

Ia	DIE	; 0-	·3. i	טוא	CIN	rG	K	egi	SIC	Ы	um	ap ai	iu E)IL I	Jei		liOi	15 (SII	CCI	3 (ו כ	"								
				0x	480	0 00	000						Λ	/IDC	NFO	3															
Bit	31	30	29	28	27	26	25	24	23	22	21	20 19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved		DSA1111_2	(1	DADDR2	1	DICZ	DNB2	DRAC2		DCAC2	DWID2	DE3	DE2		Reserved		DSA1111_0	DLATCH0	DADDR0	DTC		DNB0	DRACO			DCAC0	DWID0	DE1	DE0
Reset	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		В	its			Na	me											De	scr	iptio	on										
	20.	.19			DC	AC2	2[1:	0]	00 01 10	- 8 c - 9 c - 10	olui olui coli	Colum mn add mn add umn ad umn ad	lress Iress Idres	bits bits s bi	ts	its fo	or pa	artiti	on p	air :	2/3										
	22.	.21			DR	AC2	2[1:	0]	00 01	– 11 – 12	rov	w addre v addre v addre	ss b ss b	its its	ount	t for	par	titior	n pa	ir 2/	3										

2019	DCAC2[1:0]	01 - 9 column address bits 10 - 10 column address bits
		11 - 11 column address bits
		SDRAM row address bit count for partition pair 2/3
		00 – 11 row address bits
2221	DRAC2[1:0]	01 – 12 row address bits
		10 – 13 row address bits
		11 – Reserved
		Number of banks in upper partition pair
23	DNB2	0 - 2 internal SDRAM banks
		1 - 4 internal SDRAM banks
		Timing Category for SDRAM pair 2/3
		00 - tRP = 2 clks, CL = 2, tRCD = 1 clks, tRAS(min) = 3 clks, tRC = 4 clks
		01 - tRP = 2 clks, CL = 2, tRCD = 2 clks, tRAS(min) = 5 clks, tRC = 8 clks
		10 - tRP = 3 clks, CL = 3, tRCD = 3 clks, tRAS(min) =7 clks, tRC=10 clks
2524	DTC2[1:0]	11 - tRP = 3 clks, CL = 3, tRCD = 3 clks, tRAS(min) = 7 clks, tRC = 11 clks
	' '	tWR (write recovery time) is fixed at 2 clocks.
		These bits are used to configure the SDRAM timings per the SDRAM manufacturer's specifications. Clocks referred to in the timings above are the number of SDCLKs. SDCLKs may not be equivalent to memory clocks based on the MDREFRx[KxDB2].
		See Figure 6-5 for a description of these timing numbers.
26	DADDR2	Use alternate addressing for pair 2/3
20	DADDKZ	For an explanation on how the alternate addressing works, see Figure 6-4.
		Return Data from SDRAM latching scheme for pair 2/3
		0 - Latch return data using fixed delay from MEMCLK
27	DLATCH2	1 - Latch return data with return clock
		This bit must always be written with a '1' to enable using the return clock SDCLK for latching data. For more detail on this return data latching, see Section 6.6.4.
28	DSA1111_2	Use SA1111 Addressing Muxing Mode for pair 2/3. Setting this bit will override the addressing bit programmed in MDCNFG:DADDR2.
		For an explanation on how the SA1111 addressing works, see Table 6-8.
3129	-	Reserved

6.6.2 SDRAM Mode Register Set Configuration Register

The MDMRS register issues an Mode Register Set (MRS) command to the SDRAM. The value written in this register is placed directly on address lines MA[24:17] during the MRS command. For MA[16:10], values which are fixed or derived from the MDCNFG register are placed on the address bus. When setting the values to be written out on the address lines, base the values on the addressing mode being used. Although writing to this register triggers an MRS command, the corresponding chip-select values are asserted only if the memory banks are enabled via the MDCNFG register. Therefore, to appropriately write a new MRS value to SDRAM, first enable the memory via the MDCNFG register, and then write the MDMRS register. This register is used solely for generating the MRS command.

All values in the MDCNFG register must be programmed correctly to ensure proper operation of the device. Refer to Table 6-4, "MDMRS Register Bitmap" on page 6-13 for the bit definitions.

The MDMRS[MDBLx] bits configure the SDRAM to a burst length of four. This value is fixed and cannot be changed. For transfer cycles that require more data than the set burst length of four, the controller can preform as many bursts as necessary to transfer the required amount of data. For example, during a cache line fill the controller can perform a four-beat burst followed immediately by another four-beat burst. This approach requires the controller to generate the first address for the second burst. During transfer cycles less than four beats, the controller ignores the data it does not need. For instance, if the SDRAM is configured as non-cacheable, single beat reads are seen on the bus as a four-beat read with only one beat that is used by the processor. This also applies to a single-beat write.

Table 6-4. MDMRS Register Bitmap

				0x4	1800 0	040							ı	MDN	/IRS	;							App	olica	ition	Pro	ces	sor			
Bit	31	30	29	28	27 26	25	24	23	22	21	20	19	18	17	16	15	14 ′	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved				MDMRS2					MDCL2		MDADD2		MDBL2		Reserved				MDMRS0						MDCL0		MDADD0		MDBL0	
Reset	0	0	0	0	0 0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
		3	1			-		Res	serv	ed																					
		30:	23		MD	MRS	2	MR	S va	alue	to b	e w	ritte	n to	SD	RAN	√ for	ра	rtitic	n pa	air 2										
	30:23 MDMRS 22:20 MDCL2								RAN ady-			on p	air 2	2 CA	S L	ater	ncy -	der	rive	d fro	m N	1DC	NF	G:D	TC2	2. W	rites	are	ign	ore	d.
		19	9		MD	2				artitio ds (air 2	2 Bu	rst 7	Гуре	. Fix	to	seq	uen	tial a	add	ress	ing.	Wr	ites	are	igno	red			
		18:	16		ME	2				artitio ds (air 2	2 bu	rst le	engt	h. Fi	xec	d to	a bu	ırst l	eng	jth c	of fo	ur. V	Vrite	es a	re ig	nore	ed.		
		1	5			-		Res	serv	ed																					
	15 - 14:7 MDMRS0						0	MR	S va	alue	to b	oe w	ritte	n to	SD	RAN	∕l for	Pa	rtitio	on P	air ().									

Table 6-4. MDMRS Register Bitmap

6:4	MDCL0	SDRAM partition pair 0 CAS Latency - derived from MDCNFG:DTC0. Writes are ignored. This field is ready-only.
3	MDADD0	SDRAM partition pair 0 Burst Type. Fix to sequential addressing. Writes are ignored. Always reads 0.
2:0	MDBL0	SDRAM partition pair 0 burst length. Fixed to a burst length of four. Writes are ignored. Always reads 010.

6.6.3 SDRAM MDREFR Register

MDREFR is a read/write register and contains control bits that refresh both SDRAM partition pairs. MDREFR also contains control and status bits for SDRAM self-refresh, SDRAM/SMROM clock divisors, SDRAM/SMROM clocks running, and SDRAM/SMROM clock-enable pin states. Independent control/status is provided for each of the clock pins (SDCLK[2:0]) and clock-enable pins (SDCKE[1:0]).

The clock-run bits (K0RUN, K1RUN, and K2RUN) and clock-enable bits (E0PIN and E1PIN) provide software control of SDRAM and Synchronous Static Memory low-power modes. When the clock-run bits and clock-enable bits are cleared, the corresponding memory is inaccessible.

Automatic power-down, enabled by the APD bit, is an mechanism for minimizing power consumption in the application processor SDCLK pin drivers and/or the SDRAM/Synchronous Static Memory devices. A latency penalty of one memory cycle is incurred when SDCLK and SDCKE are restarted between non-consecutive SDRAM/Synchronous Static Memory transfers.

The following conditions determine whether SDRAM refreshes occur.

- No refreshes are sent to SDRAM when the refresh counter is cleared to zero.
- If a single transaction to a disabled SDRAM partition is requested, a refresh to all four partitions is performed.
- If all four SDRAM partitions are disabled, the refresh counter is disabled.
- If the clock frequency is changed, the register must be rewritten, even if the value has not changed. This results in a refresh and the refresh counter being reset to the next refresh interval.

Refer to Table 6-5.

Table 6-5. MDREFR Register Bitmap (Sheet 1 of 3)

			4	800	000)4							N	1DR	EFF	2							Ap	plica	atior	n Pro	oces	sor			
Bit	31	30 2	9 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Reserved			K2FREE	K1FREE	KOFREE	SLFRSH	Reserved	APD	K2DB2	K2RUN	K1DB2	K1RUN	E1PIN	K0DB2	KORUN	E0PIN						ā	בא ב					
Reset	0	0 (0 0	0	0	1	1	1	1	0	0	1	0	1	0	0	1	*	*	1	1	1	1	1	1	1	1	1	1	1	1
		Bits			Na	me												De	escr	iptic	on										
		31:2	6		-	-		Res	erve	ed																					
	SDRAM Free-Running Control 0 = SDCLK2 is not free-running 1 = SDCLK2 is free-running (ignores MDREFR[APD] or MDREFR[K2RUN] bits) Provides synchronous memory with SDCLK2 following a reset in order to reset internal circuitry. SDRAM Free-Running Control 0 = SDCLK1 is not free-running 1 = SDCLK1 is free-running (ignores MDREFR[APD] or MDREFR[K1RUN] bits)																														
	Provides synchronous memory with SDCLK2 following a reset in order to reset internal circuitry. SDRAM Free-Running Control 0 = SDCLK1 is not free-running																														
		23		-	K0F	REE		0 = 1 =	SD(CLK CLK	0 is 0 is	not free	free -rur	e-rui nnin	nnin g (ig	g gnor										(0RL set in			circu	itry.	
		22		Ş	SLFI	RSH		SLF be o SDF SLF prof	RS lea RAM RS nibit	H ca red. I ha H). s au	an b The s er This itom	e se e ap ntere cap	et by prop ed se pabil trar	v sof oriat elf-r lity r	twa e cle efre nus	and of the took she after the for a	exiticated and and and and and and and and and an	ware Self Self ce a bits mus ed w com	SDR e or refre refre x se (K1 st be ith e	RAM slee esh esh If-re RU e see extre	self ep re disa ena fres N ar t pric eme	f-refeset bled bled h co nd/o or to cau	rest d d omm or K2 o ex utior	nanc 2RU iting	ł. E N) i sel cau	1PIN mus lf-ref se th	N do t rer resh ne re	es n nain n (cle	ot h set earir ing	ave unti	to il
		21				•		Res	erve	ed																					

Table 6-5. MDREFR Register Bitmap (Sheet 2 of 3)

				4	800	000	4							Ν	1DR	EFF	2							App	olica	tion	Pro	ces	sor			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Doggood	000000000000000000000000000000000000000			K2FREE	K1FREE	KOFREE	SLFRSH	Reserved	APD	K2DB2	K2RUN	K1DB2	K1RUN	E1PIN	K0DB2	KORUN	E0PIN			9 8 7 6 5 4 3 2 1 C									
Reset	0	0	0	0	0	0	1	1	1	1	0	0	1	0	1	0	0	1	*	*	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description
		SDRAM/Synchronous Static Memory Auto-Power-Down Enable.
		If APD=1, the clock enables and clock pins are automatically deasserted when none of the corresponding partitions are being accessed unless the KxFREE bits are set.
20	APD	If no SDRAM partitions are being accessed, the SDRAM chips are put into Power-Down mode and the clocks and clock-enable pins are turned off.
20	7.1. 5	If one SDRAM partition is being used and the other is not, the clock to the partition that is not being used are turned off.
		If no Synchronous Static Memory partitions are being used, the clock and clock enable to these partitions are turned off and the memory chips are put into Power-Down mode. See Section 6.8.
		SDRAM Clock Pin 2 (SDCLK2) Divide by 2 Control/Status
19	K2DB2	0 = SDCLK2 is same frequency as MEMCLK
		1 = SDCLK2 runs at one-half the MEMCLK frequency
		SDRAM Clock Pin 2 (SDCLK<2>) Run Control/Status
		0 = SDCLK2 disabled
		1 = SDCLK2 enabled
18	K2RUN	K2RUN also can be cleared by program. Use with caution because the resulting state prohibits automatic transitions for any commands.
		Setting K1RUN and/or K2RUN is a part of the hardware and sleep reset procedure for SDRAM.
		SDRAM Clock Pin 1 (SDCLK1) Divide by 2 Control/Status
17	K1DB2	0 = SDCLK1 is same frequency as MEMCLK
		1 = SDCLK1 runs at one-half the MEMCLK frequency
		SDRAM Clock Pin 1 (SDCLK<1>) Run Control/Status
		0 = SDCLK1 disabled
		1 = SDCLK1 enabled
16	K1RUN	K1RUN can be cleared by software. Use with caution because the resulting state prohibits automatic transitions for any commands.
		Setting K1RUN and/or K2RUN is a part of the hardware and sleep reset procedure for SDRAM.
		SDRAM Clock Enable Pin 1 (SDCKE1) Level Control/Status
		0 = SDCKE1 is disabled
		1 = SDCKE1 is enabled
15	E1PIN	E1PIN can be cleared by program to cause a power-down command (if K1RUN=1 and/or K2RUN=1, and SLFRSH=0). Use with caution because the resulting state prohibits automatic transitions for mode register set, read, write, and refresh commands. E1PIN can be set by program to cause a power-down-exit command (if K1RUN=1 and/or K2RUN=1, and SLFRSH=0).
		Setting E1PIN is a part of the hardware reset or sleep reset procedure for SDRAM.

Table 6-5. MDREFR Register Bitmap (Sheet 3 of 3)

				48	800	000	4							N	1DR	EFF	3							App	olica	ıtion	Pro	ces	sor			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R					SLFRSH	Reserved	APD	K2DB2	K2RUN	K1DB2	K1RUN	E1PIN	K0DB2	KORUN	E0PIN						9	Š									
Reset	0	0	0	0	0	0	1	1	1	1	0	0	1	0	1	0	0	1	*	*	1	1	1	1	1	1	1	1	1	1	1	1

0 0 0		
Bits	Name	Description
		Synchronous Static Memory Clock Pin 0 (SDCLK<0>) Divide by 2 Control/Status
14	K0DB2	0 = SDCLK0 runs at the memory clock frequency.
14	RODBZ	1 = SDCLK0 runs at one-half the memory clock frequency.
		This bit is automatically set upon hardware or sleep reset.
		Synchronous Static Memory Clock Run Pin 0 (SDCLK<0>) Control/Status
		0 = SDCLK0 is disabled
		1 = SDCLK0 is enabled
13	K0RUN	Set on exit from hardware and sleep reset if the BOOT_SEL signals are configured for a synchronous memory type.
		KORUN can be cleared by the program, but this capability must be used with caution because the resulting state prohibits automatic transitions for any commands.
		Synchronous Static Memory Clock Enable Pin 0 (SDCKE<0>) Level Control/Status
		0 = SDCKE0 is disabled
		1 = SDCKE0 is enabled
12	E0PIN	This bit is set on exit from hardware and sleep reset if the BOOT_SEL signals are configured for a synchronous memory type.
		E0PIN can be cleared by the program to cause a power-down command (if K0RUN=1). Use with caution because the resulting state prohibits automatic transitions for Mode Register Set command and read commands. E0PIN can be set by the program to cause a power-down-exit command (if K0RUN=1).
		SDRAM refresh interval, all partitions.
		The number of memory clock cycles divided by 32 between auto refresh (CBR) cycles. One row is refreshed in each SDRAM bank during each CBR refresh cycle. This interval is applicable to all SDRAM in the four partitions. To calculate the refresh interval from this programmed number, 31 is added to this number after it is multiplied by 32.
		The value that must be loaded into this register is calculated as follows: DRI = (Number of memclk cycles-31) / 32 =
11:0	DRI	(Refresh time / rows) x Memory clock frequency / 32.
11:0	DRI	Must be programmed to be shared by both partition pairs. The smallest number must be programmed.
		Must be less than the tRAS (max) for the SDRAM being accessed.
		When cleared to 0, no refreshes are sent to the SDRAMs.
		If all four SDRAM partitions are disabled, the refresh counter is disabled and refreshes are only performed when a single transaction to a disabled SDRAM partition is requested.
		If the clock frequency is changed, this register must be rewritten, even if the value has not changed. This results in a refresh and the refresh counter is reset to the refresh interval.

6.6.4 Fixed-Delay or Return-Clock Data Latching

The Return-clock data latching works in all situations. Fixed-delay latching is not guaranteed to work in all situations and must not be used. Fixed-delay latching does not work all the time because the delays through the output pads can vary widely over a range of conditions. Because this delay can be greater than a clock cycle, it is impossible to determine the clock to latch the data from the SDRAM. Program the MDCNFG:DLATCHx and SXCNDF:SXLATCHx fields to a 1 to enable latching using the return clock SDCLK.

6.6.5 SDRAM Memory Options

The Dynamic Memory interface supports up to four partitions, organized as two pairs. Both partitions in a pair must have the same SDRAM size, configuration, timing category, and data bus width. Initialization software must set up the memory interface configuration register with:

- SDRAM timing category
- Data-bus width
- Number of row, column, and bank address bits
- Addressing scheme
- Data-latching scheme

Table 6-6, "Sample SDRAM Memory Size Options" on page 6-18 shows a sample of the supported SDRAM configurations.

Table 6-6. Sample SDRAM Memory Size Options

SDRAM Configuration	Chip Size		r Chips/ ition	Bank Bits x		on Size Partition)
(Words x Bits)	Cilip Size	16-Bit Bus	32-Bit bus	Column Bits	16-Bit Bus	32-Bit Bus
1M x 16	16 Mbit	1	2	1 x 11 x 8	2 Mbyte	4 Mbyte
2 M x 8	16 Mbit	2	4	1 x 11 x 9	4 Mbyte	8 Mbyte
2 M x 32	64 Mbit	N/A	1	2 x 11 x 8	N/A	8 Mbyte
4 M x 16	64 Mbit	1	2	1 x 13 x 8 2 x 12 x 8	8 Mbyte	16 Mbyte
8 M x 8	64 Mbit	2	4	1 x 13 x 9 2 x 12 x 9	16 Mbyte	32 Mbyte
8 M x 16	128 Mbit	1	2	2 x 12 x 9	16 Mbyte	32 Mbyte
16 M x 8	128 Mbit	2	4	2 x 12 x 10	32 Mbyte	64 Mbyte
16 M x 16	256 Mbit	1	2	2 x 13 x 9	32 Mbyte	64 Mbyte
32 M x 8	256 Mbit	2	4	2 x 13 x 10	64 Mbyte	128 Mbyte - exceeds partition size

Figure 6-4, "External to Internal Address Mapping Options" on page 6-19 shows the bank/row/column address multiplexing using a 2x13x9 32-bit SDRAM as an example for the normal bank-addressing scheme. All unused address bits during RAS and CAS time—including MA[9:0] bits not shown here—are driven to zero for these two addressing modes.

6.6.5.1 SDRAM Addressing Modes

The application processor supports two addressing modes: Normal Bank Address mode and SA-1111 Address mode. The addressing mode alters the order of the address bits that are driven on the individual memory address pins and control the SDRAM components.

.Refer to Table 6-9 through Table 6-8 for a listing of address mapping options.

- Table 6-9, "Pin Mapping to SDRAM Devices with Normal Bank Addressing" on page 6-24
- Table 6-7, "External to Internal Address Mapping for Normal Bank Addressing" on page 6-20
- Table 6-8, "External to Internal Address Mapping for SA-1111 Addressing" on page 6-22.

Table 6-4 shows how the SDRAM row and column addresses are mapped to the internal SDRAM address. The SDRAM row and column addresses are muxed. The SDRAM row is sent during an Active command and is followed by the column address during the read or write command. MA<20> is driven with 0 during column addressing. BA[1:0] is used to tell the SDRAM which bank is being read from and remains stable during column addressing. During SDRAM configuration, all the address pins are used to transfer the MRS command.

Figure 6-4. External to Internal Address Mapping Options

Internal 28 bit address for 2 bank bits x 13 row bits x 9 column bits 32-bits

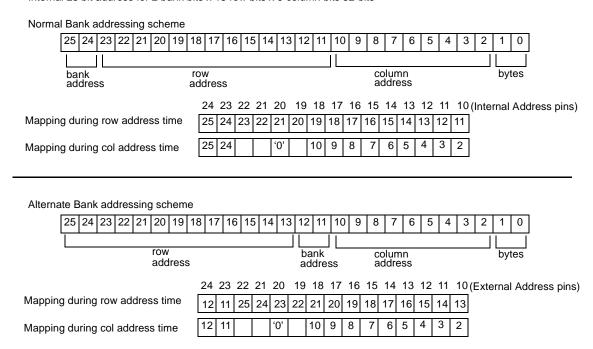


Table 6-7. External to Internal Address Mapping for Normal Bank Addressing (Sheet 1 of 2)

# Bits		Ex	teri	nal	Add		s pi MA∙				AM I	RAS	Tir	ne			Ex	teri	nal <i>i</i>	Add		s pi				AM (CAS	S Tir	ne	
Bank x Row x Col x Data	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10
1x11x8x32				21	20	19	18	17	16	15	14	13	12	11	10				21	'0'			9	8	7	6	5	4	3	2
1x11x8x16				20	19	18	17	16	15	14	13	12	11	10	9				20	'0'			8	7	6	5	4	3	2	1
1x11x9x32				22	21	20	19	18	17	16	15	14	13	12	11				22	'0'		10	9	8	7	6	5	4	3	2
1x11x9x16				21	20	19	18	17	16	15	14	13	12	11	10				21	'0'		9	8	7	6	5	4	3	2	1
1x11x10x32				23	22	21	20	19	18	17	16	15	14	13	12				23	'0'	11	10	9	8	7	6	5	4	3	2
1x11x10x16				22	21	20	19	18	17	16	15	14	13	12	11				22	'0'	10	9	8	7	6	5	4	3	2	1
1x11x11x32		NC)T V	/ALI	ID (i	lleg	al a	ddr	ess	ing	con	nbir	atio	on)			NC)T V	'ALI	D (i	lleg	al a	ddr	ess	ing	con	nbir	natio	on)	
1x11x11x16		NC)T V	/ALI	ID (i	lleg	al a	ddr	ess	ing	con	nbir	atio	on)			NC)T V	'ALI	D (i	lleg	al a	ddr	ess	ing	con	nbir	natio	on)	
1x12x8x32			22	21	20	19	18	17	16	15	14	13	12	11	10			22		'0'			9	8	7	6	5	4	3	2
1x12x8x16			21	20	19	18	17	16	15	14	13	12	11	10	9			21		'0'			8	7	6	5	4	3	2	1
1x12x9x32			23	22	21	20	19	18	17	16	15	14	13	12	11			23		'0'		10	9	8	7	6	5	4	3	2
1x12x9x16			22	21	20	19	18	17	16	15	14	13	12	11	10			22		'0'		9	8	7	6	5	4	3	2	1
1x12x10x32			24	23	22	21	20	19	18	17	16	15	14	13	12			24		'0'	11	10	9	8	7	6	5	4	3	2
1x12x10x16			23	22	21	20	19	18	17	16	15	14	13	12	11			23		'0'	10	9	8	7	6	5	4	3	2	1
1x12x11x32			25	24	23	22	21	20	19	18	17	16	15	14	13			25	12	'0'	11	10	9	8	7	6	5	4	3	2
1x12x11x16			24	23	22	21	20	19	18	17	16	15	14	13	12			24	11	'0'	10	9	8	7	6	5	4	3	2	1
1x13x8x32		23	22	21	20	19	18	17	16	15	14	13	12	11	10		23			'0'			9	8	7	6	5	4	3	2
1x13x8x16		22	21	20	19	18	17	16	15	14	13	12	11	10	9		22			'0'			8	7	6	5	4	3	2	1
1x13x9x32		24	23	22	21	20	19	18	17	16	15	14	13	12	11		24			'0'		10	9	8	7	6	5	4	3	2
1x13x9x16		23	22	21	20	19	18	17	16	15	14	13	12	11	10		23			'0'		9	8	7	6	5	4	3	2	1
1x13x10x32		25	24	23	22	21	20	19	18	17	16	15	14	13	12		25			'0'	11	10	9	8	7	6	5	4	3	2
1x13x10x16		24	23	22	21	20	19	18	17	16	15	14	13	12	11		24			'0'	10	9	8	7	6	5	4	3	2	1
1x13x11x32		13	26	25	24	23	22	21	20	19	18	17	16	15	14		13		12	'0'	11	10	9	8	7	6	5	4	3	2
1x13x11x16		25	24	23	22	21	20	19	18	17	16	15	14	13	12		25		11	'0'	10	9	8	7	6	5	4	3	2	1
2x11x8x32			22	21	20	19	18	17	16	15	14	13	12	11	10			22	21	'0'			9	8	7	6	5	4	3	2
2x11x8x16			21	20	19	18	17	16	15	14	13	12	11	10	9			21	20	'0'			8	7	6	5	4	3	2	1

Table 6-7. External to Internal Address Mapping for Normal Bank Addressing (Sheet 2 of 2)

# Bits		Ex	terr	nal <i>i</i>	Add		•	ns a <24:			AM I	RAS	Tir	ne			Ex	teri	nal .	Add		•	ns a <24:			MA	CAS	S Tiı	ne	
Bank x Row x Col x Data	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10
2x11x9x32			23	22	21	20	19	18	17	16	15	14	13	12	11			23	22	'0'		10	9	8	7	6	5	4	3	2
2x11x9x16			22	21	20	19	18	17	16	15	14	13	12	11	10			22	21	'0'		9	8	7	6	5	4	3	2	1
2x11x10x32			24	23	22	21	20	19	18	17	16	15	14	13	12			24	23	'0'	11	10	9	8	7	6	5	4	3	2
2x11x10x16			23	22	21	20	19	18	17	16	15	14	13	12	11			23	22	'0'	10	9	8	7	6	5	4	3	2	1
2x11x11x32		NC)T V	'ALI	D (i	lleg	al a	ddr	ess	ing	con	nbir	atio	on)			NC)T V	'ALI	D (i	lleg	al a	ddr	ess	ing	cor	nbir	natio	on)	
2x11x11x16		NC)T V	'ALI	D (i	lleg	al a	ddr	ess	ing	con	nbir	atio	on)			NC)T V	'ALI	D (i	lleg	al a	ddr	ess	ing	cor	nbir	natio	on)	
2x12x8x32		23	22	21	20	19	18	17	16	15	14	13	12	11	10		23	22		'0'			9	8	7	6	5	4	3	2
2x12x8x16		22	21	20	19	18	17	16	15	14	13	12	11	10	9		22	21		'0'			8	7	6	5	4	3	2	1
2x12x9x32		24	23	22	21	20	19	18	17	16	15	14	13	12	11		24	23		'0'		10	9	8	7	6	5	4	3	2
2x12x9x16		23	22	21	20	19	18	17	16	15	14	13	12	11	10		23	22		'0'		9	8	7	6	5	4	3	2	1
2x12x10x32		25	24	23	22	21	20	19	18	17	16	15	14	13	12		25	24		'0'	11	10	9	8	7	6	5	4	3	2
2x12x10x16		24	23	22	21	20	19	18	17	16	15	14	13	12	11		24	23		'0'	10	9	8	7	6	5	4	3	2	1
2x12x11x32		26	25	24	23	22	21	20	19	18	17	16	15	14	13		26	25	12	'0'	11	10	9	8	7	6	5	4	3	2
2x12x11x16		25	24	23	22	21	20	19	18	17	16	15	14	13	12		25	24	11	'0'	10	9	8	7	6	5	4	3	2	1
2x13x8x32	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	24	23			'0'			9	8	7	6	5	4	თ	2
2x13x8x16	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	23	22			'0'			8	7	6	5	4	3	2	1
2x13x9x32	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	25	24			'0'		10	9	8	7	6	5	4	3	2
2x13x9x16	24	23	22	21	20	19	18	17	16	15	14	13	12	11	11 10 24 23 00 9 8 7 6 5 4 3 2							1								
2x13x10x32					N	ОТ	VAI	LID	(toc	big	g)				NOT VALID (too big)															
2x13x10x16	25	24	23	22	21	20	19	18	17	16	15	14	13	12 11 25 24 60 10 9 8 7 6 5 4 3 2 NOT VALID (too big)							1									
2x13x11x32		NOT VALID (too big) NOT VALID (too big)															N	ОТ	VAI	LID	(too	big	g)							
2x13x11x16					N	ОТ	VAI	LID	(toc	big	9)									N	от	VAI	LID	(toc	big	g)				

Table 6-8. External to Internal Address Mapping for SA-1111 Addressing (Sheet 1 of 2)

# Bits		Ext	tern	al A	Addı		s pii MA<				AM	RAS	S Ti	me			Ext	tern	al A	۸dd		s pi				ΑM	CAS	S Ti	me	
Bank x Row x Col x Data	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10
1x11x8x32				21	20	19	18	17	16	15	14	13	12	11	10				21	'0'			9	8	7	6	5	4	3	2
1x11x8x16		NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	cor	nbi	nati	on)	
1x11x9x32				21	20	19	18	17	16	15	14	13	12	11	10				21	'0'		22	9	8	7	6	5	4	3	2
1x11x9x16				21	20	19	18	17	16	15	14	13	12	11	10				21	'0'		9	8	7	6	5	4	3	2	1
1x11x10x32				21	20	19	18	17	16	15	14	13	12	11	10				21	'0'	23	22	9	8	7	6	5	4	3	2
1x11x10x16				21	20	19	18	17	16	15	14	13	12	11	10				21	' 0'	22	9	8	7	6	5	4	3	2	1
1x11x11x32		NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	cor	nbi	nati	on)	
1x11x11x16		NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	cor	nbi	nati	on)	
1x12x8x32			22	21	20	19	18	17	16	15	14	13	12	11	10				21	'0'			9	8	7	6	5	4	3	2
1x12x8x16		NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	cor	nbi	nati	on)	
1x12x9x32			22	21	20	19	18	17	16	15	14	13	12	11	10				21	'0'		23	9	8	7	6	5	4	3	2
1x12x9x16			22	21	20	19	18	17	16	15	14	13	12	11	10				21	' 0'		9	8	7	6	5	4	3	2	1
1x12x10x32			22	21	20	19	18	17	16	15	14	13	12	11	10				21	'0'	24	23	9	8	7	6	5	4	3	2
1x12x10x16			22	21	20	19	18	17	16	15	14	13	12	11	10				21	'0'	23	9	8	7	6	5	4	3	2	1
1x12x11x32		NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	cor	nbi	nati	on)	
1x12x11x16		NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	cor	nbi	nati	on)	
1x13x8x32		23	22	21	20	19	18	17	16	15	14	13	12	11	10				21	'0'			9	8	7	6	5	4	3	2
1x13x8x16		NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	cor	nbi	nati	on)	
1x13x9x32		23	22	21	20	19	18	17	16	15	14	13	12	11	10				21	' 0'		24	9	8	7	6	5	4	3	2
1x13x9x16		23	22	21	20	19	18	17	16	15	14	13	12	11	10				21	'0'		9	8	7	6	5	4	3	2	1
1x13x10x32		23	22	21	20	19	18	17	16	15	14	13	12	11	10				21	'0'	25	24	9	8	7	6	5	4	3	2
1x13x10x16		23	22	21	20	19	18	17	16	15	14	13	12	11	10				21	'0'	24	9	8	7	6	5	4	3	2	1
1x13x11x32		NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	cor	nbi	nati	on)	
1x13x11x16		NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	cor	nbi	nati	on)	
2x11x8x32			22	21	20	19	18	17	16	15	14	13	12	11	10			22	21	'0'			9	8	7	6	5	4	3	2
2x11x8x16		NO	T V	ALII	D (il	leg	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALI	D (il	leg	al a	ddr	ess	ing	cor	nbi	nati	on)	

Table 6-8. External to Internal Address Mapping for SA-1111 Addressing (Sheet 2 of 2)

# Bits Bank x		Ext	ern	al A	Addı		s pii MA<				ΑM	RA	S Ti	me			Ex	tern	al A	Add		s pi MA⊲				AM	CA	S Ti	ime	!
Row x Col x Data	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10
2x11x9x32			22	21	20	19	18	17	16	15	14	13	12	11	10			22	21	'0'		23	9	8	7	6	5	4	3	2
2x11x9x16			22	21	20	19	18	17	16	15	14	13	12	11	10			22	21	'0'		9	8	7	6	5	4	3	2	1
2x11x10x32			22	21	20	19	18	17	16	15	14	13	12	11	10			22	21	'0'	24	23	9	8	7	6	5	4	3	2
2x11x10x16			22	21	20	19	18	17	16	15	14	13	12	11	10			22	21	'0'	23	9	8	7	6	5	4	3	2	1
2x11x11x32		NO.	T V	ALII	D (il	leg	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALI	D (il	lleg	al a	ddr	ess	ing	co	mbi	nat	ion))
2x11x11x16		NO.	T V	ALII	D (il	lega	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALI	D (il	lleg	al a	ddr	ess	ing	co	mbi	nat	ion))
2x12x8x32		23	22	21	20	19	18	17	16	15	14	13	12	11	10		23	22		'0'			9	8	7	6	5	4	3	2
2x12x8x16		NO.	T V	ALII	D (il	leg	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALI	D (il	lleg	al a	ddr	ess	ing	CO	mbi	nat	ion))
2x12x9x32		23	22	21	20	19	18	17	16	15	14	13	12	11	10		23	22		'0'		24	9	8	7	6	5	4	3	2
2x12x9x16		23	22	21	20	19	18	17	16	15	14	13	12	11	10		23	22		'0'		9	8	7	6	5	4	3	2	1
2x12x10x32		23	22	21	20	19	18	17	16	15	14	13	12	11	10		23	22		'0'	25	24	9	8	7	6	5	4	3	2
2x12x10x16		23	22	21	20	19	18	17	16	15	14	13	12	11	10		23	22		'0'	24	9	8	7	6	5	4	3	2	1
2x12x11x32		NO.	T V	ALII	D (il	leg	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALI	D (il	lleg	al a	ddr	ess	ing	co	mbi	nat	ion))
2x12x11x16		NO.	T V	ALII	D (il	leg	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALI	D (il	lleg	al a	ddr	ess	ing	CO	mbi	nat	ion))
2x13x8x32	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10		23	22		'0'			9	8	7	6	5	4	3	2
2x13x8x16		NO.	T V	ALII	D (il	leg	al a	ddr	ess	ing	COI	nbi	nati	on)			NO	T V	ALI	D (il	lleg	al a	ddr	ess	ing	CO	mbi	nat	ion)	(
2x13x9x32	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10		23	22		'0'		25	9	8	7	6	5	4	3	2
2x13x9x16	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10		23	22		'0'		9	8	7	6	5	4	3	2	1
2x13x10x32		NOT VALID (too big)															N	от	VAI	_ID	(to	bi bi	g)							
2x13x10x16	24	24 23 22 21 20 19 18 17 16 15 14 13 12 NOT VALID (too big)									11	10		23	22		'0'	25	9	8	7	6	5	4	3	2	1			
2x13x11x32																		N	от	VAI	_ID	(to	bi bi	g)						
2x13x11x16					N	от	VAL	_ID	(toc	big	g)									N	от	VAI	_ID	(to	bi	g)				

Use the information below to connect the application processor to the SDRAM devices. Some of the addressing combinations may not apply in SA1111 addressing mode. See Table 6-10, "Pin Mapping to SDRAM Devices with SA1111 Addressing" on page 6-26 for a complete listing of supported addressing combinations and how to connect the PXA250 application processor to the SA1111.

Table 6-9. Pin Mapping to SDRAM Devices with Normal Bank Addressing (Sheet 1 of 2)

# Bits													ressing rocesso	•	
Bank x Row x Col x Data	MA24	MA23	MA22	MA21	MA20	MA19	MA18	MA17	MA16	MA15	MA14	MA13	MA12	MA11	MA10
1x11x8x32				BA0	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
1x11x8x16				BA0	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
1x11x9x32				BA0	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
1x11x9x16				BA0	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
1x11x10x32				BA0	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
1x11x10x16				BA0	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
1x11x11x32					NOT	VALID	(illegal	addres	ssing c	ombina	ation)				
1x11x11x16					NOT	VALID	(illegal	addres	ssing c	ombina	ation)				
1x12x8x32			BA0	A11	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
1x12x8x16			BA0	A11	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
1x12x9x32			BA0	A11	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A1	Α0
1x12x9x16			BA0	A11	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
1x12x10x32			BA0	A11	A10	A9	A8	Α7	A6	A5	A4	А3	A2	A1	Α0
1x12x10x16			BA0	A11	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A1	Α0
1x12x11x32			BA0	A11	A10	A9	A8	Α7	A6	A5	A4	А3	A2	A1	Α0
1x12x11x16			BA0	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
1x13x8x32		BA0	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
1x13x8x16		BA0	A12	A11	A10	А9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
1x13x9x32		BA0	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
1x13x9x16		BA0	A12	A11	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A1	Α0
1x13x10x32		BA0	A12	A11	A10	A9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
1x13x10x16		BA0	A12	A11	A10	A9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
1x13x11x32		BA0	A12	A11	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A1	Α0
1x13x11x16		BA0	A12	A11	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A1	Α0
2x11x8x32			BA1	BA0	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A1	Α0
2x11x8x16			BA1	BA0	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A1	Α0

Table 6-9. Pin Mapping to SDRAM Devices with Normal Bank Addressing (Sheet 2 of 2)

# Bits													ressing	•	
Bank x Row x Col x Data	MA24	MA23	MA22	MA21	MA20	MA19	MA18	MA17	MA16	MA15	MA14	MA13	MA12	MA11	MA10
2x11x9x32			BA1	BA0	A10	A9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
2x11x9x16			BA1	BA0	A10	A9	A8	Α7	A6	A5	A4	А3	A2	A1	Α0
2x11x10x32			BA1	BA0	A10	A9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
2x11x10x16			BA1	BA0	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
2x11x11x32					NOT	VALID	(illegal	addres	ssing c	ombina	ation)				
2x11x11x16					NOT	VALID	(illegal	addres	ssing c	ombina	ation)				
2x12x8x32		BA1	BA0	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
2x12x8x16		BA1	BA0	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
2x12x9x32		BA1	BA0	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
2x12x9x16		BA1	BA0	A11	A10	A9	A8	Α7	A6	A5	A4	А3	A2	A1	Α0
2x12x10x32		BA1	BA0	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
2x12x10x16		BA1	BA0	A11	A10	Α9	A8	A 7	A6	A5	A4	А3	A2	A1	Α0
2x12x11x32		BA1	BA0	A11	A10	A9	A8	A 7	A6	A5	A4	А3	A2	A 1	Α0
2x12x11x16		BA1	BA0	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
2x13x8x32	BA1	BA0	A12	A11	A10	Α9	A8	A 7	A6	A5	A4	А3	A2	A 1	Α0
2x13x8x16	BA1	BA0	A12	A11	A10	Α9	A8	A 7	A6	A5	A4	А3	A2	A 1	Α0
2x13x9x32	BA1	BA0	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
2x13x9x16	BA1	BA0	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
2x13x10x32							NOT V	ALID (t	oo big)						
2x13x10x16	BA1	BA0	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
2x13x11x32		NOT VALID (too big)													
2x13x11x16							NOT V	ALID (t	oo big)						

Table 6-10. Pin Mapping to SDRAM Devices with SA1111 Addressing (Sheet 1 of 2)

# Bits		MA[24			_				SA111 n from		_	•		cessor.	
Bank x Row x Col x Data	MA24	-	-												MA10
1x11x8x32				BA0	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0
1x11x8x16		•	•		NOT	VALID	(illegal	addres	ssing c	ombin	ation)	•	•		
1x11x9x32				BA0	A10	А9	A8	A7	A6	A5	A4	А3	A2	A 1	Α0
1x11x9x16				BA0	A10	А9	A8	A 7	A6	A5	A4	А3	A2	A1	Α0
1x11x10x32				BA0	A10	А9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
1x11x10x16				BA0	A10	А9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
1x11x11x32					NOT	VALID	(illegal	addres	ssing c	ombin	ation)				
1x11x11x16					NOT	VALID	(illegal	addres	ssing c	ombin	ation)				
1x12x8x32			A11	BA0	A10	A9	A8	Α7	A6	A5	A4	А3	A2	A1	Α0
1x12x8x16					NOT	VALID	(illegal	addres	ssing c	ombin	ation)				
1x12x9x32			A11	BA0	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0
1x12x9x16			A11	BA0	A10	А9	A8	A7	A6	A5	A4	А3	A2	A1	A0
1x12x10x32			A11	BA0	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0
1x12x10x16			A11	BA0	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A 1	A0
1x12x11x32					NOT	VALID	(illegal	addres	ssing c	ombin	ation)				
1x12x11x16					NOT	VALID	(illegal	addres	ssing c	ombin	ation)				
1x13x8x32		A12	A11	BA0	A10	A9	A8	Α7	A6	A5	A4	А3	A2	A1	A0
1x13x8x16					NOT	VALID	(illegal	addres	ssing c	ombin	ation)				
1x13x9x32		A12	A11	BA0	A10	A9	A8	A7	A6	A5	A4	А3	A2	A 1	A0
1x13x9x16		A12	A11	BA0	A10	А9	A8	A7	A6	A5	A4	А3	A2	A 1	A0
1x13x10x32		A12	A11	BA0	A10	А9	A8	A 7	A6	A5	A4	А3	A2	A1	A0
1x13x10x16		A12	A11	BA0	A10	А9	A8	A7	A6	A5	A4	А3	A2	A 1	Α0
1x13x11x32					NOT	VALID	(illegal	addres	ssing c	ombin	ation)				
1x13x11x16					NOT	VALID	(illegal	addres	ssing c	ombin	ation)				
2x11x8x32			BA1	BA0	A10	A9	A8	A7	A6	A5	A4	А3	A2	A 1	A0
2x11x8x16					NOT	VALID	(illegal	addres	ssing c	ombin	ation)				
2x11x9x32			BA1	BA0	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0

Table 6-10. Pin Mapping to SDRAM Devices with SA1111 Addressing (Sheet 2 of 2)

# Bits		MA[24			oing to						_	•	ns. ion prod	cessor.	
Bank x Row x Col x Data	MA24														MA10
2x11x9x16			BA1	BA0	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
2x11x10x32			BA1	BA0	A10	А9	A8	A7	A6	A5	A4	А3	A2	A 1	Α0
2x11x10x16			BA1	BA0	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
2x11x11x32		•			NOT	VALID	(illegal	addres	ssing c	ombin	ation)				
2x11x11x16					NOT	VALID	(illegal	addres	ssing c	ombin	ation)				
2x12x8x32		BA1	BA0	A11	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
2x12x8x16					NOT	VALID	(illegal	addres	ssing c	ombin	ation)				
2x12x9x32		BA1	BA0	A11	A10	А9	A8	A7	A6	A5	A4	А3	A2	A 1	Α0
2x12x9x16		BA1	BA0	A11	A10	А9	A8	A7	A6	A5	A4	А3	A2	A 1	Α0
2x12x10x32		BA1	BA0	A11	A10	А9	A8	A7	A6	A5	A4	А3	A2	A 1	Α0
2x12x10x16		BA1	BA0	A11	A10	А9	A8	A7	A6	A5	A4	А3	A2	A 1	Α0
2x12x11x32					NOT	VALID	(illegal	addres	ssing c	ombin	ation)				
2x12x11x16					NOT	VALID	(illegal	addres	ssing c	ombin	ation)				
2x13x8x32	A12	BA1	BA0	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A 1	A0
2x13x8x16					NOT	VALID	(illegal	addres	ssing c	ombin	ation)				
2x13x9x32	A12	BA1	BA0	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A 1	A0
2x13x9x16	A12	BA1	BA0	A11	A10	А9	A8	Α7	A6	A5	A4	А3	A2	A 1	Α0
2x13x10x32		•	•	-	•	•	NOT V	ALID (t	oo big)				•	•	
2x13x10x16	A12	BA1	BA0	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A 1	A0
2x13x11x32		NOT VALID (too big)													
2x13x11x16							NOT V	ALID (t	oo big)						

6.6.6 SDRAM Command Overview

The application processor accesses SDRAM with the following subset of standard interface commands:

- Mode Register Set (MRS)
- Bank Activate (ACT)
- Read (READ)

- Write (WRITE)
- Precharge All Banks (PALL)
- Precharge One Bank (PRE)
- Auto-Refresh (CBR)
- Power-Down (PWRDN)
- Enter Self-Refresh (SLFRSH)
- Exit Power-Down (PWRDNX)
- No Operation (NOP)

Table 6-11 shows the SDRAM interface commands. The table assumes the bank bits for the SDRAM are sent out on external address lines MA<24:23>.

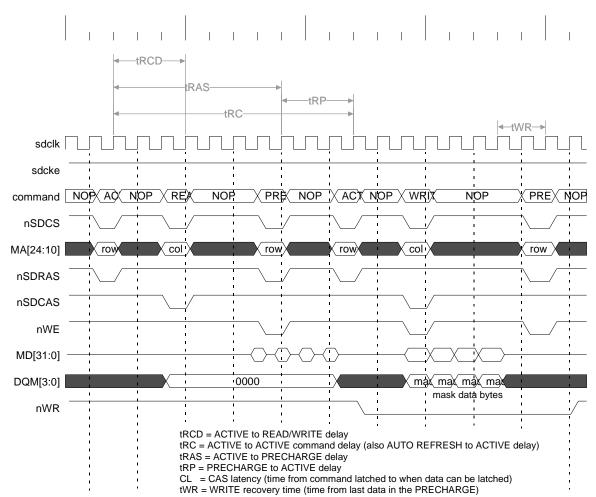
Table 6-11. SDRAM Command Encoding

						Pins						
Com	mand	SDCKE (at clk	SDCKE (at clk	nSDCS	nSDRAS	nSDCAS	nWE	DQM		MA <24	:10>	
		n-1)	n)	3:0	IISDKAS	IISDCAS	IIWE	3:0	24:23	22:21	20	19:10
PWF	RDN	1	0	1	1	1	1	1		х	•	
PWR	DNX	0	1	1	1	1	1	1		х		
SLF	RSH	1	0	0	0	0	1	0		х		
CE	3R	1	1	0	0	0	1	х		х		
MF	RS	1	х	0	0	0	0	0		OP co	de	
AC	СТ	1	х	0	0	1	1	х	bank		row	
RE	AD	1	х	0	1	0	1	0	bank	col	0	col
WR	ITE	1	х	0	1	0	0	mask	bank	col	0	col
PALL	All	1	x	0	0	1	0	x	х	x	1	х
PRE	Bank] '	^			ı		_ ^	bank	^	0	^
NO	OP	1	x	1	х	Х	Х	х		х		
	-	·	^	0	1	1	1	^		^		

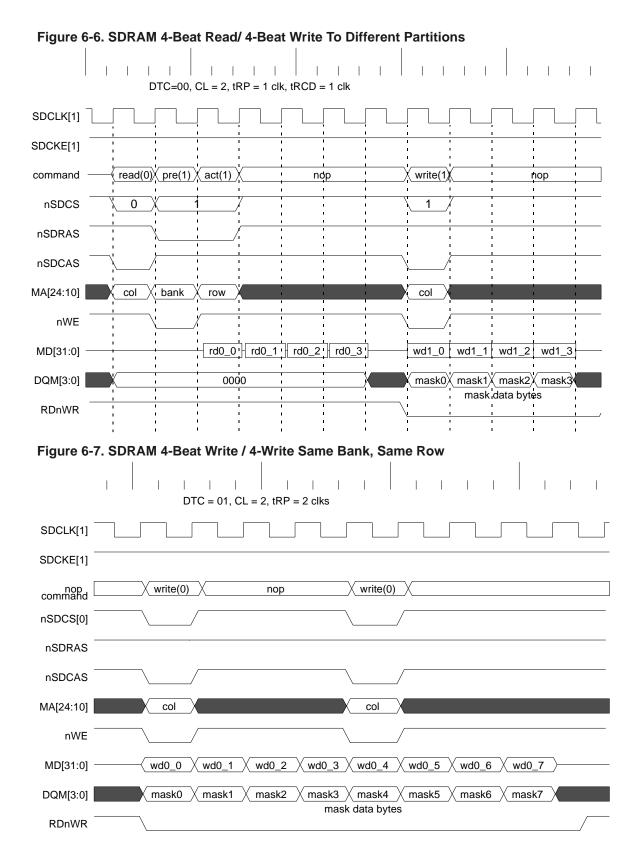
The programmable opcode for address bits MA<24:17> used during the mode-register set command (MRS) is exactly what is programmed in the MDMRS register.

Table 6-12. SDRAM Mode Register Opcode Table

Address Bits	Option	Value
MA<24:17>	Reserved	MDMRSx


Table 6-12. SDRAM Mode Register Opcode Table

Address Bits	Option	Value
MA[16:14]	CAS Latency = 2	010
WA[10.14]	CAS Latency = 3	011
MA[13]	Sequential Burst	0
MA[12:10]	Burst Length = 4	010


6.6.7 SDRAM Waveforms

Normal operation of the SDRAM controller is shown in Figure 6-5, Figure 6-6, and Figure 6-7.

Figure 6-5. Basic SDRAM Timing Parameters

6.7 Synchronous Static Memory Interface

The synchronous static memory interface supports SMROM and non-SDRAM-like Flash memories. The synchronous static memory can be configured for any of the nCS[3:0] signals. Chip Select 0 must be used for boot memory. Synchronous static memories in bank pairs 1/0 or 3/2 must be set to the same timing.

If any of the nCS[3:0] banks are configured for Synchronous Static Memory via SXCNFG[SXENx], the corresponding half-words of MSC0 (see Section 6.8.2, "Asynchronous Static Memory Control Registers (MSC2-0)") and MSC1, except the data width in MSCx[RBWx], are ignored.

6.7.1 Synchronous Static Memory Configuration Register

All synchronous static memory is controlled by the read/write SXCNFG register. Refer to Table 6-13. SXCNFG[15:0] configures chip select signals 0 and 1. SXCNFG[31:16] configures chip select signals 2 and 3.

Table 6-13. SXCNFG Register Bitmap (Sheet 1 of 6)

			4	800 001	C					5	SXCNF	3													
Bit	31	30	29 28	27 26	25 24	23 22	21	20	19	18	17 16	15	14	13 12	2 11 10	9	8	7	6	5	4	3	2	1	0
	Reserved	SXLATCH2	SXTP2	SXCA2	SXRA2	SXRL2			SXCL2		SXEN2	Reserved	SXLATCH0	SXTP0	SXCA0	OVE	L		SXRL0			SXCL0		ONE	27.1
Pacat	Λ	Λ	0 0	0 0	0 0	0 0	Λ	Λ	Λ	Λ	0 0	Λ	*	* *	* *	*	*	*	*	*	*	*	*	Λ	*

Bits	Name	Description
31	-	Reserved
		SXMEM latching scheme for pair 2/3
		0 - Latch return data with fixed delay on MEMCLK
30	SXLATCH2	1 - Latch return data with return clock
		Must be set to a 1 to enable the return clock SDCLK for latching data. For more details on this return data latching, see Section 6.6.4.
		SX Memory type for partition pair 2/3
		00 - Synchronous Mask ROM (SMROM)
2928	SXTP2	01 - Reserved
		10 - non-SDRAM-like Synchronous Flash
		11 - Reserved
		SX Memory column address bit count for partition pair 2/3
		00 - 7 column address bits
2726	SXCA2	01 - 8 column address bits
		10 - 9 column address bits
		11 - 10 column address bits

Table 6-13. SXCNFG Register Bitmap (Sheet 2 of 6)

				48	800	001	С							5	SXC	NFG	}															
Bit	31	31 30 29 28 27 26 25 24 23							22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Reserved	SXLATCH2	SXTP2	-	CXCA2	5	SXRA2			SXRL2			SXCL2		SXENS	i	Reserved	SXLATCH0	SXTP0		SXCAO		SXRAO			SXRL0			SXCL0		ON H	;
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	*	*	*	*	*	*	*	*	*	*	*	*	*	0	*

Bits	Name	Description
2524	SXRA2	SX Memory row address bit count for partition pair 2/3 00 - 12 row address bits 01 - 13 row address bits
2524	3ANA2	10 - Reserved 11 - Reserved
23:21	SXRL2	RAS Latency for SX Memory partition pair 2/3. Number of external SDCLK cycles between receiving the ACT command and the READ command. The unit size for SXRL2 is the external SDCLK cycle. IF SXTP2 = "00" (SMROM): 000 - 1 clock 001 - 2 clocks 010 - 3 clocks 011 - 4 clocks 110 - 5 clocks 110 - 6 clocks 111 - 8 clocks 111 - 8 clocks 111 - 8 clocks

Bit

Table 6-13. SXCNFG Register Bitmap (Sheet 3 of 6)

4800 001C SXCNFG

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
/ed	CH2	22	7	72	<u>, </u>	7.5	15		-2			-2		()	Ž	/ed	CH0	00	>	9	2	2	2		9			0-		S	,

SXLATC SXTP; SXTP; SXCA; SXRA;	SXCL	SXLATC SXTP(SXCA	SXRL	SXCL	SXEN
--	------	-----------------	------	------	------	------

Bits	Name	Description
		CAS Latency for SX Memory partition pair 2/3
2018	SXCL2	Number of external SDCLK cycles between receiving the READ command and latching the data. The unit size for SXCL2 is the external SDCLK cycle. When SX Memory runs at half the memory clock frequency (MDREFR:K0DB2 = 1), the delay is 2*memclk. When in doubt as to which CAS Latency to use, use the next larger. IF SXTP2 = 00"(SMROM): 000 - Reserved 001 - Reserved 010 - 3 clocks 101 - 6 clocks 110 - Reserved IF SXTP2 = 10 (non-SDRAM timing Fast Flash) 000 - Reserved 011 - 4 clocks 101 - 6 clocks 111 - Reserved 111 - Reserved
1716	SXEN2	Enable Bits for SX Memory Partition 2 (bit 16) and Partition 3 (bit 17) 0 - Partition is not Enabled as SX Memory 1 - Partition is Enabled as SX Memory
15	-	Reserved
14	SXLATCH0	SXMEM latching scheme for pair 0/1 0 - Latch return data with fixed delay on MEMCLK 1 - Latch return data with return clock Must always be written with a 1 to enable the return clock SDCLK for latching data. For more detail on this return data latching, see Section 6.6.4
1312	SXTP0	SX Memory type for partition pair 0/1 00 - Synchronous Mask ROM (SMROM) 01 - Reserved 10 - non-SDRAM-like Synchronous Flash 11 - Reserved

Table 6-13. SXCNFG Register Bitmap (Sheet 4 of 6)

11 - Reserved

		-							(-,												
			48	800 001	С				,	SXCNF	3												
Bit	31	30 2	29 28	27 26	25 24	23 22	21	20 1	9 18	17 16	15	14	13 12	11 10	9	8	7	6	5	4	3	2	1 0
	Reserved	SXLATCH2	SXTP2	SXCA2	SXRA2	SXRL2		0 0 0	34012	SXEN2	Reserved	SXLATCH0	SXTP0	SXCA0	SXRA0			SXRL0			SXCL0		SXEN0
Reset	0	0	0 0	0 0	0 0	0 0	0	0 (0 0	0 0	0	*	* *	* *	*	*	*	*	*	*	*	*	0 *
		Bit	s	Na	me								Descr	iption									
		11′	10	SXCAG)	SX Me 00 - 7 (01 - 8 (10 - 9 (11 - 10	colui colui colui	mn ac mn ac mn ac	ldress Idress Idress	s bits s bits	oit co	ount	for part	tition pai	r 0/1								
		98	8	SXRAG)	SX Me 00 - 12 01 - 13 10 - Re	row	addr addr addr	ess b		ount	for	partitior	n pair 0/	1								

Table 6-13. SXCNFG Register Bitmap (Sheet 5 of 6)

4800 001C SXCNFG

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved SXLATCH2 SXTP2	SXCA2 SXRA2	SXRL2	SXCL2	SXEN2	Reserved SXLATCH0 SXTP0	SXCA0	SXRA0	SXRL0	SXCL0	SXENO
-------------------------------	----------------	-------	-------	-------	-------------------------------	-------	-------	-------	-------	-------

Bits	Name	Description
75	SXRL0	RAS Latency for Synchronous Static (SX) Memory partition pair 0/1 Number of external SDCLK cycles between reception of the ACT command and reception of the READ command. The unit size for SXRL0 is the external SDCLK cycle. IF SXTP0 = 00 (SMROM): 000 - 1 clock 001 - 2 clocks 010 - 3 clocks 011 - 4 clocks 100 - 5 clocks 101 - 6 clocks 111 - 8 clocks
42	SXCL0	IF SXTP0 = 10 (non-SDRAM timing Fast Flash), this field is not used and must be programmed to 111 CAS Latency for SX Memory partition pair 0/1 Number of external SDCLK cycles between reception of the READ command and latching of the data. The unit size for SXCL0 is the external SDCLK cycle. When SX Memory is run at half the memory clock frequency (MDREFR:K0DB2 = 1), the delay is 2*MEMCLK When in doubt as to which CAS Latency to use, the next larger must be used. IF SXTP0 = 00 (SMROM): 000 - Reserved 001 - Reserved 010 - 3 clocks 101 - 6 clocks 110 - Reserved IF SXTP0 = 10 (non-SDRAM timing Fast Flash) 000 - Reserved 001 - Reserved 001 - Reserved 001 - Reserved 101 - 3 clocks 011 - 4 clocks 100 - 5 clocks 101 - 6 clocks 101 - 7 clocks 111 - Reserved

Table 6-13. SXCNFG Register Bitmap (Sheet 6 of 6)

								_				-	-																
				48	800	001	С							5	SXCNF	G													
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17 16	3 15	14	13 12	11 10	9	8	7	6	5	4	3	2	1 0	
	Reserved SXLATCH2 SXTRP2 SXCA2 SXRA2 SXRA2					SAKAZ		SXRL2			SXCL2		SXEN2	Reserved	SXLATCH0	SXTP0	SXCA0	OVENO	סאייאס		SXRL0			SXCL0		SXENO			
Reset	0 0 0 0 0				0	0	0	0	0	0	0	0	0	0 0	0	*	* *	* *	*	*	*	*	*	*	*	*	0 *		
						Na	me											Desci	ription										1
					SXI	ENC)		0 - 1 -	Par Par	titioi titioi	n is n is	not Ena	Ena blec	mory F bled as I as S> Sectior	s SX (Me	Mei mor	mory	and Par	rtitio	n 1	(bit	1)						

6.7.1.1 SMROM Memory Options

Table 6-15 shows the possible external-to-internal address multiplexing options. For SMROM, there are no bank-address bits, but the corresponding bits are put on the external address bus. The number of banks per device always defaults to four.

Table 6-15. Synchronous Static Memory External to Internal Address Mapping Options

# Bits Bank x		Ext	tern	al A	Add		•		at S :10>		EM	RAS	S Ti	me			Ext	tern	al A	Add		s pii MA<				EM	CA	S Ti	me	
Row x Col x Data	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10
2x12x7x32		22	21	20	19	18	17	16	15	14	13	12	11	10	9		22	21		0				8	7	6	5	4	3	2
2x12x7x16		21	20	19	18	17	16	15	14	13	12	11	10	9	8		21	20		0				7	6	5	4	3	2	1
2x12x8x32		23	22	21	20	19	18	17	16	15	14	13	12	11	10		23	22		0			9	8	7	6	5	4	3	2
2x12x8x16		22	21	20	19	18	17	16	15	14	13	12	11	10	9		22	21		0			8	7	6	5	4	3	2	1
2x12x9x32		24	23	22	21	20	19	18	17	16	15	14	13	12	11		24	23		0		10	9	8	7	6	5	4	3	2
2x12x9x16		23	22	21	20	19	18	17	16	15	14	13	12	11	10		23	22		0		9	8	7	6	5	4	3	2	1
2x12x10x32		25	24	23	22	21	20	19	18	17	16	15	14	13	12		25	24		0	11	10	9	8	7	6	5	4	3	2
2x12x10x16		24	23	22	21	20	19	18	17	16	15	14	13	12	11		24	23		0	10	9	8	7	6	5	4	3	2	1
2x13x7x32	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	23	22			0				8	7	6	5	4	3	2
2x13x7x16	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	22	21			0				7	6	5	4	3	2	1
2x13x8x32	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	24	23			0			9	8	7	6	5	4	3	2
2x13x8x16	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	23	22			0			8	7	6	5	4	3	2	1

Table 6-15. Synchronous Static Memory External to Internal Address Mapping Options

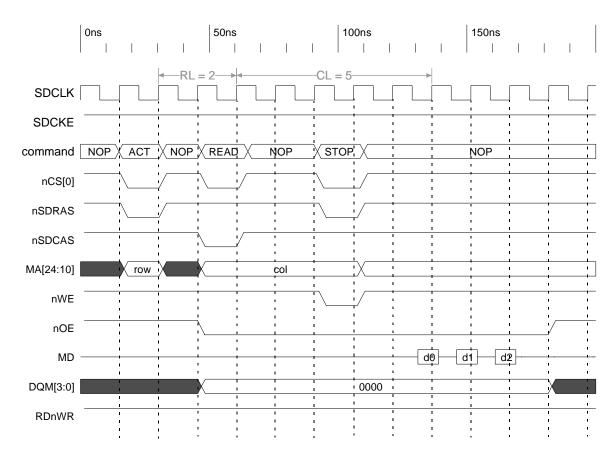
# Bits Bank x		Ext	tern	al A	Add				at S :10>		EM	RAS	S Ti	me			Ext	tern	al A	Add		s pii VIA<				EM	CAS	S Ti	me	
Row x	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10
2x13x9x32	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	25	24			0		10	9	8	7	6	5	4	3	2
2x13x9x16	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	24	23			0		9	8	7	6	5	4	3	2	1
2x13x10x16	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	25	24			0	10	9	8	7	6	5	4	3	2	1

6.7.2 Synchronous Static Memory Mode Register Set Configuration Register

On power up, a MRS command that contains the default boot-up value is written to the external memory if the system is configured to boot out of SMROM (see Section 6.11.2, "Boot Time Defaults" on page 6-71). Otherwise, the Synchronous Static Memory Mode Register Set Configuration Register (SXMRS) is used to issue an MRS command to SMROM. The value written in this register is placed directly on address lines MA<24:10> during the MRS command. Writing to this register triggers a two-stage MRS command that is sent to the external synchronous static memory. The first state issues an MRS command to banks 0 and 1. The second stage issues an MRS command to banks 2 and 3. The corresponding chip select values are only asserted if the memory banks are enabled via the SXCNFG register and the memory type is configured as SMROM.

To write a new MRS value to a synchronous static memory, first enable and configure the memory via the SXCNFG register, then write the SXMRS register. This register is only used for the value written during the MRS command. All values in the SXCNFG register must be programmed correctly to ensure proper device operation (refer to the external memory chip product documentation for proper MRS encoding). Information programmed in the SXCNFG[CL] and SXCNFG[RL] fields must match any CAS latencies and RAS latencies programmed in this SXMRS register. Software must ensure that fields match the latencies. In some cases, duplicate information must be programmed. Refer to Table 6-16.

Table 6-16. SXMRS Register Bitmap


				4	800	002	24								SXN	/IRS								Apı	olica	ation	Pro	ces	sor			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved								SXMRS2								Reserved								SXMRS0							
Reset	0	0	0	0	0	0					1	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	1	0
		Bi	ts			Name													De	esci	iptio	n										
		3	1		-				Res	serv	ed																					
		30	.16		SXI						alue air 2		e w	/ritte	en to	Syı	nchi	ono	us S	Stati	c me	emo	ry r	equ	iring	g an	MR	S co	omn	nanc	l for	
		1:	5		-	F				serv	ed																					
	140 SXMRS0 MRS value to be Bank Pair 0						e w	/ritte	en to	Syı	nchi	ono	us S	Stati	с Ме	emo	ry r	equ	iring	g an	MR	Sco	omn	nanc	for							

6.7.3 Synchronous Static Memory Timing Diagrams

A three-beat read cycle for SMROM is shown in Figure 6-8.

Figure 6-8. SMROM Read Timing Diagram Half-Memory Clock Frequency,

6.7.4 Non-SDRAM Timing SXMEM Operation

Non-SDRAM Timing Synchronous Flash operation resets to asynchronous mode (page-mode for reads and asynchronous single word writes). Software can change the Read Configuration Register (RCR) to synchronous mode (burst-timing synchronous reads and asynchronous single word writes). At boot time, the Non-SDRAM Timing Synchronous Flash operates similarly to an asynchronous boot ROM (See Section 6.9, "16-Bit PC Card/Compact Flash Interface" on page 6-56).

Consult the documentation for the memory being used. Table 6-17 is provided only as a reference. The frequency configuration must be determined based on the CLK-to-output delay, the CLK period, and the nADV-to-output delay timing parameters of the Flash device.

The values for this part number are shown as an example. For Intel part number 28F800F3, programming values for this register to ensure proper operation with the application processors are shown in Table 6-17.

Software must ensure that the CLK-to-output delay is less than 1 SDCLK period for non-SDRAM Timing Synchronous Flash.

Table 6-17. Read Configuration Register Programming Values

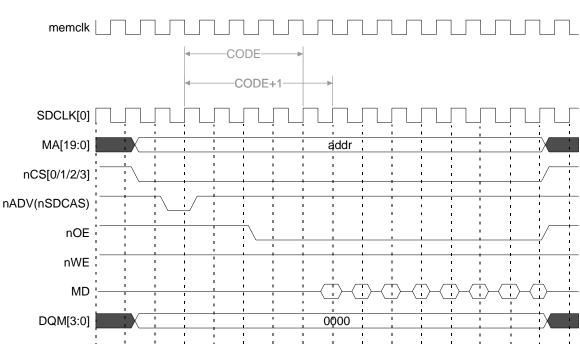
Bits	Field Name	Value to Program
2:0	BURST LENGTH	010 8 Word Burst
5:3	RESERVED	000
6	CLOCK CONFIGURATION	1 Use rising edge of clock
7	BURST SEQUENCE	1 Linear burst Order (INTEL BURST ORDER IS NOT SUPPORTED)
8	WAIT CONFIGURATION	N/A nWAIT from the Flash device is ignored by the application processor.
9	DATA OUTPUT CONFIGURATION	0 Hold data for one clock
10	RESERVED	0
13:11	FREQUENCY CONFIGURATION	010 -> CAS Latency 3 011 -> CAS Latency 4 100 -> CAS Latency 5 101 -> CAS Latency 6 110 -> CAS Latency 7 Chosen based on the AC Characteristics - Read only Operation section of the Flash device data sheet
14	RESERVED	0
15	READ MODE	0 - Synchronous Operation 1 - Asynchronous Operation

Table 6-18 shows sample frequency configurations for programming non-SDRAM Timing Fast Flash. When in doubt, the higher frequency configuration and corresponding CAS latency must be used.

Table 6-18. Frequency Code Configuration Values Based on Clock Speed (Sheet 1 of 2)

MEMCLK Frequency	SDCLK0 Frequency	MDREFR: K0DB2	Valid Frequency Configurations	Corresponding CAS Latencies
20	20	0	2/3/4/5/6	3/4/5/6/7
33	33	0	3/4/5/6	4/5/6/7
50	50	0	4/5/6	5/6/7
30	25	1	2/3/4/5/6	3/4/5/6/7
66	66	0	5/6	6/7
00	33	1	3/4/5/6	4/5/6/7
100	50	1	4/5/6	5/6/7

Table 6-18. Frequency Code Configuration Values Based on Clock Speed (Sheet 2 of 2)


MEMCLK Frequency	SDCLK0 Frequency	MDREFR: K0DB2	Valid Frequency Configurations	Corresponding CAS Latencies
118	59	1	5/6	6/7
133	66	1	5/6	6 / 7
147	Not supported			
166	Not supported			

6.7.4.1 Non-SDRAM Timing Flash Read Timing Diagram

The Burst-of-eight read timing diagram is shown in Figure 6-9.

Figure 6-9. Burst-of-Eight Synchronous Flash Timing Diagram (non-divide-by-2 mode)

memclk

This diagram is for SXCNFG:CL = 0b100, CAS latency = 5

In Figure 6-9, the following timing parameters apply:

- nADV asserted time = 1 MEMCLK
- MA, nCS setup to nADV asserted = 1 MEMCLK
- nADV deasserted to nOE asserted = Code 2 MEMCLKs

For divide-by-two mode, the following timing parameters apply:

- nADV assert time = 3 MEMCLKs
- MA, nCS setup to nADV asserted = 1 MEMCLK
- nADV deasserted to nOE asserted = (Code * 2) 4 MEMCLKs

6.8 Asynchronous Static Memory

6.8.1 Static Memory Interface

The Static Memory interface is made up of six chip selects: nCS[5:0]. The chip selects can be configured as the following:

- Non-burst ROM or Flash memory
- Burst ROM or Flash
- SRAM
- SRAM-like variable latency I/O devices

The Variable Latency I/O interface differs from SRAM in that it allows the use of the data-ready input signal, RDY, to insert a variable number of memory-cycle wait states. The data bus width for each chip-select region can be programmed as 16- or 32-bit. nCS[3:0] can also be configured for Synchronous Static Memory (refer to Section 6.7, "Synchronous Static Memory Interface" on page 6-31). During Variable Latency I/O writes, nPWE is used instead of nWE so SDRAM refreshes can be executed while performing the VLIO transfers.

The use of the signals nOE, nWE, and nPWE is summarized below:

- nOE is asserted for all reads
- nWE is asserted for Flash and SRAM writes
- nPWE is asserted for Variable Latency I/O writes

For SRAM and Variable Latency I/O implementations, DQM[3:0] signals are used for the write byte enables, where DQM[3] corresponds to the MSB. The application processor supplies 26-bits of byte address for access of up to 64 Mbytes per chip select. This byte address is sent out on the 26 external address pins. Do not connect MA[1:0] for 32-bit systems. Do not connect MA[0] for 16-bit systems (the PXA250 application processor operating in 16-bit mode or the PXA210 application processor). For all reads on a 32 bit system DQM[3:0] and MA[1:0] are 0. For all reads on a 16 bit system DQM[1:0] and MA[0] are 0. In the timing diagrams, these byte addresses are shown and referred to as "addr".

Table 6-19, 32-Bit Bus Write Access

Data Size	MA[1:0]	DQM[3:0]
8-bit	00	1110
8-bit	01	1101
8-bit	10	1011
8-bit	11	0111
16-bit	00	1100
16-bit	10	0011
32-bit	00	0000

Table 6-20, 16-Bit Bus Write Access

Data Size	MA[0]	DQM[1:0]
8-bits	0	10
8-bits	1	01
16-bits	0	00

The RT fields in the MSCx registers specify the type of memory:

- · Non-burst ROM or Flash
- SRAM
- Variable Latency I/O
- Burst-of-four ROM or Flash
- · Burst-of-eight ROM or Flash

The RBW fields specify the bus width for the memory space selected by nCS[5:0]. For a 16-bit bus width transactions occur on MD[15:0]. The BOOT_SEL pins and/or SXCNFG register must be used to configure nCS[3:0] for SMROM or some other type of Synchronous Static Memory.

6.8.2 Asynchronous Static Memory Control Registers (MSC2-0)

The MSC0, MSC1, and MSC2 are read/write registers and contain control bits for configuring Static Memory (or Variable Latency I/O) that correspond to chip-select pairs nCS(1:0), nCS(3:2), and nCS(5:4), respectively. Timing fields are specified as numbers of memory clock cycles. Each of the three registers contain two identical CNFG fields One for each chip select in the pair.

When programming a different memory type in an MSC register, ensure that the new value has been accepted and programmed before issuing a command to that memory. To do this, the MSC register must be read after it is written and before an access to the memory is attempted. This is especially important when changing from ROM/Flash to an unconstrained writable memory type (such as SRAM).

If any of the nCS[3:0] banks is configured for Synchronous Static Memory via SXCNFG[SXENx], the corresponding half-words of MSC0 and/or MSC1 are ignored, except MSCx:RBWx, the data width. Another exception is non-SDRAM timing Synchronous Flash, which writes asynchronously and requires these programmed values. Refer to Table 6-21.

Table 6-21. MSC0/1/2 Register Bit Definitions (Sheet 1 of 3)

	0x	4800	0 00 0 00 0 00	OC/											MS MS MS	C1/								Арј	olica	ation	Pro	ces	sor			
Bit	31	30	29	28	27	26 2	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RBUFF1/3/5		RRR1/3/5			RDN1/3/5				PDE1/3/5			RBW1/3/5		RT1/3/5		RBUFF0/2/4		RRR0/2/4			RDN0/2/4	i i			7/0/01/0	È		RBW0/2/4		RT0/2/4	
Reset	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	*	0	0	0

Bits	Access	Name	Description
			Return Data Buffer vs. Streaming behavior.
15	Read/Write	RBUFFx	When slower memory devices are being used in the system (e.g. VLIO, slow SRAM/ROM), this bit must be reset to allow the system to not have to remain idle while all data is being read from the device. By resetting this bit, the system is allowed to process other information. When set, the internal bus may halt while all data is returned from the device. The value of the RBUFF bit does not affect the behavior of the external memory bus. Once a transaction begins on the memory bus, it must be completed before another transaction starts.
			When Synchronous Static memory devices have been enabled for a given bank, this value will default to Streaming behavior (assuming a faster device). The register bit will still read as 0 (Return Data Buffer) unless it has specifically been programmed to a 1. This cannot be overridden.
			0 - Slower device (Return Data Buffer)
			1 - Faster device (Streaming behavior)
			ROM/SRAM recovery time.
14:12	Read/Write	RRRx<2:0>	Chip select deasserted after a read/write to next chip select (including the same static memory bank) or nSDCS asserted is equal to (RRRx * 2) memclks.
			This field must be programmed with the maximum of t_{OFF} (divided by 2), write pulse high time (Flash/SRAM), and write recovery before read (Flash).
			ROM delay next access
			Address to data valid for subsequent access to burst ROM or Flash is equal to (RDNx + 1) memclks.
11:8	Read/Write	RDNx<3:0>	nWE assertion for write accesses to SRAM is equal to (RDFx + 1) memclks.
			The nOE (nPWE) deassert time between each beat of read/write for Variable Latency I/O is equal to (RDNx + 1) memclks. For variable latency I/O, this number must be greater than or equal to 2.

Table 6-21. MSC0/1/2 Register Bit Definitions (Sheet 2 of 3)

0X4800 0008/	MSC0/	
0x4800 000C/	MSC1/	Application Processor
0x4800 0010	MSC2	

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 * 0 0 0

Bits	Access	Name	Description
7:4	Read/Write	RDFx<3:0>	ROM delay first access. RDF programmed RDF value interpreted 0-11 0-11 12 13 13 15 14 18 15 23 Address to data valid for the first read access from all devices except VLIO is equal to (RDFx + 2) memclks. Address to data valid for subsequent read accesses to non-burst devices is equal to (RDFx + 1) memclks. nWE assertion for write accesses (which are non-burst) to all Flash is equal to (RDFx + 1) memclks. nOE (nPWE) assert time for each beat of read (write) is equal to (RDFx + 1) memclks for Variable Latency I/O (nCS[5:0]).
3	Read/Write	RBWx	ROM bus width 0 - 32 bits 1 - 16 bits For reset value for RBW0, see Section 6.9. This value must be programmed with all memory types including Synchronous Static Memory. This value must not change during normal operation.

Table 6-21. MSC0/1/2 Register Bit Definitions (Sheet 3 of 3)

	0x4	800	0 00 0 00 0 00	0C/										MS	C0/ C1/ SC2								App	olica	tion	Pro	ces	sor			
Bit	31	30	29	28	27	26	25	24	23	22 2	1 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RBUFF1/3/5		RRR1/3/5			RDN1/3/5				RDF1/3/5		RBW1/3/5		RT1/3/5		RBUFF0/2/4		RRR0/2/4			RDN0/2/4				BDE0/2/4	170		RBW0/2/4		RT0/2/4	
Reset	0	1	1	1	1	1	1	1	1	1	1 1	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	*	0	0	0

Bits	Access	Name	Description
2:0	Read/Write	RTx<2:0>	ROM type 000 - Nonburst ROM or Flash Memory 001 - SRAM 010 - Burst-of-four ROM or Flash (with non-burst writes) 011 - Burst-of-eight ROM or Flash (with non-burst writes) 100 - Variable Latency I/O (VLIO) 101 - Reserved 110 - Reserved Burst refers to the device's timing. When the subsequent reads from the device take less time than the first read from a device, it is referred to as burst timing. The address bits must also be taken into account for burst timing devices. For example, in a burst-of-four device, only the lower two non-byte address bits can change for burst timing. For the PXA210 application processor, this is MA[2:1], and for 32-bit devices, this is MA[3:2]. The address order can go 00, 01, 10, 11 where the reads from 01, 10, and 11, take less time to come out of the device. For burst-of-eight devices, the lower three non-byte address bits can change. Writes to these devices are non-burst.

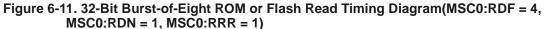
Table 6-22 provides a comparison of supported Asynchronous Static Memory types.

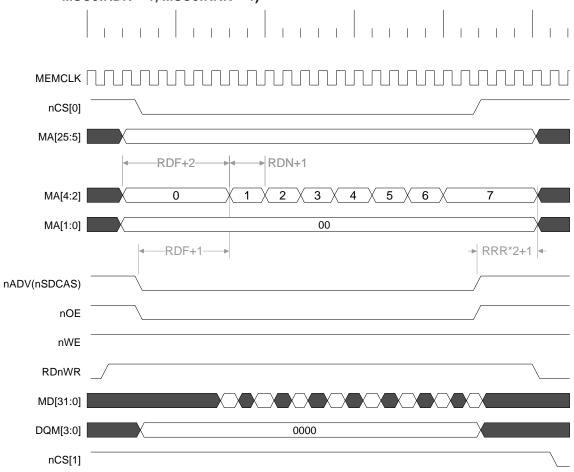
Table 6-22. Asynchronous Static Memory and Variable Latency I/O Capabilities

			Т	iming (Memo	ry Clocks)		
MSCx[RTx]	Device Type	Burst Read Address Assert	nOE Assert	Burst nOE Deassert	Burst Write Address Assert	nWE Assert	Burst nWE De- assert
000	Non-burst ROM or Flash	RDF+1	RDF+1	0	N/A	RDF+1	N/A
001	SRAM	RDN+1	RDN+1	0	RDN+2	RDN+1	1
010	Burst-of-4 ROM or Flash (non- burst writes)	RDF+1 (0,4) RDN+1 (1:3,5:7)	RDF+1 (0,4) RDN+1 (1:3,5:7)	0	N/A	RDF+1	N/A
011	Burst-of-8 ROM or Flash (non-burst writes)	RDF+1 (0) RDN+1 (1:7)	RDF+1 (0) RDN+1 (1:7)	0	N/A	RDF+1	N/A
100	Variable Latency I/O	RDF+ RDN+2+waits	RDF+1+ waits	RDN+1	RDF+ RDN+2+waits	RDF+1+ waits	RDN+1

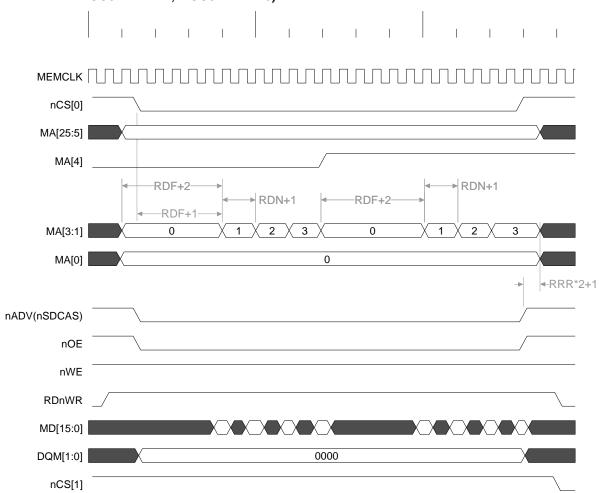
6.8.3 ROM Interface

The application processor provides programmable timing for both burst and non-burst ROMs. The RDF field in MSCx is the latency (in memory clock cycles) for the first, and all subsequent, data beats from non-burst ROMs, and the first data beat from a burst ROM. RDN is the latency for the burst data beats after the first for burst ROMs. RRR delays the following access to a different memory space to allow time for the current ROM to three-state the data bus.


RRR must be programmed with the maximum $t_{\mbox{OFF}}$ value, as specified by the ROM manufacturer.


For hardware reset initialization values, refer to Section 6.9, "16-Bit PC Card/Compact Flash Interface" on page 6-56. MSC0[15:0] is selected when the address space corresponding to nCS0 is accessed. The application processor supports a ROM burst size of 1, 4, or 8 by configuring the MSCx[RTx] register bits to 0, 2 or 3 respectfully.

6.8.3.1 ROM Timing Diagrams and Parameters


The timings for burst and non-burst ROMs are shown in Figure 6-11, Figure 6-12, and Figure 6-13.

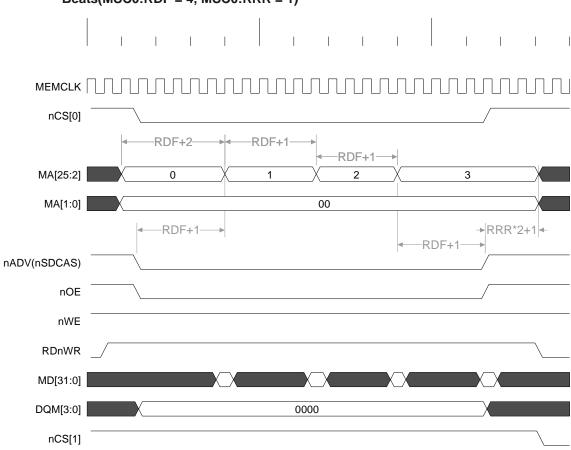
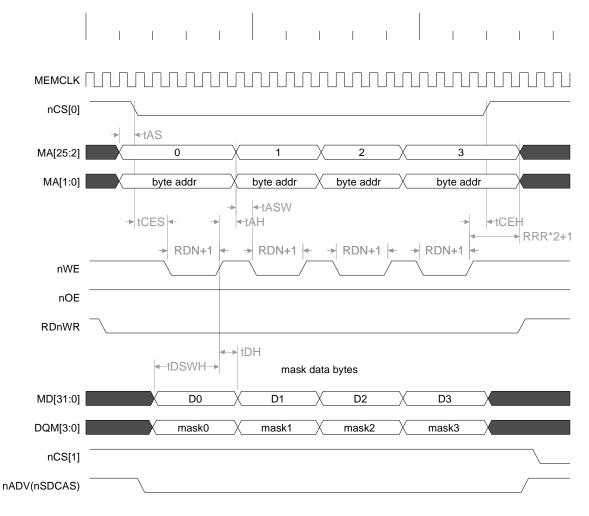


Figure 6-13. 32-Bit Non-burst ROM, SRAM, or Flash Read Timing Diagram - Four Data Beats(MSC0:RDF = 4, MSC0:RRR = 1)

6.8.4 SRAM Interface Overview

The application processor provides a 16-bit or 32-bit asynchronous SRAM interface that uses the DQM pins for byte selects on writes. nCS[5:0] select the SRAM bank. nOE is asserted on reads and nWE is asserted on writes. Address bits MA[25:0] allow up to 64 Mbytes of SRAM per bank to be addressed.

The timing for a read access is identical to that for a non-burst ROM (see Section 6.8.3.1, "ROM Timing Diagrams and Parameters" on page 6-48). The RDF fields in the MSCx registers select the latency for a read access. The MSCx[RDN] field controls the nWE low time during a write cycle. MSCx[RRR] is the time from nCS deassertion after a read to the start of an access from a different memory bank and the time from nCS deassertion after a write to the start of any other memory access. The MSCx[RRR] delay is not applied between subsequent reads from the same bank. MSCx[RTx] must be configured to 0b001 to select SRAM.


6.8.4.1 SRAM Timing Diagrams and Parameters

As shown in Figure 6-11, SRAM reads have the same timing as non-burst ROMs, except DQM[3:0] are used as byte selects. For all reads, DQM[3:0] are 0b0000. During writes, all 32 data pins are actively driven by the application processor regardless of the state of the individual DQM pins.

For writes to SRAM, if all byte enables are turned off (masking out the data, DQM = 1111), then the write enable are 1 (nWE = 1) for this write beat. This can result in a period when nCS is asserted, but neither nOE nor nWE is asserted. This happens with a write of 1 beat to SRAM, but all byte enables are turned off.

Figure 6-14 shows the timing for SRAM writes.

Figure 6-14. 32-Bit SRAM Write Timing Diagram (4-beat Burst)(MSC0:RDF = 2, MSC0:RRR = 1)

In Figure 6-14, the parameters are defined as follows:

- tAS = Address setup to nCS = 1 MEMCLK
- tCES = nCS setup to nWE = 2 MEMCLKs

- tASW = Address setup to nWE low (asserted) = 1 MEMCLK
- tDSWH = Write data setup, DQM to nWE high (deasserted) = (RDN+2) = 4 MEMCLKs
- tDH = Data, DQM hold after nWE high (deasserted) = 1 MEMCLK
- tCEH = nCS held asserted after nWE deasserted = 1 MEMCLK
- tAH = Address hold after nWE deasserted = 1 MEMCLK
- nWE high time between burst beats = 2 MEMCLKs

6.8.5 Variable Latency I/O (VLIO) Interface Overview

Variable Latency I/O read accesses differ from SRAM read accesses in that the nOE toggles for each beat of a burst. The first nOE assertion occurs two memory cycles after the assertion of the chip select nCS<x>. Also, for Variable Latency I/O writes, nPWE is used instead of nWE so SDRAM refreshes can be executed while performing the VLIO transfers. Variable Latency I/O is selected by programming the MSCx[RTx] bits as 0b100.

Both reads and writes for VLIO differ from SRAM in that the application processor samples the data-ready input, RDY. The RDY signal is level sensitive and goes through a two-stage synchronizer on input. When the internal RDY signal is high, the I/O device is ready for data transfer. This means that for a transaction to complete at the minimum assertion time for either nOE or nPWE (RDF+1), the RDY signal must be high two clocks prior to the minimum assertion time for either nOE or nPWE (RDF-1). Data will be latched on the rising edge of memclk once the internal RDY signal is high and the minimum assertion time of RDF+1 has been reached. Once the data has been latched, the address may change on the next rising edge of memclk or any cycles thereafter. The nOE or nPWE signal will de-assert one memclk after data is latched. Before a subsequent data beat, nOE or nPWE remains deasserted for RDN+1 memory cycles. The chip select and byte selects, DQM[3:0], remain asserted for one memory cycle after the burst's final nOE or nPWE deassertion.

For both reads and writes from/to VLIO, a DMA mode exists that does not increment the address to the VLIO, which will allow port-type VLIO chips to interface to the application processor. See DCMDx[INCSRCADDR] and DCMDx[INCTRGADDR] in Table 5-12, "DCMDx Register Bitmap and Bit Definitions" on page 5-24.

For writes to VLIO, if all byte enables are turned off, masking out the data, DQM = 1111, the write enable is suppressed (nPWE = 1) for this write beat to VLIO. This can result in a period when nCS is asserted, but neither nOE nor nPWE is asserted (this happens when there is a write of 1 beat to VLIO, but all byte enables are turned off).

6.8.5.1 Variable Latency I/O Timing Diagrams and Parameters

Figure 6-15 shows the timing for Variable Latency I/O reads and Figure 6-16 shows the timing for Variable Latency I/O writes.

Figure 6-15. 32-Bit Variable Latency I/O Read Timing (Burst-of-Four, One Wait Cycle Per Beat) (MSC0:RDF = 2, MSC0:RDN = 2, MSC0:RRR = 1)

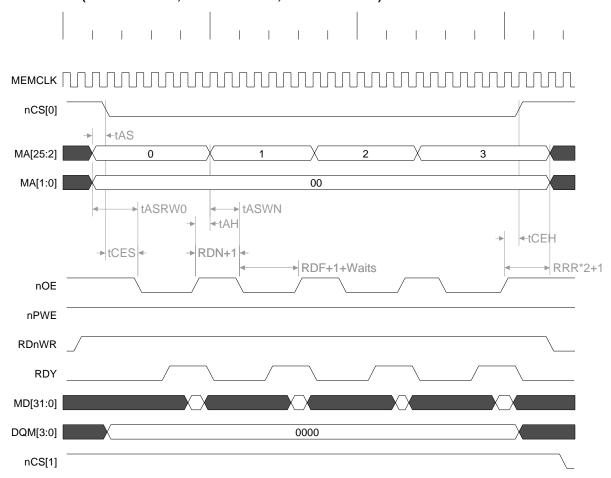
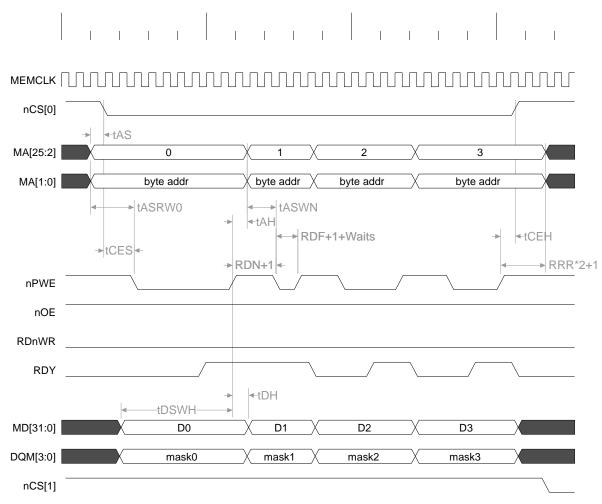



Figure 6-16. 32-Bit Variable Latency I/O Write Timing (Burst-of-Four, Variable Wait Cycles Per Beat)

In Figure 6-15 and Figure 6-16, some of the parameters are defined as follows:

- tAS = Address setup to nCS = 1 MEMCLK
- tCES = nCS setup to nOE or nPWE = 2 MEMCLKs
- tASRW0 = Address setup to nOE or nPWE low (asserted) = 3 MEMCLKs
- tASRWn = Address setup to nOE or nPWE low (asserted) = RDN MEMCLKs
- tDSWH,min = Minimum Write data, DQM setup to nPWE high (deasserted) = (RDF+2) MEMCLKs
- tDHW = Data, DQM hold after nPWE high (deasserted) = 1 MEMCLK
- tDHR = Data hold required after nOE deasserted = 0 ns
- tCEH = nCS held asserted after nOE or nPWE deasserted = 1 MEMCLK
- tAH = Address hold after nOE or nPWE deasserted = 1 MEMCLK
- nOE or nPWE high time between burst beats = (RDN+1) MEMCLKs

6.8.6 FLASH Memory Interface

The application processor provides an SRAM-like interface for access of Flash memory. The RDF fields in the MSCx registers are the latency for each read access to non-burst Flash, or the first read access to burst Flash. The RDF fields also control the nWE low time during a write cycle to Flash. The RDN field controls subsequent read access times to burst Flash and the nWE low time during a write cycle to non-burst Flash. RRR is the time from nCS deassertion after a read to the start of a read from a different memory, or after a write to another memory access.

Reads from Flash memory have the following requirements:

- Because Flash defaults to Read-Array mode, burst reads are permitted out of Flash, which allows instruction caching and DMA reads from Flash.
- Software partitions commands and data and writes the commands to Flash before the read. The Memory controller does not insert any commands before Flash reads.

Writes to Flash memory have the following requirements:

- Flash memory space must be uncacheable and unbuffered.
- Burst writes to Flash are not supported. Writes to Flash must be exactly the width of the populated Flash devices on the data bus and must be a burst length of one write, for example no byte writes to a 32-bit bus. The allowable writes are: 2 bytes written to a 16-bit bus, and 4-bytes written to a 32-bit bus.
- For asynchronous writes to Flash, the command and data must be given in separate write instructions to the Memory controller, the first carries the command, the next carries the data.
- The Memory controller does not insert any commands before Flash writes. Software must write the commands and data in the correct order.
- No Flash writes can be bursts. DMA must never write to Flash.

For writes to Flash, if all byte enables are turned off (masking out the data, DQM = 1111), the write enable is suppressed (nWE = 1) for the write beat, which can result in a period when nCS is asserted, but neither nOE nor nWE is asserted. This happens when there is a 1-beat write to Flash, but all byte enables are turned off.

6.8.6.1 FLASH Memory Timing Diagrams and Parameters

Non-burst Flash reads have the same timing as non-burst ROMs reads. Figure 6-17 shows the timing for writes to non-burst asynchronous Flash.

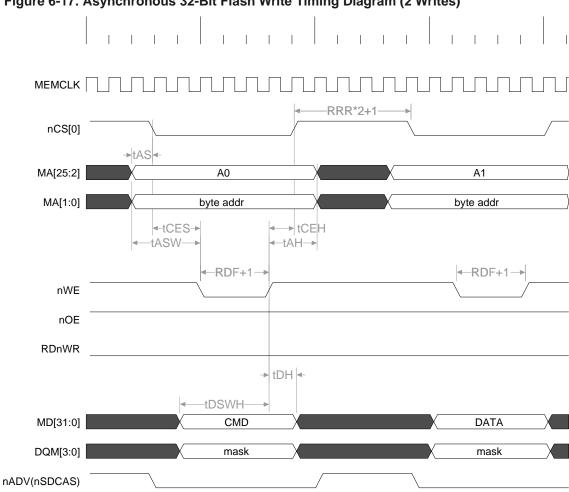


Figure 6-17. Asynchronous 32-Bit Flash Write Timing Diagram (2 Writes)

In Figure 6-17 some of the parameters are defined as follows:

- tAS = Address setup to nCS = 1 MEMCLK
- tCES = nCS setup to nWE = 2 MEMCLKs
- tASW = Address setup time to nWE asserted = 3 MEMCLKs
- tDSWH = Write data, DQM setup to nWE deasserted = (RDF+2) MEMCLKs
- tDH = Data, DQM hold after nWE deasserted = 1 MEMCLKs
- tCEH = nCS held asserted after nWE deasserted = 1 MEMCLK
- tAH = Address hold after nWE deasserted = 1 MEMCLKs

16-Bit PC Card/Compact Flash Interface 6.9

The following sections provide information on the card interface based on the PC Card Standard -Volume 2 - Electrical Specification, Release 2.1, and CF+ and CompactFlash Specification Revision 1.4. Only 8- and 16-bit data transfers are supported.

Note: The PXA210 application processor does not support the 16-bit PC Card or the Compact Flash Interface. None of the information in Section 6.9, "16-Bit PC Card/Compact Flash Interface" applies to the PXA210 application processor.

6.9.1 Expansion Memory Timing Configuration Register

MCMEM0, MCMEM1, MCATT0, MCATT1, MCIO0, and MCIO1 are read/write registers that contain control bits for configuring the timing of the 16-bit PC Card/Compact Flash interface.

The programming of each of the four fields in each of the six registers lets software to individually select the duration of accesses to I/O, common memory, and attribute space for each of two 16-bit PC Card/Compact Flash card slots.

Refer to Table 6-23 through Table 6-25 for bitmaps of the MCMEMx registers. Also refer to Table 6-26. Refer to Figure 6-24 and Figure 6-25 for a 16-bit PC Card/Compact Flash timing diagram.

Table 6-23. MCMEMx Register Bitmap

				4800 (4800 (1CM 1CM		-							Арр	olica	ation	Pro	ces	sor			
Bit	31	30 29	28	27 2	6 25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserved								MEMx_	HOLD			Recerved	200		784	MEIMX_ ASST						MEIMX_ SET			
Reset	0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bits		N	ame												D	esci	riptic	n										
		31:20			-												R	ese	erve	d										
		19:14		MCM (IEM>	(_H	Nu	ımb	er o	f m	emo	ory (cloc	ks 1	to h	old			s af		con	nma	nd	dea	sse	rtio	1 foi	r MC	CME	ΞM
		13:12			-												R	ese	erve	d										
		11:7		MCM	IEM> SST	(_A	Cod	de fo	or th	e cc	mm	and	lass						able mma					cripti	on c	of th	is co	de a	and	its
		6:0		MCM	IEM> ET	c_S	Nu	mbe	er of	me	emo	ry c	loci	(S t	o se	t up			ss b cket		re c	om	maı	nd a	sse	rtio	n fo	r MC	CME	ΞM

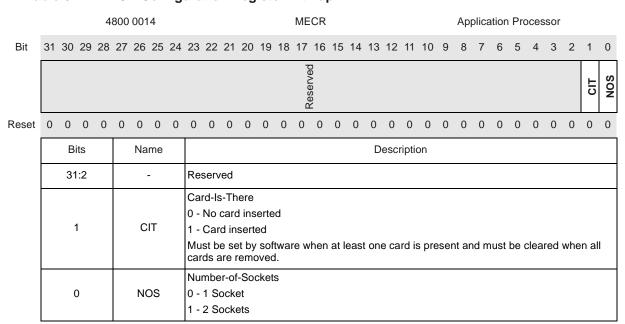
Table 6-24. MCATTx Register Bitmap

						003						•		-	MCA MCA		-							Арр	olica	ation	Pro	ces	sor			
Bit	31	30	29	28	27	26 2	5 2	24 :	23	22	21	20	19	18	17	16	15	14	13 1	2	11	10	9	8	7	6	5	4	3	2	1	0
						Reserved									ATTx_	HOLD			Reserved			YII.	ASST	ı				ATTX	SET			
Reset	0	0	0	0	0	0 ()	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0
		Bit	S			Nam	е												Des	scri	ptio	n										
		31:2	20			-													Re	ser	ve	d										
		19:	14		МС	ATTX LD	_H	0	Nu	ımb	er c	of m	nem	ory	clo	cks	to ł	old	addr for s				con	nma	and	dea	sse	rtio	n fo	or M	CAT	ТТ
		13:	12			-													Re	ser	ve	d										
		11:	7		MC	ATT> ST	(_A	S	Cod	le fo	or th	e co	omm	nanc	d ass				See the c							cripti	ion c	of th	is co	ode a	and	its
		6:0	0		MC	ATTX T	_S	E	Nu	mb	er o	f m	emo	ory (cloc	ks t	to s	et u	p add				ore (com	nma	nd	asso	ertic	on fo	or M	ICA	тт

Table 6-25. MCIOx Register Bitmap

						003										100 101							Ар	plica	ation	Pro	ces	sor			
Bit	31	30	29	28	27	26 2	25	24	23	22	21	20	19	18	17	16	15	14	13 12	2 11	10	9	8	7	6	5	4	3	2	1	0
						Reserved									ŏ	HOLD			Reserved			NO.	Aool				9	SET_	ļ		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
		Bit	ts			Nam	ne												Des	cripti	ion										
		31:	20			-													Res	erv	ed										
		19:	14		MC	D IOx_	HC	DL	Nui	mbe	er of	me	emo	ry (cloc	ks t	o h	old a	addres soc	ss a		cor	nma	nd (deas	sser	tion	ı for	MC	IO 1	for
		13:	12			-													Res	erv	ed										
		11:	:7		MC	LIOx_ T	_AS	SS	Coc	le fo	or th	e co	mm	nand	d as				See 1						cripti	ion c	of th	is co	ode a	and	its
		6:0	0		МС	CIOx_	_SE	ĒΤ	Nur	nbe	er of	me	mo	ry c	loc	ks to	se	t up	addre	ess l ket		ore (com	mar	ıd a	sser	tior	n foi	MC	IO 1	for

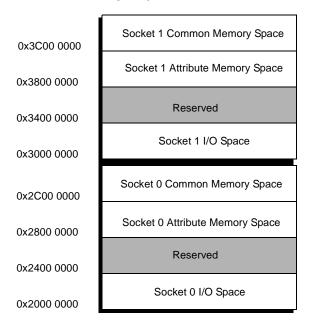
Table 6-26. Card Interface Command Assertion Code Table


MCMEMX_A MCATTX_A MCIOX_AS	SST	x_ASST_WAIT	x_ASST_HOLD	x_ASST_WAIT + x_ASST_HOLD
Programmed Bit Value (Code)	Code decimal value (Code)	# MEMCLKs to wait before checking for nPWAIT='1' (Code + 2)	# MEMCLKs to assert command after nPWAIT='1' (2*Code + 1)	# MEMCLKs for Minimum command assertion time (3*Code + 3)
00000	0	2	1	3
00001	1	3	3	6
00010	2	4	5	9
00011	3	5	7	12
00100	4	6	9	15
00101	5	7	11	18
00110	6	8	13	21
00111	7	9	15	24
01000	8	10	17	27
01001	9	11	19	30
01010	10	12	21	33
01011	11	13	23	36
01100	12	14	25	39
01101	13	15	27	42
01110	14	16	29	45
01111	15	17	31	48
10000	16	18	33	51
10001	17	19	35	54
10010	18	20	37	57
10011	19	21	39	60
10100	20	22	41	63
10101	21	23	43	66
10110	22	24	45	69
10111	23	25	47	72
11000	24	26	49	75
11001	25	27	51	78
11010	26	28	53	81
11011	27	29	55	84
11100	28	30	57	87
11101	29	31	59	90
11110	30	32	61	93
11111	31	33	63	96

6.9.2 Expansion Memory Configuration Register (MECR)

To eliminate external hardware, two bits, shown in Table 6-27, are used to signal the memory controller when a card (16-Bit PC Card/Compact Flash) is inserted in the socket and the number of cards supported in the system. The number-of-sockets bit is required because the PSKTSEL pin is used as the nOE for the data transceivers in single socket mode. The card-is-there bit is used to reduce external hardware by ignoring nIOIS16 and nPWAIT when there is no card inserted in the socket.

Table 6-27. MECR Configuration Register Bitmap


6.9.3 16-Bit PC Card Overview

The PXA250 application processor 16-bit PC Card interface provides control for one 16-bit PC Card card slot with a PSKTSEL pin for support of a second slot. The PXA250 application processor interface supports 8- and 16-bit peripherals and handles common memory, I/O, and attribute-memory accesses. The duration of each access is based on the values programmed in the fields in the MCMEMx, MCATTx, and MCIOx registers. Figure 6-21 shows the memory map for the 16-bit PC Card space.

Note: The PXA210 application processor does not support the 16-bit PC Card.

Figure 6-21. 16-Bit PC Card Memory Map

The 16-bit PC Card Memory Map space is divided into eight partitions, four for each card slot. The four partitions for each card slot are: common memory, I/O, attribute memory, and a reserved space. Each partition starts on a 64-Mbyte boundary.

During an access, pins MA[25:0], nPREG, and PSKTSEL are driven at the same time. nPCE1 and nPCE2 are driven concurrently with the address signals for common memory and attribute-memory accesses. For I/O accesses, their value depends on the value of nIOIS16 and is valid a fixed amount of time after nIOIS16 is valid.

Common memory and attribute memory accesses assert the nPOE or nPWE control signals. I/O accesses assert the nIOR or nIOW control signals and use the nIOIS16 input signal to determine the bus width of the transfer (8 or 16 bits). The PXA250 application processor uses nPCE2 to indicate to the expansion device that the upper half of the data bus (MD[15:8]) are used for the transfer, and nPCE1 to indicate that the lower half of the data bus (MD[7:0]) are used. nPCE1 and nPCE2 are asserted for 16-bit accesses.

Refer to Table 6-28 through Table 6-35 for signal combinations during common memory, I/O, and attribute accesses.

When writes goes to a card sockets and a byte has been masked via an internal byte enable, the write does not occur on the external bus. For reads, one half-word is always read from the socket, even if only 1 byte is requested. In some cases, based on internal address alignment, one word is read, even if only 1 byte is requested.

All DMA modes are supported in the Card interface increment the address.

Table 6-28. Common Memory Space Write Commands

nPCE2	nPCE1	MA<0>	nPOE	nPWE	MD[15:8]	MD[7:0]
0	0	0	1	0	Odd Byte	Even Byte
1	0	0	1	0	Unimportant	Even Byte
1	0	1	1	0	Unimportant	Odd Byte

Table 6-29. Common Memory Space Read Commands

nPCE2	nPCE1	MA<0>	nPOE	nPWE	MD[15:8]	MD[7:0]
0	0	0	0	1	Odd Byte	Even Byte

Table 6-30. Attribute Memory Space Write Commands

nPCE2	nPCE1	MA<0>	nPOE	nPWE	MD[15:8]	MD[7:0]
0	0	0	1	0	Unimportant	Even Byte
1	0	0	1	0	Unimportant	Even Byte
1	0	1	1	0	Unimportant	Unimportant

Table 6-31. Attribute Memory Space Read Commands

Ī	nPCE2	nPCE1	MA<0>	nPOE	nPWE	MD[15:8]	MD[7:0]
	0	0	0	0	1	Unimportant	Even Byte

Table 6-32. 16-Bit I/O Space Write Commands (nIOIS16 = 0)

nPCE2	nPCE1	MA<0>	nPIOR	nPIOW	MD[15:8]	MD[7:0]
0	0	0	1	0	Odd Byte	Even Byte
1	0	0	1	0	Unimportant	Even Byte
1	0	1	1	0	Unimportant	Odd Byte

Table 6-33. 16-Bit I/O Space Read Commands (nIOIS16 = 0)

nPCE2	nPCE1	MA<0>	nPIOR	nPIOW	MD[15:8]	MD[7:0]
0	0	0	0	1	Odd Byte	Even Byte

Table 6-34. 8-Bit I/O Space Write Commands (nIOIS16 = 1)

nPCE2	nPCE1	MA<0>	nPIOR	nPIOW	MD[15:8]	MD[7:0]
1	0	0	1	0	Unimportant	Even Byte
1	0	1	1	0	Unimportant	Odd Byte

Table 6-35. 8-Bit I/O Space Read Commands (nIOIS16 = 1)

nPCE2	nPCE1	MA<0>	nPIOR	nPIOW	MD[15:8]	MD[7:0]
1	0	0	0	1	Unimportant	Even Byte
1	0	1	0	1	Unimportant	Odd Byte

6.9.4 External Logic for 16-Bit PC Card Implementation

The PXA250 application processor requires external glue logic to complete the 16-bit PC Card socket interface that allows either 1-socket or 2-socket solutions.

Figure 6-22 and Figure 6-23 show general solutions for a one- and two-socket configuration. The pull-ups shown are included as specified in the *PC Card Standard - Volume 2 - Electrical Specification*. Low-power systems must remove power from the pull-ups during sleep to avoid unnecessary power consumption.

GPIO or memory-mapped external registers can be used to control the reset of the 16-bit PC Card interface, power selection (V_{CC} and V_{PP}), and drive enables. The INPACK# signal is not used.

Figure 6-22 and Figure 6-23 provide the logical connections necessary to support hot insertion capability. For dual-voltage support, level shifting buffers are required for all PXA250 application processor input signals. Hot insertion capability requires that each socket be electrically isolated from the other and from the remainder of the memory system. If one or both of these features is not required, then some of the logic shown in the following diagrams can be eliminated.

Software is responsible for setting the MECR[NOS] and MECR[CIT] bits. NOS indicates the number of sockets that the system support while CIT is written when the Card is in place. Input pins nPWAIT and nIOIS16 are three stated until card detect (CD) signal is asserted. To achieve this, software programs the MECR[CIT] bit when a card is detected. If the MECR[CIT] is 0, the nPWAIT and nIOIS16 inputs are ignored.

Figure 6-22 shows the minimal glue logic needed for a 1-socket system, including: data transceivers, address buffers, and level shifting buffers. The transceivers are enabled by the PSKTSEL signal. The DIR pin of the transceiver is driven by the RD/nWR pin. A GPIO is used for the three-state signal of the address and nPWE lines. These signals must be three-stated because they are used for memories other than the card interface. The Card Detect[1:0] signals are driven by the signal device.

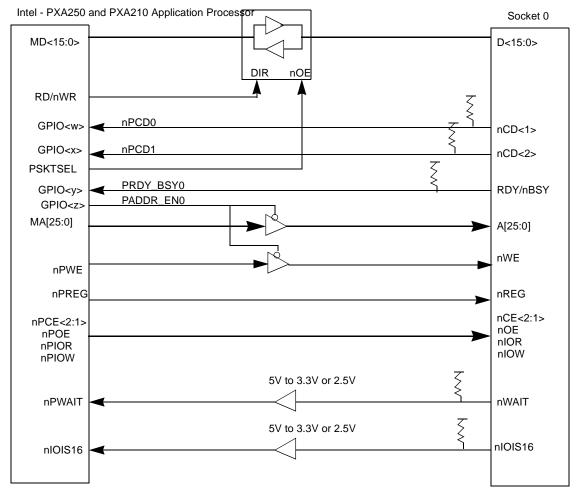
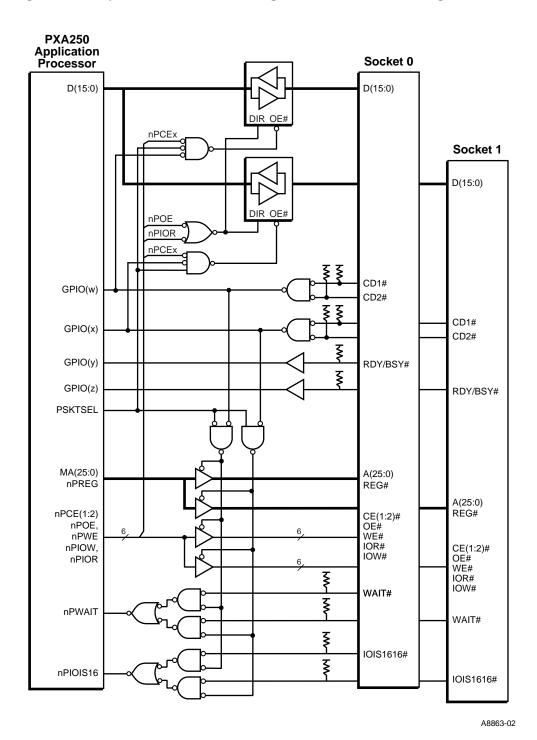



Figure 6-22. Expansion Card External Logic for a One-Socket Configuration

Figure 6-23 shows the glue logic need for a 2-socket system. RDY/nBSY signals are routed through a buffer to two separate GPIO pins. In the data bus transceiver control logic, nPCE1 controls the enable for the low byte lane and nPCE2 controls the enable for the high byte lane.

Figure 6-23. Expansion Card External Logic for a Two-Socket Configuration

PXA250 and PXA210 Application Processors Developer's Manual

6.9.5 Expansion Card Interface Timing Diagrams and Parameters

Figure 6-24 shows a 16-bit access to a 16-bit memory or I/O device. When common memory is accessed, the MCMEM0 and MCMEM1 registers are used, depending on whether card socket 0 or 1 is addressed. MCIO0 and MCIO1 are used for I/O accesses and MCATT0 and MCATT1 are used for access to attribute memory.

Figure 6-24. 16-Bit PC Card Memory or I/O 16-Bit (Half-word) Access

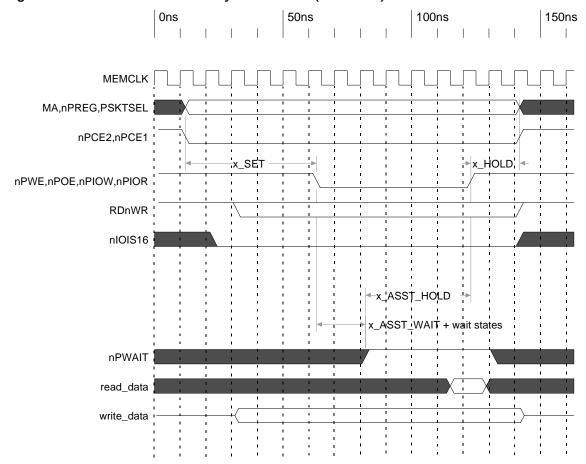
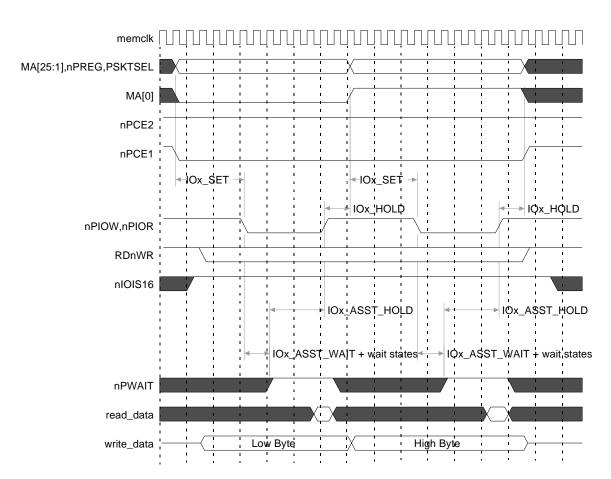



Figure 6-25. 16-Bit PC Card I/O 16-Bit Access to 8-Bit Device

The interface waits the smallest possible amount of time (x_ASST_WAIT) before it checks the value of the nPWAIT signal. If the nPWAIT signal is asserted (active low), the interface continues to wait (for a variable number of wait states) until nPWAIT is deasserted. When the nPWAIT signal is deasserted, the command continues to be asserted for a fixed amount of time (x_ASST_HOLD).

6.10 Companion Chip Interface

The application processor can be connected to a companion chip in two different ways:

- Alternate Bus Master Mode
- Variable Latency I/O (See Section 6.8.5, "Variable Latency I/O (VLIO) Interface Overview")

The connection methods are illustrated in Figure 6-26 and Figure 6-27.

Figure 6-26. Alternate Bus Master Mode

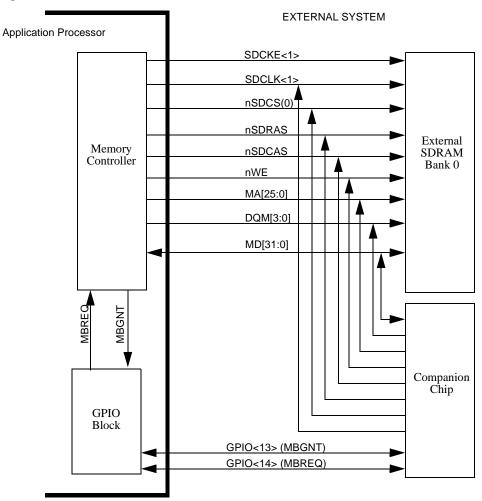


Figure 6-27. Variable Latency IO

6.10.1 Alternate Bus Master Mode

The application processor supports the presence of an alternate master on the SDRAM memory bus. The alternate master is given control of the bus with a hardware handshake that is performed through MBREQ and MBGNT, which are invoked through the alternate functions on GPIO<14> and GPIO<13>, respectively. The Memory Controller performs an SDRAM refresh if SDRAM clocks and clock enable are turned on. When the alternate master must take control of the memory bus, it asserts MBREQ. It then deasserts SDCKE<1> and three-states all memory bus pins used with SDRAM bank 0 (nSDCS<0>, MA[25:0], nOE, nWE, nSDRAS, nSDCAS, SDCLK<1>, MD[31:0], DQM[3:0]). All other memory and 16-bit PC Card pins remain driven. RD/nWR remain low. Then the application processor asserts MBGNT, the alternate master starts to drive all pins including SDCLK<1>, and the application processor reasserts SDCKE<1>.

The grant sequence and timing follow:

- 1. The Alternate master asserts MBREO.
- 2. The Memory Controller performs an SDRAM refresh if SDRAM clocks and clock enable are turned on
- 3. If the MDCNFG:SA1111x bit is enabled, the Memory Controller sends the SDRAMs an MRS command to change the SDRAM burst length to one. The burst length is changed to one for SA-1111 compatibility.
- 4. The application processor deasserts SDCKE<1> at time (t).
- 5. The application processor three-states SDRAM outputs at time (t + 1 MEMCLK).
- 6. The application processor asserts MBGNT at time (t + 2 MEMCLKS).
- 7. The Alternate master drives SDRAM outputs before time (t + 3 MEMCLKS).
- 8. The application processor asserts SDCKE<1> at time (t + 4 MEMCLKS).

During the three-state period, both MBREQ and MBGNT remain high and an external device can take control of the three-stated pins. The external device must drive all the three-stated pins. Floating inputs can cause excessive crossover current and erroneous SDRAM commands. During the three-state period, the application processor can not perform SDRAM refresh cycles.

The alternate master must assume the responsibility for SDRAM integrity during the three-state period. The system must be designed to ensure that the period of alternate mastership is limited to less than the refresh period or that the alternate master implements a refresh counter to perform refreshes at the proper intervals.

To surrender the bus, the alternate master deasserts MBREQ. The application processor deasserts SDCKE<1> and MBGNT. The alternate master stops driving the SDRAM pins. The application processor drives all SDRAM pins and then re-asserts SDCKE<1>.

The release sequence and timing follows:

- 1. The Alternate master deasserts MBREQ.
- 2. The application processor deasserts SDCKE<1> at time (t).
- 3. The application processor deasserts MBGNT at time (t + 1 MEMCLK).
- 4. The Alternate master three-states SDRAM outputs prior to time (t + 2 MEMCLKS).
- 5. The application processor drives SDRAM outputs at time (t + 3 MEMCLKS).
- 6. The application processor asserts SDCKE<1> at time (t + 4 MEMCLKS).

- 7. The Memory Controller performs an SDRAM refresh if SDRAM clocks and clock enable are turned on.
- 8. The Memory Controller sends an MRS command to the SDRAMs if the MDCNFG:SA1111x bit is enabled. This changes the SDRAM burst length back to four.

If the refresh counter for the application processor requested a refresh cycle during the alternate master's tenure, a refresh cycle runs first, followed by any other bus transactions that stalled during that period.

To enable alternate bus master, the set up the signals by writing the following registers:

- Write the GPIO Pin Direction register GPDR0 to set bit 13 (make GPIO<13> an output) and clear bit 14 (make GPIO<14> an input)
- Write the GPIO Alternate Function register GAFRO_L to set bits 27 and 26 to 0b11 (enable the MBGNT alternate function 3) and set bits 29 and 28 to 0b01 (enable the MBREQ alternate function 1).

6.10.1.1 GPIO Reset

During GPIO Reset, the GPIOs, including MBREQ and MBGNT, are set to their reset state. The MBREQ and MBGNT pins become general purpose inputs. The system must have external pullups on these pins to prevent the pins from floating.

If a transaction is in progress when GPIO Reset is asserted, the alternate master loses ownership of the bus. The alternate master must immediately give up the bus when MBGNT is deasserted. Because the memory controller is not reset, an SDRAM refresh can occur immediately after the GPIO Reset assertion.

6.10.1.2 nVDD_FAULT/nBATT_FAULT with PMCR[IDAE] Disabled

If an nVDD_FAULT or nBATT_FAULT occurs, the application processor places the GPIOs into their sleep states. MBGNT must be programmed to go high during sleep.

The memory controller prevents the application processor from entering sleep until all outstanding transactions have completed. This includes waiting for the MBREQ signal from the alternate master to deassert. For best sleep performance, the alternate master must immediately give up the bus when MBGNT is deasserted. If necessary, the alternate master can hold the bus until its transaction is completed. After the memory controller has completed all outstanding transactions, it places SDRAM into self-refresh and allows the application processor to complete the sleep entry sequence.

Note: The alternate bus master must de-assert MBREQ when nVDD_FAULT or nBATT_FAULT is asserted.

6.10.1.3 nVDD FAULT/nBATT FAULT with PMCR[IDAE] Enabled

If an nVDD_FAULT or nBATT_FAULT occurs with PMCR[IDAE] enabled, the application processor causes an Imprecise Data Abort Exception. This allows the application processor to do any required actions before sleep entry. Sleep entry with PMCR[IDAE] enabled is similar to normal sleep entry. The application processor places the GPIOs into their sleep states. MBGNT must be programmed to go high during sleep.

The memory controller prevents the application processor from entering sleep until all outstanding transactions have completed. This includes waiting for the MBREQ signal from the alternate master to deassert. For best sleep performance, the alternate master must immediately give up the bus when MBGNT is deasserted or, as part of the sleep entry routine, the alternate master can be disabled. If necessary, the alternate master can hold the bus until its transaction is completed. After the memory controller has completed all outstanding transactions, it places SDRAM into selfrefresh and allows the application processor to complete the sleep entry sequence.

The alternate bus master must de-assert MBREQ when nVDD_FAULT or nBATT_FAULT is Note: asserted.

6.11 **Options and Settings for Boot Memory**

This section explains the settings that control Boot Memory configurations.

6.11.1 Alternate Booting

The application processor allows six boot configurations. These configurations are determined by the three BOOT_SEL(2:0) pins and are described in Table 6-36. A description of the effect of these input pins on the Configuration registers at boot time is included in Section 6.9, "16-Bit PC Card/ Compact Flash Interface" on page 6-56.

	BOOT_SEL	
_		

Table 6-36. BOOT_SEL Definitions

BOOT_SEL			Boot From	
2	1	0	Boot 110III	
0	0	0	Asynchronous 32-bit ROM	
0	0	1	Asynchronous 16-bit ROM	
0	1	0	Reserved	
0	1	1	Reserved	
1	0	0	1- 32-bit Synchronous Mask ROM (64 Mbit) 2- 16-bit Synchronous Mask ROMs = 32 bits (32 Mbit each)	
1	0	1	1- 16-bit Synchronous Mask ROM (64 Mbit)	
1	1	0	2- 16-bit Synchronous Mask ROMs = 32 bits (64 Mbit each)	
1	1	1	1- 16-bit Synchronous Mask ROM (32 Mbit)	

6.11.2 **Boot Time Defaults**

The following sections provide information on boot time default parameters.

6.11.2.1 BOOT_DEF Read-Only Register (BOOT_DEF)

The read-only BOOT_DEF register contains the boot-up values for the three BOOT_SEL pins and the single package-type bit. Refer to Table 6-37.

Table 6-37. BOOT_DEF Register Bitmap

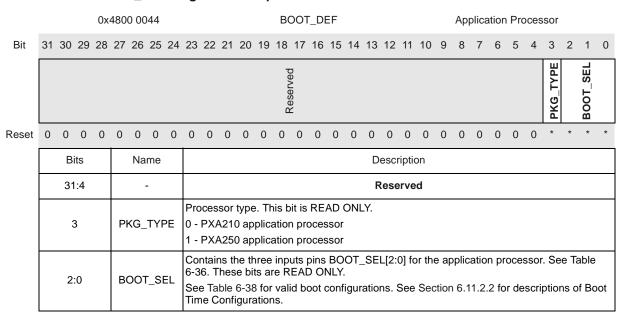
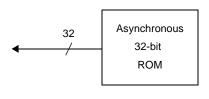


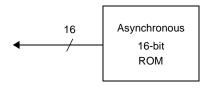
Table 6-38. Valid Boot Configurations Based on Processor Type

Processor Type	Boot_Sel Signals Valid Booting Configurations
	001
0 (PXA210 application processor)	011
(FAA2 TO application processor)	101
	111
	000
	001
	010
1 (DVA250 application processor)	011
1 (PXA250 application processor)	100
	101
	110
	111


6.11.2.2 Boot-Time Configurations

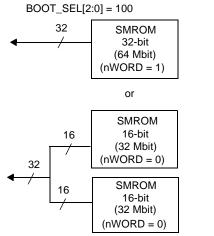
The boot time configurations are shown in Figure 6-28 - Figure 6-30. A boot from a single 32-Mbit SMROM with nWORD = 1 is not supported.

Three Configuration registers are affected at reset - MSC0:RBW0, MDREFR:E0PIN/K0RUN, and SXCNFG.


Figure 6-28. Asynchronous Boot Time Configurations and Register Defaults

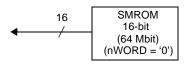
BOOT_SEL[2:0] = 000

MSC0	7FF0 7FF0	
RBW0 = 0		
SXCNFG	0004 0004	
MDREFR	03CA 4FFF	
E0PIN = 0, K0RUN = 0		


BOOT_SEL[2:0] = 001

MSC0	7FF0 7FF8	
RBW0 = 1		
SXCNFG	0004 0004	
MDREFR	03CA 4FFF	
E0PIN = 0, K0RUN = 0		

Figure 6-29. SMROM Boot Time Configurations and Register Defaults

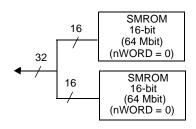


MSC0	7FF0 7FF0		
RBW0 = 0			
SXCNFG	0004 4531		
SXEN0 = 1h, SXCL0 = 4h (CL = 5), SXRL0 = 1h (RL = 2), SXRA0 = 1h (13-bits), SXCA0 = 1h (8-bits), SXTP0 = 0h, SXLATCH=1h			
MDREFR	03CA 7FFF		
E0PIN = 1, K0RUN = 1			

MRS value must be 0061h.

The number of banks in the device defaults to zero.

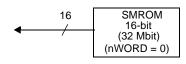
MSC0	7FF0 7FF8		
RBW0 = 1			
SXCNFG	0004 4931		
SXEN0 = 1h, SXCL0 = 4h (CL = 5), SXRL0 = 1h (RL = 2), SXRA0 = 1h (13-bits), SXCA0 = 2h (9-bits), SXTP0 = 0h, SXLATCH=1h			
MDREFR	03CA 7FFF		
E0PIN = 1, K0RUN = 1			


MRS value must be 0061h.

The number of banks in the device defaults to zero.

Figure 6-30. SMROM Boot Time Configurations and Register Defaults (Continued)

BOOT_SEL[2:0] = 110


MSC0	7FF0 7FF0			
RBW0 = 0	RBW0 = 0			
SXCNFG	0004 4931			
SXEN0 = 1h, SXCL0 = 4h (CL = 5), SXRL0 = 1h (RL = 2), SXRA0 = 1h (13-bits), SXCA0 = 2h (9-bits), SXTP0 = 0h, SXLATCH=1h				

MDREFR	03CA 7FFF	
E0PIN = 1, K0RUN = 1		

MRS value must be 0061h.

The number of banks in the device defaults to zero.

BOOT_SEL[2:0] = 111

MSC0	7FF0 7FF8	
RBW0 = 1		
SXCNFG	0004 4531	
SXEN0 = 1h, SXCL0 = 4h (CL = 5), SXRL0 = 1h (RL = 2), SXRA0 = 1h (13-bits), SXCA0 = 1h (8-bits), SXTP0 = 0h, SXLATCH=1h		
MDREFR	03CA 7FFF	
E0PIN = 1, K0RUN = 1		

MRS value must be 0061h.

The number of banks in the device defaults to zero.

6.11.3 Memory Interface Reset and Initialization

On reset, the SDRAM Interface is disabled. Reset values for the Boot ROM are determined by BOOT_SEL. The memory pins and controller are in the state shown in Table 6-39.

Table 6-39. Memory Controller Pin Reset Values (Sheet 1 of 2)

Pin Name	PXA250 Application Processor Reset Value	PXA210 Application Processor Reset Value	
SDCLK [2:0]	000		
SDCKE <1>	00		
SDCKE <0>	1 if BOOT_SEL = Synchronous Memory		
DQM [3:0]	0000		
nSDCS [3:0]	1111	0011	

Table 6-39. Memory Controller Pin Reset Values (Sheet 2 of 2)

Pin Name	PXA250 Application Processor Reset Value	PXA210 Application Processor Reset Value		
nWE	,	1		
nSDRAS	,	1		
nSDCAS	,	1		
nOE	,	1		
MA [25:0]	0x000	0x000000h		
RDnWR	0			
MD [31:0]	0x0000000h			
nCS <0>	1			
nCS <5:1>	GPIO Input			
nPIOIR	GPIO Input			
nPIOIW	GPIO Input			
nPOE	GPIO Input			
nPWE	GPIO Input			

In Sleep Mode, the memory pins and controller are in the same state as they are after a hardware reset, except that the GPIO signals are driven high. If SDRAMs are in self-refresh, they are held there by setting SDCKE<1> to a 0.

6.12 Hardware, Watchdog, or Sleep Reset Operation

Software performs the following procedures when the application processor comes out of a reset:

- 1. After hardware reset, complete a power-on wait period of 200 µs, which allows the internal clocks that generate SDCLK to stabilize. Enable MDREFR:K0RUN and E0PIN for Synchronous Static memory. When MDREFR is written, a refresh interval value (MDREFR:DRI) must also be written. The following writes are allowed:
 - a. Write MSC0, MSC1, MSC2
 - b. Write MECR, MCMEM0, MCMEM1, MCATT0, MCATT1, MCIO0, MCIO1
 - c. Write MDREFR:K0RUN and MDREFR:E0PIN. Configure MDREFR:K0DB2. Retain the current values of MDREFR:APD and MDREFR:SLFRSH. MDREFR:DRI must contain a valid value. Deassert MDREFR:KxFREE.
- 2. In systems that contain Synchronous Static memory, write to the SXCNFG to configure all appropriate bits, including the enable bits. Software must perform a sequence that involves a subsequent write to SXCNFG to change the RAS latencies. While any SMROM banks are being configured, the SDRAM banks must be disabled and MDREFR:APD must be deasserted (auto-power-down disabled).
 - a. Write SXCNFG (with enable bits asserted).
 - b. Write to SXMRS to trigger an MRS command to all enabled banks of synchronous static memory.
 - SXLCR must only be written when it is required by the SDRAM-like synchronous flash device for command encoding.

- 3. In systems that contain SDRAM, transition the SDRAM controller through the following state sequence:
 - a. self-refresh and clock-stop
 - b. self-refresh
 - c. power-down
 - d. PWRDNX
 - e. NOP
- 4. The SDRAM clock run and enable bits (MDREFR:K1RUN, K2RUN, and E1PIN), described in Section 6.6.3. MDREFR:SLFRSH must not be asserted.
 - a. Write MDREFR:K1RUN, K2RUN (self-refresh and clock-stop -> self-refresh). Configure MDREFR:K1DB2,K2DB2.
 - b. Write MDREFR:SLFRSH (self-refresh -> power-down).
 - c. Write MDREFR:E1PIN (power-down -> PWRDNX).
 - d. a write is not required for this state transition (PWRDNX -> NOP).
 - e. Configure, but do not enable, each SDRAM partition pair.
 - f. Write MDCNFG (with enable bits deasserted), MDCNFG:DE3:2,1:0 set to '0'.
- 5. For systems that contain SDRAM, wait a specified NOP power-up waiting period required by the SDRAMs to ensure the SDRAMs receive a stable clock with a NOP condition
- 6. Ensure the Data Cache bit (DCACHE) is disabled. If this bit is enabled, the refreshes triggered by the next step may not pass through to the Memory Controller properly.
- 7. On a hardware reset in systems that contain SDRAM, trigger the specified number (typically eight) of refresh cycles by attempting non-burst read or write accesses to any disabled SDRAM bank. Each such access causes a simultaneous CBR refresh cycles for all four banks, which causes a pass through the CBR state and back to NOP. On the first pass, the PALL state occurs before the CBR state.
- 8. Re-enable the DCACHE bit if it is disabled.
- In systems that contain SDRAM, enable SDRAM partitions by setting MDCNFG:DE3:2,DE1:0.
- 10. In systems that contain SDRAM, write the MDMRS register to trigger an MRS command to all enabled banks of SDRAM. For each SDRAM partition pair that has one or both partitions enabled, this forces a pass through the MRS state and back to NOP. The CAS latency must be the only variable option and is derived from the value programmed in the MDCNFG:MDTC0,2 fields. The burst type is programmed to sequential and the length is set to four.
- 11. Optionally, in systems that contain SDRAM or Synchronous Static memory, enable auto-power-down by setting MDREFR:APD.

6.13 GPIO Reset Procedure

On a GPIO reset, the Memory Controller registers keep the values they had before the reset. No new configuration programming is required. The memory's contents are not guaranteed and software must determine if the memory's contents have been compromised.

7

LCD Controller

The LCD controller provides an interface from the PXA250 and PXA210 application processors to a passive (DSTN) or active (TFT) flat panel display. Monochrome and several color pixel formats are supported (see Section 7.1.1, "Features" on page 7-2).

This chapter covers the following topics:

- Section 7.1, "Overview"
- Section 7.2, "LCD Controller Operation"
- Section 7.3, "Detailed Module Descriptions"
- Section 7.4, "LCD External Palette and Frame Buffers"
- Section 7.5, "Functional Timing"
- Section 7.6, "Register Descriptions"

7.1 Overview

The application processor LCD controller supports single- or dual-panel displays. Encoded pixel data created by the core is stored in external memory in a frame buffer in 1, 2, 4, 8, or 16-bit increments. The data is fetched from external memory and loaded into a first-in first-out (FIFO) buffer on a demand basis, using the LCD controller's dedicated dual-channel DMA controller (DMAC). One channel is used for single-panel displays and two are used for dual-panel displays.

Frame buffer data contains encoded pixel values that are used by the LCD controller as pointers to index a 256-entry x 16-bit-wide palette. For 16 bit per pixel frame buffer entries, the palette RAM is bypassed. Monochrome palette entries are eight bits wide, and color palette entries are 16 bits wide. The encoded pixel data determines the number of possible colors within the palette as follows:

- 1-bit-wide pixels address the top 2 locations of the palette
- 2-bit-wide pixels address the top 4 locations of the palette
- 4-bit-wide pixels address the top 16 locations of the palette
- 8-bit-wide pixels address any of the 256 entries within the palette
- 16-bit-wide pixels bypass the palette

When passive color 16-bit pixel mode is enabled, the color pixel values bypass the palette and are fed directly to the LCD controller's dither logic. When active color 16-bit pixel mode is enabled, the pixel value bypasses the palette and the dither logic and is sent directly to the LCD controller's data pins. Optionally, the palette RAM is loaded for each frame by the LCD controller's DMAC.

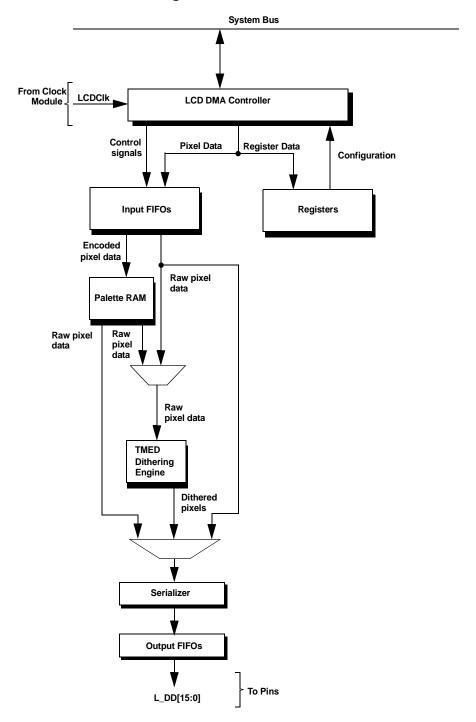
Once the encoded pixel value is used to select a palette entry, the value programmed within the entry is transferred to the dither logic, which uses the Temporal Modulated Energy Distribution (TMED) dithering algorithm to produce the pixel data that is sent to the screen. Dithering is a technique used to create additional colors from palette entries by rapidly multiplexing different color pixels on the LCD screen. This is also known as Frame Rate Control. The data output from

the dither logic is grouped into the selected format (e.g., 8-bit color, dual panel, 16-bit color., etc.) and placed in a FIFO buffer before being sent out on the LCD controller's pins and driven to the display using the pixel clock.

Depending on the type of panel used, the LCD controller is programmed to use either 4-, 8-, or 16-pixel data output pins. Single-panel monochrome displays use either four or eight data pins to send 4 or 8 pixels for each pixel clock. Single-panel color displays use eight pins to send 2-2/3 pixels each pixel clock (8 pins / 3 colors/pixel = 2 2/3 pixels per clock). The LCD controller also supports dual-panel mode, in which the LCD controller's data lines are split into two groups, one to drive the top half and one to drive the bottom half of the screen. For dual-panel displays, the number of pixel data output pins is doubled, allowing twice as many pixels to be sent each pixel clock to the two halves of the screen.

In active color display mode, the LCD controller can drive TFT displays. When using 1-, 2-, 4-, or 8-bit modes, the LCD's dither logic is bypassed, and the pixel value is sent from the palette buffer directly to the LCD's data output pins. 16-bit pixel mode bypasses both the palette and the dither logic.

7.1.1 Features


The application processor LCD controller supports the following features:

- Display modes:
 - single- or dual-panel displays
 - up to 256 gray-scale levels (8 bits) in Passive Monochrome Mode
 - a total of 65536 possible colors in Passive Color Mode (using the 16-bit TMED dithering algorithm)
 - up to 65536 colors in Active Color Mode (16 bits, bypasses palette)
 - passive 8-bit color single-panel displays
 - passive 8-bit (per panel) color dual-panel displays
- Display sizes up to 1024x1024 pixels, recommended maximum of 800x600
- Internal color palette RAM 256 entry by 16 bits (can be loaded automatically at the beginning
 of each frame)
- Encoded pixel data of 1, 2, 4, 8, or 16 bits
- Programmable toggle of AC bias pin output (toggled by line count)
- Programmable pixel clock from 195 kHz to 83 MHz (100 MHz/512 to 166 MHz/2)
- Integrated 2-channel DMA (one channel for palette and single panel, the other channel for second panel in dual-panel mode).
- Programmable wait-state insertion at the beginning and end of each line
- Programmable polarity for output enable, frame clock, and line clock
- Programmable interrupts for input and output FIFO underrun
- Programmable frame and line clock polarity, pulse width, and wait counts

Figure 7-1 illustrates a simplified, top-level block diagram for the application processor LCD Controller.

Figure 7-1. LCD Controller Block Diagram

7.1.2 Pin Descriptions

When the LCD controller is enabled, all of the LCD pins are outputs only. When the LCD controller is disabled, its pins can be use for general-purpose input/output (GPIO). Refer to the System Integration Unit chapter for details.

Table 7-1 describes the LCD controller's pins. For more detailed information, see Section 7.3.5, "LCD Controller Pin Usage". All of the LCD pins are outputs only.

Table 7-1. Pin Descriptions

Pin	Definition
L_DD[7:0]	These data lines transmit either four or eight data values at a time to the LCD display. For monochrome displays, each pin value represents a single pixel. For passive color, groupings of three pin values represent one pixel (red, green, and blue subpixel data values). In single-panel monochrome mode, L_DD<3:0> pins are used. For double-pixel data, single-panel monochrome, dual-panel monochrome, single-panel color, and active color modes, L_DD[7:0] are used.
L_DD[15:8]	When dual-panel color or TFT (active color mode) operation is programmed, these data outputs are also required to send pixel data to the screen.
L_PCLK	The Pixel Clock is used by the LCD display to clock the pixel data into the line shift register. In passive mode, the pixel clock toggles only when valid data is available on the data pins. In active mode, the pixel clock toggles continuously, and L_BIAS serves as an output to signal when data is valid on the LCD's data pins.
L_LCLK	The Line Clock is used by the LCD display to signal the end of a line of pixels. The display transfers the line data from the shift register to the screen and increments the line pointer. In active mode, it is the horizontal synchronization signal.
L_FCLK	The Frame Clock is used by the LCD display to signal the start of a new frame of pixels. The display resets the line pointer to the top of the screen. In active mode, it is the vertical synchronization signal.
L_BIAS	AC Bias is used to signal the LCD display to switch the polarity of the power supplies to the row and column drivers of the screen to counteract DC offset. In active mode, it serves as the output enable to signal when data is latched from the data pins using the Pixel Clock.

7.2 LCD Controller Operation

7.2.1 Enabling the Controller

If the LCD controller is being enabled for the first time after system reset or sleep reset, all of the LCD registers must be programmed as follows:

- 1. Configure the General Purpose I/O (GPIO) pins for LCD controller functionality. See Chapter 4, "System Integration Unit" for details.
- 2. Write the frame descriptors and, if needed, the palette descriptor to memory.
- 3. Program all of the LCD configuration registers *except* the Frame Descriptor Address Registers (FDADRx) and the LCD Controller Configuration Register 0 (LCCR0). See Section 7.6 for details of all registers.
- 4. Program FDADRx with the memory address of the palette/frame descriptor, as described in Section 7.6.5.2.
- 5. Enable the LCD controller by writing to LCCR0, as described in Section 7.6.1.

For more information, see Section 7.6.1.14, "LCD Enable (ENB)".

If the LCD controller is being re-enabled, there has *not* been a reset since the last programming, and the GPIO pins are still configured for LCD Controller functionality, only the registers FDADRx and LCCR0 need to be reprogrammed. The LCD Controller Status Register (LCSR) must also be written to clear any old status flags before re-enabling the LCD controller. See Section 7.6.7 for details.

7.2.2 Disabling the Controller

The LCD controller can be disabled in two ways: regular and quick.

Regular disabling, the recommended method for stopping the LCD controller, is accomplished by setting the disable bit, LCCR0[DIS]. The other bits in LCCR0 must not be changed — read the register, set the DIS bit, and rewrite the register. This method causes the LCD controller to stop cleanly at the end of the frame currently being fetched from memory. If the LCD DMAC is fetching palette data when DIS is set, the palette RAM load is completed, and the next frame is displayed before the LCD is disabled. The LCD Disable Done bit, LCSR[LDD], is set when the LCD controller finishes displaying the last frame fetched, and the enable bit, LCCR0[ENB], is cleared automatically by hardware.

Quick disabling is accomplished by clearing the enable bit, LCCR0[ENB]. The LCD controller will finish any current DMA transfer, stop driving the panel, and shut down immediately, setting the quick-disable bit, LCSR[QD]. This method is intended for situations such as a battery fault, where system bus traffic has to be minimized immediately so the processor can have enough time to store critical data to memory before the loss of power. The LCD controller must not be reenabled until the QD bit is set, indicating that the quick shutdown is complete.

Once disabled, the LCD Controller automatically disables its clocks to conserve power. See Section 7.6.1.5, "LCD Disable (DIS)" for more information.

7.2.3 Resetting the Controller

At reset, the LCD Controller is disabled, and the output pins are configured as GPIO pins. All LCD Controller Registers are reset to the conditions shown in the register descriptions.

7.3 Detailed Module Descriptions

This section describes the functions of the modules in the LCD Controller:

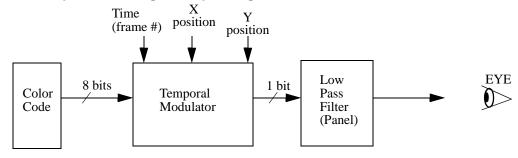
- Section 7.3.1, "Input FIFOs"
- Section 7.3.2, "Lookup Palette"
- Section 7.3.3, "Temporal Modulated Energy Distribution (TMED) Dithering"
- Section 7.3.4, "Output FIFOs"
- Section 7.3.5, "LCD Controller Pin Usage"
- Section 7.3.6, "DMA"

7.3.1 Input FIFOs

Data fetched from external memory by the dedicated DMAC is placed in one of two input FIFO buffers. Each input FIFO comprises 128 bytes, organized as 16 entries by 8 bytes. In single-panel mode, one FIFO is used to queue both encoded pixel data and data for writing to the internal palette RAM. In dual-panel mode, this FIFO queues data for the internal palette RAM and the upper half of the LCD display, while the second FIFO buffer holds data for the lower half of the LCD display.

The FIFO signals a service request to the DMAC whenever four FIFO entries are empty. In turn, the DMAC automatically fills the FIFO with a 32-byte burst. Pixel data from the frame buffer remains packed within individual 8-byte entries when it is loaded into the FIFO. If the pixel size is 1, 2, 4, or 8-bits, the FIFO entries are unpacked and used to index the palette RAM to read the color value. In 16-bit passive mode, the entries bypass the palette and go directly to the TMED dither logic. In 16-bit active mode, the pixels are sent directly to the pins.

7.3.2 Lookup Palette


The internal palette RAM holds up to 256 16-bit color values. Color palette RAM entries are 16 bits wide, with 5 bits of red, 6 bits of green, and 5 bits of blue. Monochrome entries are 8 bits wide. Encoded pixel values from the input FIFO are used as an address to index and select individual palette locations. 1-bit pixel encodings address the first 2 entries, 2-bit pixel encodings address the first 4 entries, 4-bit pixel encodings address 16 locations, and 8-bit pixel encodings select any of the 256 palette entries. In 16-bit pixel mode, the palette RAM is not used and must not be loaded.

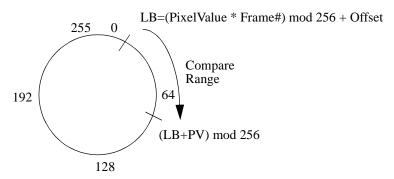
7.3.3 Temporal Modulated Energy Distribution (TMED) Dithering

For passive displays, entries selected from the lookup palette (or directly from memory for 16-bit pixels) are sent to the TMED dithering algorithm. TMED is a form of temporal dithering, also know as frame rate control. The algorithm determines whether a pixel is on or off.

Understanding how the TMED dithering algorithm works is not necessary to use the application processor LCD controller. However, certain characteristics of the algorithm can be controlled through the use of the TMEDRGB Seed Register (TRGBR, Table 7-15 on page 7-46) and the TMED Control Register (TCR, Table 7-16 on page 7-47). If these registers are to be modified from their default values, refer to this section. Figure 7-2 illustrates the TMED concept.

Figure 7-2. Temporal Dithering Concept - Single Color

This dithering concept is applied separately to each color displayed. Each color has zeros added to make the data for each color 8 bits. If a monochrome display is used, only a single matrix (blue) is used.



The application processor LCD Controller implements the following algorithm, which is used by TMED to determine an upper and lower boundary:

```
LowerBoundary = [(PixelValue * FrameNumber) mod 256] + Offset
UpperBoundary = [(PixelValue + LowerBoundary) mod 256]
```

A 16x16 matrix uses the row (line), column (pixel number), and frame number (which wraps back to 0 from 255) to select a matrix value. When the matrix value is between the lower and upper boundaries from the algorithm, the LCD controller sends a "1" to the LCD panel. The boundaries created by the algorithm are circular, wrapping from 255 back to 0, as shown in Figure 7-3.

Figure 7-3. Compare Range for TMED

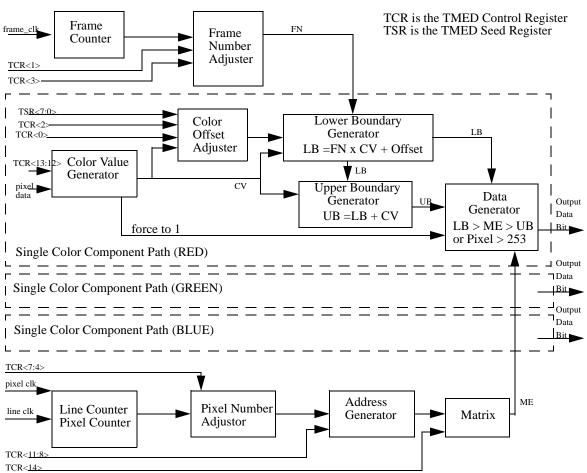

Either of two matrices may be used for each color, chosen by bits 0, 1, and 14 of the TMED Control Register (TCR, Section 7.6.10). Offsets may be selected for the shading of each color to avoid gray color problems. Although these offset values are panel dependent, the recommended values are listed in Section 7.6.9, "TMED RGB Seed Register", with the blue data path being used for monochrome modes. Offsets may also be chosen in the TMED Control Register for shifting the row (horizontal) value, line (vertical) value, and frame number.

Figure 7-4 shows the block diagram for TMED. Pixel data (up to 8 bits) enters the module and is sent through the Color Value (CV) generator. Depending on the value of the TCR[TSCS] field, the CV generator rounds off between 0 and 3 of the least-significant bits, creating a new CV. If the original pixel value is 254 or 255, the final data output is set to one. Otherwise, the following occurs:

- 1. The new CV is sent through the Color Offset Adjuster, where it is used as a lookup into the matrix selected by TCR[COAM].
- 2. Either the 8-bit output of the chosen matrix or 00h, as selected by TCR[COAE], is added to the appropriate color's seed register value in register TRGBR to form an offset.
- 3. This offset is added to the result of the multiplication of the Frame Number and the CV to form the algorithm's lower boundary (only the lower 8 bits are used).
- 4. The CV is added to the lower boundary to obtain the upper boundary.
- 5. Row (line) and column (pixel) counters are combined with beat suppression (offset) values in the Pixel Number Adjuster and Address Generator to form yet another address for a matrix lookup.
- 6. The output of the chosen matrix is compared to the lower and upper boundaries in the Data Generator.
- 7. If the matrix output is between these boundaries or the original pixel value is 254 or 255, then the data output to the panel is one. In all other cases, it is zero.

Figure 7-4. TMED Block Diagram

7.3.4 Output FIFOs

The LCD controller has two output FIFOs to queue pixel data before it is sent out to the pins. Each output FIFO is 16 bytes, organized as 16 entries by 8 bits wide. Pixel values are accumulated in a serial shifter and written to the FIFO buffers in 4-, 8-, or 16-bit quantities. Four pins are used for single-panel monochrome screens, 8 pins are used for single- and dual-panel monochrome screens and single-panel color displays, and 16 pins are used for dual-panel color and active displays. Each time a value is taken from the bottom of the FIFO, the entry is invalidated, and all data in the FIFO moves down one position.

7.3.5 LCD Controller Pin Usage

See also Table 7-1, "Pin Descriptions" on page 7-4.

The timing of the line (L_LCLK) and frame (L_FCLK) clocks is programmable to support both passive display and active display modes. Programming options include: wait state insertion at the beginning and end of each line and frame, pixel clock (L_PCLK), line clock, frame clock (L_FCLK), output enable signal polarity, and frame clock pulse width.

See Section 7.5, "Functional Timing" for pin timing diagrams. When the LCD controller is disabled, all of its pins can be used for GPIO. See Chapter 4, "System Integration Unit" for further details.

7.3.5.1 Passive Display Timing

In passive display mode (LCCR0[PAS] = 0), L_PCLK toggles only when data is being written to the panel. When an entire line of pixels has been sent to the display, L_LCLK is asserted. When an entire frame of pixels has been sent to the display, L_FCLK is asserted.

If an output FIFO underrun occurs (i.e., the LCD controller runs out of data), L_PCLK stalls until valid data is available. This results in a slower pixel clock, but data sent to the display is always valid.

To prevent a D.C. charge from building within a passive display, its power and ground supplies must be switched periodically. Many modern panels do this automatically. If not, the LCD controller can toggle the AC bias pin (L_BIAS) to signal the display to switch the polarity. The frequency of the L_BIAS toggle is controlled by programming the number of line clock transitions between each toggle (LCCR3[ACB]).

7.3.5.2 Active Display Timing

In active display mode (LCCR0[PAS] = 1), L_PCLK toggles continuously as long as the LCD controller is enabled. The other pins function as follows:

L_BIAS — output enable. When asserted, the LCD latches L_DD data using L_PCLK.

L_LCLK — horizontal synchronization signal (HSYNC)

L_FCLK — vertical synchronization signal (VSYNC)

If an output FIFO underrun occurs, the data on the L_DD pins is repeated, L_BIAS stays asserted, and L_PCLK keeps running. As valid data enters the output FIFO, it is sent to the display. Additional pixel clocks are inserted at the end of the line to drain the remaining valid pixels from the output FIFO before HSYNC is asserted. This mechanism allows an underrun to corrupt only a single line rather than an entire frame.

7.3.5.3 Pixel Data Pins (L DDx)

Pixel data is removed from the bottom of the output FIFO and driven in parallel onto the LCD data lines on the edge of the pixel clock selected by Pixel Clock Polarity (LCCR3[PCP]). For a 4-bit wide bus, data goes out on the LCD data lines L_DD[3:0]. For an 8-bit wide bus, data goes out on L_DD[7:0]. For a 16-bit bus, data goes out on L_DD[15:0]. In monochrome dual-panel mode, the pixels for the upper half of the screen go out on L_DD[3:0] and those for the lower half on L_DD[7:4]. In color dual-panel mode, the upper panel pixels go out on L_DD[7:0] and the lower panel pixels on L_DD[15:8].

7.3.6 DMA

Values for palette RAM entries and encoded pixel data are stored in off-chip memory and are transferred to the LCD controller's input FIFO buffers, on a demand basis, using the LCD controller's dedicated DMA controller (DMAC). The LCD's descriptor-based DMAC contains two channels that transfer data from external memory to the input FIFOs. One channel is used for single-panel displays and two are used for dual-panel displays.

The LCD controller issues a service request to the DMAC after it has been initialized and enabled. The DMAC automatically performs eight word transfers, filling four entries of the input FIFO. Values are fetched from the bottom of the FIFO, one entry at a time, and each 64-bit value is unpacked into individual pixel encodings of 1, 2, 4, 8, or 16 bits each. After the value is removed from the bottom of the FIFO, the entry is invalidated, and all data in the FIFO is shifted down one entry. When four of the entries are empty, a service request is issued to the DMAC. If the DMAC is not able to keep the FIFO filled with enough pixel data (due to insufficient external memory access speed) and the FIFO is emptied, the appropriate FIFO underrun status bit is set (bit IUL or IUU in register LCSR), and an interrupt request is issued (unless it is masked).

7.4 LCD External Palette and Frame Buffers

The LCD controller supports a variety of user-programmable options, including display type and size, frame buffer location, encoded pixel size, and output data width. Although all programmable combinations are possible, the displays available on the market dictate which combinations of these programmable options are practical. The application processor external system memory limits the throughput of the LCD controller's DMAC, which, in turn, limits the size and type of display that can be controlled. The user must also determine the maximum bandwidth of the application processor external bus that the LCD controller is allowed to use without negatively affecting all other functions that the application processor must perform.

7.4.1 External Palette Buffer

The external palette buffer is an off-chip memory area containing up to 256 16-bit entries to be loaded into the internal palette RAM. The palette buffer data does not have to be at the beginning of the external frame buffer, it can also be in a separate memory location. Palette data is 8 bytes (4 entries) for 1 and 2-bit pixels (the last 2 entries are loaded but not used with 1-bit pixels), 32 bytes (16 entries) for 4-bit pixels, and 512 bytes (256 entries) for 8-bit pixels. The palette RAM is not used and must not be loaded when using 16 bits per pixel.

After enabling the LCD controller, the user must first load the palette RAM before processing any frame data. After the initial load, the palette can be reloaded optionally on a frame-by-frame basis. This would be done when the color selection changes frame to frame. The palette RAM is always loaded with DMA channel 0.

Figure 7-5 shows the format of the palette entries in little endian. "Endian" does *not* imply endianness with respect to bytes and half-words within memory. It refers strictly to the ordering of the palette entries; i.e., whether palette entry 0 is at the MSB or the LSB of a word boundary. The ordering of RGB values within the 16-bit entry is fixed for little endian. In Figure 7-5, "Base" is the palette buffer base programmed in register FSADR.

Figure 7-5. Palette Buffer Format

							Indiv	idual F	alette	Entry						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Color		F	Red (R	.)				Gree	n (G)				Е	Blue (E	3)	
Bit	15	14	4 13 12 11 10 9 8 7 6 5 4 3 2 1								0					
Mono		unused Monochrome (M)									M)					
Bit		31						ndian - or 25	6-Entry	-		-				0
Base +	0x0			P	alette	entry 1						Palet	te entr	v 0		-
Base +						entry 3							te entr	,		
			ies 4 tł pixel.			o not e		r 1 and	2					,		
Base +	0x1C			Pa	lette e	entry 15	5					Palett	e entry	/ 14		
Base +	0x20			Pa	lette e	entry 17	7					Palett	e entry	/ 16		
				throug bits/p		do not	exist t	for								
Base + 0x1FC		Palette entry 255 Palette entry 254														

7.4.2 External Frame Buffer

The external frame buffer is an off-chip memory area used to supply enough encoded pixel values to fill the entire screen one or more times. The number of pixel data values depends on the size of the screen (for example, $800 \times 600 = 480,000$ encoded pixel values). Figure 7-6 through Figure 7-17 show the memory organization within the frame buffer for each size pixel encoding.

In the following figures, "Base" refers to the initial address programmed in the FSADR register, "Palette Buffer Index" refers to the data that specifies the location in the palette buffer, and "Raw Pixel Data" refers to the actual 16-bit RGB data when the palette RAM is bypassed.

Figure 7-6. 1 Bit Per Pixel Data Memory Organization

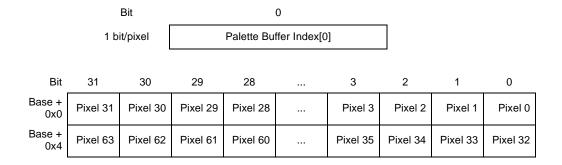


Figure 7-7. 2 Bits Per Pixel Data Memory Organization

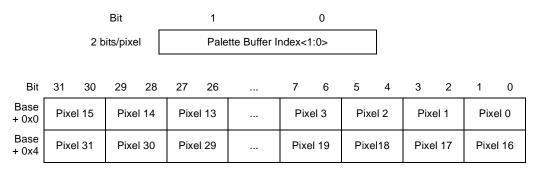


Figure 7-8. 4 Bits Per Pixel Data Memory Organization

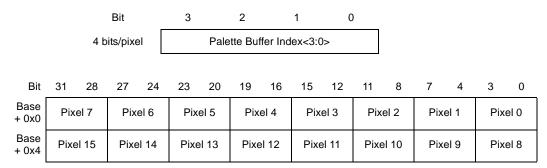
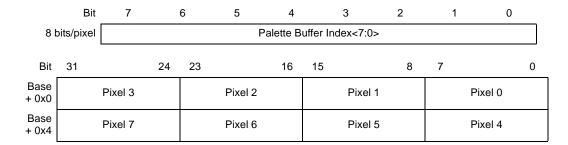


Figure 7-9. 8 Bits Per Pixel Data Memory Organization



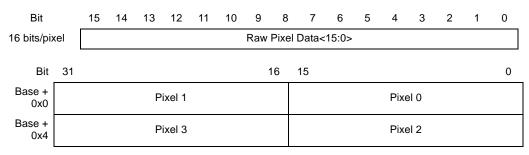


Figure 7-10. 16 Bits Per Pixel Data Memory Organization - Passive Mode

Bit		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
16 bits/pixel	. [Raw F	Pixel	Data<	15:0>						
10 bits/bixe	' [Red	Data<	:4:0>			Gre	en D	Data<5:	:0>						
Bit :	31							1	6	15							0
Base + 0x0				Р	ixel 1								Pixe	el 0			
Base + 0x4	PIVAL 3												Pixe	el 2			

Note: For passive 16 bits per pixel operation, the Raw Pixel Data must be organized as shown above.

Figure 7-11. 16 Bits Per Pixel Data Memory Organization - Active Mode

Note: For active 16 bits per pixel operation, the Raw Pixel Data is sent directly to the LCD panel pins and must be in the same format as required by the LCD panel.

In dual-panel mode, pixels are presented to two halves of the screen at the same time (upper and lower). A second DMA channel, input FIFO, and output FIFO exist to support dual-panel operation. The palette buffer is implemented in DMA channel 0, but not channel 1. The frame source address for the lower half always points to the top of the encoded pixel values for channel 1. The frame source address of both DMA channels must be configured such that the least significant three address bits are all zero (address bits 2 through 0 must be zero). This requires that the source address of the frame buffer start at 8-byte boundaries.

Each line in the frame buffer must start at a word boundary. For the various pixel sizes, this requires each line of the display to have pixels in multiples of: 32 pixels for 1-bit pixels, 16 pixels for 2-bit pixels, 8 pixels for 4-bit pixels, 4 pixels for 8-bit pixels, and 2 pixels for 16-bit pixels. If the LCD screen does not naturally have the correct multiple of pixels per line, the user must adjust the start address for each line by adding dummy pixel values to the end of the previous line.

Note: There are two special conditions: 8 bits/pixel monochrome screens with double-pixel-data mode and 8 or 16 bits/pixel passive color screens require a multiple of 8 pixels for each line.

For example, if the screen being driven is 107 pixels wide, and 4 bits/pixel mode is used, each line is 107 pixels or nibbles in length (53.5 bytes). The next nearest 8-pixel boundary (for 4-bit pixels) occurs at 112 pixels or nibbles (56 bytes). Each new line in the frame buffer must start at multiples of 56 bytes by adding an extra 5 dummy pixels per line (2.5 bytes) to LCCR1[PPL].

If dummy pixels are to be inserted, the panel must ignore the extra pixel clocks at the end of each line that correspond to the dummy pixels.

Use the following equation to calculate the total size of the frame buffer (in bytes). This calculation is used to encode the length of the frame buffer in the DMA descriptors (Section 7.6.5.5.4). The first term is the size required for the encoded pixel values. "Lines" is the number of lines for the display. "Pixels" is the number of pixels per line. Use the actual line/pixel count, not minus 1 as in the LCCR registers. "n" = the number of extra dummy pixels required per line, as described above. For dual-panel mode, the frame buffer size is equally distributed between the two DMA channels. Therefore, "Lines" in this equation are divided in half for dual-panel mode.

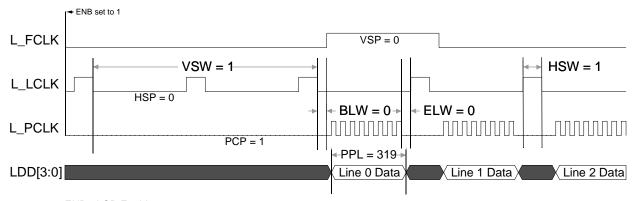
FrameBufferSize =
$$\frac{BitsPerPixel \bullet Lines \bullet (Pixels + n)}{8}$$

The bandwidth required for the LCD Controller can be calculated using the following equations. FrameBufferSize is the result of the previous equation. Bandwidth is always an important part of any system analysis. Systems with large panels and high bits per pixel must ensure that the panel is not starved for data.

```
BusBandwidth = (FrameBufferSize + PaletteSize) \bullet RefreshRate \\ BusBandwidth(DualPanel) = (FrameBufferSize \bullet 2 + PaletteSize) \bullet RefreshRate
```

Sample calculations for an 800x600 panel, 16 bits per pixel, 60 Hz refresh rate:

```
FrameBufferSize = 16*800*600/8 = 960,000 bytes


Bus Bandwidth = 960,000 * 60 = 57.6 MB/sec
```


7.5 Functional Timing

Figure 7-12 through Figure 7-14 illustrate LCD controller timing in passive display mode. The example used is a 320x240 panel. Figure 7-15 and Figure 7-16 illustrate the LCD controller timing in active display mode. For precise timing relationships, see the *Intel® PXA250 and PXA210 Application Processors Electrical, Mechanical, and Thermal Specification.*

Figure 7-12. Passive Mode Start-of-Frame Timing

ENB - LCD Enable

0 - LCD is disabled

1 - LCD is enabled

VSP - Vertical Sync Polarity

- 0 Frame clock is active high, inactive low
- 1 Frame clock is active low, inactive high

HSP - Horizontal Sync Polarity

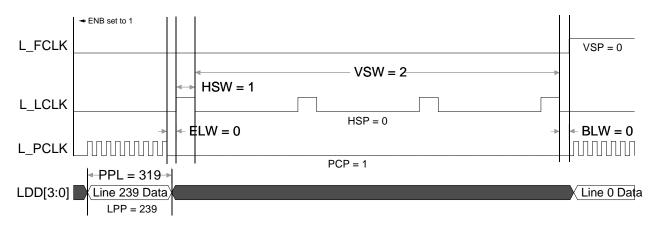
- 0 Line clock is active high, inactive low
- 1 Line clock is active low, inactive high

PCP - Pixel Clock Polarity

- 0 Pixels sampled from data pins on rising edge of clock
- 1 Pixels sampled from data pins on falling edge of clock

For PCP = 0 the L_PCLK waveform is inverted, but the timing is identical.

VSW = Vertical Sync Pulse Width - 1


HSW = Horizontal Sync (Line Clock) Pulse Width - 1

BLW = Beginning-of-Line Pixel Clock Wait Count - 1

ELW = End-of-Line Pixel Clock Wait Count - 1

Figure 7-13. Passive Mode End-of-Frame Timing

ENB - LCD Enable

0 - LCD is disabled

1 - LCD is enabled

VSP - Vertical Sync Polarity

- 0 Frame clock is active high, inactive low
- 1 Frame clock is active low, inactive high

HSP - Horizontal Sync Polarity

- 0 Line clock is active high, inactive low
- 1 Line clock is active low, inactive high

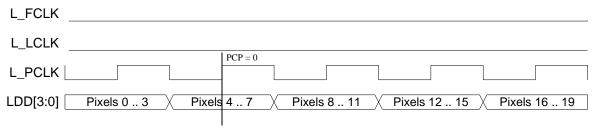
PCP - Pixel Clock Polarity

- 0 Pixels sampled from data pins on rising edge of clock
- 1 Pixels sampled from data pins on falling edge of clock

For PCP = 0 the L_PCLK waveform is inverted, but the timing is identical.

VSW = Vertical Sync Pulse Width - 1

HSW = Horizontal Sync (Line Clock) Pulse Width - 1

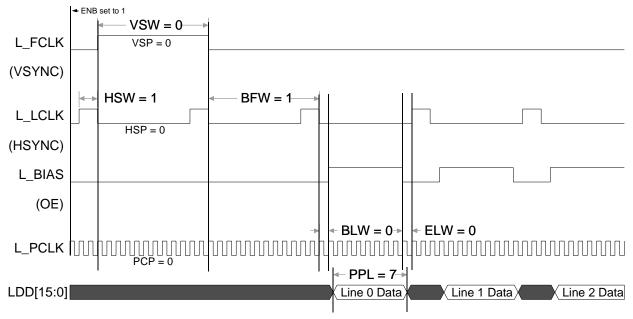

BLW = Beginning-of-Line Pixel Clock Wait Count - 1

ELW = End-of-Line Pixel Clock Wait Count - 1

PPL = Pixels Per Line - 1

LPP = Lines Per Panel - 1

Figure 7-14. Passive Mode Pixel Clock and Data Pin Timing


PCP - Pixel Clock Polarity

- 0 Pixels sampled from data pins on rising edge of clock
- 1 Pixels sampled from data pins on falling edge of clock

For PCP = 0 the L_PCLK waveform is inverted, but the timing is identical.

Figure 7-15. Active Mode Timing

ENB - LCD Enable

0 - LCD is disabled

1 - LCD is enabled

VSP - Vertical Sync Polarity

0 - Vertical sync clock is active high, inactive low

1 - Vertical sync clock is active low, inactive high

HSP - Horizontal Sync Polarity

0 - Horizontal sync clock is active high, inactive low

1 - Horizontal sync clock is active low, inactive high

PCP - Pixel Clock Polarity

0 - Pixels sampled from data pins on rising edge of clock

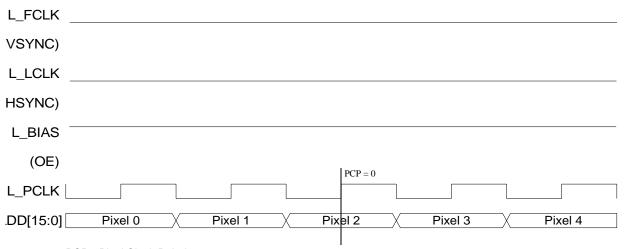
1 - Pixels sampled from data pins on falling edge of clock

For PCP = 0 the L_PCLK waveform is inverted, but the timing is identical.

VSW = Vertical Sync Pulse Width - 1

HSW = Horizontal Sync Pulse Width - 1

BFW = Beginning-of-Frame Horizontal Sync Clock Wait Count


BLW = Beginning-of-Line Pixel Clock Wait Count - 1

ELW = End-of-Line Pixel Clock Wait Count - 1

PPL = Pixels Per Line - 1

Figure 7-16. Active Mode Pixel Clock and Data Pin Timing

PCP - Pixel Clock Polarity

- 0 Pixels sampled from data pins on rising edge of clock.
- 1 Pixels sampled from data pins on falling edge of clock.

For PCP = 0 the L_PCLK waveform is inverted, but the timing is identical.

7.6 Register Descriptions

The LCD controller contains four control registers, ten DMA registers, one status register, and a 256-entry palette RAM. Table 7-17 on page 7-49 lists their locations in physical memory. All of the LCD registers must be accessed as 32-bit values. Reads and writes to undefined addresses in the LCD register space yield unpredictable results and must not be attempted.

The control registers contain bit fields to do the following:

- Enable and disable the LCD controller.
- Define the height and width of the screen being controlled.
- Indicate single- or dual-panel display mode.
- Indicate color versus monochrome mode.
- Indicate passive versus active display.
- Set the polarity of the control pins.
- Set the pulse width of the line and frame clocks, pixel clock, and ac bias pin frequency.
- Set the AC bias pin toggles per interrupt.
- Set the number of wait states to insert before and after each line and after each frame.
- Enable various interrupt masks.

An additional control field exists to tune the DMAC's performance based on the type of memory system with which the application processor is used. This field controls the placement of a minimum delay between each LCD DMA request during palette loads to insure enough bus bandwidth is given to other bus masters for accesses.

The DMA descriptor addresses are initially programmed by software. After that, the other DMA registers are programmed by the hardware. Section 7.6.5 provides a complete description of how the DMA is programmed.

The status registers contain bits that signal:

- Input and output FIFO overrun and underrun errors
- DMA bus errors
- When the DMAC starts and ends a frame
- When the last active frame has completed after the LCD is disabled
- Each time the L_BIAS pin has toggled a programmed number of times

Each of these hardware-detected events can signal an interrupt request to the interrupt controller.

7.6.1 LCD Controller Control Register 0 (LCCR0)

Table 7-2 shows the bit layout for LCD Control Register 0. This register may be read or written. The control bits within all other control registers must be programmed before setting ENB=1 (a word write can be used to configure LCCR0 while setting ENB after all other control registers have been programmed). The LCD controller must be disabled when changing the state of any control bit within the LCD controller. Reserved bits must be written with zeros. Reads from reserved bits must be ignored

Table 7-2. LCD Controller Control Register 0 (Sheet 1 of 2)

			Ρ	•	ical 1400			S		LCD Controller Control Register 0											LCD Controller											
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved									MUO	BM				PE	DD				QDM	SIQ	DPD	Reserved	PAS	EFM	IUM	SFM	LDM	SDS	CMS	ENB
Reset	X	Χ	Χ	Х	Χ	Χ	X	X	X	Χ	Х	Х	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bit	ts			Na	me			Description																						
		31:	22			_	_		Res	Reserved																						
		2′	1			ΟL	JM			FI	FO :	und	erru	n er	rors	ask (s ger s do	nera	te a	n in	terri	upt.	erru	pt.									
		20)			В	M		0 =	Branch Mask (Section 7.6.1.2): 0 = Generates an interrupt after branching to a new frame. 1 = Branch Start (BS) condition does not generate an interrupt.																						
	19:12					PE	DD		Valu burs	ue (st o	0–2: f pal	55) : lette	sped dat	cifies ta. T	s th he	ay (e nu cour 0x00	mbe nter	er of star	inte	erna ecre	l bus emei	nting										

Table 7-2. LCD Controller Control Register 0 (Sheet 2 of 2)

			F		ical 1400						L	CD (Con	troll	er C	ontr	ol F	Regi	ster	0					LCE) Cc	ontro	oller				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserved						MUO	BM				PE	D				QDM	DIS	DPD	Reserved	PAS	EFM	MOI	SFM	LDM	SDS	CMS	ENB
Reset	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
		LCD Quick Disable Mask (Section 7.6.1.4):
11	QDM	0 = Generate an interrupt after quick disable.1 = Quick Disable (QD) status does not generate an interrupt.
		LCD Disable (Section 7.6.1.5):
10	DIS	 0 = LCD Controller has not been disabled. 1 = LCD Controller has been disabled, or is in the process of disabling.
		Double-Pixel Data (DPD) pin mode (Section 7.6.1.6):
		In passive monochrome single panel mode,
9	DPD	 0 = L_DD[3:0] pins are used to send 4 pixel values each pixel clock transition. 1 = L_DD[7:0] pins are used to send 8 pixel values each pixel clock.
		In any other mode, DPD must be 0.
8	_	Reserved.
		Passive/Active Display select (Section 7.6.1.7):
7	PAS	0 = Passive (or STN) display operation enabled.1 = Active (or TFT) display operation enabled.
		End of Frame Mask (Section 7.6.1.8):
6	EFM	 0 = Generates an interrupt at the end of a frame. 1 = End of frame (EOF) condition does not generate an interrupt.
		Input FIFO Underrun Mask (Section 7.6.1.9):
5	IUM	0 = FIFO underrun errors generate an interrupt.1 = FIFO underrun errors do not generate an interrupt.
		Start of Frame Mask (Section 7.6.1.10):
4	SFM	 0 = Starting a new frame (after loading frame descriptor) generates an interrupt. 1 = Start of frame (SOF) condition does not generate an interrupt.
		LCD Disable Done Mask (Section 7.6.1.11):
3	LDM	0 = LCD disable done condition generates an interrupt (state of LDD status sent to the
		interrupt controller). 1 = LCD disable done condition does not generate an interrupt (LDD status bit ignored).
		Single-/Dual-panel Display Select (Section 7.6.1.12):
2	SDS	0 = Single-panel display enabled.1 = Dual-panel display enabled.
		SDS must be 0 in active mode (PAS=1).
		Color/Monochrome Select (Section 7.6.1.13):
1	CMS	0 = Color operation enabled.1 = Monochrome operation enabled.
		LCD Controller Enable (Section 7.6.1.14):
0	ENB	0 = LCD controller disabled or in the process of quickly disabling.1 = LCD controller enabled.

7.6.1.1 LCD Output Fifo Underrun Mask (OUM)

The output FIFO underrun mask (OUM) bit is used to mask interrupt requests that are asserted whenever an output FIFO underrun error occurs. When OUM=0, underrun interrupts are enabled, and whenever an output FIFO underrun (OU) status bit within the LCD status register (LCSR) is set (one), an interrupt request is made to the interrupt controller. When OUM=1, underrun interrupts are masked and the state of the underrun status bit (OU) is ignored by the interrupt controller. Setting OUM does not affect the current state of the status bit or the LCD controller's ability to set and clear it, it only blocks the generation of the interrupt request. Output FIFO underruns are more critical than Input FIFO underruns, since Output FIFO underruns will affect the display.

7.6.1.2 Branch Mask (BM)

The LCD Branch interrupt mask (BM) bit is used to mask interrupt requests that are asserted after the LCD Controller has branched to a new set of frame descriptors. See Section 7.6.6 for details.

7.6.1.3 Palette DMA Request Delay (PDD)

The 8-bit palette DMA request delay (PDD) field is used to select the minimum number of internal bus clock cycles to wait between the servicing of each DMA request issued while the on-chip palette is loaded. When the palette is optionally loaded at the beginning of a frame, up to 512 bytes of data may be accessed by the LCD's DMAC. Using PDD allows other bus masters to gain access to shared memory in between palette DMA loads. PDD must be used carefully, as it can severely degrade LCD controller performance if not used properly. It is recommended to leave PDD zero and add delay only when necessary. PDD does not apply to the normal input FIFO DMA requests for frame buffer information, since these DMA requests do not occur back-to-back. The input FIFO DMA request rate is a function of the rate at which pixels are displayed on the screen.

After a word of palette data is written to the input FIFO, the value contained within PDD is loaded to a down counter that disables the palette from issuing another DMA request until the counter decrements to zero. This counter ensures that the LCD's DMAC does not tie up the full bandwidth of the application processor system bus. Once the counter reaches zero, any pending or future DMA requests by the palette cause the DMAC to arbitrate for the bus. Once the DMA burst cycle has completed, the process starts over, and the value in PDD is loaded to the counter to create another wait state period, which disables the palette from issuing a DMA request. PDD can be programmed with a value that causes the FIFO to wait from 0 to 255 clock cycles after the completion of one DMA request to the start of the next request. When PDD=0x00, the FIFO DMA request delay function is disabled.

7.6.1.4 LCD Quick Disable Interrupt Mask (QDM)

The LCD quick disable interrupt mask (QDM) bit is used to mask interrupt requests that are asserted after the LCD Enable bit (ENB) is cleared and the DMAC finishes the current burst transfer. The LCD controller immediately stops requesting new data and the current frame is not completed. This shutdown is for Sleep shutdown. When QDM=0, the quick disable interrupt is enabled, and whenever the LCD quick disable (QD) status bit in the LCD Status Register (LCSR) is set, an interrupt request is made to the interrupt controller. When QDM=1, the quick disable interrupt is masked and the state of the QD status bit is ignored by the interrupt controller. Setting QDM does not affect the current state of QD or the LCD controller's ability to set and clear QD, it only blocks the generation of the interrupt request.

7.6.1.5 **LCD Disable (DIS)**

During LCD Controller operation, setting DIS=1 causes the LCD Controller to finish fetching the current frame from memory and then shut down cleanly. If the LCD DMAC is loading the palette RAM when DIS is set, the load will complete followed by the next frame, and then the LCD controller is disabled. Completion of the current frame is signalled by the LCD when it sets the LCD disable done flag (LDD) in register LCSR. Use a read-modify-write procedure to set this bit, since the other bit fields within LCCR0 continue to be used until the current frame is completed. The LCD Enable bit (ENB) is cleared when the disable is completed. Section 7.2.2, "Disabling the Controller" for more information.

7.6.1.6 Double-Pixel Data (DPD) Pin Mode

The double-pixel data (DPD) pin mode bit selects whether four or eight data pins are used for pixel data output to the LCD screen in single-panel monochrome mode. When DPD=0, L_DD[3:0] pins are used to send 4 pixel values each pixel clock transition. When DPD=1, L_DD[7:0] pins are used to send 8 pixel values each pixel clock. See Table 7-4 for a comparison of how the LCD's data pins are used in each of its display modes.

Note: DPD does not affect dual-panel monochrome mode, any of the color modes, or active mode. Clear DPD in these modes.

7.6.1.7 Passive/Active Display Select (PAS)

The passive/active display select (PAS) bit selects whether the LCD controller operates in passive (STN) or active (TFT) display control mode. When PAS=0, passive mode is selected. All LCD data flow operates normally (including the LCD's dither logic), and all LCD controller pin timing operates as described in Table 7.5 on page 7-15.

When PAS=1, active mode is selected. 1- and 2-bit pixel modes are not supported in active mode. For 4- and 8-bit pixel modes, pixel data is transferred via DMA from off-chip memory to the input FIFO, unpacked, and used to select an entry from the palette, just as in passive mode. However, the value read from the palette bypasses the LCD controller's dither logic and is sent directly to the output FIFO to be driven onto the LCD's data pins. This 16-bit output to the pins represents 5 bits of red, 6 bits of green, and 5 bits of blue data. For 16-bit pixel encoding mode, two 16-bit values are packed into each word in the frame buffer. Each 16-bit value is transferred via DMA from off-chip memory to the input FIFO. Unlike 4 and 8 bit per pixel modes, the 16-bit value bypasses both the palette and the dither logic and is placed directly in the output FIFO to be sent to the LCD's data pins. Using the 16-bit pixel encoding mode allows a total of 64K colors to be generated.

The 16-bit output from either the palette or frame buffer to the pins can be organized in any fashion necessary to correctly interface with the LCD panel. Typically, the output is configured into one of three user-specified RGB color formats: 6 bits of red, 5 bits of green, and 5 bits of blue data; 5 bits of red, 6 bits of green, and 5 bits of blue data; and 5 bits of red, 5 bits of green, and 6 bits of blue data. The RGB format 5:6:5 is normally used, since the human eye can distinguish more shades of green than of red or blue.

The LCD pin timing changes when active mode is selected. Timing of each pin is described in subsequent bit-field sections for both passive and active mode.

The LCD controller can be configured in active color display mode and used with an external DAC and optionally an external palette to drive a video monitor. Only monitors that implement the RGB data format can be used. The LCD controller does not support the NTSC standard. However, the 2X pixel clock mode allows the LCD controller to easily interface with an NTSC encoder, such as the Analog Devices 7171 encoder.

Figure 7-3 on page 7-23 shows which bits are sent to the individual LCD data pins for both a frame buffer entry (for 16-bit/pixel mode) and a selected palette entry (for 1, 2, 4 and 8 bit/pixel mode). The pixel bits corresponding to L_DD pins when using an RGB format of 5:6:5 are also shown. In active mode, L_DD pins [15:8] are also used. The user must configure the proper GPIO pins for LCD operation to enable LCD Controller operation. See Chapter 4, "System Integration Unit" for GPIO configuration information.

The application processor LCD controller may be used with active panels having more than 16 data pins, but the panel will be limited to a total of 64K colors. There are three options:

- 1. To maintain the panel's full range of colors and increase the granularity of the spectrum, connect the LCD controller's 16 data pins to the panel's most significant R, G, and B pixel data input pins and tie the panel's least significant R, G, and B data pins either high or low.
- 2. To maintain the granularity of the spectrum and limit the overall range of colors possible, connect the LCD controller's 16 data pins to the panel's least significant R, G, and B pixel data input pins and tie the panel's most significant data pins either high or low.
- 3. Sometimes, better results can be obtained by replicating the upper bits on the lower bits.

Table 7-3. Frame Buffer/Palette Output to LCD Data Pins in Active Mode

			-1/ C	,, IO D	110/1 17	COI IVIC	ac, i	iuiiic	Danci	011	aiotto	Littiy				
Plxel	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	В4	В3	B2	В1	В0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
L_DD Pin	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

4/8/16 Bits/Pixel Mode, Frame Buffer or Palette Entry

7.6.1.8 End of Frame Mask (EFM)

The end of frame mask (EFM) bit is used to mask interrupt requests that are asserted at the end of each frame (when the DMA length of transfer counter decrements to zero). When EFM=0, the interrupt is enabled, and whenever the EOF status bit in the LCD status register (LCSR) is set to one, an interrupt request is made to the interrupt controller. When EFM=1, the interrupt is masked, and the state of the EOF status bit is ignored by the interrupt controller. Setting EFM does not affect the current state of EOF or the LCD controller's ability to set and clear EOF, it only blocks the generation of the interrupt request.

7.6.1.9 Input Fifo Underrun Mask (IUM)

The input FIFO underrun mask (IUM) bit is used to mask interrupt requests that are asserted whenever an input FIFO underrun error occurs. When IUM=0, underrun interrupts are enabled, and whenever an input FIFO underrun (IUL, IUU) status bit in the LCD status register (LCSR) is set to one, an interrupt request is made to the interrupt controller. When IUM=1, underrun interrupts are masked and the state of the underrun status bits (IUL, IUU) is ignored by the interrupt controller. Setting IUM does not affect the current state of these status bits or the LCD controller's ability to set and clear them, it only blocks the generation of the interrupt requests.

7.6.1.10 Start Of Frame Mask (SFM)

The start of frame interrupt mask (SFM) bit is used to mask interrupt requests that are asserted at the beginning of each frame when the LCD's frame descriptor has been loaded into the internal DMA registers. When SFM=0, the interrupt is enabled, and whenever the start of frame (SOF) status bit in the LCD status register (LCSR) is set, an interrupt request is made to the interrupt controller. When SFM=1, the interrupt is masked and the state of the SOF status bit is ignored by the interrupt controller. Setting SFM does not affect the current state of SOF or the LCD controller's ability to set and clear SOF, it only blocks the generation of the interrupt request.

7.6.1.11 LCD Disable Done Interrupt Mask (LDM)

The LCD disable done interrupt mask (LDM) bit is used to mask interrupt requests that are asserted after the LCD is disabled and the frame currently being sent to the output pins has completed. When LDM=0, the interrupt is not masked, and whenever the LCD disable done (LDD) status bit in the LCD status register (LCSR) is set to one, an interrupt request is made to the interrupt controller. When LDM=1, the interrupt is masked, and the state of the LDD status bit is ignored by the interrupt controller. Setting LDM does not affect the current state of LDD or the LCD controller's ability to set and clear LDD, it only blocks the generation of the interrupt request. This interrupt is used when the LCD must be disabled after the current frame being sent to the output pins has completed. Clearing LCD Enable (ENB) is a quick disable, and LDD is not set.

Note: This mask bit applies only to regular shutdowns using the LCD Disable (DIS) bit.

7.6.1.12 Single-/Dual-Panel Select (SDS)

In passive mode (PAS=0), the single-/dual-panel select (SDS) bit is used to select the type of display control implemented by the LCD screen. When SDS=0, single-panel operation is selected (pixels presented to screen a line at a time). When SDS=1, dual-panel operation is selected (pixels presented to screen two lines at a time). Single-panel LCD drivers have one line/row shifter and driver for pixels and one line pointer. Dual-panel LCD controller drivers have two line/row shifters (one for the top half of the screen, one for the bottom) and two line pointers (one for the top half of the screen, one for the bottom).

When dual-panel mode is programmed, both of the LCD controller's DMA channels are used. DMA channel 0 is used to load the palette RAM from the frame buffer and to drive the upper half of the display, and DMA channel 1 drives the lower half. The two channels alternate when fetching data for both halves of the screen, placing encoded pixel values in the two separate input FIFOs.

When dual-panel operation is enabled, the LCD controller doubles its pin usage. For monochrome screens, eight pins are used and for color screens, 16 pins are used.

Note: SDS must be set to 0 in active mode (PAS=1).

Table 7-4 shows the LCD data pins and GPIO pins used for each mode of operation and the ordering of pixels delivered to a screen for each mode of operation.

Note: In passive color mode, the data pin ordering switches. Figure 7-17 on page 7-26 shows the LCD data pin pixel ordering.

Table 7-4. LCD Controller Data Pin Utilization

Color/Monochrome Panel	Single/ Dual Panel	Passive/ Active Panel	Screen Portion	Pins
Monochrome	Single	Passive	Whole	L_DD[3:0]
Monochrome	Single	Passive	Whole	L_DD[7:0] [†]
Monochrome	Dual	Passive	Тор	L_DD[3:0]
Worldcillottle	Duai	i assive	Bottom	L_DD[7:4]
Color	Single	Passive	Whole	L_DD[7:0]
Color	Dual	Passive	Тор	L_DD[7:0]
Coloi	Duai	1 000146	Bottom	L_DD[15:8]
Color	Single	Active	Whole	L_DD[15:0]

[†] Double-pixel data mode (DPD) = 1.

Figure 7-17. LCD Data-Pin Pixel Ordering

Top Left Co	orner of So	reen Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8
Row 0	LDD[0]	LDD[1]	LDD[2]	LDD[3]	LDD[0]	LDD[1]	LDD[2]	LDD[3]	LDD[0]
Row 1	LDD[0]	LDD[1]	LDD[2]	LDD[3]	LDD[0]	LDD[1]	LDD[2]	LDD[3]	LDD[0]
Row 2	LDD[0]	LDD[1]	LDD[2]	LDD[3]	LDD[0]	LDD[1]	LDD[2]	LDD[3]	LDD[0]
Row 3	LDD[0]	LDD[1]	LDD[2]	LDD[3]	LDD[0]	LDD[1]	LDD[2]	LDD[3]	LDD[0]
	Pass	ive Moi	nochro	ne Sing	lgle-Pan	el Disp	lay Pixe	ol Order	ing
Top Left Co	orner of Sc Column 0		Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8
Row 0	LDD[0]	LDD[1]	LDD[2]	LDD[3]	LDD[4]	LDD[5]	LDD[6]	LDD[7]	LDD[0]
Row 1	LDD[0]	LDD[1]	LDD[2]	LDD[3]	LDD[4]	LDD[5]	LDD[6]	LDD[7]	LDD[0]
Row 2	LDD[0]	LDD[1]	LDD[2]	LDD[3]	LDD[4]	LDD[5]	LDD[6]	LDD[7]	LDD[0]
Row 3	LDD[0]	LDD[1]	LDD[2]	LDD[3]	LDD[4]	LDD[5]	LDD[6]	LDD[7]	LDD[0]
Passive	Monoc	hrome	Sinale-	Panel D	ouble-l	Pixel Di	splav F	Pixel Or	derina
			. 3						.
Top Left Co			Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8
Row 0	LDD<0>	LDD<1>	LDD<2>	LDD<3>	LDD<0>	LDD<1>	LDD<2>	LDD<3>	LDD<0>
Row 1	LDD<0>	LDD<1>	LDD<2>	LDD<3>	LDD<0>	LDD<1>	LDD<2>	LDD<3>	LDD<0>
					:				
Row n/2	LDD<4>	LDD<5>	LDD<6>	LDD<7>	LDD<4>	LDD<5>	LDD<6>	LDD<7>	LDD<4>
Row n/2+1	LDD<4>	LDD<5>	LDD<6>	LDD<7>	LDD<4>	LDD<5>	LDD<6>	LDD<7>	LDD<4>
n = # of row	s Pas	sive Mo	nochro	me Du	al-Pane	l Displa	ay Pixe	Orderi	ng
Top Left Co			Column 0 Blue	Column 1 Red	Column 1 Green	Column 1 Blue	Column 2 Red	Column 2 Green	Column 2 Blue
Row 0	LDD<7>	LDD<6>	LDD<5>	LDD<4>	LDD<3>	LDD<2>	LDD<1>	LDD<0>	LDD<7>
Row 1	LDD<7>	LDD<6>	LDD<5>	LDD<4>	LDD<3>	LDD<2>	LDD<1>	LDD<0>	LDD<7>
Row 2	LDD<7>	LDD<6>	LDD<5>	LDD<4>	LDD<3>	LDD<2>	LDD<1>	LDD<0>	LDD<7>
Row 3	LDD<7>	LDD<6>	LDD<5>	LDD<4>	LDD<3>	LDD<2>	LDD<1>	LDD<0>	LDD<7>
	' Р	assive	Color S	ingle-P	anel Di	splay F	ixel Or	dering	
Top Left Co		creen Column 0 Green		Column 2 Green	Column 2 Blue	(Column 4 Blue	Column 5 Red	Column 5 Green
Row 0	LDD[7]	LDD[6]	Γ	LDD[0]	LDD[7]	Т	LDD[1]	LDD[0]	LDD[7]
Row 1	LDD[7]	LDD[6]	Γ -	LDD[0]	LDD[7]	T -	LDD[1]	LDD[0]	LDD[7]
						-			
Row n/2	LDD[15]	LDD[14]		LDD[8]	LDD[15]	Ι	LDD[9]	LDD[8]	LDD[15]
Row n/2+1	LDD[15]	LDD[14]	L I	LDD[8]	LDD[15]	L -	LDD[9]	LDD[8]	LDD[15]

7.6.1.13 Color/Monochrome Select (CMS)

n = # of rows

The color/monochrome select (CMS) bit selects whether the LCD controller operates in color or monochrome mode. When CMS=0, color mode is selected. Palette entries are 16 bits wide (5-bits red, 6-bits green, 5-bits blue), 8 data pins are enabled for single-panel mode, 16 data pins are enabled for dual-panel mode, and all three dither blocks are used, one each for the red, green, and

Passive Color Dual-Panel Display Pixel Ordering

blue pixel components. When CMS=1, monochrome mode is selected, palette entries are 8 bits wide, 4 or 8 data pins are enabled for single-panel mode, 8 data pins are enabled for dual-panel mode, and the blue dither block is used.

7.6.1.14 LCD Enable (ENB)

The LCD enable (ENB) bit is used to enable and quickly disable all LCD controller operation. When ENB=0, the LCD controller is either disabled or in the process of quickly disabling, and all of the LCD pins can be used for GPIO. When ENB=1, the LCD controller is enabled.

All other control registers must be initialized before setting ENB. LCCR0 can be programmed last, and all bit fields can be configured at the same time with a word write to the register. If ENB is cleared while the LCD controller is enabled, the LCD controller will immediately stop requesting data from the LCD DMAC, and the current frame will not complete. The LCD controller must not be re-enabled until the QD status flag is set in register LCSR, indicating the quick disable is complete. Quick disable is for sleep shutdown. Regular shutdown of the LCD controller at the end of the frame can be done via the LCD Disable bit, LCCR0[DIS]. There are separate maskable interrupts for quick disable and regular disable. See Section 7.2.1, "Enabling the Controller" for more information.

7.6.2 LCD Controller Control Register 1 (LCCR1)

LCD Controller Control Register 1 contains four bit fields that are used as modulus values for a collection of down counters, each of which performs a different function to control the timing of several of the LCD pins. These values must be programmed before enabling the LCD Controller. Table 7-5 shows the LCCR1 bit layout. This register may be read or written.

Table 7-5. LCD Controller Control Register 1 (Sheet 1 of 2)

			Ρ	,		Add 0_00	dres 004	S			L	CD	Con	troll	er (Cont	rol F	Regi	ster	1					LCI	D Co	ontro	oller				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				BL	.W							El	_W						HS	SW							PI	PL				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Na	me												De	scr	ipti	on										
		31	:24			BL	_W		Valu	ue (0–2	55)	spe	cifie	s th	ock \ he nu irst se	ımb	er o	f pix	el c	lock	per	iods	to:								ne

Table 7-5. LCD Controller Control Register 1 (Sheet 2 of 2)

			F	•		Add		S			L	CD	Con	troll	er C	Conti	rol F	Regi	ster	1					LCI	O Co	ontro	oller				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				BL	W							El	W						HS	SW							PF	PL				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	its			Na	me												De	escr	iptio	n										
		23:	:16			EL	_W		Val trar In p	ue (nsm ass	0–2: issic	55) on b disp	spe efor	cifie e lir mod	s th ne cl de, f	e nu lock	imbo is a I Clo	er o sse ock i	f pix rted is he	el c . EC	3.2.2 lock DL = n its	per (EL	W+	1).						line of-line		ait
		15:	:10			HS	SW		Val eac In p	ue (h lir ass	0–6; ne. H ive (3) s HSY disp	peci NC lay	fies puls	the se w le, F	vidth	nber = (l Clo	of p HSV	oixel V+1 s he	clo). Id ir	ck p									the ation		

7.6.2.1 Beginning-of-Line Pixel Clock Wait Count (BLW)

per line = (PPL+1).

PPL

9:0

Pixels per line (Section 7.6.2.4):

The 8-bit beginning-of-line pixel clock wait count (BLW) field is used to specify the number of dummy pixel clocks to insert at the beginning of each line or row of pixels. After the line clock for the previous line has been negated, the value in BLW is used to count the number of pixel clocks to wait before starting to output the first set of pixels in the next line. BLW generates a wait period ranging from 1 to 256 pixel clock cycles. BLW must be programmed with the desired number of pixel clocks minus one. L_PCLK does not toggle during these "dummy" pixel clock cycles in passive display mode. It does toggle continuously in active display mode.

Specifies the number of pixels contained within each line on the LCD display. Actual pixels

7.6.2.2 End-of-Line Pixel Clock Wait Count (ELW)

The 8-bit end-of-line pixel clock wait count (ELW) field is used to specify the number of "dummy" pixel clocks to insert at the end of each line or row of pixels before pulsing the line clock pin. Once a complete line of pixels is transmitted to the LCD driver, the value in ELW is used to count the number of pixel clocks to wait before pulsing the line clock. ELW generates a wait period ranging from 1 to 256 pixel clock cycles. ELW must be programmed with the desired number of pixel clocks minus one. L_PCLK does not toggle during these dummy pixel clock cycles in passive display mode. It does toggle continuously in active display mode.

7.6.2.3 Horizontal Sync Pulse Width (HSW)

Note: For this section, the term "pulse width" refers to the time which L_LCLK is asserted, rather than the time for a cycle of the line clock to occur.

The 6-bit horizontal sync pulse width (HSW) field specifies the pulse width (minus 1) of the line clock in passive mode or the horizontal synchronization pulse in active mode. L_LCLK is asserted each time a line is sent to the display and a programmable number of pixel clock wait states have

elapsed. When L_LCLK is asserted, the value in HSW is transferred to a 6-bit down counter, which decrements at the programmed pixel clock frequency. When the counter reaches zero, L_LCLK is negated. HSW can be programmed to generate a line clock pulse width ranging from 1 to 64 pixel clock periods.

The pixel clock does not toggle during the line clock pulse in passive display mode but does toggle in active display mode. The polarity (active and inactive state) of the line clock pin is programmed using the horizontal sync polarity (HSP) bit in LCCR3.

HSW must be programmed with the desired number of pixel clocks minus one.

7.6.2.4 Pixels Per Line (PPL)

The pixels per line (PPL) bit-field is used to specify the number of pixels in each line or row on the screen (minus one). PPL is a 10-bit value that represents between 1 and 1024 pixels per line. It is recommended not to exceed 800 pixels. It is used to count the number of pixel clocks that must occur before the line clock can be asserted. As discussed in Section 7.4.2, pixels per line must be multiples of: 32 pixels for 1-bit pixels, 16 pixels for 2-bit pixels, 8 pixels for 4-bit pixels, 4 pixels for 8-bit pixels, and 2 pixels for 16-bit pixels. The two special conditions are: 8-bits/pixel monochrome screens with double-pixel-data mode and 8 or 16 bits/pixel passive color screens require a multiple of 8 pixels for each line.

If the display used is not naturally a multiple of the above, "dummy" pixels must be added to each line to keep the frame buffer aligned in memory. For example, if the display being controlled is 250 pixels wide and the pixel-size is 8-bits, the nearest greater multiple of 8 is 256. Pixels per line must be set to 255. 6 extra "dummy" pixel values must be added to the end of each line in the frame buffer. The display being controlled must ignore the dummy pixel clocks at the end of each line.

7.6.3 LCD Controller Control Register 2 (LCCR2)

LCD Controller Control Register 2 contains four bit fields that are used as values for a collection of down counters, each of which performs a different function to control the timing of several of the LCD's pins. Table 7-6 shows the bit layout of LCCR2. This register may be read or written.

Table 7-6. LCD Controller Control Register 2

			F			Add 0_00	dres 008	S			L	CD	Con	troll	er C	onti	rol F	Regi	ster	2					LCE) Co	ontro	oller				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				BF	W							EF	W						VS	SW							LF	PP				
Reset	0	0 0 0 0 0 0 0 0 0							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bits	Name	Description
		Beginning-of-frame line clock wait count (Section 7.6.3.1):
31:24	BFW	In active mode (LCCR0[PAS]=1), value (0–255) specifies the number of line clock periods to add to the beginning of a frame before the first set of pixels is sent to the display. The Line clock does toggle during the insertion of the extra line clock periods.
		BFW must be cleared to zero (disabled) in passive mode.
		End-of-frame line clock wait count (Section 7.6.3.2):
23:16	EFW	In active mode (LCCR0[PAS] = 1), value (0–255) specifies the number of line clock periods to add to the end of each frame. The Line clock does toggle during the insertion of the extra line clock periods.
		EFW must be cleared to zero (disabled) in passive mode.
		Vertical sync pulse width (Section 7.6.3.3):
15:10	VSW	In active mode (LCCR0[PAS] = 1), value (0–63) specifies the number of line clock periods to pulse the L_FCLK pin at the end of each frame after the end-of-frame wait (EFW) period elapses. Frame clock used as VSYNC signal in active mode. The line clock does toggle during VSYNC. VSYNC width = (VSW+1)
		In passive mode (LCCR0[PAS] = 0), value (0–63) specifies the number of extra line clock periods to insert after the end-of-frame. The time for which L_FCLK is asserted is not affected by VSW in passive mode. The line clock does toggle during the insertion of the extra line clock periods. VSYNC width = (VSW+1).
		Lines per panel (Section 7.6.3.4):
9:0	LPP	Specifies the number of lines per panel. For single-panel mode, this represents the total number of lines on the LCD display. For dual-panel mode, it is half the number of lines on the whole LCD display. Lines per panel = (LPP+1).

7.6.3.1 Beginning-of-Frame Line Clock Wait Count (BFW)

The 8-bit beginning-of-frame line clock wait count (BFW) field is used in active mode (LCCR0[PAS] = 1) to specify the number of line clocks to insert at the beginning of each frame. The BFW count starts when the VSYNC signal for the previous frame is negated. The value in BFW is used to count the number of line clock periods to insert before starting pixel output in the next frame. BFW generates a wait period ranging from 0 to 255 extra L_LCLK cycles (BFW=0x00 disables the wait count). L_LCLK does toggle during the generation of the BFW line clock wait periods.

In passive mode, BFW must be set to zero so that no beginning-of-frame wait states are generated. Use VSW exclusively in passive mode to insert line clock wait states, which allow the LCD controller's DMAC to fill the palette and insert additional pixels before the start of the next frame.

7.6.3.2 End-of-Frame Line Clock Wait Count (EFW)

The 8-bit end-of-frame (EOF) line clock wait count (EFW) field is used in active mode (LCCR0[PAS] = 1) to specify the number of line clocks to insert at the end of each frame. Once a complete frame of pixels is transmitted to the LCD display, the value in EFW is used to count the

number of line clock periods to wait. After the count has elapsed, the VSYNC (L_FCLK) signal is pulsed. EFW generates a wait period ranging from 0 to 255 line clock cycles (EFW = 0x00 disables the EOF wait count). L_LCLK does not toggle during the generation of the EFW line clock periods.

In passive mode, EFW must be set to zero so that no EOF wait states are generated. Use VSW exclusively in passive mode to insert line clock wait states, which allow the LCD controller's DMAC to fill the palette and insert additional pixels before the start of the next frame.

7.6.3.3 Vertical Sync Pulse Width (VSW)

The 6-bit vertical sync pulse width (VSW) field is used to specify the pulse width of the vertical synchronization pulse in active mode or to add extra "dummy" line clock wait states between the end and beginning of frame in passive mode.

In active mode (LCCR0[PAS]=1), L_FCLK is used to generate the vertical sync signal and is asserted each time the last line or row of pixels for a frame is sent to the display and a programmable number of line clock wait states as specified by LCCR1[BLW] have elapsed. When L_FCLK is asserted, the value in VSW is transferred to a 6-bit down counter, which uses the line clock frequency to decrement. When the counter reaches zero, L_FCLK is negated. VSW can be programmed to generate a vertical sync pulse width ranging from 1 to 64 line clock periods. VSW must be programmed with the desired number of line clocks minus one. The polarity (active and inactive state) of the L_FCLK pin is programmed using the vertical sync polarity (VSP) bit in LCCR3.

In passive mode (LCCR0[PAS]=0), VSW does not affect the timing of the L_FCLK pin, but rather can be used to add extra line clock wait states between the end of each frame and the beginning of the next frame. When the last line clock of a frame is negated, the value in VSW is transferred to a 6-bit down counter that uses the line clock frequency to decrement. When the counter reaches zero, the next frame begins. VSW can be programmed to generate from 1 to 64 dummy line clock periods between each frame in passive mode. VSW must be programmed to allow:

- enough wait states to occur between frames such that the LCD's DMAC is able to fully load the on-chip palette (if applicable)
- a sufficient number of encoded pixel values to be fetched from the frame buffer, to be processed by the dither logic and placed in the output FIFO, ready to be sent to the LCD data pins.

The number of wait states required is system dependent, depending on such factors as:

- palette buffer size (none; 8, 32 or 512 bytes)
- memory system speed (number of wait states, burst speed, number of beats)
- Palette DMA request delay, LCCR0[PDD].

The line clock pin does toggle during the insertion of the line clock wait state periods.

VSW does not affect generation of the frame clock signal in passive mode. Passive LCD displays require that the frame clock be active on the rising edge of the first line clock pulse of each frame, with adequate setup and hold time. To meet this requirement, the LCD controller's frame clock pin is asserted on the rising edge of the first pixel clock for each frame. The frame clock remains asserted for the remainder of the first line as pixels are sent to the display. It is then negated on the rising edge of the first pixel clock of the second line of each frame.

7.6.3.4 Lines Per Panel (LPP)

The lines per panel (LPP) bit field specifies the number of lines or rows present on the LCD panel being controlled. In single-panel mode, it represents the total number of lines for the entire LCD display. LPP is used to count the correct number of line clocks that must occur before the frame clock can be pulsed. In dual-panel mode, it represents half the number of lines of the entire LCD display, which is split into two panels. LPP is a 10-bit value that represents between 1 and 1024 lines per screen. It must be programmed with the actual height of the display minus one. It is recommended not to exceed 600 pixels. For portrait mode panels, more than 600 pixels can be used as long as total pixels do not exceed 480,000. For example, a 480x640 portrait mode panel can be used.

7.6.4 LCD Controller Control Register 3 (LCCR3)

LCD Controller Control Register 3), shown in Table 7-7, contains bits and bit fields used to control various functions within the LCD controller. This register may be read or written. Reserved bits must be written with zeros and reads from them must be ignored.

Table 7-7. LCD Controller Control Register 3 (Sheet 1 of 2)

			F				dres 00C				L	CD (Con	troll	er C	onti	ol F	Regi	ster	3					LCE) Co	ontro	oller				
Bit	31 30 29 28 27 26 25 24 23						23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
								OEP	PCP	HSP	VSP		Α	PI					AC	СВ							PO	D				
Reset	Χ	Χ	X X X 0 0 0 0 0					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bits	Name	Description
31:28	-	reserved — write with zeros.
		Double Pixel Clock mode (Section 7.6.4.1):
27	DPC	0 = The L_PCLK pin is driven at the frequency specified by PCD. 1 = The L_PCLK pin is driven at double the frequency specified by PCD.
26:24	BPP	Bits Per Pixel (Section 7.6.4.2): 000 – 1-bits/pixel [4 entry, 8 byte palette buffer (only first 2 entries are used)] 001 – 2-bits/pixel [4 entry, 8 byte palette buffer] 010 – 4-bits/pixel [16 entry, 32 byte palette buffer] 011 – 8-bits/pixel [256 entry, 512 byte palette buffer] 100 – 16-bits/pixel [no palette buffer] 101, 110, 111 – reserved
23	OEP	Output Enable Polarity (Section 7.6.4.3): 0 = L_BIAS pin is active high and inactive low in active display mode. 1 = L_BIAS pin is active low and inactive high in active display mode. In active display mode, data is driven out to the LCD's data pins on the programmed pixel clock edge when the L_BIAS pin is active. OEP is ignored in passive display mode.
22	PCP	Pixel Clock Polarity (Section 7.6.4.4): 0 = Data is sampled on the LCD data pins on the rising edge of L_PCLK. 1 = Data is sampled on the LCD data pins on the falling edge of L_PCLK.
21	HSP	Horizontal Sync Polarity (Section 7.6.4.5): 0 = L_LCLK pin is active high and inactive low. 1 = L_LCLK pin is active low and inactive high.

Table 7-7. LCD Controller Control Register 3 (Sheet 2 of 2)

			F				dres 00C				L	CD	Con	trol	ler C	ont	rol F	Regi	ster	3					LCI	O Co	ontro	oller				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I	rese	rved	d	DPC		BPF)	OEP	PCP	HSP	VSP		Α	ΡI					A	СВ							PC	D			
Reset	Χ	Χ	Χ	Χ	0	0 0 0 0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
		Vertical Sync Polarity (Section 7.6.4.6):
20	VSP	0 = L_FCLK pin is active high and inactive low. 1 = L_FCLK pin is active low and inactive high.
		AC bias Pin transitions per Interrupt.
19:16	API	Value (0–15) is used to specify the number of AC bias pin transitions to count before setting the line count status (ABC) bit, signalling an interrupt request. The counter is frozen when ABC is set and is restarted when ABC is cleared by software. This function is disabled when API=0x0.
		AC Bias pin frequency (Section 7.6.4.8):
15:8	ACB	In passive-display mode (LCCR0[PAS]=0), value (0–255) specifies the number of line clocks to count before toggling the AC bias pin. This pin is used to periodically invert the polarity of the power supply to prevent D.C. charge buildup within the display. If the passive display being controlled does not need to use L_BIAS, program ACB to its maximum value (0xFF) to conserve power. ACB can be used in conjunction with API to count line clocks in active mode (LCCR0[PAS] = 1).
		Number of line clocks/toggle of the L_BIAS pin = (ACB+1)
		Pixel Clock Divisor (Section 7.6.4.9):
7:0	PCD	Value (0–255) is used to specify the frequency of the pixel clock based on the LCD/Memory Controller clock (LCLK) frequency. The Pixel clock frequency can range from LCLK/2 to LCLK/512.
		Pixel Clock Frequency = LCLK/(2*(PCD+1)).
		PCD must be programmed with a value of 1 or greater if Double Pixel Clock Mode is enabled.

7.6.4.1 Double Pixel Clock (DPC)

DPC doubles the rate of the pixel clock on the L_PCLK pin. This allows direct connection to an NTSC encoder (e.g., the Analog Devices 7171). All of the LCD controller settings are still specified in terms of the "original" pixel clock and this mode affects *only* the L_PCLK output pin. If DPC is set to 1, the pixel clock divisor (PCD) must be greater than or equal to 1.

7.6.4.2 Bits Per Pixel (BPP)

BPP specifies the size of encoded pixel values in memory. Pixel sizes of 1, 2, 4, and 8 bits require that the internal palette RAM be loaded before pixels can be displayed on the screen. See Section 7.6.5, "LCD Controller DMA" for details on programming the DMAC to load the palette RAM. BPP is programmed as follows:

0b000 = 1-bit pixels

0b001 = 2-bit pixels

0b010 = 4-bit pixels

0b011 = 8-bit pixels

0b100 = 16-bit pixels

0b101-0b111 = reserved

7.6.4.3 Output Enable Polarity (OEP)

In active display mode (LCCR0[PAS] = 1), the OEP bit selects the active and inactive states of the output enable signal (L_BIAS). In this mode, the AC bias pin serves as an enable that signals the off-chip device when data is actively being driven using the pixel clock, which continuously toggles in active mode. When OEP = 0, L_BIAS is active high and inactive low. When OEP = 1, L_BIAS is active low and inactive high. When L_BIAS is in its active state, data is driven onto the LCD data pins on the programmed edge of the pixel clock.

In **passive display** mode, OEP does not affect L_BIAS.

7.6.4.4 Pixel Clock Polarity (PCP)

The PCP bit selects the edge of the pixel clock (L_PCLK) on which data is sampled at the LCD pins. When PCP = 0, sampling occurs on the rising edge of L_PCLK . When PCP = 1, sampling occurs on the falling edge. PCP does not affect the timing of data being driven, it simply inverts L_PCLK .

7.6.4.5 Horizontal Sync Polarity (HSP)

The HSP bit selects the active and inactive states of the L_LCLK pin. When HSP = 0, L_LCLK is active high and inactive low. When HSP = 1, it is active low and inactive high. In **active display** mode, L_LCLK serves as the horizontal sync signal and in **passive display** mode, it is the line clock.

In **both** active and passive display modes, the L_FCLK pin is forced to its inactive state whenever pixels are transmitted. After the end of each line and a programmable number of pixel clocks occur (controlled by LCCR1[ELW]), the L_FCLK pin is forced to its active state for a programmable number of line clocks (controlled by LCCR1[HSW]), and is then again forced to its inactive state.

7.6.4.6 Vertical Sync Polarity (VSP)

The VSP bit selects the active and inactive states of the L_FCLK pin. When VSP = 0, L_FCLK is active high and inactive low. When VSP = 1, L_FCLK is active low and inactive high.

In **active display** mode (LCCR0[PAS] = 1), L_FCLK serves as the vertical sync signal. It is forced to its inactive state while pixels are transmitted during the frame. After the end of the frame and a programmable number of line clocks occur (controlled by LCCR2[EFW]), it is forced to its active state for a programmable number of line clocks (controlled by LCCR2[VSW]), and is then again forced to its inactive state.

In **passive display** mode, L_FCLK serves as the frame clock. It is forced to its active state on the rising edge of the first pixel clock of each frame. It remains active during the transmission of the entire first line of pixels in the frame and is then forced back to its inactive state on the rising edge of the first pixel clock of the second line of the frame. It remains at this state through the end of the frame.

7.6.4.7 AC Bias Pin Transitions Per Interrupt (API)

The 4-bit API field specifies the number of AC bias pin (L_BIAS) transitions to count before setting the AC bias count status (ACS) bit in the LCD Controller Status Register (LCSR), which signals an interrupt request. After the LCD controller is enabled, the value in API is loaded to a 4-bit down counter, and the counter decrements each time L_BIAS is inverted. When the counter

reaches zero, it stops, and the AC bias count bit, LCSR[ABC], is set. Once ABC is set, the 4-bit down counter is reloaded with the value in API and is disabled until ABC is cleared. When ABC is cleared by the CPU, the down counter is enabled and again decrements each time the AC bias pin is inverted. The number of AC bias pin transitions between each interrupt request ranges from 1 to 15. Setting API to 0x0 disables the API function.

In active display mode (LCCR0[PAS] = 1), L_BIAS is the output enable signal. However, signalling of the API interrupt may still occur. The ACB bit field can be used to count line clock pulses in active mode. When the programmed number of line clock pulses occurs, an internal signal is toggled that is used to decrement the 4-bit counter used by the API interrupt logic. Once this internal signal toggles the programmed number of times, as specified by API, an interrupt is generated. The user must program API to zero if the API interrupt function is not required in active mode.

7.6.4.8 AC Bias Pin Frequency (ACB)

In **passive display** mode (LCCR0[PAS] = 1), the 8-bit ACB field specifies the number of line clocks to count between each toggle of the AC bias pin (L_BIAS). After the LCD controller is enabled, the value in ACB is loaded to an 8-bit down counter, which begins to decrement using the line clock (L_LCLK). When the counter reaches zero, it stops, L_BIAS is toggled, and the whole procedure starts again. The number of line clocks between each bias pin transition ranges from 1 to 256, corresponding to ACB values from 0 to 255. Thus, the value to program into ACB is the desired number of line clocks minus 1.

AC bias is used by a passive LCD display to periodically reverse the polarity of the power supplied to the screen in order to eliminate D.C. offset. If the LCD display being controlled has its own internal means of switching its power supply, set ACB to its maximum value (0xFF) to reduce power consumption. ACB must be programmed conservatively in a system with bandwidth problems that result in output FIFO underruns in the LCD Controller. In these cases, the pixel clock is stalled for passive displays, which can result in more time between line clocks than expected. See Section 7.3.5, "LCD Controller Pin Usage" on page 7-8 for more information on how output FIFO underruns are handled.

In active display mode, the ACB bit field has no effect on the L_BIAS pin. Because the pixel clock toggles continuously in active mode, the AC bias pin is used as an output enable signal. It is asserted automatically by the LCD controller in active mode whenever pixel data is driven out to the data pins to signal the display when it may latch pixels using the pixel clock. ACB can be used in active mode to count line clocks and generate API interrupts.

7.6.4.9 Pixel Clock Divider (PCD)

The 8-bit PCD field selects the frequency of the pixel clock (L_CLK). PCD can be any value from 0 to 255. It generates a range of pixel clock frequencies from LCLK/2 to LCLK/512, where LCLK is the programmed frequency of the LCD/Memory Controller clock. LCLK can vary from 100MHz to 166 MHz.

The pixel clock frequency must be adjusted to meet the required screen refresh rate, which depends on:

- number of pixels for the target display
- number of panels (single or dual)
- display type (monochrome or color)
- number of pixel clock wait states programmed at the beginning and end of each line

- number of line clocks inserted at the beginning and end of each frame
- width of the VSYNC signal in active mode or VSW line clocks inserted in passive mode
- width of the frame clock or HSYNC signal.

All of these factors alter the time duration from one frame transmission to the next. Different display manufacturers require different frame refresh rates, depending on the physical characteristics of the display. PCD is used to alter the pixel clock frequency in order to meet these requirements. The frequency of the pixel clock for a set PCD value or the required PCD value to yield a target pixel clock frequency can be calculated using the two following equations. If double pixel clock mode (DPC) is enabled, PCD must be set greater than or equal to 1.

$$PixelClock = \frac{LCLK}{2(PCD+1)}$$

$$PCD = \frac{LCLK}{2(PixelClock)} - 1$$

where

 $LCLK = LCD/Memory\ Clock$ PCD = LCCR3[7:0]

7.6.5 LCD Controller DMA

The LCD controller has two fully independent DMA channels used to transfer both the palette buffer and the frame buffer from external memory to the LCD controller. The LCD DMA controller (DMAC) behaves much like the application processor DMAC in descriptor fetch mode. DMA channel 0 is used for single-panel display mode and the upper screen in dual-panel mode. DMA channel 1 is used exclusively for the lower screen in dual-panel mode. The palette RAM is always loaded through DMA channel 0. All of the information for the DMA transfers is maintained in registers within the LCD DMAC. These registers are loaded from *frame descriptors* located in main memory. One descriptor must be used per frame buffer in memory. A separate descriptor is also used when the palette RAM is loaded. Multiple descriptors can be chained together in a list, making it possible for the DMAC to transfer data from an essentially infinite number of discontiguous locations. The four DMA register types are numbered according to the associated DMA channel:

- Section 7.6.5.2, "LCD DMA Frame Descriptor Address Registers (FDADRx)"
- Section 7.6.5.3, "LCD DMA Frame Source Address Registers (FSADRx)"
- Section 7.6.5.4, "LCD DMA Frame ID Registers (FIDRx)"
- Section 7.6.5.5, "LCD DMA Command Registers (LDCMDx)"

7.6.5.1 Frame Descriptors

Although the FDADRx registers are loaded by software, the other DMA registers can only be loaded indirectly from DMA frame descriptors. A frame descriptor is a four-word block, aligned on a 16-byte boundary, in main memory:

word[0] contains the value for FDADRx

word[1] contains the value for FSADRx

word[2] contains the value for FIDRx

word[3] contains the value for LDCMDx

Software must write the location of the first descriptor to FDADRx before enabling the LCD controller. Once the controller is enabled, the first descriptor is read, and all four registers are written by the DMAC. The next frame descriptor pointed to by FDADRx is loaded into the registers for the associated DMA channel after all data for the current descriptor has been transferred.

The address in FDADRx is not used when the BRA bit in the Frame Branch Register (FBRx) is set. In this case, the Frame Branch Address is used to fetch the descriptor for the next frame. Branches can be used to load a new palette or to process a regular frame, as detailed in Section 7.6.6, "LCD DMA Frame Branch Registers (FBRx)".

Note: If only one frame buffer is used in external memory, the FDADRx field (word[0] of the frame descriptor) must point back to itself.

7.6.5.2 LCD DMA Frame Descriptor Address Registers (FDADRx)

Read/write registers FDADR0 and FDADR1, corresponding to DMA channels 0 and 1, contain the memory address of the next descriptor for the DMA channel. The DMAC fetches the descriptor at this location after finishing the current descriptor. On reset, the bits in this register are undefined. The target address must be aligned to a 16-byte boundary. Bits [3:0] of the address must be zero. Table 7-8 shows the bit layout.

Table 7-8. LCD DMA Frame Descriptor Address Registers

			han	nel	0: 0	x44	dres: 00_0	020			LC	D DI	MA			Desc sters		or A	ddre	ess					LCI) Co	ontro	oller				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Descriptor Address																															
Reset	'														?	?																
		Bi	ts			Na	me												De	escr	ipti	on										
		31	:0				ripto ress					f nex			•		oer	men	nory	alię	gnm	ent.										

7.6.5.3 LCD DMA Frame Source Address Registers (FSADRx)

Registers FSADR0 and FSADR1, corresponding to DMA channels 0 and 1, contain the source address of the current descriptor for the DMA channel. The address must be aligned on an 8-byte boundary. Bits [2:0] must be zero. If this descriptor is a palette load, FSADRx points to the memory location at the beginning of the palette data. The size of the palette data must be four 16-bit entries for 1- and 2-bit pixels, sixteen 16-bit entries for 4-bit pixels, or 256 16-bit entries for 8-bit pixels. If this descriptor is for pixel data, FSADRx points to the beginning of the frame buffer in memory. This address is incremented as the DMAC fetches from memory. If desired, the DMA Frame ID Register can be used to hold the initial frame source address. Table 7-9 shows the bit layout.

These read-only registers are loaded indirectly via the frame descriptors, as described in Section 7.6.5.1, "Frame Descriptors".

Table 7-9. LCD DMA Frame Source Address Registers

Physical Address channel 0: 0x4400_0204 channel 1: 0x4400_0214

LCD DMA Frame Source Address Registers

LCD Controller

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														Frar	ne S	Soui	rce i	Addı	ress	;												
Reset	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
		Bi	ts			Na	me												De	scr	ipti	on										
		31	:0			Sou	me irce ress						•									ory. ent.										

LCD DMA Frame ID Registers (FIDRx) 7.6.5.4

Registers FIDR0 and FIDR1, corresponding to DMA channels 0 and 1, contain an ID field that describes the current frame. The particular use of this field is up to the user. This ID register is copied to the LCD Controller Interrupt ID Register when an interrupt occurs. Table 7-10 shows the bit layout.

These read-only registers are loaded indirectly via the frame descriptors, as described in Section 7.6.5.1, "Frame Descriptors".

Table 7-10. LCD Frame ID Registers

Physical Address channel 0: 0x4400_0208

LCD DMA Frame ID Registers channel 1: 0x4400_0218

LCD Controller

		•	· · · · · ·		0		00_																									
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														Fra	ame	ID														res	serv	ed
Reset	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	Χ	X	Х

Bits	Name	Description
31:3	Frame ID	Frame ID.
2:0	-	reserved

7.6.5.5 LCD DMA Command Registers (LDCMDx)

Registers LDCMD0 and LDCMD1, corresponding to DMA channels 0 and 1, contain configuration fields and the length of the current descriptor for the DMA channel. On reset, the bits in these register are initialized to zero. Reserved bits must be written with zeros and reads from reserved bits must be ignored. Table 7-11 shows the bit layout.

These read-only registers are loaded indirectly via the frame descriptors, as described in Section 7.6.5.1, "Frame Descriptors".

Table 7-11. LCD DMA Command Registers

	~.0	•	• • • •			J	, , ,				~	ເບອ		J. U																		
			han	nél	0: 0	x44	dres: 00_0 00_0	020				LCE	DM	1A C	Com	mar	nd R	egis	sters	S					LCI	O Co	ontro	oller				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		re	serv	ed		PAL	res	serv	red	SOFINT	EOFINT											LEN										
Reset	Х	Х	Х	Х	Х	0	Х	Χ	Х	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		D	40			Na													D.		.:4:											

Bits	Name	Description
31:27	-	reserved
26	PAL	Load Palette (Section 7.6.5.5.4): 0 = DMA in progress is <i>not</i> the palette buffer. 1 = DMA in progress is the palette buffer. PAL must not be set in LDCMD1.
25:23	-	reserved
22	SOFINT	Start of Frame Interrupt (Section 7.6.5.5.2): 0 = Do not set the SOF interrupt bit in the LCD status register when starting a new frame. 1 = Set the start of frame (SOF) interrupt bit in the LCD status register when starting a new frame (after loading the frame descriptor).
21	EOFINT	 End of Frame Interrupt (Section 7.6.5.5.3) Do not set the EOF interrupt bit in the LCD status register when finished fetching the last word of this frame. Set the end of frame (EOF) interrupt bit in the LCD status register when finished fetching the last word of this frame.
20:0	LEN	Length of transfer in bytes (Section 7.6.5.5.4): The two lowest bits [1:0] are part of the length calculation but must always be zero for proper memory alignment. LEN = 0 is illegal.

7.6.5.5.1 Load Palette (PAL)

PAL indicates that data being fetched will be loaded into the palette RAM. If PAL is set to one, the palette RAM is loaded with the first 8, 32, or 512-bytes of data as follows:

8 bytes for 1 and 2-bit pixels

32 bytes for 4-bit pixels

512 bytes for 8-bit pixels.

Software must load the palette at least once after enabling the LCD. Otherwise, the palette entries will not be initialized, and the frame data will not have a valid frame palette to reference.

The palette must not be loaded if the LCD is operating in 16-bit pixel mode.

Note: The PAL bit must never be set in LDCMD1, since the palette is always loaded with Channel 0.

7.6.5.5.2 Start Of Frame Interrupt (SOFINT)

When SOFINT is set to one, the DMAC sets the start of frame bit (LCSR[SOF]) when starting a new frame. The SOF bit is set after a new descriptor is loaded from memory and before the palette/frame data is fetched.

In dual-panel mode, LCSR[SOF] is set only when both channels reach the start of frame and both frame descriptors have SOFINT set. SOFINT must not be set for palette descriptors in dual-panel mode, since only one channel is ever used to load the palette RAM.

7.6.5.5.3 End Of Frame Interrupt (EOFINT)

When EOFINT is set to one, the DMAC sets the end of frame bit (LCSR[EOF]) after fetching the last word in the frame buffer.

In dual-panel mode, LCSR[EOF] is set only when both channels reach the end of frame and both frame descriptors have EOFINT set. EOFINT must not be set for palette descriptors in dual-panel mode, since only one channel is ever used to load the palette RAM.

7.6.5.5.4 Transfer Length (LEN)

The LEN bit field determines the number of bytes fetched by the DMAC. LEN = 0 is not valid. If PAL is set to one, LEN must be programmed with the size of the palette RAM. This corresponds to:

8 bytes for 1 and 2-bit pixels (only the top 2 entries are actually used for 1-bit pixels)

32 bytes for 4-bit pixels

512 bytes for 8-bit pixels.

Note: A separate descriptor must be used to fetch the frame data.

The value of LEN for frame data is a function of the screen size and the pixel size and it must be consistent with the values used for LCCR1[PPL], LCCR2[LPP], and LCCR3[BPP]. See Section 7.4.2, "External Frame Buffer" for instructions on calculating length. The LCD DMAC decrements LEN as it fetches data, allowing the user to read the number of bytes remaining for the current descriptor.

7.6.6 LCD DMA Frame Branch Registers (FBRx)

The two Frame Branch Registers, one for each DMA channel, are shown in Table 7-12. They contain the addresses, aligned on a 4-byte boundary, of the descriptors to branch to.

When BRA is set to one, the Frame Descriptor Address Register is ignored. The next descriptor is fetched from the address in FBRx[31:4], regardless of whether frame data or palette RAM data is being processed. Setting BINT to one forces the DMAC to set the Branch Status interrupt bit (BS) in the LCD Controller Status Register after fetching the branched-to descriptor. BRA is automatically cleared by hardware when the branch is taken.

Note: In dual-panel mode, both FBR0 and FBR1 must be written in order to branch properly.

Table 7-12. LCD DMA Frame Branch Registers (FBRx)

Physical Address channel 0: 0x4400_0020 channel 1: 0x4400_0024

LCD DMA Frame Branch Registers

LCD Controller

Bits	Name	Description
31:4	Frame Branch Address	Frame Branch Address: Address of the descriptor for the branched-to frame.
3:2	-	reserved
1	BINT	Branch Interrupt: 0 = Do not set the BS interrupt bit in register LCSR after the branched-to descriptor is loaded. 1 = Set the BS interrupt bit in register LCSR after the branched-to descriptor is loaded.
0	BRA	Branch: 0 = Do not branch after finishing the current frame. 1 = Branch after finishing the current frame. The next descriptor will be fetched from the Frame Branch Address. BRA is automatically cleared after loading the new descriptor.

7.6.7 LCD Controller Status Register (LCSR)

The read/write LCD Controller Status Register, described in Table 7-13, contains bits that signal:

- underrun errors for both the input and output FIFOs
- AC bias pin transition count
- LCD disable and quick disable
- DMA start/end frame and branch status
- DMA transfer bus error conditions.

Unless masked, each of these hardware-detected events signals an interrupt request to the interrupt controller. Two bits, BER and ABC, generate nonmaskable interrupts.

Each of the LCD's status bits continues to signal an interrupt request for as long as the bit is set. Once the bit is cleared, the interrupt is cleared. Status bits are referred to as sticky (once set by hardware, they must be cleared by software). Writing one to a sticky status bit clears it. Writing zero has no effect. All LCD interrupts can be masked by programming the Interrupt Controller Mask Register (ICMR). See Section 4.2, "Interrupt Controller" on page 4-22 for more details.

Reserved bits must be written with zeros and reads from reserved bits must be ignored.

Table 7-13. LCD Controller Status Register (Sheet 1 of 2)

			F				dres 038	S			L	.CD	Cor	ntrol	ler S	Statu	us R	egis	ster	1					LCE) Cc	ontro	ller				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										res	serv	ed										SINT	BS	EOF	QD	00	IUU	IUL	ABC	BER	SOF	LDD
Reset	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
31:11	-	Reserved. Write with zeros.
10	SINT	Subsequent Interrupt status, maskable interrupt (Section 7.6.7.1): 0 = A second unmasked branch, start of frame, end of frame, or bus error interrupt has NOT occurred before a previous interrupt has completed. 1 = A second unmasked branch, start of frame, end of frame, or bus error interrupt has occurred before the previous interrupt has been cleared. The value in the Interrupt Frame ID Register is not replaced with the value from the second interrupt.
9	BS	Branch Status, maskable interrupt (Section 7.6.7.2): 0 = The DMA has not loaded a branched-to descriptor, or the DMA has loaded a branched-to descriptor, but the branch interrupt (BINT) bit is not set in the Frame Branch Register. 1 = The DMA has loaded a branched-to descriptor, and the BINT bit is set.
8	EOF	End Of Frame status, maskable interrupt (Section 7.6.7.3): 0 = A new frame with the EOFINT bit set in its descriptor has not been processed. 1 = The DMA has finished fetching a frame with the EOFINT bit set in its descriptor.
7	QD	LCD Quick Disable status, maskable interrupt (Section 7.6.7.4): 0 = LCD has not been quickly disabled by clearing LCCCR0[ENB]. 1 = LCD has been quickly disabled.

Table 7-13. LCD Controller Status Register (Sheet 2 of 2)

Physical Address 0x4400_0038 LCD Controller Status Register 1 LCD Controller

Bits	Name	Description
		Output FIFO Underrun status, maskable interrupt (Section 7.6.7.5):
6	OU	 0 = Output FIFOs have not underrun. 1 = LCD dither logic is not supplying data to output FIFOs for the panel at a sufficient rate. The output FIFOs have completely emptied.
		Input FIFO Underrun Upper panel status, maskable interrupt (Section 7.6.7.6):
5	IUU	 0 = The input FIFO for the upper (dual-panel mode) or whole panel (single-panel mode) display has not underrun. 1 = DMA is not supplying data to the input FIFO for the upper or whole panel at a sufficient
		rate. The FIFO has completely emptied, and the pixel unpacking logic has attempted to take data from the FIFO.
		Input FIFO Underrun Lower panel status, dual-panel mode only, maskable interrupt (Section 7.6.7.7):
4	IUL	 0 = The input FIFO for the lower panel display has not underrun. 1 = DMA is not supplying data to the input FIFO for the lower panel at a sufficient rate. The FIFO has completely emptied, and the pixel unpacking logic has attempted to take data from the FIFO.
		AC Bias Count status, nonmaskable interrupt (Section 7.6.7.8):
3	ABC	 0 = The AC bias transition counter has not decremented to zero. 1 = The AC bias transition counter has decremented to zero, indicating that the L_BIAS pin has toggled the number of times specified by the LCCR3[API] control-bit field. The counter is reloaded with the value in API but is disabled until the user clears ABC.
		Bus error status, <i>non</i> maskable interrupt (Section 7.6.7.9):
2	BER	0 = DMA has not attempted an access to reserved/nonexistent memory space. 1 = DMA has attempted an access to a reserved/nonexistent location in external memory.
		Start Of Frame status, maskable interrupt (Section 7.6.7.10):
1	SOF	0 = A new frame descriptor with its SOFINT bit set has not been fetched. 1 = The DMA has begun fetching a new frame with its SOFINT bit set.
		LCD Disable Done status, maskable interrupt (Section 7.6.7.11):
0	LDD	 0 = LCD has not been disabled or the last active frame completed. 1 = LCD has been disabled and the last active frame has completed.

7.6.7.1 Subsequent Interrupt Status (SINT)

SINT status is set when an unmasked interrupt occurs and there is already a pending interrupt. The frame ID of the first interrupt is saved in the LCD controller interrupt ID register (LIIDR). SINT is set only for bus error, start of frame, end of frame, and branch status interrupts.

Note: If a branched-to descriptor has SOF set, both the SOF and branch interrupts are signalled at the same time, and SINT is not set.

7.6.7.2 Branch Status (BS)

BS is set after the DMA controller has branched and loaded the descriptor from the frame branch address in the frame branch register, and the branch interrupt (BINT) bit in the frame branch register is set. When BS is set, an interrupt request is made to the interrupt controller if it is unmasked (LCCR0[BM] = 0).

In dual-panel mode (LCCR0[SDS = 1]), both DMA channels are enabled, and BS is set only after both channels' frames have been fetched. BS remains set until cleared by software.

7.6.7.3 End Of Frame Status (EOF)

EOF status is set after the DMA controller has finished fetching a frame from memory and that frame's descriptor has the end-of-frame interrupt bit set (LDCMDx[EOFINT] = 1). When EOF is set, an interrupt request is made to the interrupt controller if it is unmasked (LCCR0[EFM] = 0).

When dual-panel mode is enabled (LCCR0[SDS] = 1), both DMA channels are enabled, and SOF is set only after both channels' frames have been fetched. EOF remains set until cleared by software.

7.6.7.4 LCD Quick Disable Status (QD)

QD is set when LCD Enable (LCCR0[ENB]) is cleared and the DMA controller finishes any current data burst. When QD is set, an interrupt request is made to the interrupt controller if it is unmasked (LCCR0[QDM] = 0). This forces the LCD controller to stop immediately and quit driving the LCD pins. Quick disable is intended for use with Sleep shutdown.

7.6.7.5 Output FIFO Underrun Status (OU)

OU is set when an output FIFO is completely empty and the LCD's data pin driver logic attempts to fetch data from the FIFO. It is cleared by writing one to the bit. OU is used for single- and dual-panel displays. In dual-panel mode (LCCR0[SDS] = 1), both FIFOs are filled and emptied at the same time, so that underrun occurs at the same time for both panels. When OU is set, an interrupt request is made to the interrupt controller if it is unmasked (LCCR0[OUM] = 0). Output FIFO underruns are more important that Input FIFO underruns, because they affect the panel.

7.6.7.6 Input FIFO Underrun Upper Panel Status (IUU)

IUU is set when the upper panel's input FIFO is completely empty and the LCD controller's pixel unpacking logic attempts to fetch data from the FIFO. It is cleared by writing one to the bit. IUU is used in both single-panel (LCCR0[SDS] = 0) and dual-panel (SDS = 1) modes. When IUU is set, an interrupt request is made to the interrupt controller if it is unmasked (LCCR0[IUM] = 0).

7.6.7.7 Input FIFO Underrun Lower Panel Status (IUL)

IUL, used only in dual-panel mode (LCCR0[SDS] = 1), is set when the lower panel's input FIFO is completely empty and the LCD controller's pixel unpacking logic attempts to fetch data from the FIFO. It is cleared by writing one to the bit. When IUL is set, an interrupt request is made to the interrupt controller if it is unmasked (LCCR0[IUM]=0).

7.6.7.8 AC Bias Count Status (ABC)

ABC is set each time the AC bias pin (L_BIAS) toggles the number of times specified in the AC bias pin transitions per interrupt (API) field in LCCR3. If API is programmed with a non-zero value, a counter is loaded with the value in API and is decremented each time L_BIAS toggles. When the counter reaches zero, ABC is set, which signals an interrupt request to the interrupt controller. The counter reloads using the value in API but does not start to decrement again until ABC is cleared by software.

7.6.7.9 Bus Error Status (BER)

BER is set when a DMA transfer causes a system bus error. The error is signalled when the DMA controller attempts to access a reserved or nonexistent memory space. When this occurs, the DMA controller stops and remains halted until software installs a valid memory address into the FDADRx register. In dual-channel mode, both channels are stopped. FDADR0 and FDADR1 must be rewritten to continue LCD operation. BER remains set until cleared by software.

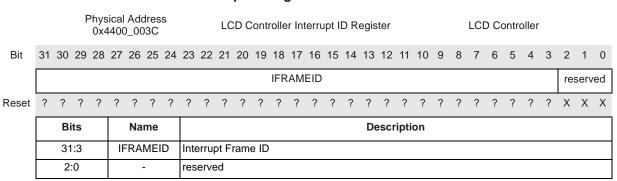
7.6.7.10 Start Of Frame Status (SOF)

SOF status is set after the DMA controller has loaded a new descriptor and that descriptor has the start of frame interrupt bit set (LDCMDx[SOFINT] = 1). When SOF is set, an interrupt request is made to the interrupt controller if it is unmasked (LCCR0[SFM] = 0). In dual-panel mode (LCCR0[SDS] = 1), both DMA channels are enabled, and SOF is set only after both channels' descriptors have been loaded. SOF remains set until cleared by software.

7.6.7.11 LCD Disable Done Status (LDD)

LDD is set by hardware after the LCD has been disabled and the frame that is active has been sent to the LCD data pins. When the LCD controller is disabled by setting the LCD disable bit in LCCR0, the current frame is completed before the controller is disabled. After the last set of pixels is clocked out onto the LCD data pins by the pixel clock, the LCD controller is disabled, LDD is set, and an interrupt request is made to the interrupt controller if it is unmasked (LCCR0[LDM] = 0). LDD remains set until cleared by software.

Performing a quick disable by clearing LCCR0[ENB] does not set LDD.


7.6.8 LCD Controller Interrupt ID Register (LIIDR)

LIIDR is a read-only register (Table 7-14) that contains a copy of the Frame ID Register (FIDR) from the descriptor currently being processed when a start of frame (SOF), end of frame (EOF), branch (BS), or bus error (BER) interrupt is signalled. LIIDR is written to only when an unmasked interrupt of the above type is signalled and there are no other unmasked interrupts in the LCD controller pending. As such, the register is considered to be sticky and will be overwritten only when the signalled interrupt is cleared by writing the LCD controller status register. Except for a bus error, in dual panel mode LIIDR is written only when both channels have reached a given state.

LIIDR is written with the last channel to reach that state. (i.e. FIDR of the last channel to reach SOF would be written in LIIDR if SOF interrupts are enabled). Reserved bits must be written with zeros and reads from them must be ignored.

Table 7-14. LCD Controller Interrupt ID Register

7.6.9 TMED RGB Seed Register

This register (Table 7-15) contains the three (red, green, blue) eight-bit seed values used by the TMED algorithm. This value is added into the modified pixel data value as an offset in creating the lower boundary for the algorithm. These values are used during the dithering process for passive (DSTN) displays. The default, recommended setting is 0x00AA5500. This setting provides superior display results in most cases. This is a write-only register. Reserved bits must be written with zeros and reads must be ignored.

Table 7-15. TMED RGB Seed Register

			F			Add 0_00		S			TME	D R	GB S	Seed	d Re	giste	r					LCI	O Co	ontro	ller				
Bit	31	30	29	28	27	26	25	24	23 22	21	20 19	18	17	16	15	14	13	12 1	1 10	9	8	7	6	5	4	3	2	1	0
			ı	ese	rve	d					TBS							TGS	6						TF	RS			
Reset	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ			0xAA							0x5	5						0x	00			
		Bi	its			Na	me										De	scrip	tion										
		31	:24				-		reserve	ed																			
		23	:16			TE	3S		TME B	lue	Seed va	alue																	
		15	5:8			TC	SS		TME G	ree	n Seed	valu	ie																
		7	:0			TF	RS		TME R	ed S	Seed Va	alue																	

7.6.10 TMED Control Register (TCR)

This read/write register (Table 7-16) selects various options available in the TMED dither algorithm. There are two Temporal Modulated Energy Distribution algorithms that can be used. The default, recommended setting is 0x0000754F. This setting provides superior display results in most cases. Reserved bits must be written as shown in Table 7-16. Reads from reserved bits must be ignored.

For more details on the effects of the individual fields within this register, please refer to Section 7.3.3, "Temporal Modulated Energy Distribution (TMED) Dithering" on page 7-6.

Table 7-16. TMED Control Register

				Phys 0X4	sical 4400								TME	ED (Conf	trol F	Reg	ister	r						LCE	O Co	ontro	oller				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								res	serv	ed								TED	reserved	ם מפונים		TH	IBS			TV	BS		FNAME	COAE	FNAM	COAM
Reset	X	X	X	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	1	1	1	0	1	0	1	0	1	0	0	1	1	1	1
		Bi	its			Na	ame												Dε	escr	ripti	on										

Bits	Name	Description
31:15	-	reserved; must be written with zeros
14	TED	TMED Energy Distribution Matrix Select 0 = Selects Matrix 1 1 = Selects Matrix 2
13:12	-	reserved; must be written with 0b11
11:8	THBS	TMED Horizontal Beat Suppression Specifies the column shift value.
7:4	TVBS	TMED Vertical Beat Suppression Specifies the block shift value.
3	FNAME	TMED Frame Number Adjuster Enable 0 = Disable frame number adjuster. 1 = Enable frame number adjuster.
2	COAE	TMED Color Offset Adjuster Enable 0 = Disable color offset adjuster. 1 = Enable color offset adjuster.
1	FNAM	TMED Frame Number Adjuster Matrix 0 = Selects Matrix 1 for frame number adjuster. 1 = Selects Matrix 2 for frame number adjuster.
0	COAM	TMED Color Offset Adjuster Matrix 0 = Selects Matrix 1 for color offset adjuster. 1 = Selects Matrix 2 for color offset adjuster.

7.6.10.1 TMED Energy Distribution Select (TED)

TED selects which matrix is used in the final step of TMED algorithm. TMED = 1 selects the (preferred) TMED2 matrix. TMED = 0 selects the older TMED matrix. After the pixel value has gone through the algorithm to determine a lower and upper boundary, the row and column counters are combined and run through one of the matrices to obtain a number that will be compared to the 2 boundaries. If that number is between the 2 boundaries, then the data out for this pixel in this frame is a 1, otherwise it is a 0.

7.6.10.2 TMED Horizontal Beat Suppression (THBS)

This is the column shift value used as an offset that is combined with the row (line) counter and the pixel counter to create an address to lookup in the matrix. The matrix output is compared to the upper and lower boundaries defined in Section 7.3.3.

7.6.10.3 TMED Vertical Beat Suppression (TVBS)

This is the block shift value used as an offset that is combined with the pixel counter.

7.6.10.4 TMED Frame Number Adjuster Enable (FNAME)

The frame number adjuster enable bit allows the frame number adjuster to add an offset to the current frame number before the value is sent through the algorithm. Setting this bit enables the addition of the current frame number to a value composed from the row and column counters. This value comes from one of the two look up matrices which is selected by TMED[FNAM].

7.6.10.5 TMED Color Offset Adjuster Enable (COAE)

COAE enables the color offset adjuster for each color. The color offset adjuster creates the offset in the lower boundary in the TMED algorithm (refer to Section 7.3.3, "Temporal Modulated Energy Distribution (TMED) Dithering" on page 7-6). The Offset is created by adding either the output of the lookup matrix (input was the Color Value) or '00' to the Seed value in the TSR for that color. The color offset adjuster for each color can be disabled by clearing this bit. When cleared, this bit allows only the Seed Register value to go through the algorithm.

7.6.10.6 TMED Frame Number Adjuster Matrix (FNAM)

FNAM selects which matrix is used when using the frame number adjuster. A 1 will select the (recommended) TMED2 matrix, and a 0 will select the older TMED matrix.

7.6.10.7 TMED Color Offset Adjuster Matrix (COAM)

COAM selects which matrix is used when using the color offset adjuster. A 1 will select the (recommended) TMED2 matrix, and a 0 will select the older TMED matrix.

7.6.11 LCD Controller Register Summary

Table 7-17 shows the registers associated with the LCD Controller and the physical addresses used to access them. All of the LCD registers must be accessed as 32-bit values.

Table 7-17. LCD Controller Register Locations

Address	Name	Description
0x4400 0000	LCCR0	LCD controller control register 0
0x4400 0004	LCCR1	LCD controller control register 1
0x4400 0008	LCCR2	LCD controller control register 2
0x4400 000C	LCCR3	LCD controller control register 3
0x4400 0020	FBR0	DMA channel 0 frame branch register
0x4400 0024	FBR1	DMA channel 1 frame branch register
0x4400 0038	LCSR	LCD controller status register
0x4400 003C	LIIDR	LCD controller interrupt ID register
0x4400 0040	TRGBR	TMED RGB Seed Register
0x4400 0044	TCR	TMED Control Register
0x4400 0200	FDADR0	DMA channel 0 frame descriptor address register
0x4400 0204	FSADR0	DMA channel 0 frame source address register
0x4400 0208	FIDR0	DMA channel 0 frame ID register
0x4400 020C	LDCMD0	DMA channel 0 command register
0x4400 0210	FDADR1	DMA channel 1 frame descriptor address register
0x4400 0214	FSADR1	DMA channel 1 frame source address register
0x4400 0218	FIDR1	DMA channel 1 frame ID register
0x4400 021C	LDCMD1	DMA channel 1 command register

intel® Synchronous Serial Port Controller

This chapter describes the Synchronous Serial Port Controller's (SSPC) signal definitions and operation for the PXA250 and PXA210 application procesors.

8.1 Overview

The SSPC is a full-duplex synchronous serial interface and can connect to a variety of external analog-to-digital (A/D) converters, audio and telecom codecs, and other devices that use serial protocols for transferring data. The SSPC supports National's Microwire*, Texas Instruments' Synchronous Serial Protocol* (SSP), and Motorola's Serial Peripheral Interface* (SPI) protocol.

The SSPC operates in master mode (the attached peripheral functions as a slave) and supports serial bit rates from 7.2 KHz to 1.84 MHz. Serial data formats may range from 4 to 16 bits in length. The SSPC provides 16 entries deep x 16 bits wide transmit and receive data FIFOs.

The FIFOs may be loaded or emptied by the Central Processor Unit (CPU) using programmed I/O, or DMA burst transfers of 4 or 8 half-words per transfer while receiving or transmitting.

8.2 **Signal Description**

This section describes the SSPC signals.

8.2.1 **External Interface to Synchronous Serial Peripherals**

Table 8-1 lists the external signals that connect the SSP to an external peripheral.

Table 8-1. External Interface to Codec

Name	Direction	Description
SSPSCLK	Output	Serial bit-rate clock
SSPSFRM	Output	Frame indicator
SSPTXD	Output	Transmit Data (serial data out)
SSPRXD	Input	Receive Data (serial data in)
SSPEXTCLK	Input	External clock which can be selected to drive the serial clock (SSPSCLK)

SSPSCLK is the bit-rate clock driven from the SSPC to the peripheral. SSPSCLK is toggled only when data is actively being transmitted and received.

SSPSFRM is the framing signal, indicating the beginning and the end of a serialized data word.

SSPTXD and SSPRXD are the Transmit and Receive serial data lines.

SSPEXTCLK is an external clock (input through GPIO27) that replaces the standard 3.6864 MHz clock used to generate the serial bit-rate clock (SSPSCLK). The external clock is also divided by the value in SSCR0[SCR].

If SSP operation is disabled, the five SSP pins are available for GPIO use. See Chapter 4, "System Integration Unit" for details on configuring pin direction and interrupt capabilities.

8.3 Functional Description

Serial data is transferred between the application processor and an external peripheral through FIFO buffers in the SSPC. Data transfers to system memory are initiated by the CPU, using programmed I/O or DMA. Operation is full duplex - separate buffers and serial data paths permit simultaneous transfers to and from the external peripheral.

Programmed I/O transmits and receives data directly between the CPU, the transmit/receive FIFO's, and the peripheral. The DMA controller transfers data during transmit and receive operations between memory, the FIFO's and the peripheral. DMA programming guidelines are found in Chapter 5, "DMA Controller".

8.3.1 Data Transfer

Transmit data is written by the CPU or DMA to the SSPC's transmit FIFO. The write takes the form of a programmed I/O or a DMA burst, with 4 or 8 half-words being transferred per burst. The SSPC then takes the data from the FIFO, serializes it, and transmits it via the SSPTXD signal to the peripheral. Data from the peripheral is received via the SSPRXD signal, converted to parallel words and is stored in the Receive FIFO. Read operations automatically target the receive FIFO, while write operations write data to the transmit FIFO. Both the transmit and receive FIFO buffers are 16 entries deep by 16 bits wide.

As the received data fills the receive FIFO a programmable threshold triggers an interrupt to the Interrupt Controller. If enabled, an interrupt service routine responds by identifying the source of the interrupt and then performs one or several read operations from the inbound (receive) FIFO buffer.

8.4 Data Formats

The SSPC uses serial data formats to transfer and store data. This section describes the data formats.

8.4.1 Serial Data Formats for Transfer to/from Peripherals

Four signals are used to transfer data between the application processor and external codecs or modems. Although there are three formats for serial data, they have the same basic structure:

- SSPSCLK—Defines the bit rate at which serial data is transmitted and received from the port.
- SSPSFRM–Depending on the transmission format selected, defines the boundaries of a data frame, or marks the beginning of a data frame.
- SSPTXD-Transmit signal for outbound data, from system to peripheral.

• SSPRXD–Receive signal for inbound data, from peripheral to system.

A data frame can be configured to contain from 4 to 16 bits. Serial data is transmitted most significant bit first.

The SSPC supports three formats: Motorola SPI, Texas Instruments SSP, and National Microwire. The three formats have significant differences, as described below.

SSPSFRM varies for each protocol as follows:

- For SPI and Microwire formats, SSPSFRM functions as a chip select to enable the external device (target of the transfer), and is held active-low during the data transfer.
- For SSP format, SSPSFRM is pulsed high for one (serial) data period at the start of each frame.

SSPSCLK varies for each protocol as follows:

- For Microwire, both transmit and receive data sources switch data on the falling edge of SSPSCLK, and sample incoming data on the rising edge.
- For SSP, transmit and receive data sources switch data on the rising edge of SSPSCLK, and sample incoming data on the falling edge.
- For SPI, the user has the choice of which edge of SSPSCLK to use for switching outgoing data, and for sampling incoming data. In addition, the user can move the phase of SSPSCLK, shifting its active state one-half period earlier or later at the start and end of a frame.

While SSP and SPI are full-duplex protocols, Microwire uses a half-duplex master-slave messaging protocol. At the start of a frame, a 1 or 2-byte control message is transmitted from the controller to the peripheral. The peripheral does not send any data. The peripheral interprets the message and, if it is a READ request, responds with requested data, one clock after the last bit of the requesting message. Return data (part of the same frame) can be from 4 to 16 bits in length. Total frame length is 13 to 33 bits.

The serial clock (SSPSCLK) only toggles during an active data transfer. At other times it is held in an inactive or idle state, as defined by its specified protocol.

8.4.1.1 SSP Format Details

When outgoing data in the SSP controller is ready to be transmitted, SSPSFRM is asserted for one clock period. On the following clock period, data to be transmitted is driven on SSPTXD one bit at a time, most significant bit first. Similarly, the peripheral drives data on the SSPRXD pin. Word length is from 4 to 16 bits. All transitions take place on the SSPSCLK rising edge and data is sampled on the falling edge. At the end of the transfer, SSPTXD retains the value of the last bit sent (bit 0) through the next idle period. If the SSP Port is disabled or reset, SSPTXD is forced to zero. Figure 8-1 shows the Texas Instruments' Synchronous Serial Frame* format for a single transmitted frame and when back-to-back frames are transmitted. When the bottom entry of the transmit FIFO contains data, SSPSFRM is pulsed high for one SSPSCLK period and the value to be transmitted is transferred from the transmit FIFO to the transmit logic's serial shift register. On the next rising edge of SSPSCLK, the most significant bit of the 4 to 16-bit data frame is shifted to the SSPTXD pin. Likewise, the most significant bit of the received data is shifted onto the SSPRXD pin by the off-chip serial slave device. Both the SSP and the off-chip serial slave device then latch each data bit into their serial shifter on the falling edge of each SSPSCLK. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge of SSPSCLK after the last bit has been latched.

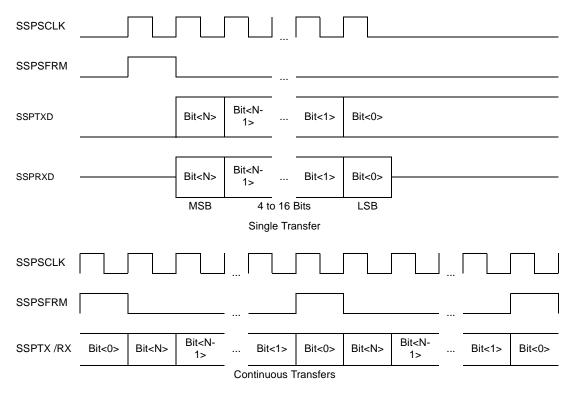
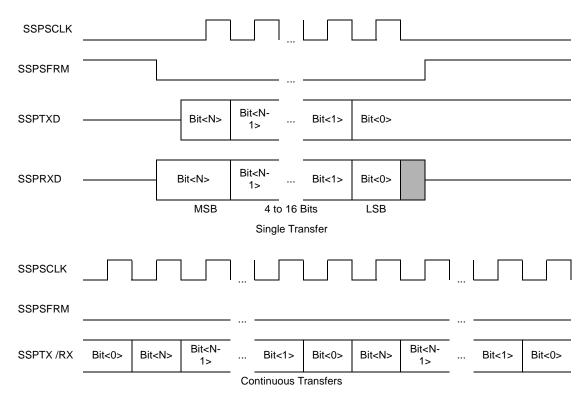


Figure 8-1. Texas Instruments' Synchronous Serial Frame* Format

8.4.1.2 SPI Format Details

The SPI format has four sub-modes. The sub-mode used depends on the SSPSCLK edge selected for driving and sampling data and on the phase mode of SSPSCLK selected (see Section 8.7.2 for complete description of each mode).

In idle mode or when the SSP is disabled, SSPSCLK and SSPTXD are low and SSPSFRM is high. When transmit (outgoing) data is ready, SSPSFRM goes low and stays low for the remainder of the frame. The most significant serial data bit is driven onto SSPTXD a half-cycle later, and halfway into the first bit period SSPSCLK asserts high and continues toggling for the remaining data bits. Data transitions on the configured SSPSCLK edge. From 4 to 16 bits may be transferred per frame.


When SSPSFRM is asserted, receive data is simultaneously driven from the peripheral on SSPRXD, most significant bit first. Data transitions on the configured SSPSCLK edge and is sampled by the controller on opposite edge. At the end of the frame, SSPSFRM is deasserted high one clock period after the last bit is latched at its destination and the completed incoming word is shifted into the incoming FIFO. The peripheral can tristate SSPRXD after sending the last bit of the frame. SSPTXD retains the last value transmitted when the controller goes into idle mode, unless the SSP port is disabled or reset (which forces SSPTXD to zero).

For back-to-back transfers, start and completion are similar to those of a single transfer but SSPSFRM does not deassert between words. Both transmitter and receiver know the word length and internally keep track of the start and end of words (frames). There are no dead bits. One frame's least significant bit is followed immediately by the next frame's most significant bit.

Figure 8-2 shows one of the four configurations for the Motorola SPI frame format for single and back-to-back frame transmissions.

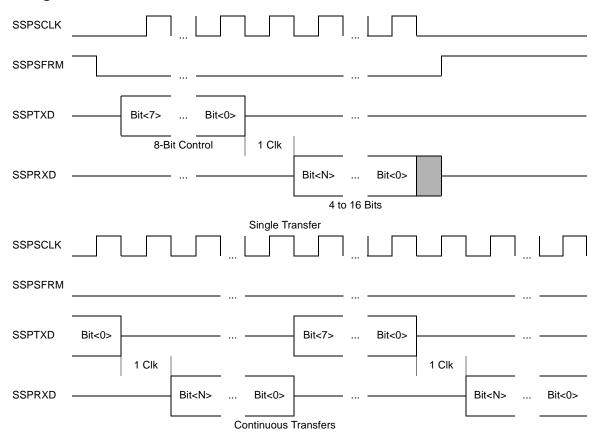
Figure 8-2. Motorola SPI* Frame Format

Note: SSPSCLK's phase and polarity can be configured for four modes. This example shows one of those modes.

8.4.1.3 Microwire Format Details

Microwire format is similar to SPI, but it uses half-duplex transmissions with master-slave message passing rather than full-duplex. In idle state or when the SSP is disabled, SSPSCLK is low, SSPSFRM is high, and SSPTXD is low.

Each Microwire transmission begins with SSPSFRM assertion (low), followed by an 8 or 16-bit command word sent from controller to peripheral on SSPTXD. The command word data size is selected by the Microwire Transmit Data Size (MWDS) bit in SSP Control Register 0. SSPRXD is controlled by the peripheral and remains tristated. SSPSCLK goes high midway through the command's most significant bit and continues to toggle at the bit rate.


One bit-period after the last command bit, the peripheral must return the serial data requested, most significant bit first, on SSPRXD. Data transitions on SSPSCLK's falling edge and is sampled on the rising edge. SSPSCLK's last falling edge coincides with the end of the last data bit on SSPRXD and it remains low if it is the only or last word of the transfer. SSPSFRM deasserts high one-half clock period later.

The start and end of a series of back-to-back transfers are similar to those of a single transfer. However, SSPSFRM remains asserted (low) throughout the transfer. The end of a data word on SSPRXD is immediately followed by the start of the next command byte on SSPTXD.

Figure 8-3 shows the National Microwire frame format with 8-bit command words for single and back-to-back frame transmissions.

Figure 8-3. National Microwire* Frame Format

8.4.2 Parallel Data Formats for FIFO Storage

Data in the FIFOs is stored with one 16-bit value per data sample with no regard to the format's data word length. In each 16-bit field, the stored data sample is right-justified, the word's least significant bit is stored in bit 0, and unused bits are packed as zeroes above the most significant bit. Logic in the SSPC automatically left-justifies data in the Transmit FIFO so the sample is properly transmitted on SSPTXD in the selected frame format.

8.5 FIFO Operation and Data Transfers

Transmit and receive serial data use independent FIFOs. FIFOs are filled or emptied by programmed I/O or DMA bursts that the DMAC initiates. Bursts may be 4 or 8 half-words in length during transmission or reception.

8.5.1 Using Programmed I/O Data Transfers

Data words are 32 bits wide, but only 16-bit samples are transferred. Only the lower 2 bytes of a 32-bit word have valid data. The upper 2 bytes are not used and include invalid data that must be discarded.

The application processor can fill or empty FIFOs in response to an interrupt from the FIFO logic. Each FIFO has a programmable interrupt threshold. When the threshold value is exceeded and an interrupt is enabled, an interrupt that signals the CPU to empty the receive FIFO or refill the transmit FIFO is generated.

The user can also poll the SSP Status Register (see Section 8.7.4) to determine how many samples are in a FIFO or whether the FIFO is full or empty.

8.5.2 Using DMA Data Transfers

The DMA controller can also be programmed to transfer data to and from the SSP's FIFO's. Refer to Chapter 5, "DMA Controller" for instructions on programming the DMA channels.

The steps for the DMA programming model are:

- 1. Program the transmit/receive byte count (buffer length) and burst size.
- 2. Program the DMA request to channel map register for SSP.
- 3. Set the run bit in the DMA control register.
- 4. Set the desired values in the SSP control registers.
- 5. Enable the SSP by setting the SSE bit in the SSP Control Register 0 (see Section 8.7.1).
- 6. Wait for both the DMA transmit and receive interrupt requests.

Note: If the transmit/receive byte count is not a multiple of the transfer burst size, the user must check the SSP Status Register (see Section 8.7.4) to determine if any data remains in the Receive FIFO.

8.6 Baud-Rate Generation

The baud (or bit-rate clock) is generated internally by dividing the internal clock (3.6864 MHz). The internal clock is first divided by 2 and this divided clock feeds a programmable divider to generate baud rates from 7.2 kbps to 1.8432 Mbps. Setting the External Clock Select (ECS, see Section 8.7.1.3) bit to 1 enables an external clock (SSPEXTCLK) to replace the 3.6864 MHz standard internal clock. The external clock is also divided by 2 before it is fed to the programmable divider.

8.7 SSP Serial Port Registers

The SSPC has five registers. It has two control, one data, and one status register:

- The SSPC Control Registers (SSCR0 and SSCR1) are used to program the baud rate, data length, frame format, data transfer mechanism, and port enabling. They also control the FIFO "fullness" threshold that triggers an interrupt. These registers must be written before the SSP is enabled after reset and must only be changed when SSP is disabled.
- The SSPC Data Register (SSDR) is mapped as one 32-bit location that consists of two 16-bit registers. One register is for write operations and transfers data to the transmit FIFO. The other is for read operations and takes data from the receive FIFO. A write cycle, or burst write, loads successive half-words into the transmit FIFO. The write data occupies the lower 2 bytes of the 32-bit word. A read cycle, or burst read, similarly transfers data from the receive FIFO. The FIFOs are independent buffers that allow full duplex operation.
- The SSPC Status Register (SSSR) indicates the state of the FIFO buffers, whether the programmable threshold has been passed, and whether a transmit or receive FIFO service request is active. It also shows how many entries are occupied in the FIFO. Flag bits are set when the SSPC is actively transmitting or receiving data, when the transmit FIFO is not full, and when the receive FIFO is not empty. An error bit signals an overrun of the receive FIFO.

When the registers are programmed, reserved bits must be written as 0s and are read as undefined.

8.7.1 SSP Control Register 0 (SSCR0)

The SSPC Control Register 0 (SSCR0) contains five bit fields that control SSP data size, frame format, external clock selection, clock divisor, and SSP enable. Table 8-2 shows the bit locations that correspond to the control bit fields in SSPC Control Register 0. The SSE bit is reset to a zero state to ensure the SSP is disabled. The reset states for the other control bits are shown in the table, but each reset state must be set to the desired value before the SSPC is enabled.

Table 8-2. SSP Control Register 0 (SSCR0) Bitmap and Bit Definitions

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							R	ese	rve	d										000	5				SSE	ECS	161	2		0.55	2	
Reset)	(0х	00				0	0	()		0)	

0x00 Bits Name Description 0000 - Reserved, undefined operation 0001 - Reserved, undefined operation 0010 - Reserved, undefined operation 0011 - 4-bit data 0100 - 5-bit data 0101 - 6-bit data 0110 - 7-bit data DSS 3:0 0111 - 8-bit data (Data Size Select) 1000 - 9-bit data 1001 - 10-bit data 1010 - 11-bit data 1011 - 12-bit data 1100 - 13-bit data 1101 - 14-bit data 1110 - 15-bit data 1111 - 16-bit data 00 - Motorola's Serial Peripheral Interface (SPI) **FRF** 01 - Texas Instruments' Synchronous Serial Protocol (SSP) 5:4 (Frame Format) 10 - National Microwire 11 - Reserved, undefined operation External clock select: **ECS** 6 0 - On-chip clock used to produce the SSP's serial clock (SSPSCLK). 1 - SSPEXTCLK is used to create the SSPSCLK. Synchronous Serial Port Enable: 7 SSE 0 - SSP operation disabled (pins may function as GPIOs) 1 - SSP operation enabled SCR Value (0 to 255) used to generate transmission rate of SSP. 15:8 (Serial Clock Rate) Bit rate = $3.6864 \times 10^6 / (2 \times (SCR + 1))$ or SSPEXTCLK / $(2 \times (SCR + 1))$

8.7.1.1 Data Size Select (DSS)

31:16

The 4-bit data size select (DSS) field is used to determine the size of the data that the SSPC transmits and receives. The data can range from 4 to 16 bits in length. When data is programmed to be less than 16 bits, received data is automatically right-justified and the upper bits in the receive FIFO are zero-filled by receive logic. Do not left-justify transmit data before placing it in the transmit FIFO. The transmit logic in the SSPC left-justifies the data sample according to the DSS bits before the sample is transmitted. Data sizes of 1, 2, and 3 bits are reserved and produce unpredictable results in the SSPC.

Reserved

In National Microwire frame format, this bit field selects the size of the received data and the transmitted data is 8 or 16 bits long.

8.7.1.2 Frame Format (FRF)

The 2-bit frame format (FRF) field is used to select Motorola SPI (FRF=00), Texas Instruments Synchronous Serial (FRF=01), or National Microwire (FRF=10) frame format.

FRF=11 is reserved and the SSPC produces unpredictable results if this value is used.

8.7.1.3 External Clock Select (ECS)

The external clock select (ECS) bit determines whether the SSPC uses the on-chip 3.6864-MHz clock or an off-chip clock supplied via SSPEXTCLK. When ECS=0, the SSPC uses the on-chip 3.6864-MHz clock to produce a range of serial transmission rates from 7.2 Kbps to 1.8432 Mbps. When ECS=1, the SSP uses SSPEXTCLK to access an off-chip clock. The off-chip clock's frequency can be any value up to 3.6864 MHz. The off-chip clock is useful when a serial transmission rate not evenly divisible from 3.6864 MHz is required for synchronization with the target off-chip slave device.

If the off-chip clock is used, the user must set the appropriate bits in the GPIO alternate function and pin direction registers that correspond to the pin. See Chapter 4, "System Integration Unit" for more details on configuring GPIO pins for alternate functions.

Note: Disable the SSPC by setting the SSPC Enable (SSE) to a 0 before setting the ECS bit to a 1. The ECS bit may be set to one either before the SSE is set to one or at the same time.

8.7.1.4 Synchronous Serial Port Enable (SSE)

The SSCR0[SSE] bit is used to enable and disable all SSP operations. When SSCR0[SSE]=0, the SSP is disabled. When SSCR0[SSE]=1, the SSP is enabled. When the SSP is disabled, all of its clocks are powered down to minimize power consumption. The SSP is disabled following a reset.

When the SSCR0[SSE] bit is cleared during active operation, the SSP is immediately disabled and the frame being transmitted is terminated. Clearing SSCR0[SSE] resets the SSP's FIFOs and the SSP status bits. The SSP's control registers and the SSSR[ROR] bit are not reset when SSCR0[SSE] is cleared.

Note: After reset or after the SSCR0[SSE] is cleared, ensure that the SSCR1 and SSSR registers are properly reconfigured or reset before re-enabling the SSP with the SSCR0[SSE]. Other control bits in SSCR0 may be written at the same time as the SSCR0[SSE].

When the SSPC is disabled, its five pins may be used as GPIOs. They are configured as inputs or outputs with the control registers described in Chapter 4, "System Integration Unit". In Sleep mode, the pins' states are controlled by the GPIO sleep register. SSPC register settings have no effect on the pins in Sleep mode.

8.7.1.5 Serial Clock Rate (SCR)

The 8-bit serial clock rate (SCR) bit-field is used to select the SSPC bit rate. The SSPC has 256 bit rates, from 7.2 Kbps to 1.8432 Mbps. The serial clock generator uses the internal 3.6864 MHz clock or an external clock provided through SSPEXTCLK. The clock is divided by 2, then divided by the programmable SCR value (0 to 255) plus 1 to generate the serial clock (SSPSCLK). The resultant clock is driven on the SSPSCLK pin and is used by the SSP's transmit logic to drive data on the SSPTXD pin and to latch data on the SSPRXD pin. Depending on the frame format selected, each transmitted bit is driven on either SSPSCLK's rising or falling edge and sampled on the opposite clock edge.

8.7.2 SSP Control Register 1 (SSCR1)

The SSP Control Register 1 (SSCR1) contains bit fields that control SSP functions, as described in Table 8-3.

Table 8-3. SSP Control Register 1 (SSCR1) Bitmap and Definitions (Sheet 1 of 2)

				0x	4100	00	04				S	SP (Con	trol	Re	gist	er 1	(SS	SCR	1)												
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								R	ese	rve	d									į	2			ļ	:		MWDS	SPH	SPO	LBM	TIE	RIE
Reset								Х	(0	x0			0)	(0		0	0	0	0	0	0

Bits	Name	Description
0		Receive FIFO Interrupt Enable
0	RIE	0 - Receive FIFO interrupt is disabled
		1 - Receive FIFO interrupt is enabled
		Transmit FIFO Interrupt Enable
1	TIE	0 - Transmit FIFO interrupt is disabled
		1 - Transmit FIFO interrupt is enabled
		Loop-Back Mode
2	LBM	0 - Normal serial port operation enabled
		1 - Output of transmit serial shifter internally connected to input of receive serial shifter
		Motorola SPI SSPSCLK polarity setting:
3	SPO	0 - The inactive or idle state of SSPSCLK is low.
		1 - The inactive or idle state of SSPSCLK is high.
		Motorola SPI SSPSCLK phase setting:
4	SPH	0 - SSPSCLK is inactive one cycle at the start of a frame and 1/2 cycle at the end of a frame.
		1 - SSPSCLK is inactive 1/2 cycle at the start of a frame and one cycle at the end of a frame.
		Microwire Transmit Data Size:
5	MWDS	0 - 8-bit command words are transmitted.
		1 - 16-bit command words are transmitted.

Table 8-3. SSP Control Register 1 (SSCR1) Bitmap and Definitions (Sheet 2 of 2)

		0x4100 0004	SSP Control Register 1 (SS	SCR1)							
Bit	31 30	29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14	13 12 11 10	9 8 7	6 5	5 4	1 3	2	1	0
		R	eserved	RFT	TFT		SOMM	PPS	LBM	TIE	RIE
Reset		>	(0x0	0x0	() (0	0	0	0
	Bits	Name		Description							
	9:6	TFT (Transmit FIFO Threshold)	Sets threshold level at which Transmi level must be set to the desired thresh	•		pt or	DM/	A rec	quest.	Thi	S
	13:10	RFT (Receive FIFO Threshold)	Sets threshold level at which Receive FIFO generates an interrupt or DMA request. This level must be set to the desired threshold value minus 1.								
	31:14		Reserved								

8.7.2.1 Receive FIFO Interrupt Enable (RIE)

The Receive FIFO Interrupt Enable (RIE) bit is used to mask or enable the receive FIFO service request interrupt. When RIE=0, the interrupt is masked and the interrupt controller ignores the state of the Receive FIFO Service Request (RFS) bit in the SSPC Status Register. When the RIE bit is set to a 1, the interrupt is enabled and, if the RFS bit is set to a 1, an interrupt request is made to the interrupt controller. If the RIE bit is set to 0 neither the RFS bit's current state nor the receive FIFO logic's ability to set and clear the RFS bit is affected. However, the interrupt request generation is blocked.

The RIE bit's state does not affect the receive FIFO DMA request generation that is asserted when the RFS bit is set to a 1.

8.7.2.2 Transmit FIFO Interrupt Enable (TIE)

The Transmit FIFO Interrupt Enable (TIE) bit is used to mask or enable the transmit FIFO service request interrupt. When the TIE bit is set to a 0, the interrupt is masked and the interrupt controller ignores the state of the Transmit FIFO Service Request (TFS) bit in the SSPC Status Register. When the TIE bit is set to a 1, the interrupt is enabled and, if the TFS bit is set to a 1, an interrupt request is made to the interrupt controller. If the TIE bit is set to a 0, neither the TFS bit's current state nor the transmit FIFO logic's ability to set and clear the TFS bit is affected. However, the interrupt request generation is blocked.

The TIE bit's state does not affect the transmit FIFO DMA request generation that is asserted when the TFS bit is set to a 1.

8.7.2.3 Loop Back Mode (LBM)

The loop back mode (LBM) bit is used to enable and disable the SSP transmit and receive logic. When LBM=0, the SSP operates normally. The transmit and receive data paths are independent and communicate via their respective pins. When LBM=1, the transmit serial shifter's output is directly connected internally to the receive serial shifter's input.

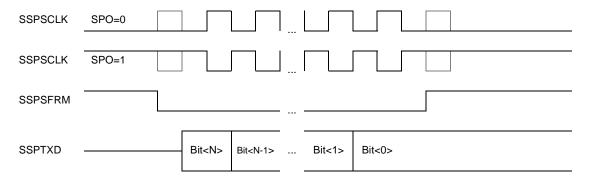
Note: Loop back mode cannot be used with Microwire frame format.

8.7.2.4 Serial Clock Polarity (SPO)

The serial clock polarity bit (SPO) selects the SSPSCLK signal's inactive state in the Motorola SPI format (FRF=00). For SPO=0, the SSPSCLK is held low in the inactive or idle state when the SSP is not transmitting/receiving data. When the SPO bit is set to a 1, the SSPSCLK is held high during the inactive/idle state. The SPO bit's programmed setting alone does not determine which SSPSCLK edge is used to transmit or receive data. The SPO bit's setting combined with the SSPSCLK phase bit (SPH) determine which edge is used.

Note: The SPO bit is ignored for all data frame formats except for the Motorola SPI format (FRF=00).

8.7.2.5 Serial Clock Phase (SPH)


The serial clock (SSPSCLK) phase bit (SPH) determines the phase relationship between the SSPSCLK and the serial frame (SSPSFRM) pins for the Motorola SPI format (FRF=00). When SPH=0, SSPSCLK remains in its inactive/idle state (as determined by the SPO setting) for one full cycle after SSPSFRM is asserted low at the beginning of a frame. SSPSCLK continues to transition for the rest of the frame and is then held in its inactive state for one-half of an SSPSCLK period before SSPSFRM is deasserted high at the end of the frame. When SPH=1, SSPSCLK remains in its inactive/idle state (as determined by the SPO setting) for one-half cycle after SSPSFRM is asserted low at the beginning of a frame. SSPSCLK continues to transition for the rest of the frame and is then held in its inactive state for one full SSPSCLK period before SSPSFRM is deasserted high at the end of the frame.

The combination of the SPO and SPH settings determines when SSPSCLK is active during the assertion of SSPSFRM and which SSPSCLK edge is used to transmit and receive data on the SSPTXD and SSPRXD pins. When SPO and SPH are programmed to the same value, transmit data is driven on SSPSCLK's falling edge and receive data is latched on SSPSCLK's rising edge. When SPO and SPH are programmed to opposite values (one 0 and the other 1), transmit date is driven on SSPSCLK's rising edge and receive data is latched on SSPSCLK's falling edge.

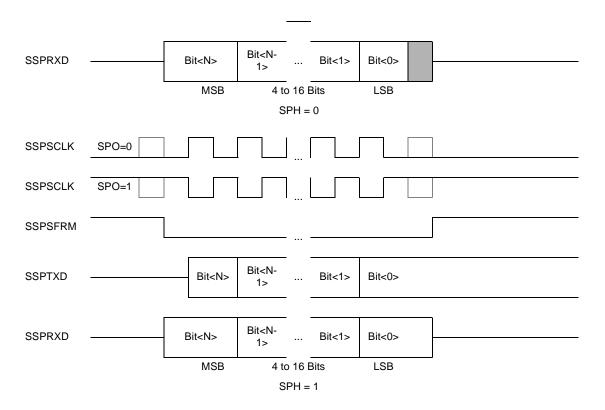

The SPH is ignored for all data frame formats except the Motorola SPI format (FRF=00).

Figure 8-4 shows the pin timing for the four SPO and SPH programming combinations. SPO inverts the SSPSCLK signal's polarity and SPH determines the phase relationship between SSPSCLK and SSPSFRM, shifting the SSPSCLK signal one-half phase to the left or right during the SSPSFRM assertion.

Figure 8-4. Motorola SPI* Frame Formats for SPO and SPH Programming

8.7.2.6 Microwire Transmit Data Size (MWDS)

The Microwire Transmit Data Size (MWDS) bit is used to select the 8- or 16-bit size for command word transmissions in the National Microwire frame format. When the MWDS is set to "0", 8-bit command words are transmitted. When the MWDS is set to "1", 16-bit command words are transmitted. The MWDS setting is ignored for all other frame formats.

8.7.2.7 Transmit FIFO Interrupt/DMA Threshold (TFT)

This 4-bit value sets the level at or below which the FIFO controller triggers a DMA service request and, if enabled, an interrupt request. Refer to Table 8-4 for suggested TFT values associated with DMA servicing.

8.7.2.8 Receive FIFO Interrupt/DMA Threshold (RFT)

This 4-bit value sets the level at or above which the FIFO controller triggers a DMA service interrupt and, if enabled, an interrupt request. Refer to Table 8-4 for suggested RFT values associated with DMA servicing.

Be careful not to set the RFT value too high for your system or the FIFO could overrun because of the bus latencies caused by other internal and external peripherals. This is especially the case for interrupt and polled modes that require a longer time to service.

Table 8-4. TFT and RFT Values for DMA Servicing

DMA Burst Size	TFT	Value	RFT	Value
	Min	Max	Min	Max
8 Bytes	0	11	3	15
16 Bytes	0	7	7	15

8.7.3 SSP Data Register (SSDR)

The SSP Data Register (SSDR) is a single address location that can be accessed by read/write data transfers. Transfers can be single transfers, 4 half-word bursts, or 8 half-word bursts.

As the system accesses the register, FIFO control logic transfers data automatically between register and FIFO as fast as the system moves data. The SSDR has status bits that indicate whether either FIFO is full, above/below a programmable threshold, or empty.

For transmit operations from SSPC to SSP peripheral, the CPU may write the register when it is below its threshold level and is using programmed I/O.

When a data size less than 16-bits is selected, do not left-justify data written to the transmit FIFO. Transmit logic left-justifies the data and ignores any unused bits. Received data less than 16-bits is automatically right-justified in the receive FIFO.

When the SSPC is programmed for National Microwire frame format and the size for transmit data is 8-bits, as selected by the MWDS bit in the SSCR1, the most significant byte is ignored. SSCR0[DSS] controls receive data size.

Note: Both FIFOs are cleared when the SSPC is reset or a zero is written to the SSCR0[SSE] bit.

Table 8-5. SSP Data Register (SSDR) Bitmap and Definitions

Reserved

8.7.4 SSP Status Register (SSSR)

31:16

The SSP status register (SSSR) contains bits that signal overrun errors and transmit and receive FIFO service requests. These hardware-detected events signal an interrupt request to the interrupt controller. The status register also contains flags that indicate when the SSP is actively transmitting or receiving characters, when the transmit FIFO is not full, and when the receive FIFO is not empty (no interrupt generated).

Bits that cause an interrupt will signal the request as long as the bit is set. When the bit is cleared, the interrupt is cleared. Read/write bits are called status bits, read-only bits are called flags. Status bits are referred to as sticky (once set by hardware, they must be cleared by software). Writing a 1 to a sticky status bit clears it. Writing a 0 has no effect. Read-only flags are set and cleared by hardware. Writes have no effect. Some bits that cause interrupts have corresponding mask bits in the control registers and are indicated in the section headings that follow.

Table 8-6 shows the bit locations that correspond to the status and flag bits in the SSP status register. All bits are read-only except ROR, which is read/write. ROR's reset state is zero. Writes to TNF, RNE, BSY, TFS, and RFS have no effect. Writes to reserved bits are ignored and reads to these bits is undetermined.

Table 8-6. SSP Status Register (SSSR) Bitmap and Bit Definitions

				0x4	4100	00	80					SSI	P St	atu	s Re	egis	ter	(SS	SR)													
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

	0: 00 =0 =0 =: 10 =0 =: 10 == =: 10 :0 :0 :: 10									. •
	Reserved	RFL	TFL	ROR	RFS	TFS	BSY	RNE	INF	Reserved
Reset	X	0xF	0x0	0	0	0	0	0	1	0

Bits	Name	Description
1:0		Reserved
2	TNF (Transmit FIFO Not Full)	(read only) 0 - Transmit FIFO is full 1 - Transmit FIFO is not full
3	RNE (Receive FIFO Not Empty)	(read only) 0 - Receive FIFO is empty 1 - Receive FIFO is not empty
4	BSY (SSP Busy)	(read only) 0 - SSP is idle or disabled 1 - SSP currently transmitting or receiving a frame
5	TFS (Transmit FIFO Service Request)	(read only) 0 - Transmit FIFO level exceeds TFT threshold, or SSP disabled 1 - Transmit FIFO level is at or below TFT threshold, generate interrupt or DMA request
6	RFS (Receive FIFO Service Request)	(read only) 0 - Receive FIFO level exceeds RFT threshold, or SSP disabled 1 - Receive FIFO level is at or above RFT threshold, generate interrupt or DMA request
7	ROR (Receive FIFO Overrun)	(read/write) 0 - Receive FIFO has not experienced an overrun 1 - Attempted data write to full Receive FIFO, request interrupt
11:8	TFL (Transmit FIFO Level)	(read only) Number of entries in Transmit FIFO. Note: When the value 0x0 is read, the FIFO is either empty or full and the software must refer to the TNF bit.
15:12	RFL (Receive FIFO Level)	(read only) Number of entries minus one in Receive FIFO. Note: When the value 0xF is read, the FIFO is either empty or full and the software must refer to the RNE bit.
31:16		Reserved

8.7.4.1 Transmit FIFO Not Full Flag (TNF) (read-only, non-interruptible)

The transmit FIFO not full flag (TNF) is a read-only bit that is set whenever the transmit FIFO is not full. TNF is cleared when the FIFO is completely full. This bit can be polled when using programmed I/O to fill the transmit FIFO over its threshold level. This bit does not request an interrupt.

8.7.4.2 Receive FIFO Not Empty Flag (RNE) (read-only, non-interruptible)

The receive FIFO not empty flag (RNE) is a read-only bit that is set when the receive FIFO contains one or more entries and is cleared when the FIFO is empty. Because CPU interrupt requests are only made when the Receive FIFO Threshold has been met or exceeded, the RNE bit can be polled when programmed I/O removes remaining bytes of data from the receive FIFO. This bit does not request an interrupt.

8.7.4.3 SSP Busy Flag (BSY) (read-only, non-interruptible)

The SSP busy (BSY) flag is a read-only bit that is set when the SSP is actively transmitting and/or receiving data and is cleared when the SSP is idle or disabled (SSE=0). This bit does not request an interrupt. Since the software can read this bit before the SSP starts to transmit data, software must ensure that this bit is set before polling the bit and waiting for it to clear.

8.7.4.4 Transmit FIFO Service Request Flag (TFS) (read-only, maskable interrupt)

The Transmit FIFO service request flag (TFS) is a read-only bit that is set when the transmit FIFO is nearly empty and requires service to prevent an underrun. TFS is set any time the transmit FIFO has the same or fewer valid data entries than indicated by the Transmit FIFO Threshold. It is cleared when it has more valid data entries than the threshold value. When the TFS bit is set, an interrupt request is made unless the transmit FIFO interrupt request enable (TIE) bit is cleared. The TFS bit's setting indicates whether a DMA service has been requested from the DMA controller. The DMA request cannot be masked by the TIE bit. After the CPU or the DMA fills the FIFO such that it exceeds the threshold, the TFS flag (and the service request and/or interrupt) is automatically cleared.

8.7.4.5 Receive FIFO Service Request Flag (RFS) (read-only, maskable interrupt)

The receive FIFO service request flag (RFS) is a read-only bit that is set when the receive FIFO is nearly filled and requires service to prevent an overrun. RFS is set any time the receive FIFO has the same or more valid data entries than indicated by the Receive FIFO Threshold. It is cleared when it has fewer entries than the threshold value. When the RFS bit is set, an interrupt request is made unless the receive FIFO interrupt request enable (RIE) bit is cleared. The RFS bit's setting indicates that DMA service has been requested from the DMA controller. This DMA request cannot be masked by the RIE bit. After the CPU or DMA reads the FIFO such that it has fewer entries than the RFT value, the RFS flag (and the service request and/or interrupt) is automatically cleared.

8.7.4.6 Receiver Overrun Status (ROR) (read/write, non-maskable interrupt)

The receiver overrun status bit (ROR) is a read/write bit that is set when the receive logic attempts to place data into the receive FIFO after it has been completely filled. Each time a new piece of data is received, the set signal to the ROR bit is asserted and the newly received data is discarded. This process is repeated for each new piece of data received until at least one empty FIFO entry exists. When the ROR bit is set, an interrupt request that cannot be locally masked by any SSPC register bit is made to the CPU. The ROR bit's setting does not generate any DMA service request. Writing a "1" to this bit resets ROR status and its interrupt request. Writing a "0" does not affect ROR status.

8.7.4.7 Transmit FIFO Level

The 4-bit Transmit FIFO Level bit indicates the number of entries currently in the Transmit FIFO.

8.7.4.8 Receive FIFO Level

The 4-bit Receive FIFO Level bit indicates the one less than number of entries in the Receive FIFO.

8.7.5 SSP Register Address Map

Table 8-7 shows the SSP registers associated with the SSP and their physical addresses.

Table 8-7. SSP Register Address Map

Address	Mnemonic	Full Name
0x4100 0000	SSCR0	SSP Control Register 0
0x4100 0004	SSCR1	SSP Control Register 1
0x4100 0008	SSSR	SSP Status Register
0x4100 000C		Reserved
0x4100 0010	SSDR (Write / Read)	SSP Data Write Register/SSP Data Read Register

intel® PC Bus Interface Unit

This chapter describes the Inter-Integrated Circuit (1²C) bus interface unit, including the operation modes and setup for the PXA250 and PXA210 application processors.

Overview 9.1

The I²C bus was created by the Phillips Corporation and is a serial bus with a two-pin interface. The SDA data pin is used for input and output functions and the SCL clock pin is used to control and reference the I²C bus. The I²C unit allows the application processor to serve as a master and slave device that resides on the I²C bus.

The I²C unit enables the application processor to communicate with I²C peripherals and microcontrollers for system management functions. The I²C bus requires a minimum amount of hardware to relay status and reliability information concerning the application processor subsystem to an external device.

The I²C unit is a peripheral device that resides on the application processor internal bus. Data is transmitted to and received from the I²C bus via a buffered interface. Control and status information is relayed through a set of memory-mapped registers. Refer to *The* I^2C -Bus **Specification** for complete details on I^2C bus operation.

Note: The I²C unit does not support the hardware general call, 10-bit addressing, or CBUS compatibility.

9.2 **Signal Description**

The I²C unit signals are SDA and SCL. Table 9-1 describes each signal's function.

Table 9-1. MMC Signal Description

Signal Name	Input/Output	Description
SDA	Bidirectional	I ² C Serial Data/Address signal
SCL	Bidirectional	I ² C Serial Clock Line signal

9.3 Functional Description

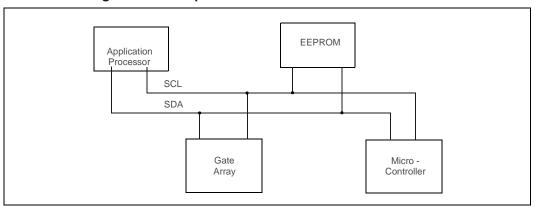

The I²C bus defines a serial protocol for passing information between agents on the I²C bus using a two pin interface that consists of a Serial Data/Address (SDA) line and a Serial Clock Line (SCL). Each device on the I²C bus is recognized by a unique 7-bit address and can operate as a transmitter or as a receiver in master or slave mode. Table 9-2 lists the I²C operation modes.

Table 9-2. I²C Bus Definitions

I ² C Device	Definition
Transmitter	Sends data to the I ² C bus.
Receiver	Receives data from the I ² C bus.
Master	Initiates a transfer, generates the clock signal, and terminates the transactions.
Slave	Device addressed by a master.
Multi-master	More than one master can attempt to control the bus at the same time without corrupting the message.
Arbitration	Ensures that only one master controls the bus when more than one master simultaneously tries to control the bus. This ensures that messages are not corrupted.

For example, when the application processor I²C unit acts as a master on the bus, it addresses an EEPROM as a slave to receive data (see Figure 9-1). When the I²C unit is addressing the EEPROM, it is a master-transmitter and the EEPROM is a slave-receiver. When the I²C reads data, it is a master-receiver and the EEPROM is a slave-transmitter. Whether it is a transmitter or receiver, the master generates the clock, initiates the transaction, and terminates the transaction.

Figure 9-1. I²C Bus Configuration Example

The I^2C bus allows for a multi-master system, which means more than one device can initiate data transfers at the same time. To support this feature, the I^2C bus arbitration relies on the wired-AND connection of all I^2C interfaces to the I^2C bus. Two masters can drive the bus simultaneously, provided they drive identical data. If a master tries to drive SDA high while another master drives SDA low, it loses the arbitration. The SCL line is a synchronized combination of clocks generated by the masters using the wired-AND connection to the SCL line.

The I²C bus serial operation uses an open-drain wired-AND bus structure, which allows multiple devices to drive the bus lines and to communicate status about events such as arbitration, wait states, error conditions, etc. For example, when a master drives the clock (SCL) line during a data transfer, it transfers a bit on every instance that the clock is high. When the slave is unable to accept

or drive data at the rate that the master is requesting, the slave can hold the clock line low between the high states to insert a wait interval. The master's clock can only be altered by another master during arbitration or a slow slave peripheral that keeps the clock line low.

I²C transactions are either initiated by the application processor as a master or received by the application processor as a slave. Both conditions may result in reads, writes, or both to the I²C bus.

9.3.1 Operational Blocks

The I^2C unit is connected to the peripheral bus. The application processor interrupt mechanism can be used to notify the CPU that there is activity on the I^2C bus. Polling can be used instead of interrupts. The I^2C unit consists of the two wire interface to the I^2C bus, an 8-bit buffer for passing data to and from the application processor, a set of control and status registers, and a shift register for parallel/serial conversions.

The I²C unit initiates an interrupt to the application processor when a buffer is full, a buffer is empty, the I²C unit slave address is detected, arbitration is lost, or a bus error condition occurs. All interrupt conditions must be cleared explicitly by software. See Section 9.9.4, "I2C Status Register" for details.

The 8-bit I²C Data Buffer Register (IDBR) is loaded with a byte of data from the shift register interface to the I²C bus when receiving data and from the application processor internal bus when writing data. The serial shift register is not user accessible.

The I²C Control Register (ICR) and the I²C Status Register (ISR) are located in the I²C memory-mapped address space. The registers and their functions are defined in Section 9.9, "Register Definitions".

The I^2C unit supports a fast mode operation of 400 Kbits/sec and a standard mode of 100 Kbits/sec. Refer to *The I^2C-Bus Specification* for details.

9.3.2 I²C Bus Interface Modes

The I^2C unit can accomplish a transfer in different operation modes. Table 9-3 summarizes the different modes.

Table 9-3. Modes of Operation

Mode	Description
Master - Transmit	 I²C unit acts as a master. Used for a write operation. I²C unit sends the data. I²C unit is responsible for clocking. Slave device in slave-receive mode
Master - Receive	 I²C unit acts as a master. Used for a read operation. I²C unit receives the data. I²C unit is responsible for clocking. Slave device in slave-transmit mode
Slave - Transmit	 I²C unit acts as a slave. Used for a master read operation. I²C unit sends the data. Master device in master-receive mode.
Slave - Receive (default)	 I²C unit acts as a slave. Used for a master write operation. I²C unit receives the data. Master device in master-transmit mode.

While the I²C unit is idle, it defaults to slave-receive mode. This allows the interface to monitor the bus and receive any slave addresses intended for the application processor.

When the I^2C unit receives an address that matches the 7-bit address found in the I^2C Slave Address Register (ISAR) or the general call address (see Section 9.4.7, "General Call Address"), the interface either remains in slave-receive mode or transitions to slave-transmit mode. The Read/Write bit (R/nW) determines which mode the interface enters. The R/nW bit is the least significant bit of the byte containing the slave address. If the R/nW bit is low, the master that initiated the transaction intends write data and the I^2C unit remains in slave-receive mode. If the R/nW is high, the master that initiated the transaction intends to read data and the I^2C unit transitions to slave-transmit mode. Section 9.4.6, "Slave Operations" further defines slave operation.

When the I²C unit initiates a read or write on the I²C bus, it transitions from the default slave-receive mode to the master-transmit mode. If the transaction is a write, the I²C unit remains in master-transmit mode after the address transfer is completed. If the transaction is a read, the I²C unit transmits the start address, then transitions to master-receive mode. Section 9.4.5, "Master Operations" further defines master operation.

9.3.3 Start and Stop Bus States

The I^2C bus specification defines a transaction START, used at the beginning of a transfer, and a transaction STOP bus state, used at the end of a transfer. A START condition occurs if a high to low transition takes place on the SDA line when SCL is high. A STOP condition occurs if a low to high transition takes place on the SDA line when SCL is high.

The I²C unit uses the ICR[START] and ICR[STOP] bits to:

- Initiate an additional byte transfer
- Initiate a START condition on the I²C bus
- Enable Data Chaining (repeated START)
- Initiate a STOP condition on the I²C bus

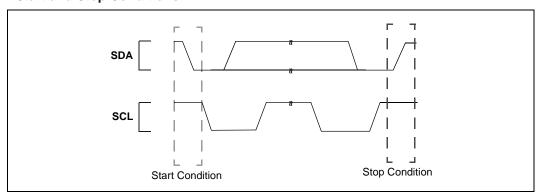

Table 9-4 defines the START and STOP bits in the ICR.

Table 9-4. START and STOP Bit Definitions

STOP bit	STAR T bit	Condition	Notes
0	0	No START or STOP	I ² C unit sends a no START or STOP condition. Used when multiple data bytes need to be transferred.
			I ² C unit sends a START condition and transmit the 8-bit IDBR's contents. The IDBR must contain the 7-bit address and the R/nW bit before a START is initiated.
0	1	START Condition and	For a Repeated Start, the IDBR contains the target slave address
		Repeated START	and the R/nW bit. This allows a master to make multiple transfers to different slaves without giving up the bus.
			The interface stays in master-transmit mode for writes and transitions to master-receive mode for reads.
			In master-transmit mode, the I^2C unit transmits the 8-bit IDBR and sends a STOP condition on the I^2C bus.
1	Х	STOP Condition	In master-receive mode, the ICR[ACKNAK] must be changed to a negative ACK (see Section 9.4.3, "I2C Acknowledge"). The I 2 C unit transmits the NAK bit, receives the data byte in the IDBR, and sends a STOP condition on the I 2 C bus.

Figure 9-2 shows the relationship between the SDA and SCL lines for START and STOP conditions.

Figure 9-2. Start and Stop Conditions

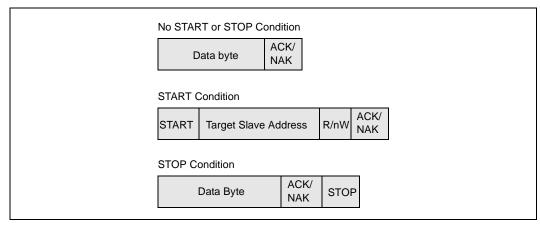
9.3.3.1 START Condition

The START condition (ICR[START]=1, ICR[STOP]=0) initiates a master transaction or repeated START. Before it sets the START ICR bit, software must load the target slave address and the R/nW bit in the IDBR (see Section 9.9.2, "I2C Data Buffer Register- IDBR"). The START and the IDBR contents are transmitted on the I²C bus after the ICR[TB] bit is set. The I²C bus stays in master-transmit mode for write requests and enters master-receive mode for read requests. For a

repeated start, a change in read or write, or a change in the target slave address, the IDBR contains the updated target slave address and the R/nW bit. A repeated start enables a master to make multiple transfers to different slaves without surrendering the bus.

The START condition is not cleared by the I^2C unit. If the I^2C loses arbitration while initiating a START, it may re-attempt the START when the bus is freed. See Section 9.4.4, "Arbitration" for details on how the I^2C unit functions in those circumstances.

9.3.3.2 No START or STOP Condition


The no START or STOP condition (ICR[START]=0, ICR[STOP]=0) is used in master-transmit mode while the I^2C unit is transmitting multiple data bytes (see Figure 9-2). Software writes the data byte and the I^2C unit sets the ISR[ITE] bit and clears the ICR[TB] bit. The software then writes a new byte to the IDBR and sets the ICR[TB] bit, which initiates the new byte transmission. This process continues until the software sets the ICR[START] or ICR[STOP] bit. The ICR[START] and ICR[STOP] bits are not automatically cleared by the I^2C unit after the transmission of a START, STOP, or repeated START.

After each byte transfer, including the ICR[ACKNAK] bit, the I²C unit holds the SCL line low to insert wait states until the ICR[TB] bit is set. This action notifies the I²C unit to release the SCL line and allow the next information transfer to proceed.

9.3.3.3 STOP Condition

The STOP condition (ICR[START]=X, ICR[STOP]=1) terminates a data transfer. In master-transmit mode, the ICR[STOP] bit and the ICR[TB] bit must be set to initiate the last byte transfer (see Figure 9-2). In master-receive mode, the I²C unit must set the ICR[ACKNAK] bit, the ICR[STOP] bit, and the ICR[TB] bit to initiate the last transfer. Software must clear the ICR[STOP] condition after it is transmitted.

Figure 9-3. START and STOP Conditions

9.4 I²C Bus Operation

The I²C unit transfers data in 1-byte increments and always follows this sequence:

- 1) START
- 2) 7-bit Slave Address
- 3) R/nW Bit
- 4) Acknowledge Pulse
- 5) 8 Bits of Data
- 6) ACK/NAK Pulse
- 7) Repeat of Steps 5 and 6 for required number of bytes
- 8) Repeated START (Repeat Step 1) or STOP

9.4.1 Serial Clock Line (SCL) Generation

When the I²C unit is in master-transmit or master-receive mode, it generates the I²C clock output. The SCL clock is generated by setting the ICR[FM] bit for either 100KBit/sec or 400Kbit/sec operation.

9.4.2 Data and Addressing Management

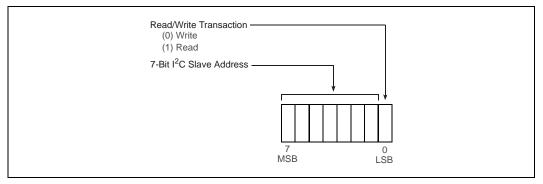
The I²C Data Buffer Register (IDBR) and the I²C Slave Address Register (ISAR) manage data and slave addressing. The IDBR (see Section 9.9.2, "I2C Data Buffer Register- IDBR") contains one byte of data or a 7-bit slave address and the R/nW bit. The ISAR contains the application processor programmable slave address. The I²C unit puts received data in the IDBR after a full byte is received and acknowledged. To transmit data, the CPU writes to the IDBR, and the I²C unit passes the information to the serial bus when the ICR[TB] bit is set. See Section 9.9.3, "I2C Control Register- ICR".

When the I²C unit is in master- or slave-transmit mode:

- 1. Software writes data to the IDBR over the internal bus. This initiates a master transaction or sends the next data byte after the ISR[ITE] bit is set.
- 2. I²C unit transmits data from the IDBR when the ICR[TB] bit is set.
- 3. When enabled, an IDBR transmit empty interrupt is signalled when a byte is transferred on the I²C bus and the acknowledge cycle is complete.
- 4. When the I²C unit is ready to transfer the next byte before the CPU has written the IDBR and a STOP condition is not in place, the I²C unit inserts wait states until the CPU writes a new value into the IDBR and sets the ICR[TB] bit.

When the I²C unit is in master- or slave-receive mode:

- 1. The application processor reads IDBR data over the internal bus after the IDBR receive full interrupt is signalled.
- 2. I²C unit transfers data from the shift register to the IDBR after the acknowledge cycle completes.
- 3. I²C unit inserts wait states until the IDBR is read. Refer to Section 9.4.3, "I2C Acknowledge" for acknowledge pulse information in receiver mode.



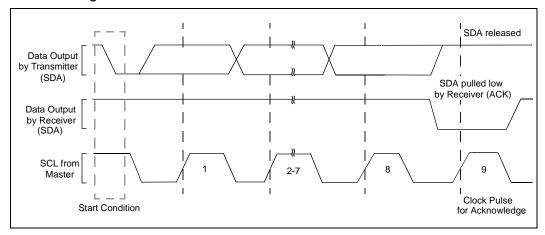
4. After the CPU reads the IDBR, the I²C unit writes the ICR[ACKNAK] bit and the ICR[TB] bit, allowing the next byte transfer to proceed.

9.4.2.1 Addressing a Slave Device

As a master device, the I²C unit must compose and send the first byte of a transaction. This byte consists of the slave address for the intended device and a R/nW bit for transaction definition. The MSB is transmitted first. The slave address and the R/nW bit are written to the IDBR (see Figure 9-4).

Figure 9-4. Data Format of First Byte in Master Transaction

The first byte transmission must be followed by an ACK pulse from the addressed slave. When the transaction is a write, the I^2C unit remains in master-transmit mode and the addressed slave device stays in slave-receive mode. When the transaction is a read, the I^2C unit transitions to master-receive mode immediately following the ACK and the addressed slave device transitions to slave-transmit mode. When a NAK is returned, the I^2C unit aborts the transaction by automatically sending a STOP and setting the ISR[BED] bit.


When the I^2C unit is enabled and idle, it remains in slave-receive mode and monitors the I^2C bus for a START signal. When it detects a START pulse, the I^2C unit reads the first seven bits and compares them to those in the ISAR and the general call address (0x00). When the bits match those in the ISAR register, the I^2C unit reads the eighth bit (R/nW bit) and transmits an ACK pulse. The I^2C unit either remains in slave-receive mode (R/nW = 0) or transitions to slave-transmit mode (R/nW = 1). See Section 9.4.7, "General Call Address" for actions when a general call address is detected.

9.4.3 I²C Acknowledge

Every I²C byte transfer must be accompanied by an acknowledge pulse that the master- or slave-receiver must generate. The transmitter must release the SDA line for the receiver to transmit the acknowledge pulse (see Figure 9-5).

Figure 9-5. Acknowledge on the I²C Bus

In master-transmit mode, if the target slave-receiver device cannot generate the acknowledge pulse, the SDA line remains high. The lack of an acknowledge NAK causes the I²C unit to set the ISR[BED] bit and generate the associated interrupt when enabled. The I²C unit automatically generates a STOP condition and aborts the transaction.

In master-receive mode, the I²C unit sends a negative acknowledge (NAK) to signal the slave-transmitter to stop sending data. The ICR[ACKNAK] bit controls the ACK/NAK bit value that the I²C bus drives. As required by the I²C bus protocol, the ISR[BED] bit is not set for a master-receive mode NAK. The I²C unit automatically transmits the ACK pulse after it receives each byte from the serial bus. Before the unit receives the last byte, software must set the ICR[ACKNAK] bit to 1 (NAK). The NAK pulse is sent after the last byte to indicate that the last byte has been sent.

In slave mode, the I²C unit automatically acknowledges its own slave address, independent of the value in the ICR[ACKNAK] bit. In slave-receive mode, an ACK response automatically follows a data byte, independent of the value in the ICR[ACKNAK] bit. The I²C unit sends the ACK value after it receives the eighth data bit in a byte.

In slave-transmit mode, the I²C unit receives a NAK from the master to indicate the last byte has been transferred. The master then sends a STOP or repeated START. The ISR[UB] bit remains set until a STOP or repeated START is received.

9.4.4 Arbitration

The I²C bus' multi-master capabilities require I²C bus arbitration. Arbitration takes place when two or more masters generate a START condition in the minimum hold time.

Arbitration can take a long time. If the address bit and the R/nW are the same, the arbitration scheme considers the data. Because the I²C bus has a wired-AND nature, a transfer does not lose data if multiple masters signal the same bus states. If the address and the R/nW bit or the data they

contain are different, the master signals a high state loses arbitration and shuts off its data drivers. If the I²C unit loses arbitration, it shuts off the SDA or SCL drivers for the rest of the byte transfer, sets the ISR[ALD] bit, and returns to slave-receive mode.

9.4.4.1 SCL Arbitration

Each master on the I²C bus generates its own clock on the SCL line for data transfers. As a result, clocks with different frequencies may be connected to the SCL line. Because data is valid when a clock is in the high period, bit-by-bit arbitration requires a defined clock synchronization procedure.

Clock synchronization is through the wired-AND connection of the I^2C interfaces to the SCL line. When a master's clock changes from high to low, the master holds down the SCL line for its associated period (see Figure 9-6). A clock cannot switch from low to high if another master has not completed its period. The master with the longest low period holds down the SCL line. Masters with shorter periods are held in a high wait-state until the master with the longest period completes. After the master with the longest period completes, the SCL line changes to the high state and masters with the shorter periods continue the data cycle.

The first master to complete its high period pulls the SCL line low.

CLK1

CLK2

The master with the longest clock period holds the SCL line low.

Figure 9-6. Clock Synchronization During the Arbitration Procedure

9.4.4.2 SDA Arbitration

Arbitration on the SDA line can continue for a long time because it starts with the address and R/nW bits and continues through the data bits. Figure 9-7 shows the arbitration procedure for two masters. More than two masters may be involved if more than two masters are connected to the bus. If the address bit and the R/nW are the same, the arbitration scheme considers the data. Because the I^2C bus has a wired-AND nature, a transfer does not lose data if multiple masters signal the same bus states. If the address and the R/nW bit or the data they contain are different, the master that sent the first low data bit loses arbitration and shuts off its data drivers. If the I^2C unit loses arbitration, it shuts off the SDA or SCL drivers for the rest of the byte transfer, sets the I^2C lost, and returns to slave-receive mode.

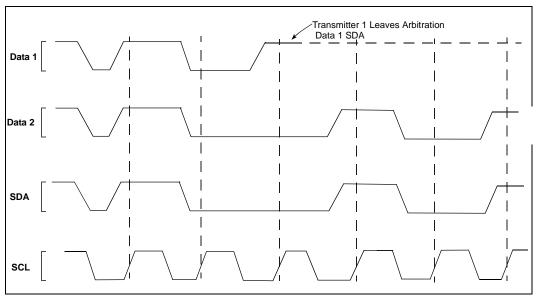


Figure 9-7. Arbitration Procedure of Two Masters

If the I²C unit loses arbitration as the address bits are transferred and it is not addressed by the address bits, the I²C unit resends the address when the I²C bus becomes free. A resend is possible because the IDBR and ICR registers are not overwritten when arbitration is lost.

If the I²C unit loses arbitration because another bus master addresses the application processor as a slave device, the I²C unit switches to slave-receive mode and overwrites the original data in the I²C data buffer register. Software can clear the start and re-initiate the master transaction.

Note: Software must prevent the I²C unit from starting a transaction to its own slave address because such a transaction puts the I²C unit in an indeterminate state.

Arbitration has boundary conditions in case an arbitration process is interrupted by a repeated START or STOP condition transmitted on the I²C bus. To prevent errors, the I²C unit acts as a master if no arbitration takes place in the following circumstances:

- Between a repeated START condition and a data bit
- Between a data bit and a STOP condition
- Between a repeated START condition and a STOP condition

These situations occur if different masters write identical data to the same target slave simultaneously and arbitration cannot be resolved after the first data byte transfer.

Note: Software ensures that arbitration is resolved quickly. For example, software can ensure that masters send unique data by requiring that each master transmit its 1²C address as the first data byte of any transaction. When arbitration is resolved, the winning master sends a restart and begins a valid data transfer. The slave discards the master's address and use the other data.

9.4.5 Master Operations

When software initiates a read or write on the I^2C bus, the I^2C unit transitions from the default slave-receive mode to master-transmit mode. The 7-bit slave address and the R/nW bit follow the start pulse. After the master receives an acknowledge, the I^2C unit enters one of two master modes:

- Master-Transmit I²C unit writes data
- Master-Receive I²C unit reads data

The CPU writes to the ICR register to initiate a master transaction. Data is read and written from the I^2C unit through the memory-mapped registers. Table 9-5 describes the I^2C unit's responsibilities as a master device.

Table 9-5. Master Transactions (Sheet 1 of 2)

I ² C Master Action	Mode of Operation	Definition
Generate clock output	Master-transmit Master-receive	Master drives the SCL line. ICR[SCLE] bit must be set. ICR[IUE] bit must be set.
Write target slave address to IDBR	Master-transmit Master-receive	 CPU writes to IDBR bits 7-1 before a START condition enabled. First seven bits sent on bus after START. See Section 9.3.3, "Start and Stop Bus States".
Write R/nW Bit to IDBR	Master-transmit Master-receive	 CPU writes to least significant IDBR bit with target slave address. If low, master remains a master-transmitter. If high, master transitions to a master-receiver. See Section 9.4.2, "Data and Addressing Management".
Signal START Condition	Master-transmit Master-receive	 See "Generate clock output" above. Performed after target slave address and R/nW bit are in IDBR. Software sets ICR[START] bit. Software sets ICR[TB] bit to initiate start condition. See Section 9.3.3, "Start and Stop Bus States".
Initiate first data byte transfer	Master-transmit Master-receive	 CPU writes byte to IDBR I²C unit transmits byte when ICR[TB] bit is set. I²C unit clears ICR[TB] bit and sets ISR[ITE] bit when transfer is complete.
Arbitrate for I ² C Bus	Master-transmit Master-receive	 If two or more masters signal a start within the same clock period, arbitration must occur. I²C unit arbitrates for as long as needed. Arbitration takes place during slave address and R/nW bit or data transmission and continues until all but one master loses the bus. No data lost. If I²C unit loses arbitration, it sets ISR[ALD] bit after byte transfer is completed and transitions to slave-receive mode. If I²C unit loses arbitration as it attempts to send target address byte, I²C unit attempts to resend it when the bus becomes free. System designer must ensure boundary conditions described in Section 9.4, "I2C Bus Operation" do not occur.

Table 9-5. Master Transactions (Sheet 2 of 2)

I ² C Master Action	Mode of Operation	Definition
Write one data byte to the IDBR	Master-transmit only	 I²C master operation data transmit mode. Occurs when the ISR[ITE] bit is set and the ICR[TB] bit is clear. If the IDBR Transmit Empty Interrupt is enabled, it is signalled to the application processor. CPU writes one data byte to the IDBR, sets the appropriate START/STOP bit combination, and sets the ICR[TB] bit to send the data. Eight bits are taken from the shift register and written to the serial bus. The eight bits are followed by a STOP, if requested.
Wait for Acknowledge from slave- receiver	Master-transmit only	 As a master-transmitter, the I²C unit generates the clock for the acknowledge pulse. The I²C unit releases the SDA line to allow slave-receiver ACK transmission. See Section 9.4.3, "I2C Acknowledge".
Read one byte of I ² C Data from the IDBR	Master-receive only	 I²C master operation data receive mode. Eight bits are read from the serial bus, collected in the shift register then transferred to the IDBR after the ICR[ACKNAK] bit is read. The CPU reads the IDBR when the ISR[IRF] bit is set and the ICR[TB] bit is clear. If IDBR Receive Full Interrupt is enabled, it is signalled to the CPU. When the IDBR is read, if the ISR[ACKNAK] is clear (indicating ACK), the application processor writes the ICR[ACKNAK] bit and set the ICR[TB] bit to initiate the next byte read. If the ISR[ACKNAK] bit is set (indicating NAK), ICR[TB] bit is clear, ICR[STOP] bit is set, and ISR[UB] bit is set, then the last data byte has been read into the IDBR and the I²C unit is sending the STOP. If the ISR[ACKNAK] bit is set (indicating NAK), ICR[TB] bit is clear, but the ICR[STOP] bit is clear, then the CPU has two options: 1. set the ICR[START] bit, write a new target address to the IDBR, and set the ICR[TB] bit which will send a repeated start condition or 2. set the ICR[MA] bit and leave the ICR[TB] bit clear which will send a STOP only.
Transmit Acknowledge to slave- transmitter	Master-receive only	 As a master-receiver, the I²C unit will generate the clock for the acknowledge pulse. The I²C unit is also responsible for driving the SDA line during the ACK cycle. If the next data byte is to be the last transaction, the CPU will set the ICR[ACKNAK] bit for NAK generation. See Section 9.4.3, "I2C Acknowledge".
Generate a Repeated START to chain I ² C transactions	Master-transmit Master-receive	 If data chaining is desired, a repeated START condition is used instead of a STOP condition. This occurs after the last data byte of a transaction has been written to the bus. The CPU will write the next target slave address and the R/nW bit to the IDBR, set the ICR[START] bit, and set the ICR[TB] bit. See Section 9.3.3, "Start and Stop Bus States".
Generate a STOP	Master-transmit Master-receive	 Generated after the CPU writes the last data byte on the bus. CPU generates a STOP condition by setting the ICR[STOP] bit. See Section 9.3.3, "Start and Stop Bus States".

When the CPU needs to read data, the I^2C unit transitions from slave-receive mode to master-transmit mode to transmit the start address, R/nW bit, and the ACK pulse. After it sends the ACK pulse, the I^2C unit transitions to master-receive mode and waits to receive the read data from the slave device (see Figure 9-8).Multiple transactions can take place during an I^2C operation. For example, transitioning from master-receive to master-transmit through a repeated start.

Figure 9-8. Master-Receiver Read from Slave-Transmitter

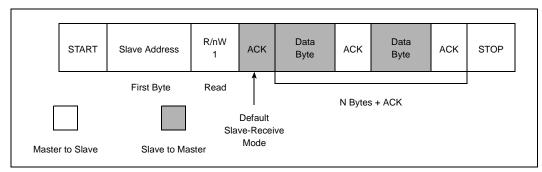


Figure 9-9. Master-Receiver Read from Slave-Transmitter / Repeated Start / Master-Transmitter Write to Slave-Receiver

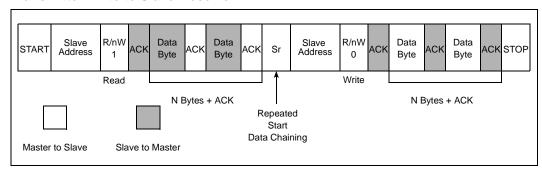
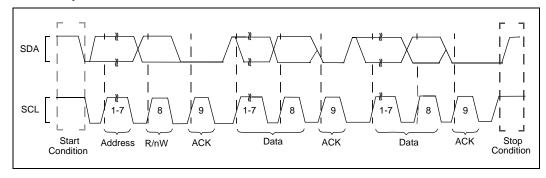



Figure 9-10. A Complete Data Transfer

9.4.6 Slave Operations

Table 9-6 describes how the I²C unit operates as a slave device.

Table 9-6. Slave Transactions

I ² C Slave Action	Mode of Operation	Definition
		I ² C unit monitors all slave address transactions.
		ICR[IUE] bit must be set.
Slave-receive	Slave-receive	 I²C unit monitors bus for START conditions. When a START is detected, the interface reads the first 8 bits and compares the most significant seven bits with the 7-bit ISAR and the general call address (0x00). If there is a match, the I²C unit sends an ACK.
(default mode)	only	 If the first 8 bits are zero's, this is a general call address. If the ICR[GCD] bit is clear, both the ISR[GCAD] bit and the ISR[SAD] bit will be set. See Section 9.4.7, "General Call Address".
		 If the eighth bit of the first byte (R/nW bit) is low, the I²C unit stays in slave-receive mode and the ISR[SAD] bit is cleared. If R/nW bit is high, I²C unit switches to slave-transmit and ISR[SAD] bit is set.
Setting the Slave Address Detected bit	Slave-receive Slave-transmit	 Indicates the interface has detected an I²C operation that addresses the application processor including the general call address. The application processor can distinguish an ISAR match from a General Call by reading the ISR[GCAD] bit.
Detected bit		An interrupt is signalled, if enabled, after the matching slave address is received and acknowledged.
		Data receive mode of I ² C slave operation.
		 Eight bits are read from the serial bus into the shift register. When a full byte is received and the ACK/NAK bit is completed, the byte is transferred from the shift register to the IDBR.
Read one byte of I ² C Data from the	Slave-receive only	 Occurs when the ISR[IRF] bit is set and the ICR[TB] bit is clear. If enabled, the IDBR Receive Full Interrupt is signalled to the CPU.
IDBR	,	 Software reads one data byte from the IDBR. When the IDBR is read, the application processor writes the desired ICR[ACKNAK] bit and sets the ICR[TB] bit. This causes the I²C unit to stop inserting wait states and let the master transmitter write the next piece of information.
Transmit Acknowledge to	Slave-receive	 As a slave-receiver, the I²C unit pulls the SDA line low to generate the ACK pulse during the high SCL period.
master- transmitter	only	 ICR[ACKNAK] bit controls the ACK data the I²C unit drives. See Section 9.4.3, "I2C Acknowledge".
		Data transmit mode of I ² C slave operation.
Write one byte of I ² C data to the IDBR	Slave-transmit only	 Occurs when ISR[ITE] bit is set and ICR[TB] bit is clear. If enabled, the IDBR Transmit Empty Interrupt is signalled to the application processor.
		The application processor writes a data byte to IDBR and sets ICR[TB] bit to start the transfer.
Wait for Acknowledge from master- receiver	Slave-transmit only	 As a slave-transmitter, the I²C unit releases the SDA line to allow the master-receiver to pull the line low for the ACK. See Section 9.4.3, "I2C Acknowledge".

Figure 9-11 through Figure 9-13 are examples of I²C transactions and show the relationships between master and slave devices.

Figure 9-11. Master-Transmitter Write to Slave-Receiver

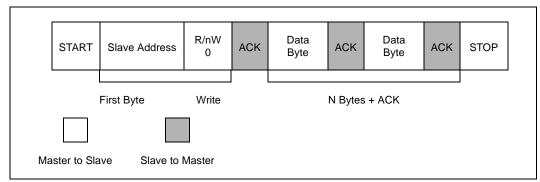


Figure 9-12. Master-Receiver Read to Slave-Transmitter

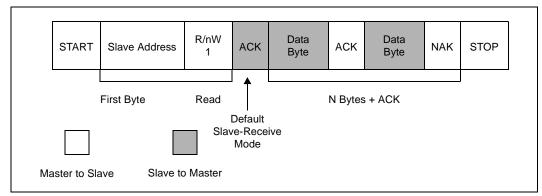
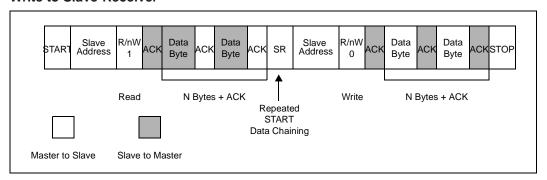



Figure 9-13. Master-Receiver Read to Slave-Transmitter, Repeated START, Master-Transmitter Write to Slave-Receiver

9.4.7 General Call Address

A general call address is a transaction with a slave address of 0x00. When a device requires the data from a general call address, it acknowledges the transaction and stays in slave-receiver mode. Otherwise, the device ignores the general call address. The other bytes in a general call transaction are acknowledged by every device that uses it on the bus. Devices that do not use these bytes must not send an ACK. The meaning of a general call address is defined in the second byte sent by the

master-transmitter. Figure 9-14 shows a general call address transaction. The least significant bit of the second byte, called B, defines the transaction. Table 9-7 shows the valid values and definitions when B=0.

The I^2C unit supports sending and receiving general call address transfers on the I^2C bus. When software sends a general call message from the I^2C unit, it must set the I^2C bit to prevent the I^2C unit from responding as a slave. If the I^2C bus enters an indeterminate state.

If the I²C unit acts as a slave and receives a general call address while the ICR[GCD] bit is clear, it:

- Sets the ISR[GCAD] bit
- Sets the ISR[SAD] bit
- Interrupts the application processor (if the interrupt is enabled)

If the I^2C unit receives a general call address and the ICR[GCD] bit is set, it ignores the general call address.

Figure 9-14. General Call Address

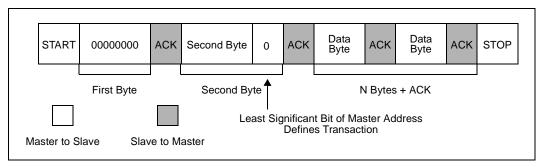


Table 9-7. General Call Address Second Byte Definitions

Least Significant Bit of Second Byte (B)	Second Byte Value	Definition
0	0x06	2-byte transaction in which the second byte tells the slave to reset and store this value in the programmable part of its address.
0	0x04	2-byte transaction in which the second byte tells the slave to store this value in the programmable part of its address. No reset.
0	0x00	Not allowed as a second byte
NOTE: Other v	alues are no	ot fixed and must be ignored.

Software must ensure that the I²C unit is not busy before it asserts a reset. Software must also ensure that the I²C bus is idle when the unit is enabled after reset. When directed to reset, the I²C unit, except for ISAR, returns to the default reset condition. ISAR is not affected by a reset.

When B=1, the sequence is a hardware general call and is not supported by the I^2C unit. Refer to the *The* I^2C -Bus *Specification* for information on hardware general calls.

I²C 10-bit addresses and CBUS compatibility are not supported.

9.5 Slave Mode Programming Examples

9.5.1 Initialize Unit

- 1. Set the slave address in the ISAR.
- 2. Enable desired interrupts in the ICR.
- 3. Set the ICR[IUE] bit to enable the I²C unit.

9.5.2 Write *n* Bytes as a Slave

- 1. When a Slave Address Detected interrupt occurs. Read ISR: Slave Address Detected (1), Unit Busy (1), R/nW bit (1), ACK/NAK (0)
- 2. Write a 1 to the ISR[SAD] bit to clear the interrupt.
- 3. Return from interrupt.
- 4. Load data byte to transfer in the IDBR.
- 5. Set ICR[TB] bit.
- 6. When a IDBR Transmit Empty interrupt occurs. Read ISR: IDBR Transmit Empty (1), ACK/NAK (0), R/nW bit (0)
- 7. Load data byte to transfer in the IDBR.
- 8. Set the ICR[TB] bit.
- 9. Write a 1 to the ISR[ITE] bit to clear interrupt.
- 10. Return from interrupt.
- 11. Repeat steps 6 to 10 for *n*-1 times. If, at any time, the slave does not have data, the I²C unit keeps SCL low until data is available.
- 12. When a IDBR Transmit Empty interrupt occurs. Read ISR: IDBR Transmit Empty (1), ACK/NAK (1), R/nW bit (0)
- 13. Write a 1 to the ISR[ITE] bit to clear interrupt.
- 14. Return from interrupt
- 15. When Slave Stop Detected interrupt occurs. Read ISR: Unit Busy (0), Slave STOP Detected (1)
- 16. Write a 1 to the ISR[SSD] bit to clear interrupt.

9.5.3 Read *n* Bytes as a Slave

- 1. When a Slave Address Detected interrupt occurs. Read ISR: Slave Address Detected (1), Unit busy (1), R/nW bit (0)
- 2. Write a 1 to the ISR[SAD] bit to clear the interrupt.
- 3. Return from interrupt.
- 4. Set ICR[TB] bit to initiate the transfer.

- 5. When an IDBR Receive Full interrupt occurs. Read ISR: IDBR Receive Full (1), ACK/NAK (0), R/nW bit (0)
- 6. Read IDBR to get the received byte.
- 7. Write a 1 to the ISR[IRF] bit to clear interrupt.
- 8. Return from interrupt.
- 9. Repeat steps 4 to 8 for *n*-1 times. Once the IDBR is full, the I²C unit will keep SCL low until the data is read.
- 10. Set ICR[TB] bit to release I²C bus and allow next transfer.
- 11. When a Slave Stop Detected interrupt occurs. Read ISR: Unit busy (0), Slave STOP Detected (1)
- 12. Write a 1 to the ISR[SSD] bit to clear interrupt.

9.6 Master Programming Examples

9.6.1 Initialize Unit

- 1. Set the slave address in the ISAR.
- 2. Enable desired interrupts in the ICR. Do not enable Arbitration Loss Detected interrupt
- 3. Set the ICR[IUE] and ICR[SCLE] bits to enable the I²C unit and SCL.

9.6.2 Write 1 Byte as a Master

- 1. Load target slave address and R/nW bit in the IDBR. R/nW must be 0 for a write.
- 2. Initiate the write.

 Set ICR[START], clear ICR[STOP], clear ICR[ALDIE], set ICR[TB]
- 3. When an IDBR Transmit Empty interrupt occurs. Read ISR: IDBR Transmit Empty (1), Unit Busy (1), R/nW bit (0)
- 4. Write a 1 to the ISR[ITE] bit to clear interrupt.
- 5. Write a 1 to the ISR[ALD] bit if set.

 If the master loses arbitration, it performs an address retry when the bus becomes free. The Arbitration Loss Detected interrupt is disabled to allow the address retry.
- 6. Load data byte to be transferred in the IDBR.
- 7. Initiate the write. Clear ICR[START], set ICR[STOP], set ICR[ALDIE], set ICR[TB]
- 8. When an IDBR Transmit Empty interrupt occurs (unit is sending STOP). Read ISR: IDBR Transmit Empty (1), Unit busy (x), R/nW bit (0)
- 9. Write a 1 to the ISR[ITE] bit to clear the interrupt.
- 10. Clear ICR[STOP] bit.

9.6.3 Read 1 Byte as a Master

- 1. Load target slave address and R/nW bit in the IDBR. R/nW must be 1 for a read.
- 2. Initiate the write.

 Set ICR[START], clear ICR[STOP], clear ICR[ALDIE], set ICR[TB]
- 3. When an IDBR Transmit Empty interrupt occurs. Read ISR: IDBR Transmit Empty (1), Unit busy (1), R/nW bit (1)
- 4. Write a 1 to the ISR[ITE] bit to clear the interrupt.
- 5. Initiate the read. Clear ICR[START], set ICR[STOP], set ICR[ALDIE], set ICR[ACKNAK], set ICR[TB]
- 6. When an IDBR Receive full interrupt occurs (unit is sending STOP). Read ISR: IDBR Receive Full (1), Unit Busy (x), R/nW bit (1), ACK/NAK bit (1)
- 7. Write a 1 to the ISR[IRF] bit to clear the interrupt.
- 8. Read IDBR data.
- 9. Clear ICR[STOP] and ICR[ACKNAK] bits

9.6.4 Write 2 Bytes and Repeated Start Read 1 Byte as a Master

- 1. Load target slave address and R/nW bit in the IDBR. R/nW must be 0 for a write.
- 2. Initiate the write.

 Set ICR[START], clear ICR[STOP], clear ICR[ALDIE], set ICR[TB]
- 3. When an IDBR Transmit Empty interrupt occurs. Read ISR: IDBR Transmit Empty (1), Unit Busy (1), R/nW bit (0)
- 4. Write a 1 to the ISR[ITE] bit to clear interrupt.
- 5. Load data byte to be transferred in the IDBR.
- 6. Initiate the write. Clear ICR[START], clear ICR[STOP], set ICR[ALDIE], set ICR[TB]
- 7. When an IDBR Transmit Empty interrupt occurs. Read ISR: IDBR Transmit Empty (1), Unit busy (1), R/nW bit (0)
- 8. Write a 1 to the ISR[ITE] bit to clear interrupt.
- 9. Repeat steps 5-8 one time.
- 10. Load target slave address and R/nW bit in the IDBR. R/nW must be 1 for a read.
- 11. Send repeated start as a master.
 Set ICR[START], clear ICR[STOP], clear ICR[ALDIE], set ICR[TB]
- 12. When an IDBR Transmit Empty interrupt occurs. Read ISR: IDBR Transmit Empty (1), Unit busy (1), R/nW bit (1)
- 13. Write a 1 to the ISR[ITE] bit to clear interrupt.
- 14. Initiate the read.

 Clear ICR[START], set ICR[STOP], set ICR[ALDIE], set ICR[ACKNAK], set ICR[TB]
- 15. When an IDBR Receive full interrupt occurs (unit is sending stop).

 Read ISR: IDBR Receive Full (1), Unit Busy (x), R/nW bit (1), ACK/NAK bit (1)

- 16. Write a 1 to the ISR[IRF] bit to clear the interrupt.
- 17. Read IDBR data.
- 18. Clear ICR[STOP] and ICR[ACKNAK] bits

9.6.5 Read 2 Bytes as a Master - Send STOP Using the Abort

- 1. Load target slave address and R/nW bit in the IDBR. R/nW must be 1 for a read.
- 2. Initiate the write. Set ICR[START], clear ICR[STOP], clear ICR[ALDIE], set ICR[TB]
- 3. When an IDBR Transmit Empty interrupt occurs. Read ISR: IDBR Transmit Empty (1), Unit busy (1), R/nW bit (1)
- 4. Write a 1 to the ISR[ITE] bit to clear interrupt.
- 5. Initiate the read Clear ICR[START], clear ICR[STOP], set ICR[ALDIE], clear ICR[ACKNAK], set ICR[TB]
- 6. When an IDBR Receive full interrupt occurs.
 Read ISR: IDBR Receive Full (1), Unit Busy (1), R/nW bit (1), ACK/NAK bit (0)
- 7. Write a 1 to the ISR[IRF] bit to clear the interrupt.
- 8. Read IDBR data.
- 9. Clear ICR[STOP] and ICR[ACKNAK] bits
- 10. Initiate the read. Clear ICR[START], clear ICR[STOP], set ICR[ALDIE], set ICR[ACKNAK], set ICR[TB] ICR[STOP] is not set because STOP or repeated start will be decided on the byte read.
- 11. When an IDBR Receive full interrupt occurs.

 Read ISR: IDBR Receive Full (1), Unit Busy (1), R/nW bit (1), ACK/NAK bit (1)
- 12. Write a 1 to the ISR[IRF] bit to clear the interrupt.
- 13. Read IDBR data.
- 14. Initiate STOP abort condition (STOP with no data transfer). Set ICR[MA]

Note: If a NAK is not sent in Step 11, the next transaction must involve another data byte read.

9.7 Glitch Suppression Logic

The I²C unit has built-in glitch suppression logic that suppresses glitches of 60ns or less. This is within the 50ns glitch suppression specification.

9.8 Reset Conditions

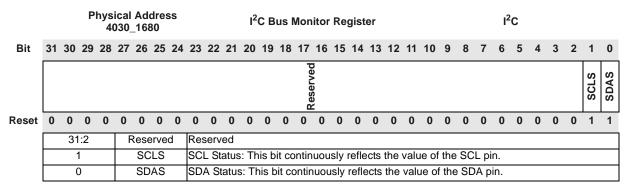
Software must ensure that the I^2C unit is not busy before it asserts a reset. Software must also ensure that the I^2C bus is idle when the unit is enabled after reset. When directed to reset, the I^2C unit, except for ISAR, returns to the default reset condition. ISAR is not affected by a reset.

When the ICR[UR] bit is set, the I^2C unit resets but the associated I^2C MMRs remain intact. When resetting the I^2C unit with the ICR's unit reset, use the following guidelines:

- 1. Set the reset bit in the ICR register and clear the remainder of the register.
- 2. Clear the ISR register.
- 3. Clear reset in the ICR.

9.9 Register Definitions

The registers in Table 9-8 are associated with the I²C unit and are located in the application processor peripheral memory- mapped address space.


Table 9-8. I²C Register Addresses

Register Addresses	Name	Section
0x4030 1680	IBMR	Section 9.9.1, "I2C Bus Monitor Register- IBMR"
0x4030 1688	IDBR	Section 9.9.2, "I2C Data Buffer Register- IDBR"
0x4030 1690	ICR	Section 9.9.3, "I2C Control Register- ICR"
0x4030 1698	ISR	Section 9.9.4, "I2C Status Register"
0x4030 16A0	ISAR	Section 9.9.5, "I2C Slave Address Register- ISAR"

9.9.1 I²C Bus Monitor Register- IBMR

The I^2C Bus Monitor Register (IBMR) tracks the status of the SCL and SDA pins. The values of these pins are recorded in this read-only IBMR so software can determine when the I^2C bus is hung and the I^2C unit must be reset.

Table 9-9. I²C Bus Monitor Register - IBMR

9.9.2 I²C Data Buffer Register- IDBR

The application processor uses the I^2C Data Buffer Register to transmit and receive data from the I^2C bus. The IDBR is accessed by the program I/O on one side and by the I^2C shift register on the other. The IDBR receives data coming into the I^2C unit after a full byte is received and acknowledged. The application processor core writes data going out of the I^2C unit to the IDBR and sends it to the serial bus.

When the I²C unit is in transmit mode (master or slave), the application processor writes data to the IDBR over the internal bus. The application processor writes data to the IDBR when a master transaction is initiated or when the IDBR Transmit Empty Interrupt is signalled. Data moves from the IDBR to the shift register when the Transfer Byte bit is set. The IDBR Transmit Empty Interrupt is signalled (if enabled) when a byte is transferred on the I²C bus and the acknowledge cycle is complete. If the IDBR is not written by the application processor and a STOP condition is not in place before the I²C bus is ready to transfer the next byte packet, the I²C unit inserts wait states until the application processor writes the IDBR and sets the Transfer Byte bit.

When the I²C unit is in receive mode (master or slave), the application processor reads IDBR data over the internal bus. The application processor reads data from the IDBR when the IDBR Receive Full Interrupt is signalled. The data moves from the shift register to the IDBR when the ACK cycle is complete. The I²C unit inserts wait states until the IDBR is read. Refer to Section 9.4.3, "I2C Acknowledge" for more information on the acknowledge pulse in receiver mode. After the application processor reads the IDBR, the ACK/NAK Control bit is written and the Transfer Byte bit is written, allowing the next byte transfer to proceed to the I²C bus. The IDBR register is 0x00 after reset.

Table 9-10. I²C Data Buffer Register - IDBR

			P			Ad _168		SS				ľ	C D	ata	Buf	fer	Reg	jiste	er							l ²	С					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													Keserved															90	9			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		31	1:8		F	Rese	erve	d	Res	serv	/ed																					
		7	:0			ID	В		I ² C	Da	ta B	uffe	er: E	Buffe	r foi	· I ² C	bu	s se	nd/r	ece	ive	data	١.									

9.9.3 I²C Control Register- ICR

The application processor uses the bits in the I²C Control Register (ICR) to control the I²C unit.

Table 9-11. I²C Control Register - ICR (Sheet 1 of 3)

			P		ical 030 ₋		dres 90	ss					I ² C	Со	ntro	ol R	egis	ter								l ²	c					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								Reserved									FM	UR	SADIE	ALDIE	SSDIE	BEIE	IRFIE	ITEIE	GCD	IUE	SCLE	MA	TB	ACKNAK	STOP	START
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		31:	Reserved						Res	serv	ed																					
		1	5			F	M		0 =	10	ode 0 KI 0 KI	3it/s	ec.	ope ope	ratio	on on																
	14					U	IR		0 =	No	res set	et.	I ² C	unit	t onl	y.																

Table 9-11. I²C Control Register - ICR (Sheet 2 of 3)

Ta	ble	9-	11.	ľ	C C	on	tro	I R	egiste	er -	ICR	(S	She	et 2	of 3	3)														
			P			Ad _169	dres 90	s			ı	²C	Co	ntrol	Regi	ster								l ²	c					
Bit	31	30	29	28	27	26	25	24	23 22	21	20 ′	9	18	17 1	6 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								Reserved							Æ	UR	SADIE	ALDIE	SSDIE	BEIE	IRFIE	ITEIE	GCD	INE	SCLE	MA	ТВ	ACKNAK	STOP	START
Reset	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		1	3			SA	DIE			sabl able dres	e inte es the ss ma	rru e I ² o itch	pt. C ui	nit to gene	nterr al ca	upt t	the a	ıppli 88.		on pi	roces	ssor	whe	en it	dete	ects	a sl	ave		
		1	2			ALI	DIE		Arbitra 0 = Di 1 = Er ma	sabl able	e inte	rru e I ² (pt.			-				on p	oroc	esso	or w	hen	it lo	ses	arbi	trati	on i	in
		1	1			SS	DIE		Slave : 0 = Di 1 = Er co	sabl able	e inte	rru e I ² (pt. C ui	nit to	nterr				icati	on p	oroc	esso	or w	hen	it de	etec	ts a	STO	DΡ	
		1	0			ВЕ	ΞΙΕ			sabl able rors: a m a sl So	e interes the aster	erru e I ² tra ece	pt. C un nsr eive	nit to nitter, r, the spons	nterr no A I ² C ບ ible f	CK nit g	was jene uara	dete	ecte d a eing	d af NAk that	ter a	a by ilse. spla	te w	as s	sent.	and	ıstı		ous	
		!	9			IRI	FIE		IDBR F 0 = Di 1 = Er da	sabl able	e inte	rru e I ² (pt. C ui	nit to	nterr			appli	icati	on p	oroc	esso	or w	hen	the	IDB	R re	eceiv	/es	а
			8			ITE	ΞIE		IDBR 1 0 = Di 1 = Er the	sabl	e inte	rru e I ² (pt.						catio	on p	roce	esso	or aft	ter tı	rans	mitti	ing a	a by	te o	nto
			7			G	CD		Genera 0 = Er 1 = Di Must b	able sabl	es the	e I ² (C u	C ui	espo	nse t	ge ge	nera	ıl ca	ll m	essa	ages	as	a sl			ge.				
			6			IL	JE		I ² C Un 0 = Di tra 1 = Er Softwa	sabl insa iable	es the	e u s. e I ² (C ui	nit (d	fault	s to	slav	e-re	ceiv	e m	ode	e).			ond t	to ar	ny s	lave	!	
			5			SC	LE		SCL E 0 = Di 1 = Er	sabl	es th	e I ²	C u	nit fro	m dr utpu	iving for	the mas	SC ter r	L lir nod	ne. e op	oera	tion								

Table 9-11. I²C Control Register - ICR (Sheet 3 of 3)

10							dres		egisi	•		•													•						
					030_			-				ľC	Со	ntro	ol Re	egis	ter								l ²	С					
Bit	31	30 2	9	28	27	26	25		23 22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								Postroad								FM	UR	SADIE	ALDIE	SSDIE	BEIE	IRFIE	ITEIE	GCD	IUE	SCLE	MA	TB	ACKNAK	STOP	START
Reset	0	0 ()	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		4				N	ΛA		Master is in many of the street of the stree	aste ne l ² ter-t ran: it se ter-r e ap	r me C u rans smi ends ecce plic	ode. Init truinit somit Service temes the relation	ans end: mod pty ST(nod	mits s ST le, a bit is DP. e, w ces	STOP after s set The when	OP with a da t. W Tra a N doe	usin hout ata t hen nsfe IAK s no	ig the date of the	e S a tra is s mor yte b ent	TOF ansr ent, e da oit (0 with a rep	PICI miss the ata b 03) r out	R bi ion. ICF oyte nus a S	t on R's T s ne t rer TOP STA	ly. ransed t mair (S ⁻ RT,	sfer to be n cle	Byte e se ear.	e bit nt, s R bit	is c settir	leareng m	ed a nast	and er et)
		3				7	гв		Transf 0 = Cl 1 = Se The ap complet I ² C uni	eare end/ plica	ed b rece ation	oy I ² (eive n pro mas	C un a by ces ter c	it wi te. sor or sla	hen can ave	mo mod	byte nito de, a	e is a r this	sent s bit eac	to c	eive dete yte t	ed. rmir trans	ne w sfer,	inc	ludii	ng A	CK	/NAI	⟨ bit	, the	e
		2			Å	4Ck	(NAI	Κ	ACK/N receive 0 = Th 1 = Th The I ² 0 when in	e mo ne l ² ne l ² C un t res	C u C u it a por	init s init s utom nds ir	ends ends atica	s an s a r ally	AC nega sena rece	K po ative ds a sive	ulse e AC an A mod	afte K (N CK de, ii	er it NAK puls nde	rece () aft se wi	eives ter it hen dent	s a c t rec it re	data ceive espo the /	byt es a ends ACK	e. dat to i	a by ts sl	te. ave	ado ol bi	lress t set	s or	g.
		1				ST	ОР		STOP: master bit. See 0 = De 1 = Se	mo e Se o no end	de. ctic t se a S	In m on 9.0 end a TOP.	aste 3.3.3 ST	er-re B, "S OP.	ceiv STOI	re m P C	ode ondi	the tion	e AC	CK/N mo	IAK re d	cor etai	itrol Is oi	bit r n the	nus e Sī	t be ГОР	set sta	alor te.			
		0				ST	ART		START Section 0 = Do 1 = Se	n 9.3 o no	3.3. ⁻ t se	1, "S and a	TAR ST	TC	ond													е			

9.9.4 I²C Status Register

The ISR signals I^2C interrupts to the application processor interrupt controller. Software can use the ISR bits to check the status of the I^2C unit and bus. ISR bits (bits 9-5) are updated after the ACK/NAK bit is completed on the I^2C bus.

The ISR also clears the following interrupts signalled from the I²C unit:

- IDBR Receive Full
- IDBR Transmit Empty
- Slave Address Detected
- Bus Error Detected
- STOP Condition Detect
- Arbitration Lost

Table 9-12. I²C Status Register - ISR (Sheet 1 of 2)

				-	•				9.0		-	• • •	,-			•	-,															
			Ρ			Add _169		SS					I ² (St	atu	s Re	gis	ter								l ²	C					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											Reserved											BED	SAD	GCAD	IRF	ITE	ALD	SSD	IBB	ПB	ACKNAK	RWM
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		31	:11		F	Rese	rve	d	Res	erv	ed																					
									Bus	s Er	ror	Dete	ecte	ed:																		
												or de C un				bit v	vhe	n it	dete	cts	one	of tl	ne fo	ollov	vina	erro	or co	ondi	tion	s:		
												aste													_							
		1	0			BE	ΞD		•	As	a sl	ave en ar	rec	eive	r, th	ie l ²	C ui	nit ç	gene	rate	s a	NAK	(pu	lse.				•				
									NO	TE:	mi	en ar splad rbitra	ced	STA																	hat	
									То	clea	r thi	s bit	wr	ite a	11	o it.																
									Sla	ve A	Add	ress	De	tec	ted																	
		ę	9			SA	۷D			I ² C	un	ive a it de ipt is	tec	ted	a 7-	bit a	ddr									all a	ıddr	ess	or IS	SAR	. Ar	า
									То	clea	r thi	s bit	wr	ite a	11	o it.																
									Ger	nera	ıl Ca	all A	ddı	ress	De	tect	ed:															
		8	3			GC	AD		0 = 1 =	No I ² C	ge C un	nera it red	l ca ceiv	ll ac	ldre a ge	ess r	ecei al ca	ved all a	d. iddre	ess.												
												eive																				
		7	7			IR	ξF		0 = 1 =	Th	e ID	BR BR the I	reg	iste	re	ceive	ed a	ne ne	w da w da	ita b ita b	yte yte	or th fron	ne l ²	C u e I ² C	nit i: C bu	s idl s. A	e. .n in	terru	upt i	s się	gnal	led
									То	clea	r thi	s bit	wr	ite a	11	o it.																
									IDB	RT	ran	smit	Er	npty	/ :																	
		6	6			ΙΤ	Ē		0 = 1 =	Th	e l ²	ata b C un led v	it h	as f	inis	hed	tran	sm	itting	g a c			e on	the	I ² C	bus	s. Ar	n inte	erru	pt is	i	
									То	clea	r thi	s bit	wr	ite a	11	o it.																

Table 9-12. I²C Status Register - ISR (Sheet 2 of 2)

ıa	DIE	9-	12.	1-	6 3	tat	us	Re	gist	er	- 13	3K	(5)	166	÷τ 2	Oī	2)															
			P		ical 030_			SS					I ² C	St	atus	s Re	gis	ter								l ²	c					
Bit	31	30	29	28	27	26	25	24	23 2	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											Reserved											BED	SAD	GCAD	IRF	ITE	ALD	ass	IBB	ПB	ACKNAK	RWM
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									Arbi	rat	ion	Los	ss [ete	ecte	d : u	sed	dur	ing	mul	ti-ma	aste	r op	erat	ion.							
		5	5			Αl	LD		0 = 1 =	Set	wh	en t	he	² C	unit	lose					too	k pl	ace.									
									To cl							o it.																
		4	1			SS	SD		0 = 1 =							det	ects	a S	STO	P w	hile	in s	ave	-rec	eive	or	slav	e-tra	ansr	nit r	nod	e.
									To cl								00.0				0	0			0							
									I ² C E	us	Βι	ısy:																				
		3	3			IE	3B		0 = 1 =	l ² C Set	bu wh	s is i nen t	dle he	or t	he I bus	² C ι is b	unit usy	is u but	sing the	the I ² C	bus uni	s (i.e t is i	e., u not i	nit b nvol	usy ved). in t	he t	rans	acti	on.		
									Unit	Bu	sy:																					
		2	2			U	JB		0 = 1 =						unit	is b	usy.	De	fine	d as	the	tim	e be	etwe	en t	he f	irst (STA	RT :	and	ST	OP.
									ACK	/N/	١K	Stat	us:																			
		1			Δ	ACK	(NAI	K	0 = 1 =										on	the	bus.											
									Used Upda																	oyte	is th	ne la	ast c	ne.		
									Read	I/W	rite	Мо	de:																			
		()			R۷	ΝM		0 = 1 =																							

R/nW bit of the slave address. Automatically cleared by hardware after a stop state.

9.9.5 I²C Slave Address Register- ISAR

The ISAR (see Table 9-13) defines the I^2C unit's 7-bit slave address. In slave-receive mode, the application processor responds when the 7-bit address matches the value in this register. The application processor writes this register before it enables I^2C operations. The ISAR is fully programmable (no address is assigned to the I^2C unit) so it can be set to a value other than those of hard-wired I^2C slave peripherals in the system. If the application processor is reset, the ISAR is not affected. The ISAR register default value is 0000000_2 .

Table 9-13. I2C Slave Address Register - ISAR

			Ρ				ddre 6A0	ss				I ² C	Sla	ave .	Add	lres	s R	egis	ter							l ²	С					
Bit	31	30	29	28	27	20	6 25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													Reserved																ISA			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	31:7 Reserved Rese										ed																					
	31:7 Reserved Reserved 6:0 ISA I ² C S mode										ve .	Add	res	s : 7	-bit a	addı	ress	tha	t the	e I ² C	C un	it re	spo	nds	to v	vher	n in :	slav	e-re	ceiv	e	

UARTs 10

This chapter describes the universal asynchronous receiver/transmitter (UART) serial ports. The serial ports are controlled via direct memory access (DMA) or programmed I/O. The PXA250 and PXA210 application processors have three UARTs: Full Function UART (FFUART), Bluetooth UART (BTUART), and Standard UART (STUART). The UARTs use the same programming model.

Note: The PXA210 application processor does not have the full function UART control pins.

10.1 Feature List

The UARTs share the following features:

- Functionally compatible with the 16550
- Ability to add or delete standard asynchronous communications bits (start, stop, and parity) in the serial data
- Independently controlled transmit, receive, line status, and data set interrupts
- Programmable baud rate generator that allows the internal clock to be divided by 1 to (2¹⁶-1) to generate an internal 16X clock
- Modem control pins that allow flow control through software. Each UART has different modem control capability.
- Fully programmable serial-interface:
 - 5-, 6-, 7-, or 8-bit characters
 - Even, odd, and no parity detection
 - 1, 1.5, or 2 stop bit generation
 - Baud rate generation up to 921 kbps for the BTUART. Up to 230 kbps for other UARTs.
- 64-byte transmit FIFO
- 64-byte receive FIFO
- Complete status reporting capability
- · Ability to generate and detect line breaks
- Internal diagnostic capabilities that include:
 - Loopback controls for communications link fault isolation
 - Break, parity, and framing error simulation
- Fully prioritized interrupt system controls
- Separate DMA requests for transmit and receive data services
- Slow infrared asynchronous interface that conforms to the Infrared Data Association (IRDA) standard

10.2 Overview

Each serial port contains a UART and a slow infrared transmit encoder and receive decoder that conforms to the IRDA Serial Infrared (SIR) Physical Layer Link Specification.

Each UART performs serial-to-parallel conversion on data characters received from a peripheral device or a modem and parallel-to-serial conversion on data characters received from the processor. The processor can read a UART's complete status during functional operation. Status information includes the type and condition of transfer operations and error conditions (parity, overrun, framing, or break interrupt) associated with the UART.

Each serial port operates in FIFO or non-FIFO mode. In FIFO mode, a 64-byte Transmit FIFO holds data from the processor until it is transmitted on the serial link and a 64-byte Receive FIFO buffers data from the serial link until it is read by the processor. In non-FIFO mode, the transmit and Receive FIFOs are bypassed.

Each UART includes a programmable baud rate generator that can divide the input clock by 1 to (2¹⁶–1). This produces a 16X clock that can be used to drive the internal transmitter and receiver logic. Software can program interrupts to meet its requirements. This minimizes the number of computations required to handle the communications link. Each UART operates in an environment that is controlled by software and can be polled or is interrupt driven.

10.2.1 Full Function UART

The FFUART supports modem control capability. The maximum tested baud rate on this UART is 230.4 kbps. The divisor programmed in the divisor latch registers must be equal to or greater than four.

10.2.2 Bluetooth UART

The BTUART is a high speed UART that supports baud rates up to 921.6 kbps and can be connected to a Bluetooth module. It supports the functions in the feature list, (see Section 10.1, "Feature List" on page 10-1) but only supports two modem control pins (nCTS, nRTS).

10.2.3 Standard UART

The STUART supports all functions in the feature list (see Section 10.1, "Feature List" on page 10-1), but does not support modem control capability. The UART's maximum tested baud rate is 230.4 kbps. The divisors programmed in divisor latch registers must be equal to or greater than four.

10.2.4 Compatibility with 16550

The application processor UARTs are functionally compatible with the 16550 industry standard. Each UART supports all of the 16550's functions as well as the following features:

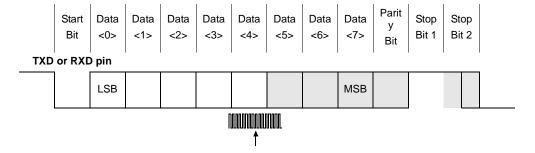
- DMA requests for transmit and receive data services
- Slow infrared asynchronous interface
- Non-Return-to-Zero (NRZ) encoding/decoding function

10.3 Signal Descriptions

Table 10-1 lists and describes each external signal that is connected to a UART module. The pins are connected through the System Integration Unit to GPIOs. Refer to Section 4.1, "General-Purpose I/O" for details on the GPIOs.

Table 10-1. UART Signal Descriptions (Sheet 1 of 2)

Name	Туре	Description
RXD	Input	SERIAL INPUT: Serial data input to the receive shift register. In infrared mode, it is connected to the infrared receiver input. This signal is present on all three UARTs.
TXD	Output	SERIAL OUTPUT: Serial data output to the communications link-peripheral, modem, or data set. The TXD signal is set to the logic 1 state upon a Reset operation. It is connected to the output of the infrared transmitter in infrared mode. This signal is present all three UARTs.
nCTS	Input	CLEAR TO SEND: When low, indicates that the modem or data set is ready to exchange data. The nCTS signal is a modem status input and its condition can be tested by reading bit 4 (CTS) of the Modem Status Register. Bit 4 is the complement of the nCTS signal. Bit 0 (DCTS) of the Modem Status Register (MSR) indicates whether the nCTS input has changed state since the last time the Modem Status Register was read. nCTS has no effect on the transmitter. This signal is present on the FFUART and BTUART. When the CTS bit of the MSR changes state and the Modem Status intervent in casabled, as intervent in presented.
nDSR	Input	interrupt is enabled, an interrupt is generated. DATA SET READY: When low, indicates that the modem or data set is ready to establish a communications link with a UART. The nDSR signal is a Modem Status input and its condition can be tested by reading Bit 5 (DSR) of the MSR. Bit 5 is the complement of the nDSR signal. Bit 1 (DDSR) of the MSR indicates whether the nDSR input has changed state since the MSR was last read. This signal is only present on the FFUART. When the DSR bit of the MSR changes state, an interrupt is generated if the Modem Status interrupt is enabled.
nDCD	Input	DATA CARRIER DETECT: When low, indicates that the data carrier has been detected by the modem or data set. The nDCD signal is a modem status input and its condition can be tested by reading Bit 7 (DCD) of the MSR. Bit 7 is the complement of the nDCD signal. Bit 3 (DDCD) of the MSR indicates whether the nDCD input has changed state since the previous reading of the Modem Status Register. nDCD has no effect on the receiver. This signal is only present on the FFUART. When the DCD bit changes state and the Modem Status interrupt is enabled, an interrupt is generated.


Table 10-1. UART Signal Descriptions (Sheet 2 of 2)

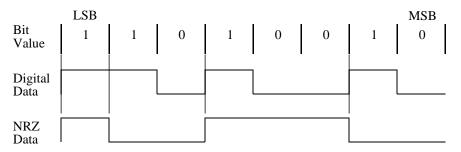
Name	Туре	Description
nRI	Input	RING INDICATOR: When low, indicates that the modem or data set has received a telephone ringing signal. The nRI signal is a Modem Status input whose condition can be tested by reading Bit 6 (RI) of the MSR. Bit 6 is the complement of the nRI signal. Bit 2, the trailing edge of ring indicator (TERI), of the MSR indicates whether the nRI input signal has changed from low to high since the MSR was last read. This signal is only present on the FFUART. When the RI bit of the MSR changes from a high to low state and the Modem Status interrupt is enabled, an interrupt is generated.
nDTR	Output	DATA TERMINAL READY: When low, signals the modem or the data set that the UART is ready to establish a communications link. The nDTR output signal can be set to an active low by programming Bit 0 (DTR) of the MSR to a 1. A Reset operation sets this signal to its inactive state. LOOP mode operation holds this signal in its inactive state. This signal is only present on the FFUART.
nRTS	Output	REQUEST TO SEND: When low, signals the modem or the data set that the UART is ready to exchange data. The nRTS output signal can be set to an active low by programming Bit 1 (RTS) of the Modem Control Register to a 1. A Reset operation sets this signal to its inactive (high) state. LOOP mode operation holds this signal in its inactive state. This signal is used by the FFUART and BTUART.

10.4 UART Operational Description

The format of a UART data frame is shown in Figure 10-1.

Figure 10-1. Example UART Data Frame

Receive data sample counter frequency is 16 times the value of the bit frequency. The 16X clock is created by the baud rate generator. Each bit is sampled three times in the middle. Shaded bits in Figure 10-1 are optional and can be programmed by software.


Each data frame is between seven and 12 bits long, depending on the size of the data programmed, whether parity is enabled, and the number of stop bits. A data frame begins by transmitting a start bit that is represented by a high to low transition. The start bit is followed by from five to eight bits of data that begin with the least significant bit (LSB). The data bits are followed by an optional parity bit. The parity bit is set if even parity is enabled and the data byte has an odd number of ones or if odd parity is enabled and the data byte has an even number of ones. The data frame ends with one, one and a half or two stop bits, as programmed by software. The stop bits are represented by one, one and a half, or two successive bit periods of a logic one.

Each UART has two FIFOs: one transmit and one receive. The transmit FIFO is 64 bytes deep and eight bits wide. The receive FIFO is 64 bytes deep and 11 bits wide. Three bits are used for tracking errors.

The UART can use NRZ coding to represent individual bit values. NRZ coding is enabled when the Interrupt Enable Register's (IER) bit 5, IER[5] is set to high. A one is represented by a line transition and a zero is represented by no line transition. Figure 10-2 shows the data byte 0b 0100 1011 in NRZ coding. The byte's LSB is transmitted first.

Figure 10-2. Example NRZ Bit Encoding - (0b0100 1011

10.4.1 Reset

The UARTs are disabled on reset. To enable a UART, Software must program the GPIO registers (see Section 4.1, "General-Purpose I/O" on page 4-1) then set IER[UUE]. When the UART is enabled, the receiver waits for a frame start bit and the transmitter sends data if it is available in the Transmit Holding Register. Transmit data can be written to the Transmit Holding Register before the UART unit is enabled. In FIFO mode, data is transmitted from the FIFO to the Transmit Holding Register before it goes to the pin.

When the UART unit is disabled, the transmitter or receiver finishes the current byte and stops transmitting or receiving more data. Data in the FIFO is not cleared and transmission resumes when the UART is enabled.

10.4.2 Internal Register Descriptions

Each UART has 13 registers: 12 registers for UART operation and one register for slow infrared configuration. The registers are all 32-bit registers but only the lower eight bits have valid data. The 12 UART operation registers share nine address locations in the I/O address space. Table 10-2 shows the registers and their addresses as offsets of a base address. The base address for each UART is 32 bits. The state of the SLCR[DLAB] bit affects the selection of some UART registers. To access the Baud Rate Generator Divisor Latch registers, software must set the SLCR[DLAB] bit high.

Table 10-2. UART Register Addresses as Offsets of a Base

UART Register Addresses (Base + offset)	DLAB Bit Value	Register Accessed
Base	0	Receive Buffer (read only)
Base	0	Transmit Buffer (write only)
Base + 0x04	0	Interrupt Enable (read/write)
Base + 0x08	Х	Interrupt Identification (read only)
Base + 0x08	Х	FIFO Control (write only)
Base + 0x0C	Х	Line Control (read/write)
Base + 0x10	Х	Modem Control (read/write)
Base + 0x14	Х	Line Status (read only)
Base + 0x18	Х	Modem Status (read only)
Base + 0x1C	Х	Scratch Pad (read/write)
Base + 0x20	Х	Infrared Selection (read/write)
Base	1	Divisor Latch Low (read/write)
Base + 0x04	1	Divisor Latch High (read/write)

10.4.2.1 Receive Buffer Register

In non-FIFO mode, the Receive Buffer Register (RBR) holds the character received by the UART's Receive Shift Register. If the RBR is configured to use fewer than eight bits, the bits are right-justified and the most significant bits (MSB) are zeroed. Reading the register empties the register and clears the Data Ready (DR) bit in the Line Status Register (LSR) to a 0.

In FIFO mode, the RBR latches the value of the data byte at the front of the FIFO.

Table 10-3. Receive Buffer Register

				Bas	e (D	LAE	3=0)					F	Rec	eive	Bu	ffer	Reg	isteı	r							UA	RT					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				RBR6 RBR5 RBR8 RBR8 RBR8 RBR8 RBR8 RBR8 RBR8															RBR2	RBR1	RBR0											
Reset	0	0	0	0	0	0	0	0	_															0	0	0	0					
	Rea	ad o	nly																													
		Bi	ts			Na	me												D	esci	iptic	n										
		[31	:8]			_	_		Res	erv	ed																					
		[7:	:0]		F	RBR	[7:0]	Dat	a by	/te i	ece	ivec	llea	st s	igni	ficar	nt bit	firs	t.												

10.4.2.2 Transmit Holding Register

In non-FIFO mode, the Transmit Holding Register (THR) holds the data byte that is to be transmitted next. When the TSR is emptied, the contents of the THR are loaded in the TSR and the LSR[TDRQ] is set to a 1.

In FIFO mode, a write to the THR puts data into the top of the FIFO. The data at the front of the FIFO is loaded to the TSR when that register is empty.

Table 10-4. Transmit Holding Register

				Bas	e (D	LAE	3=0)	1				Tr	ans	mit	Hol	lding	Re	giste	er							UA	RT					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Ψ															THR2	THR1	THR0								
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Wr	ite o	nly																													
		Bi	ts			Na	me												D	esci	riptio	n										
		31	:8			_	_		Res	serv	ed																					
		7:	0		1	ΓHR	[7:0]	Dat	a by	/te t	rans	mit	ted	leas	st sig	nific	cant	bit	first.												

10.4.2.3 Programmable Baud Rate Generator

Each UART contains a programmable baud rate generator that can take the 14.7456 MHz fixed input clock and divide it by 1 to $(2^{16}-1)$. For the FFUART and the STUART, the divisor is from 4 to $(2^{16}-1)$. The baud rate generator output frequency is 16 times the baud rate. Two 8-bit latches store the divisor in a 16-bit binary format. Load these divisor latches during initialization to ensure that the baud rate generator operates properly. If each Divisor Latch is loaded with a 0, the 16X clock stops. The Divisor Latches are accessed with a word write.

The baud rate of the data shifted in to or out of a UART is given by the formula:

$$BaudRate = \frac{14.7456 \text{ MHz}}{(16xDivisor)}$$

For example: if the divisor is 24, the baud rate is 38400 bps.

The divisor's reset value is 0x0002. For the FFUART and the STUART, the divisor must be set to at least 0x0004 before the UART unit is enabled.

Table 10-5. Divisor Latch Low Register

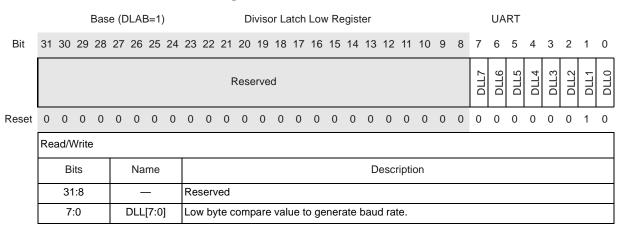


Table 10-6. Divisor Latch High Register

			Bas	se+C)x04	(DI	_AB	=1)				Di	visc	r La	tch	Higl	h Re	egis	ter							UA	RT					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												D0,000	>												DLH15	DLH14	DLH13	DLH12	DLH11	DLH10	DLH9	DLH8
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Rea	ad/V	Vrite	;																												
		Bi	ts			Na	me												D	escr	iptio	on										
		31	:8			_	_		Res	serv	ed																					
		7:	0		D	LH[15:8	3]	Hig	h by	/te d	com	pare	val	ue t	o ge	enei	ate	bau	d ra	te.											

10.4.2.4 Interrupt Enable Register

The IER enables the five types of interrupts that set a value in the Interrupt Identification Register (IIR). To disable an interrupt, software must clear the appropriate bit in the IER. Software can enable some interrupts by setting the appropriate bit.

The Character Timeout Indication interrupt is separated from the Received Data Available interrupt to ensure that the processor and the DMA controller do not service the receive FIFO at the same time. When a Character Timeout Indication interrupt occurs, the processor must handle the data in the Receive FIFO through programmed I/O.

An error interrupt is used when DMA requests are enabled. The interrupt is generated when LSR bit 7 is set to a 1, because a receive DMA request is not generated when the receive FIFO has an error. The error interrupt tells the processor to handle the data in the receive FIFO through programmed I/O. The error interrupt is enabled when DMA requests are enabled and it can not be masked. Receiver Line Status interrupts occur when the error is at the front of the FIFO.

Note: When DMA requests are enabled and an interrupt occurs, software must first read the LSR to see if an error interrupt exists, then check the IIR for the source of the interrupt. When the last error byte is read from the FIFO, DMA requests are automatically enabled. Software is not required to check for the error interrupt if DMA requests are disabled because an error interrupt only occurs when DMA requests are enabled.

Bit 7 of the IER is used to enable DMA requests. The IER also contains the unit enable and NRZ coding enable control bits. Bits 7 through 4 are used differently from the standard 16550 register definition.

Table 10-7. Interrupt Enable Register

			Bas	se+(0x04	l (DI	LAB	=0)				In	terrı	upt	Ena	able	Reg	giste	er							UA	RT					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												Reserved													DMAE	UUE	NRZE	RTOIE	MIE	RLSE	TIE	RAVIE
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Rea	ad/\	Vrite	;																												
		В	its			Na	me												D	esci	riptio	on										
		31	1:8			_	_		Res	erv	ed																					
			7			DM	IAE		0 =	D١	1A ı	ests eque	ests	are	dis																	
		(6			UL	JE		0 =	Th	e u	Enal nit is nit is	disa																			
		ţ	5			NR	ZE		mod 0 =	de. I NF	f the	g Ena e slo codin codin	w in g di	ifra sab	red led																	t
		4	4			RT	OIE		0 =	Ch	ara	Time cter cter	Tim	eou	ıt In	dica	tion	inte	errup	ot di	sab											
		;	3			М	ΙE		0 =	Mc	der	errup n Sta n Sta	atus	int	erru																	
		;	2			RL	SE		0 =	Re	cei	ine S ver L ver L	ine	Sta	tus	inte	rrup	t dis	sable													
			1			TI	IE		0 =	Tra	ansı	ata r nit F nit F	IFO	Da	ıta F	Reqı	uest	inte	errup													
		(0			RA'	VIE		0 =	Re	cei	ata A ver D ver D	ata	Αv	ailal	ble (Trig	ger	leve													

To ensure that the DMA controller and programmed I/O do not access the same FIFO, software Note: must not set the DMAE while the TIE or RAVIE bits are set to a 1.

10.4.2.5 Interrupt Identification Register

The UART prioritizes interrupts in four levels (see Table 10-8) and records them in the IIR. The IIR stores information that indicates that a prioritized interrupt is pending and identifies the source of the interrupt.

The error interrupt is reported separately in the LSR. In DMA mode, software must check for the error interrupt before it checks the IIR.

If additional data is received before a Character Timeout Indication interrupt is serviced, the interrupt is deasserted.

Table 10-8. Interrupt Conditions

Priority Level	Interrupt origin
1 (highest)	Receiver Line Status: one or more error bits were set.
2	Received Data is available. In FIFO mode, trigger level was reached. In non-FIFO mode, RBR has data.
2	Character Timeout Indication occurred. Occurs only in FIFO mode, when data is in the receive FIFO but no data has been sent for a set time period.
3	Transmitter requests data. In FIFO mode, the transmit FIFO is at least half empty. In non-FIFO mode, the THR has been transmitted.
4 (lowest)	Modem Status: one or more modem input signal has changed state.

Table 10-9. Interrupt Identification Register (Sheet 1 of 2)

				В	ase	+0x	8					Inte	rrup	t Ide	entif	icati	on F	Regi	ster							UA	RT					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												- C	מפוופפע												FIFOES1	FIFOES0	Reserved	Reserved	IID3	IID2	IID1	Ы
Reset	_															0	0	0	0	0	0	0	1									
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																															
		Bi	ts			Na	me												D	escr	iptic	n										
		31	:8			_	_		Res	serv	ed																					
		7:	6		FIF	FOE	:S[1	:0]	00 01 10	= No = Re = Re	on-F eser eser	IFC vec		ode	is s	elec		[TRI	FIF(DE]	= 1)											
		5:	4			_	_		Res	serv	ed																					

Table 10-9. Interrupt Identification Register (Sheet 2 of 2)

				В	ase	+0x	8					Inte	rrup	t Ide	entif	icati	on F	Regi	ster							UA	RT					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												Reserved													FIFOES1	FIFOES0	Reserved	Reserved	IID3	IID2	IID1	Ы
Reset																0	0	1														
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																															
		Bi	ts			Na	me												D	esci	iptic	n										
	Bits Name Description Character Timeout Indication Detected: 0 = No Character Timeout Indication interrupt is pending 1 = Character Timeout Indication interrupt is pending (FIFO mode only)																															
		2:	:1			IID[2:1]		00 : 01 : 10 :	- M = Tr = Re	ode ans ecei	mit f ved	tatu: FIFC Dat	s (C O re a A	TS, que vaila	DS st da	ata									ed s	tate))				
		()			II	Р		0 =	Inte	errup	endi ot is rrup	pen			.ctive	e lov	v)														

Table 10-10. Interrupt Identification Register Decode (Sheet 1 of 2)

Int	errup	t ID B	its		Ir	nterrupt SET/RESET Function	n
3	2	1	0	Priority	Туре	Source	Cleared By
0	0	0	1	_	None	No interrupt is pending	_
0	1	1	0	Highest	Receiver Line Status	Overrun error, parity error, framing error, break interrupt	Reading the LSR
0	1	0	0	Second Highest	Received Data Available	Non-FIFO mode: Receive buffer is full FIFO mode: Trigger level was reached	Non-FIFO mode: Reading the Receiver Buffer Register FIFO mode: Reading bytes until Receiver FIFO drops below trigger level or setting FCR[RESETRF].

Table 10-10. Interrupt Identification Register Decode (Sheet 2 of 2)

Int	errup	t ID B	its		lr	nterrupt SET/RESET Function	n
1	1	0	0	Second Highest	Character Timeout Indication	FIFO mode only: At least one character is in the Receive FIFO and no data has been sent for four character times.	Reading the Receiver FIFO, setting FCR[RESETRF] or a new start bit is received
0	0	1	0	Third Highest	Transmit FIFO Data Request	Non-FIFO mode: Transmit Holding register empty FIFO mode: Transmit has half, or less than half, data	Non-FIFO mode: Reading the IIR Register (if the source of the interrupt) or writing into the Transmit Holding Register FIFO mode: Reading the IIR Register (if the source of the interrupt) or writing to the Transmitter FIFO
0	0	0	0	Fourth Highest	Modem Status	Clear to Send, Data Set Ready, Ring Indicator, Data Carrier Detect	Reading the Modem Status Register

10.4.2.6 FIFO Control Register

The FIFO Control Register (FCR) is a write-only register that is located at the same address as the IIR, which is a read-only register. The FCR enables/disables the transmitter/receiver FIFOs, clears the transmitter/receiver FIFOs, and sets the receiver FIFO trigger level.

Table 10-11. FIFO Control Register (Sheet 1 of 2)

				Ва	ase-	+0x0	8(FIF	ОС	ont	rol F	Regi	ster								UA	RT					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												Received													Ē	<u>-</u>	Reserved	Reserved	Reserved	RESETTF	RESETRF	TRFIFOE
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Wri	ite o	nly																													
		Write only Bits Name Description																														
		31	:8			_	_		Res	serv	ed																					
		7:	6			IT	L.		trig ena rec	ger ibled eive	leve d via DM	el pro a the 1A re	ogra e IEI eque	amm R, a est i	ned n in s al	into terru so g	this upt i ene	field s ge rate	d an enera ed w	d th atec hen	e Ro I and the	ecei d ap trig	ved prop ger	Dat priat leve	ta Av te bi I is i	vaila ts a reac	able re se hed	Inte et in	rrup	t is		
		trigger level programmed into this field and the Received Data Available Interrupt enabled via the IER, an interrupt is generated and appropriate bits are set in the receive DMA request is also generated when the trigger level is reached. TIL Ob00 = 1 byte or more in FIFO causes interrupt (Not valid in DMA mode) Ob01 = 8 bytes or more in FIFO causes interrupt and DMA request																														
		rite only Bits Name Description 31:8 — Reserved Interrupt Trigger Level: When the number of bytes in the receiver FIFO equals the trigger level programmed into this field and the Received Data Available Interrupt enabled via the IER, an interrupt is generated and appropriate bits are set in the I receive DMA request is also generated when the trigger level is reached. 7:6 ITL 0b00 = 1 byte or more in FIFO causes interrupt (Not valid in DMA mode)																														
		5:	2						Res			byte	s or	mo	ie II	1 [-0 (Jaus	ses I	nter	rupi	and	יוט ג	VIA I	equ	iest						
		5:	3						K ES	erv	eu																					

Table 10-11. FIFO Control Register (Sheet 2 of 2)

				Ва	ase+	-0x0	30					FIF	00	ontro	Re	egis	ster								UA	RT					
Bit	31	30	29	28	27	26	25	24	23 22	2 21	2	0 19	18	17 1	6	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												Reserved												ILI	<u>-</u>	Reserved	Reserved	Reserved	RESETTF	RESETRF	TRFIFOE
Reset	0	0	0	0	0	0	0	0	0 0	0	(0 0	0	0 ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Wri	te o	nly																												
		Bi	ts			Na	me											D	esc	riptio	on										
		Bits Name Description Reset transmitter FIFO: When RESETTF is set to 1, all the bytes in the transmitter are cleared. The TDRQ bit in the LSR is set and the IIR shows a transmitter request interrupt, if the TIE bit in the IER register is set. The transmitter shift register is not of and it completes the current transmission. 0 = Writing 0 has no effect 1 = The transmitter FIFO is cleared															uest	s da	ta												
		1			RI	ESI	ETR	F	cleare in the set. T Availa 0 = V	d. T LSR he re ble, Vritir	he Rai ece it i	ver FIF DR bi re clea eiver s s clea 0 has eiver F	t in ared hift red. no e	the LS I. Any regist	SR err er i	is r or l	ese bits,	t to OE	0. A E, Pl	ll th E, F	e er E or	ror I BI,	oits i that	in th had	e F d be	IFO en s	and et ir	the n LS	FIF R a	OE I	oit
		0	ı		TI	RFI	IFOI	Ξ	receiv TRFIF all byt versa this re 0 = F	er F OE es ir dat giste	IFC = (n be a is er a s a	d Rece Os. Wi O, the oth Fil s auto are wr are dis	hen FIFOS mat itter	TRFI Os are s. Whe ically n or the	FO e be en d clea	E = oth cha are	: 1, disa ngir d fro	botl able ng f	n FII ed (r rom the	FOS ION- FIF FIF(are FIFO O m	ena O Mo ode This	ableo ode) to r bit	d (F). W non- mus	IFO ritin FIF	Mod g a 0 O m	de).) to ode	Who this and	en bit d	е	

10.4.2.7 Line Control Register

The Line Control Register (LCR) specifies the format for the asynchronous data communications exchange. The serial data format consists of a start bit, five to eight data bits, an optional parity bit, and one, one and a half, or two stop bits. The LCR has bits that allow access to the Divisor Latch and bits that can cause a break condition.

Table 10-12. Line Control Register

				Ва	ase-	+0x(OC						Lin	e C	ontr	ol R	egi	stei	•							UA	RT					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												3000	Develved												DLAB	SB	STKYP	EPS	PEN	STB	WLS1	WLS0

Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Read/Write		
Bits	Name	Description
31:8	_	Reserved
7	DLAB	Divisor Latch Access Bit: Must be set high (logic 1) to access the Divisor Latches of the Baud Rate Generator during a READ or WRITE operation. Must be set low (logic 0) to access the Receiver Buffer, the Transmit Holding Register, or the IER. 0 = access Transmit Holding register (THR), Receive Buffer register (RBR) and IER.
		1 = access Divisor Latch registers (DLL and DLH)
6	SB	Set Break: Causes a break condition to be transmitted to the receiving UART. Acts only on the TXD pin and has no effect on the transmitter logic. In FIFO mode, wait until the transmitter is idle, LSR[TEMT]=1, to set and clear SB.
		0 = no effect on TXD output 1 = forces TXD output to 0 (space)
5	STKYP	Sticky Parity: Forces the bit value at the parity bit location to be the opposite of the EPS bit, rather than the parity value. This stops parity generation. If PEN = 0, STKYP is ignored.
3	SIKII	0 = no effect on parity bit 1 = forces parity bit to be opposite of EPS bit value
		Even Parity Select: Even parity select bit. If PEN = 0, EPS is ignored.
4	EPS	0 = sends or checks for odd parity 1 = sends or checks for even parity
_		Parity Enable: Enables a parity bit to be generated on transmission or checked on reception.
3	PEN	0 = no parity 1 = parity
2	CTD	Stop Bits: Specifies the number of stop bits transmitted and received in each character. When receiving, the receiver only checks the first stop bit.
2	STB	0 = 1 stop bit 1 = 2 stop bits, except for 5-bit character then 1-1/2 bits
		Word Length Select: Specifies the number of data bits in each transmitted or received character.
1:0	WI 014.01	00 = 5-bit character
1:0	WLS[1:0]	01 = 6-bit character
		10 = 7-bit character
		11 = 8-bit character

10.4.2.8 Line Status Register

The LSR provides data transfer status information to the processor.

In non-FIFO mode, LSR[4:2]: parity error, framing error, and break interrupt, show the error status of the character that has just been received.

In FIFO mode, LSR[4:2] show the status bits of the character that is currently at the front of the FIFO.

LSR[4:1] produce a receiver line status interrupt when the corresponding conditions are detected and the interrupt is enabled. In FIFO mode, the receiver line status interrupt only occurs when the erroneous character reaches the front of the FIFO. If the erroneous character is not at the front of the FIFO, a line status interrupt is generated after the other characters are read and the erroneous character becomes the character at the front of the FIFO.

The LSR must be read before the erroneous character is read. LSR[4:1] bits are set until software reads the LSR.

See Section 10.4.5, "DMA Requests" for details on using the DMA to receive data.

Table 10-13. Line Status Register (Sheet 1 of 3)

				Ba	se+	0x1	14						Lir	ne S	Stat	tus R	egis	ter								UA	RT					
Bit	31	30 2	9 2	8 2	27	26	25	24	23	22	21	20	19	18	17	7 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												Reserved													FIFOE	TEMT	TDRQ	ВІ	FE	PE	OE	DR
Reset	0	0 (Э ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
	Rea	ad on	ly																													
		Bits	;			Naı	me												D	esc	riptio	n										
		31:8	3			_	-		Res	erv	ed																					
		7			1	FIF	OE		there in the error 7 is required by the error of the erro	e is e F set es e bo re in No	at I IFC to 1 t is g een eque terro	east Char Char	on acte d F rate red are	e pa ers l IFO ed e by not	arit sor hav E ve rea er	n-FIF ty error read ve be is set in who ading nable rs in r	to to the to the to the to the	ramine Lead I, the read FIF ER b	ng e SR from e er eceir O, I oit7 i	error doe m th rror i ve F DMA s se	es no e FI inter IFO trec et to	brea t re FO. rupt rea lues 0), I	ak ir set If D is (che sts a	ndica this MA gene s the re re	ation bit. requerate trige e-en	for FIFO uest ed an ger nable	any OE i s ar nd n leve	of to see of the see o	he oset able ceivence nation	char whe ed (I re D the cally	acten all ER I MA erro	ers I bit ors
		6			,	TEI	MT		Reg Tran trans 0 =	ste sm sm Th	er ar itter itter iere	e bo Shi FIF0 is da	th e ft R D a	emp egis nd t in th	oty. ste he ne	when It is Trans ansm	clea tain smi smit	red s a d t Sh Shit	whe data ift R ft Re	en ei cha egis egist	ther arac ster a er, t	the er. are he 1	Tra In F both	nsm IFO em	nit H moo pty.	oldii de, ⁻	ng F ΓΕΝ	Regi: IT is	ster set	or t wh	he en th	

Table 10-13. Line Status Register (Sheet 2 of 3)

ıa	DIE	; I	U- I .	3. L	.1110	e 3	ıaıı	12 [kegis	lei	(Sile	#L Z	U)I 3)																
				В	ase	+0x	14				L	ine S	Sta	atus R	egis	ter								UA	RT					
Bit	31	30	29	28	27	26	25	24	23 22	21	20 19	18	1	17 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											Reserved												FIFOE	TEMT	TDRQ	BI	FE	PE	OE	DR
Reset	0	0	0	0	0	0	0	0	0 0	0	0 0	0	(0 0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
	Re	ad	only																											
		ı	Bits	Transmit Data Request: Indicates that the UART is ready to accept a new characte transmission. In addition, this bit causes the UART to issue an interrupt to the proc when the transmit data request interrupt enable is set high and generates the DMA																										
			5			TD	RQ		transm	hission he to DMA charachar. The is ser or alf det.	on. In a ransmin control of the cont	dditi t data oller is tra s clea when SET more	or a r if I an are n h TI th	n, this request DMA nsferred with half of F bit in han 64 blding	bit of the	erru ests om t e loa cha cha cR h arac	es to the standard property of the standard pr	the lenable of FI Trang of ters peer are	JAR le is FO smi the in the loa	T to set mod t Ho Tran ne F i. It i ded	issi high le ar Iding smi IFO s cle into	ue an an e ei g re- t Ho hav eare the	in intaction in intaction in interest in i	erri ner ed. r in g Re en en O, t	upt trates The to the egist load the the e	o the TDI TDI ne Ti er. I led i	e pr DM RQ I rans n FI nto O ha	oces IA re bit is mit FO i the	ssor eque s set Shif mod Shif lore	est t ft de, ft
			4			E	31		Break transm Break charac conditi most r 0 = N 1 = B	indicter e on. I ecer	on time cator is equal to BI show ontly rece eak sig	that reserve (that reserve (that continue) (th	nt i et v 00, e d c	is, the when , is loa break charac s bee	tota the adec con cter.	l tim proc I into ditio	ne o cess o the on fo	f Sta sor r	art b eads FO r	it + o s the ega	data LS rdle	bits R. I	s + p n FIF of the	arit O le ler	y bit mod ngth	+ st le, o of tl	top l nly (he b	oits) one real	. Th	ie
			3			F	Έ		Framir set wh been s FE ind a fram it samp framin charac 0 = N 1 = In	en the et for icator ing et in	he bit for two sor is reservor. To this "si cor for the aming	ollow stop h set w o do tart" h the c	vin oit he thi bit ha	ng the t mode en the lis it as t twice aracte	last e, the pro- ssun and r at	data cess nes I the	a bit ceiv sor r that en re	or per dead ead the	oarit oes s the fran	y bit not e LS ning he "	is d che R. T erro data	lete ck fo he or w a". Ir	cted or a v UAR as d	to by alice of the terms of the	oe 0 d se vill re to th	. If the concession of the con	he L d sto chro ext s E sh	.CR op bi onize tart lows	had t. Tl e aft bit, s	he ter so

Table 10-13. Line Status Register (Sheet 3 of 3)

		-						_	3.5.		(,																
				Ва	ase	+0x14	4				L	ine S	Statu	s Re	egis	ter								UA	RT					
Bit	31	30	29	28	27	26 2	25	24	23 22	21	20 19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											Reserved												FIFOE	TEMT	TDRQ	BI	FE	PE	OE	DR
Reset	0	0	0	0	0	0	0	0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
	Re	ad o	nly																											
		Bi	ts			Nam	ne										D	esci	riptio	on										
		Read only Bits Name Description Parity Error: Indicates that the received data character does not have the correct odd parity, as selected by the even parity select bit. PE is set upon detection of a error and is cleared when the processor reads the LSR. In FIFO mode, PE shows error for the character at the front of the FIFO, not the most recently received character at the parity error 1 = Parity error has occurred															a pa /s a	rity pari	ity											
		1				OE	Ē.		Overru not rea lost. In receive conditio 0 = No 1 = Re	d by FIFO d by on a o da	the pi O mod yte has ind cleat ta has	oce: e, O bee ared bee	ssor E inc en dis whe n los	befolicatescarent	ore tes t ded e pi	the r hat a	next all 6 e O	cha 4 by E in	arac /tes dica	ter v of thator i	vas ne F is se	rece IFO et up	eived are	d. Th full	he n and	ew the	chai mo	acte st re	er is ecen	itly
		O)			DR	2		Data R into the receive been re 0 = No 1 = Da	Re buf ead da	ceive I fer is r from R ta has	Buffe ead. BR) bee	er Re In F or th n rec	gist IFO ne F ceive	er o mo IFO ed	r the de, I is re	e FII DR i eset	FÖ. is cle t wit	In n eare	on-F ed if	FIFC) mo	ode, O is	DR	is c	lear	ed v	vhe	n th	е

10.4.2.9 Modem Control Register

The Modem Control Register (MCR) uses the modem control pins nRTS and nDTR to control the interface with a modem or data set. The MCR also controls the Loopback mode. Loopback mode must be enabled before the UART is enabled. The differences between UARTs specific to this register are described in Section 10.5.1, "UART Register Differences" on page 10-28.

Table 10-14. Modem Control Register

				В	ase-	+0x	10					M	ode	m (Con	trol	Reg	giste	er							UA	RT					
Bit	31	30	29	28	27	26	25	24	23 2	2 2	1 :	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														Reserved														LOOP	OUT2	OUT1	RTS	DTR
Reset	0	0	0	0	0	0	0	0	0) ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Rea	ad/V	Vrite	Э																												
		Bi	its			Na	ame												De	SCI	ripti	on										
		31	:5			-	_		Rese	rved	t																					
		2	1			LC)OP		Loop The I bits: • [• [T. Wito a ranser of control of the c	the a los in common or for the los in the lo	n Lugic tter trol cor trol the mode our 1 fo moo ve con to the mode our 1 fo moo ve con trol trol trol trol trol trol trol trol	OOI 1 standard inposition of the Mo e management of the Mo concession of the Mo	o is ate. ift required to the local dense of the solution of t	set to the popular training and the popular to the popular to the popular training and training a	to a erecter is to a terrisor its rectangle in the confidence of a 1 to a confidence of a to a confidence of a 1 to a 1 to a confidence of a 1 to a 1 to a confidence of a 1 to a 1 to	log ceives "log nDS (nIn mode se the gure se the gure se the se t	ic 1, er s ope SR, le m gist one d ed be co	the erial ad basenDC and any rer. It letta before nne-	foll inpack" CD, in Description it is it bits re the cted for it is	owing the control of	ng was disso the nRI of the nRI o	ill ocon recon recon redistorred redistred red	ccurrecture course cour	:: The sed of second to the se	ne trainective mediate in the control of the contro	ensretted the egisted attook attook attook attook attook attook attook attook and attook and attook and attook and attook	mitter pin. ter i ifrom tive n of reac State feat t tra l inte	er see. The nout of the control of t	rial e ou The pin e. ed. delt. ed. ed. ed. ed. ed. ed. ed. ed. ed. ed	output e for s ar a bit o cle ster ws ti eceiv ere ferre	to of purind the purin
		3	3			Ol	JT2		unit. 0 = 1 = Whe 0 = 1 =	Whe JAR JAR n LC MSR	en I RT i RT i OOF	LOC inte inte P=1 OCD	OP= rrup rrup , int	0: ot is ot is erru	ena disa upts	abled abled alw a 0	d d.								.pui	. 10 1			Japa	501	01	131

Table 10-14. Modem Control Register

				В	ase	+0x′	10					M	lode	em (Con	trol	Re	giste	er							UA	RT					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														Reserved														LOOP	OUT2	OUT1	RTS	DTR
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Rea	ad/V	Vrite	Э																												
		Bi	ts			Na	me												De	escr	ipti	on										
		2	2			OU	JT1			Fo	rce	MS		l] to	0	nly ii	n Lo	opb	ack	mo	de.	It is i	gno	red	oth	erwi	se.					
		,	l			R	ΓS		0 =	ques nF nF	RTS	pin	is 1																			
		()			D	ΓR			ta Te nE nE	TR	pin																				

10.4.2.10 Modem Status Register

The Modem Status Register (MSR) provides the current state of the control lines from the modem or data set (or a peripheral device emulating a modem) to the processor. In addition to this current state information, four bits of the MSR provide change information. MSR[3:0] are set when a control input from the Modem changes state. They are cleared when the processor reads the MSR. Differences between UARTs specific to this register are described in Section 10.5.1, "UART Register Differences" on page 10-28.

The status of the modem control lines do not affect the FIFOs. To use these lines for flow control, IER[MIE] must be set. When an interrupt on one of the flow control pins occurs, the interrupt service routine must disable the UART. The UART will continue transmission/reception of the current character and then stop. The contents of the FIFOs will be preserved. If the UART is reenabled, transmission will continue where it stopped. Interrupts from the flow control pins will not come through the UART unit if the unit is disabled. When disabling the unit because of flow control, interrupts must be enabled in the application processor Interrupt Controller for the flow control pins. The Interrupt Controller will still trigger interrupts if the pins are in Alternate Function Mode.

Note: When bit 0, 1, 2, or 3 is set, a Modem Status interrupt is generated if IER[MIE] is set.

Table 10-15. Modem Status Register

		Base+0x18							I	Mod	dem	Sta	tus I	Reg	isteı						UART											
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												Pospory	>												DCD	RI	DSR	CTS	DDCD	TERI	DDSR	DCTS
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Re	ad c	only																													

Read only		
Bits	Name	Description
31:8	_	Reserved
7	DCD	Data Carrier Detect: Complement of the Data Carrier Detect (nDCD) input. Equivalent to MCR[OUT2] if MCR[LOOP] is set. 0 = nDCD pin is 1 1 = nDCD pin is 0
6	RI	Ring Indicator: Complement of the Ring Indicator (nRI) input. Equivalent to MCR[OUT1] if MCR[LOOP] is set. 0 = nRI pin is 1 1 = nRI pin is 0
5	DSR	Data Set Ready: Complement of the Data Set Ready (nDSR) input. Equivalent to MCR[DTR] if MCR[LOOP] is set. 0 = nDSR pin is 1 1 = nDSR pin is 0
4	CTS	Clear To Send: Complement of the Clear to Send (nCTS) input. Equivalent to MCR[RTS] if MCR[LOOP] is set. 0 = nCTS pin is 1 1 = nCTS pin is 0
3	DDCD	Delta Data Carrier Detect: 0 = No change in nDCD pin since last read of MSR 1 = nDCD pin has changed state
2	TERI	Trailing Edge Ring Indicator: 0 = nRI pin has not changed from 0 to 1 since last read of MSR 1 = nRI pin has changed from 0 to 1
1	DDSR	Delta Data Set Ready: 0 = No change in nDSR pin since last read of MSR 1 = nDSR pin has changed state
0	DCTS	Delta Clear To Send: 0 = No change in nCTS pin since last read of MSR 1 = nCTS pin has changed state

10.4.2.11 Scratchpad Register

The read/write Scratchpad register has no effect on the UART. It is intended as a scratchpad register for use by the programmer. It is included for 16550 compatibility.

Table 10-16. Scratch Pad Register - SPR

	Base+0x1C							S	Scra	atch	ı Pa	d R	egis	ter							UART											
Bit	31	30	29	28	27	26	25	24	23	22	21	20 1	9	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												Reserved																ď	5			
Reset	0	0	0	0	0	0	0	0	0	0	0	0 ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Rea	ad/V	Vrite	;																												
		Bi	its			Na	me												D	escr	iptio	on										
		31	:8			_	_		Res	erv	ed																					
		7:	:0			S	Р		Scr No			d n UAF	RТ	fun	ctio	nalit	ty															

10.4.3 FIFO Interrupt Mode Operation

This section describes how to service interrupts in FIFO mode.

10.4.3.1 Receive Interrupt

For a receive interrupt to occur, the receive FIFO and receive interrupts must be enabled. IIR[IID] changes to show that receive data is available when the FIFO reaches its trigger level. IIR[IID] changes to show the next waiting interrupt when the FIFO drops below the trigger level. A change in IIR[IID] triggers an interrupt to the core. Software reads IIR[IID] to determine the cause of the interrupt.

The receiver line status interrupt (IIR = 0xC6) has the highest priority and the received data available interrupt (IIR = 0xC4) is lower. The line status interrupt occurs only when the character at the front of the FIFO has errors.

The data ready bit (DR in the LSR) is set when a character is transferred from the shift register to the Receive FIFO. The DR bit is cleared when the FIFO is empty.

10.4.3.2 Character Timeout Indication Interrupt

A character timeout indication interrupt occurs when the receive FIFO and character timeout indication interrupt are enabled and all of the following conditions exist:

- At least one character is in the FIFO.
- The most recently received character was received more than four continuous character times ago. If two stop bits are programmed, the second is included in this interval.
- The most recent FIFO read was performed more than four continuous character times ago.

After the processor reads one character from the receive FIFO or a new start bit is received, the character timeout indication interrupt is cleared and the timeout is reset. If a character timeout indication interrupt has not occurred, the timeout is reset when a new character is received or the processor reads the receive FIFO.

10.4.3.3 Transmit Interrupt

Transmit interrupts can only occur when the transmit FIFO and transmit interrupt are enabled. The transmit data request interrupt occurs when the transmit FIFO is at least half empty. The interrupt is cleared when the THR is written or the IIR is read.

10.4.4 FIFO Polled Mode Operation

When the FIFOs are enabled, setting IER[7] and IER[4:0] to all zeroes puts the serial port in the FIFO polled mode of operation. The receiver and the transmitter are controlled separately. Either one or both can be in the polled mode. In polled mode, software checks receiver and transmitter status via the LSR.

10.4.5 DMA Requests

The FIFO data is one byte wide. DMA requests are either transmit data service requests or receive data service requests. DMA requests are only generated in FIFO mode.

The transmit DMA request is generated when the transmit FIFO is at least half empty and IER[DMAE] is set. After the transmit DMA request is generated, the DMA Controller (DMAC) writes data to the FIFO. For each DMA request, the DMAC sends 8, 16, or 32 bytes of data to the FIFO. The number of bytes to be transmitted is programmed in the DMA channel.

The receive DMA request is generated when the receive FIFO reaches its trigger level with no errors in its entries and the IER[DMAE] is set. A receive DMA request is not generated if the trigger level is set to 1.

The DMAC then reads data from the FIFO. For each DMA request, the DMA controller can read 8, 16 or 32 bytes of data from the FIFO. The number of bytes to be read is programmed in the DMA channel.

Note: Do not program the channel to read more data than the FIFO trigger level.

If DMA requests are enabled and an erroneous character is received, the receive DMA requests are automatically disabled and an error interrupt is generated. The erroneous character is placed in the receive FIFO. If the UART was requesting a receive DMA transaction, the request is immediately cancelled. This prevents the DMAC from attempting to access the FIFOs while software clears the error.

When all the errors in the receive FIFO are cleared, receive DMA requests are automatically enabled and can be generated when the trigger level is reached.

Note: Ensure that the DMAC has finished previous receive DMA requests before the error interrupt handler begins to clear the errors from the FIFO.

10.4.5.1 Trailing Bytes in the Receive FIFO

Trailing bytes occur when the number of entries in the receive FIFO is less than its trigger level and no more data is being received. In such a case, a receive DMA request is not generated. To read the trailing bytes follow these steps:

- 1. Wait for a character timeout indication interrupt. The character timeout indication interrupt must be enabled.
- 2. Disable the receive DMA channel and wait for it to stop.
- 3. Read one byte at a time. The FIFO is empty when LSR[DR] is cleared.
- 4. Re-enable the receive DMA channel.

10.4.6 Slow Infrared Asynchronous Interface

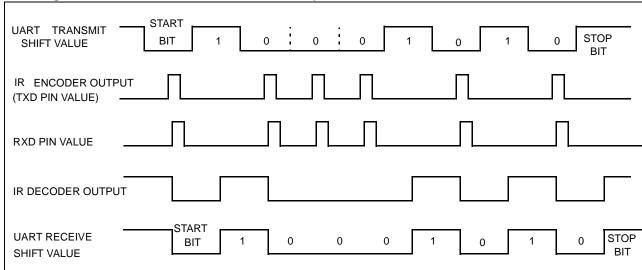
The Slow Infrared (SIR) interface is used with the STUART to support two-way wireless communication that uses infrared transmission. The SIR provides a transmit encoder and receive decoder to support a physical link that conforms to the IRDA Serial Infrared Specification Version 1.1

The SIR interface does not contain the actual IR LED driver or the receiver amplifier. The I/O pins attached to the SIR only have digital CMOS level signals. The SIR supports two-way communication, but full duplex communication is not possible because reflections from the transmit LED enter the receiver. The SIR interface supports frequencies up to 115.2 kbps. Because the input clock is 14.7456 MHz, the baud divisor must be eight or more.

10.4.6.1 Infrared Selection Register

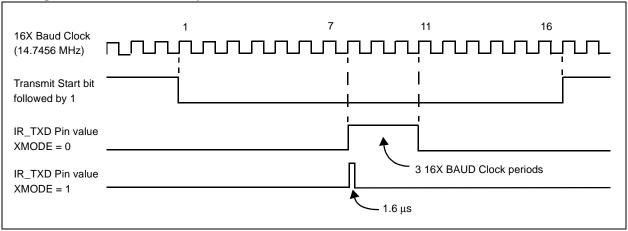
The IRDA module is managed through the UART to which it is attached. The Infrared Selection register controls IRDA functions.

Table 10-17. Infrared Selection Register


		-		_													_															
				Ва	ase-	+0x2	20					Int	rar	ed S	ele	ctior	n Re	gist	er							UA	RT					
Bit	31	30	29	28	27	26	25	24	23 2	2	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														Reserved														RXPL	TXPL	XMODE	RCVEIR	XMITIR
Reset	0	0	0	0	0	0	0	0	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Rea	ad/\	Vrite	;																												
		В	its			Na	me												D	esc	ripti	on										
		31:5 — Rese								eserved																						
									Rece					•																		
		•	4			КX	PL		0 = 1 =																							
									Tran					•																		
		,	3			ΙX	PL		0 = 1 =																							
		į	2		2	ΧMC	DDE		Transclock general bit 0 = 1 =	th rat tim Tra	ie IF tes ne w ansi	RDA 1.6 µ /ide, mit p	tra เร p an ouls	nsm oulse d the e wi	it ar es (t e re dth	nd re hat a ceiv is 3/	ecei are e de /16 (ve lo 3/16 ecoc of a	ogic of a der e	a bi	hen t tim ects	XM le at puls	ODE : 115	is : 5.2 k	set, bps	the) ins	tran stea	smit d of	end puls	code	r	of
		1 = Transmit pulse width is 1.6 µs Receiver SIR Enable: When RCVEIR is set, the signal from the RXD pin is processed by the IRDA decoder before it is fed to the UART. If RCVEIR is cleared, then all clocking to th IRDA decoder is blocked and the RXD pin is fed directly to the UART. 0 = Receiver is in UART mode 1 = Receiver is in infrared mode																														
	Transmitter SIR Enable: When XMITIR is set to a 1, the normal TXD output from the UART is processed by the IRDA encoder before it is fed to the device pin. If XMITIR is cleared, all clocking to the IRDA encoder is blocked and the UART's TXD signal is connected directly to the device pin.											all ly																				
	When Transmitter SIR Enable is set, the TXD output pin, which is in a normally high default state, will switch to a normally low default state. This can cause a false start bit unless the infrared LED is disabled before XMITIR is set.																															
									0 = 1 =																							

10.4.6.2 **Operation**

The SIR modulation technique works with 5-, 6-, 7-, or 8-bit characters with an optional parity bit. The data is preceded by a zero value start bit and ends with one or more stop bits. The encoding scheme is to set a pulse 3/16 of a bit wide in the middle of every zero bit and send no pulses for bits that are ones. The pulse for each zero bit must occur, even for consecutive bits with no edge between them.



The top line in Figure 10-3 shows an asynchronous transmission as it is sent from the UART. The second line shows the pulses generated by the IR encoder at the TXD pin. A pulse is generated in the middle of the START bit and any data bit that is a zero. The third line shows the values received at the RXD input pin. The fourth line shows the receive decoder's output. The receive decoder drives the receiver data line low when it detects a pulse. The bottom line shows how the UART's receiver interprets the decoder's action. This last line is the same as the first, but it is shifted half a bit period.

When XMODE is cleared, each zero bit has a pulse width of 3/16 of a bit time. When XMODE is set, a pulse of $1.6~\mu s$ is generated in the middle of each zero bit. The shorter infrared pulse generated when XMODE is set reduces the LEDs' power consumption. At 2400 bps, the LED is normally on for $78~\mu s$ for each zero bit that is transmitted. When XMODE is set, the LED is on only $1.6~\mu s$. XMode changes the behavior of the receiver. The receiver expects pulses of the correct pulse width. If the transceiver crops the incoming pulse, then Xmode must be set.

Note: To prevent transmitter LED reflection feed back to the receiver, disable the IR receiver decoder when the IR transmit encoder transmits data and disable the IR transmit encoder when the IR receiver decoder receives data. RCVEIR and XMITIR must not be set at the same time.

10.5 Register Summary

Table 10-18, Table 10-19, and Table 10-20 contain the register addresses for the FFUART, BTUART, and STUART.

Table 10-18. FFUART Register Addresses

Register Addresses	DLAB Bit Value	Name	Description					
0x4010 0000	0	FFRBR	Receive Buffer register (read only)					
0x4010 0000	0	FFTHR	Transmit Holding register (write only)					
0x4010 0004	0	FFIER	IER (read/write)					
0x4010 0008	Х	FFIIR	Interrupt ID register (read only)					
0x4010 0008	Х	FFFCR	FCR (write only)					
0x4010 000C	Х	FFLCR	LCR (read/write)					
0x4010 0010	Х	FFMCR	MCR (read/write)					
0x4010 0014	Х	FFLSR	LSR (read only)					
0x4010 0018	Х	FFMSR	MSR (read only)					
0x4010 001C	Х	FFSPR	Scratch Pad Register					
0x4010 0020	Х	FFISR	Infrared Selection register (read/write)					
0x4010 0000	1	FFDLL	Divisor Latch Low register (read/write)					
0x4010 0004	1	FFDLH	Divisor Latch High register (read/write)					

Table 10-19. BTUART Register Locations

Register Addresses	DLAB Bit Value	Name	Description
0x4020 0000	0	BTRBR	Receive Buffer register (read only)
0x4020 0000	0	BTTHR	Transmit Holding register (write only)
0x4020 0004	0	BTIER	IER (read/write)
0x4020 0008	Х	BTIIR	Interrupt ID register (read only)
0x4020 0008	Х	BTFCR	FCR (write only)
0x4020 000C	Х	BTLCR	LCR (read/write)
0x4020 0010	Х	BTMCR	MCR (read/write)
0x4020 0014	Х	BTLSR	LSR (read only)
0x4020 0018	Х	BTMSR	MSR (read only)
0x4020 001C	Х	BTSPR	Scratch Pad Register
0x4020 0020	Х	BTISR	Infrared Selection register (read/write)
0x4020 0000	1	BTDLL	Divisor Latch Low register (read/write)
0x4020 0004	1	BTDLH	Divisor Latch High register (read/write)

Table 10-20. STUART Register Locations

Register Addresses	DLAB Bit Value	Name	Description
0x4070 0000	0	STRBR	Receive Buffer register (read only)
0x4070 0000	0	STTHR	Transmit Holding register (write only)
0x4070 0004	0	STIER	IER (read/write)
0x4070 0008	Х	STIIR	Interrupt ID register (read only)
0x4070 0008	Х	STFCR	FCR (write only)
0x4070 000C	Х	STLCR	LCR (read/write)
0x4070 0010	Х	STMCR	MCR (read/write)
0x4070 0014	Х	STLSR	LSR (read only)
0x4070 0018	Х	STMSR	Reserved (no modem control pins)
0x4070 001C	Х	STSPR	Scratch Pad Register
0x4070 0020	Х	STISR	Infrared Selection register (read/write)
0x4070 0000	1	STDLL	Divisor Latch Low register (read/write)
0x4070 0004	1	STDLH	Divisor Latch High register (read/write)

10.5.1 UART Register Differences

The default descriptions for BTMCR, BTMSR and STMCR are modified as shown in Table 10-21.

Table 10-21. Flow Control Registers in BTUART and STUART

	Bit7-5	Bit4	Bit3	Bit2	Bit1	Bit0
BTMCR	Reserved	LOOP	OUT2	Reserved	RTS	Reserved
BTMSR	Reserved	CTS	Reserved	Reserved	Reserved	DCTS
STMCR	Reserved	LOOP	OUT2	Reserved	Reserved	Reserved

Fast Infrared Communication Port 11

The Fast Infrared Communications Port (FICP) for the PXA250 and PXA210 application processor operates at half-duplex and provides direct connection to commercially available Infrared Data Association (IrDA) compliant LED transceivers. The FICP is based on the 4-Mbps IrDA standard and uses four-position pulse modulation (4PPM) and a specialized serial packet protocol developed for IrDA transmission. To support the standard, the FICP has:

- A bit encoder/decoder,
- A serial-to-parallel data engine
- A transmit FIFO 128 entries deep and 8 bits wide
- A receive FIFO 128 entries deep and 11 bits wide

The FICP shares GPIO pins for transmit and receive data with the Standard UART. Only one of the ports can be used at a time. To support a variety of IrDA transceivers, both the transmit and receive data pins can be individually configured to communicate using normal or active low data.

11.1 Signal Description

The FICP signals are IRRXD and IRTXD. Table 11-1 describes each signal's function. Most IrDA transceivers also have enable and speed pins. Use GPIOs to enable the transceiver and select the speed. See Section 4, "System Integration Unit" on page 4-1 for more information.

Table 11-1. FICP Signal Description

Signal Name	Input/Output	Description
IRRXD	Input	Receive pin for FICP
IRTXD	Output	Transmit pin for FICP

11.2 FICP Operation

The FICP is disabled and does not have control of the port's pins after a reset. Before software enables the FICP for high-speed operation, it must set the control registers to reflect the desired operating mode. After the control registers are set, software can either preload the FICP's transmit FIFO with up to 128 bytes, or leave the FIFO empty and use the DMA to service it after the FICP is enabled. Once the FICP is enabled, transmit/receive data can be sent on the transmit and receive pins.

The transmit/receive data is modulated according to the 4PPM IrDA standard and converted to serial or parallel data. The modulation technique and the frame format are discussed in the sections that follow.

11.2.1 4PPM Modulation

Four-position pulse modulation (4PPM) is used to transmit data at the high-speed rate, 4.0 Mbps. Data bits are encoded two at a time by placing a single 125 ns light pulse in one of four timeslots. The four timeslots are collectively termed a chip. Bytes are encoded one at a time. They are divided into four individual 2-bit pairings called nibbles. The least significant nibble is transmitted first. Figure 11-1 shows the 4PPM encoding for the possible 2-bit combinations and Figure 11-2 shows an example of 4PPM modulation for the byte 0b10110001, which is constructed with four chips. Bits within each nibble are not reordered, but nibble 0 (least significant) is transmitted first and nibble 3 (most significant) is transmitted last.

Figure 11-1. 4PPM Modulation Encodings

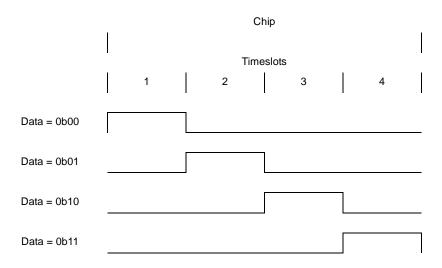
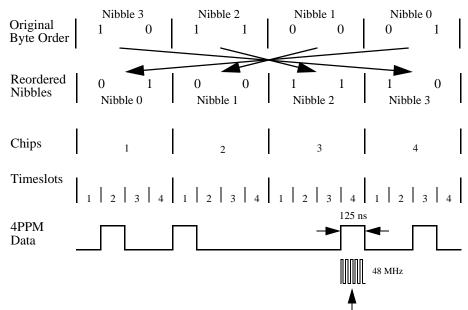



Figure 11-2. 4PPM Modulation Example

Receive data sample counter frequency = 6/pulse width. Each timeslot is sampled on the third clock.

11.2.2 Frame Format

The frame format used with 4-Mbps transmission is shown in Figure 11-3.

Figure 11-3. Frame Format for IrDA Transmission (4.0 Mbps)

64 chips	8 chips	4 chips (8 bits)	4 chips (8 bits)	8180 chips max (2045 bytes)	16 chips (32 bits)	8 chips				
Preamble	Start Flag	Address (optional)	Control (optional)	Data	CRC-32	Stop Flag				
Preamble -	1000 0000	1010 1000	repeated at leas	st 16 times		_				
Start flag -	lag - 0000 1100 0000 1100 0110 0000 0110 0000									
Stop Flag -	0000 1100	0000 1100 00	00 0110 0000	0110						

The preamble, start, and stop flags are a mixture of chips that contain 0, 1, or 2 pulses in their timeslots. Chips with 0 and 2 pulses are used to construct flags because the chips represent invalid data bit pairings. The preamble contains 16 repeated transmissions of the chips: 1000 0000 1010 1000. The start flag contains one transmission of eight chips: 0000 1100 0000 1100 0110 0000 0110 0000. The stop flag contains one transmission of eight chips: 0000 1100 0000 1100 0000 0110. The address, control, data, and CRC-32 use the standard 4PPM chip encoding to represent two bits per chip.

11.2.3 Address Field

A transmitter uses the 8-bit address field to target a receiver when multiple stations are connected to the same set of serial lines. The address allows up to 255 stations to be uniquely addressed (0x00 to 0xFE). The broadcast address 0xFF is used to send messages to all of the connected stations.

For reception, FICP control register 1 (ICCR1) is used to program a unique receive address. The AME bit in the FICP control register 0 (ICCR0) determines the address match function. The received frames' addresses are stored in the receive FIFO with normal data.

11.2.4 Control Field

The control field is an optional 8-bit field that is defined by software. The FICP does not provide hardware decode support for the control byte. It treats all bytes between the address and the CRC as data.

11.2.5 Data Field

The data field can have a length from 0 to 2045 bytes. Application requirements and target system's transmission characteristics affect the data field's length. Software must determine the length of the data to maximize the amount that can be transmitted in each frame while allowing the CRC to detect all errors during transmission. The serial port does not contain hardware that restricts the maximum amount of data that can be transmitted or received. If a data field that is not a multiple of eight bits is received, an abort is signalled.

11.2.6 CRC Field

The FICP uses a 32-bit Cyclic Redundancy Check (CRC) to detect bit errors that occur during transmission. The CRC is generated from the address, control, and data fields, and is included in each frame. Transmit and receive logic have separate CRC generators. The CRC computation logic is set to all ones before each frame is transmitted or received and the result is inverted before it is used for comparison or transmission. The transmitter calculates a CRC as data is transmitted and places the inverse of the resulting 32-bit value at the end of each frame until the stop flag is transmitted. The receiver also calculates a CRC and inverts it for each data frame that it receives. The receiver compares the calculated CRC to the expected CRC value at the end of each frame.

If the calculated value does not match the expected value, the CRC error bit that corresponds to the last data byte received is set. When this byte reaches the trigger level range, an interrupt is generated.

Note: Unlike the address, control, and data fields, the 32-bit inverted CRC value is transmitted and received most significant nibble first.

The cyclic redundancy checker uses the 32-term polynomial:

$$CRC(x) = (x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1)$$

11.2.7 Baud Rate Generation

The baud rate is derived by dividing a fixed 48-MHz clock by six. Using a digital PLL, the 8-MHz baud (or timeslot) clock for the receive logic is synchronized with the 4PPM data stream each time a transition is detected on the receive data line. To encode a 4-Mbps data stream, the required chip frequency is 2.0 MHz, with four timeslots per chip at a frequency of 8.0 MHz. Receive data is sampled halfway through each timeslot period by counting three of the six 48-MHz clock periods that make up each timeslot (see Figure 11-2). The chips are synchronized during the reception preamble. The pattern of four chips repeated 16 times is used to identify the first timeslot (or the beginning of a chip) and resets the 2-bit timeslot counter logic.

11.2.8 Receive Operation

The IrDA standard specifies that all transmission occurs at half-duplex. This restriction forces software to enable one direction at a given time. Either the transmit or receive logic can be enabled, but not both. The FICP's hardware does not impose such a restriction. The software can enable both the transmitter and receiver. This feature is used with the FICP's loopback mode, which internally connects the output of the transmit serial shifter to the input of the receive serial shifter.

After the FICP is enabled, the receiver logic begins and selects an arbitrary chip boundary, uses a serial shifter to receive four incoming 4PPM chips from the receive data pin, and latches and decodes the chips one at a time. If the chips do not have the correct preamble, the timeslot counter's clock skips one 8-MHz period and effectively delays the timeslot count by one. This process is called hunt mode and is repeated until the chips have the correct preamble, which indicates that the timeslot counter is synchronized. The preamble can be repeated as few as 16 times or can be continuously repeated to indicate an idle transmit line.

After 16 preambles are transmitted, the start flag is received. The start flag is eight chips long. If any portion of the start flag does not match the encoding, the receive logic signals a framing error and the receive logic returns to hunt mode.

When the correct start flag is recognized, each following group of four chips is decoded into a data byte and placed in a 5-byte temporary FIFO that is used to prevent the CRC from being placed in the receive FIFO. When the temporary FIFO is full, data values are transferred to the receive FIFO one at a time. A frame's first data byte is the address. If receiver address matching is enabled, the received address is compared to the address in the address match value field in ICCR1. If the values match or the incoming address contains all ones, all following data bytes, including the address byte, are stored in the receive FIFO. If the values do not match, the receiver logic does not store any data in the receive FIFO, ignores the remainder of the frame, and searches for the next preamble. If receiver address matching is not enabled, the frame's first data byte is stored in the FIFO as normal data. The frame's second data byte can contain an optional control field and must be decoded in software.

The IrDA standard limits frames to any amount of data up to a 2047 bytes (including the address and control bytes). The FICP does not limit frame size. Software must ensure that each incoming frame does not exceed 2047 bytes.

When the receive FIFO reaches its trigger level, an interrupt (if enabled) and DMA transfer request (if no errors are detected in the data) are signalled. If the data is not removed quickly enough to prevent the FIFO from completely filling, the receive logic attempts to place additional data into the full FIFO and an overrun error is signalled. When the FIFO is full, all subsequent data bytes received are lost and all FIFO contents remain intact.

If the data field contains any invalid chips (such as 0011, 1010, 1110) the frame aborts and the oldest byte in the temporary FIFO is moved to the receive FIFO, the remaining temporary FIFO entries are discarded, the end-of-frame (EOF) tag is set in the FIFO entry that holds the last valid byte of data, and the receiver logic searches for the preamble.

The receive logic continuously searches for the 8-chip stop flag. When the stop flag is recognized, the last byte that was placed within the receive FIFO is flagged as the frame's last byte and the data in the temporary FIFO is removed and used as the CRC value for the frame. The receive logic compares the frame's CRC value to the CRC-32 value, which is continuously calculated from the incoming data stream. If CRC and CRC-32 values do not match, the last byte that was placed in the receive FIFO is also tagged with a CRC error. The frame's CRC value is not placed in the receive FIFO. If the stop flag is not properly detected, an abort is signalled.

If software disables the FICP's receiver while it is operating, the data byte being received stops immediately, the serial shifter and receive FIFO are cleared, the System Integration Unit (SIU) takes control of the receive data pin, and the clocks used by the receive logic are shut off to conserve power. The receive data input polarity must be reprogrammed if the receive data pin is used as a GPIO input.

11.2.9 Transmit Operation

Before it enables the FICP for transmission, the software can either preload the transmit FIFO by filling it with data or allow service requests to cause the CPU or DMA to fill the FIFO after the FICP is enabled. When the FICP is enabled, the transmit logic issues a service request if its FIFO requires more data.

A minimum of 16 preambles are transmitted for each frame. If data is not available after the sixteenth preamble, additional preambles are transmitted until a byte of valid data resides in the bottom of the transmit FIFO. The preambles are followed by the start flag and the data from the transmit FIFO. Groups of four chips (eight bits) are encoded and loaded in a serial shift register. The contents of the serial shift register are sent out on the transmit data pin, which is clocked by the 8-MHz baud clock. The preamble, start and stop flags, and CRC value are transmitted automatically.

When the transmit FIFO has 32 or more empty entries, an interrupt (if enabled) and DMA service request are sent. If new data does not arrive quickly enough to prevent the FIFO from becoming empty, the transmit logic attempts to transfer additional data from the empty FIFO. Software determines whether to interpret the data underrun (a lack of data) as a signal of normal frame completion or as an unexpected frame termination.

When software selects normal frame completion and an underrun occurs, the transmit logic transmits the CRC value that was calculated during data transmission, including the address and control bytes, followed by the stop flag that marks the end of the frame. The transmitter then continuously transmits preambles until data is available in the FIFO. When data is available, the transmitter starts to transmit the next frame.

When software selects unexpected frame termination and an underrun occurs, the transmit logic transmits an abort and interrupts the CPU. The transmitter continues to send the abort until data is available in the transmit FIFO. When data is available, the FICP transmits 16 preambles and a start flag and starts the new frame. The off-chip receiver can choose to ignore the abort and continue to receive data or signal the FICP to attempt to transmit the aborted frame again.

At the end of each transmitted frame, the FICP sends a pulse called the serial infrared interaction pulse (SIP). A SIP must be sent at least every 500 ms to ensure that low-speed devices (115.2 Kbps and slower) do not interfere with devices that transmit at higher speeds. The SIP simulates a start bit that causes low-speed devices to stay off the air for at least another 500 ms. The SIP pulse forces the transmit data pin high for 1.625 µs and low for 7.375 µs (the total SIP period is 9.0 µs). After the SIP period, the preamble is transmitted continuously to indicate to the off-chip receiver that the FICP's transmitter is in the idle state. The preamble is transmitted until new data is available in the transmit FIFO or the FICP's transmitter is disabled. At least one frame must be completed every 500 ms to ensure that an SIP pulse can keep low-speed devices from interrupting the transmission. Because most IrDA compatible devices produce an SIP after each frame transmitted, software only needs to ensure that a frame is either transmitted or received by the FICP every 500 ms. Frame length does not represent a significant portion of the 500 ms timeframe in which an SIP must be produced. At 4.0 Mbps, the longest frame allowed is 16,568 bits, which takes just over 4 ms to transmit. The FICP also issues an SIP when the transmitter is first enabled. This ensures that low-speed devices do not interfere as the FICP transmits its data.

If software disables the FICP's transmitter during operation, data transmission stops immediately, the serial shifter and transmit FIFO are cleared, and the SIU takes control of the transmit data pin. The transmit data output's polarity must be properly reprogrammed if the pin is used as a GPIO output.

11.2.10 Transmit and Receive FIFOs

The transmit FIFO is 128 entries deep and 8 bits wide. The receive FIFO is 128 entries deep, 11 bits wide. The receive FIFO uses 3 bits of its entries as status bits. The transmit FIFO and the receive FIFO use two separate, dedicated DMA requests.

When the transmit FIFO has 32 or more empty bytes, the transmit DMA request and an interrupt (if enabled) are generated and tell the processor to send more data to the FIFO. When the transmit FIFO is full, any more data from the processor is lost. When the receive FIFO reaches its trigger level (programmed in ICCR2), the receive DMA request (if no errors are found within the entries) and an interrupt (if enabled) are generated and tell the processor to remove the data from the FIFO. If an error is found in the FIFO's trigger level range, DMA requests are disabled and an interrupt is generated to ensure that the DMAC does not read the error bytes.

The number of bytes being transferred for each DMA request is programmed in the DMAC and can be 8, 16, or 32 bytes. The receive FIFO's trigger level must be set so the FIFO has enough data for the DMAC to read. The transmit FIFO does not have programmable trigger levels. Its DMA request is generated when the FIFO has 32 or more empty bytes, regardless of the DMA transfer size.

The DMA controller must not service the receive FIFO when the processor tries to respond to an receive error interrupt. The error interrupt may be set high before the DMA controller finishes the previous request. The processor can not remove the error bytes until the DMAC has completed its transaction.

11.2.11 Trailing or Error Bytes in the Receive FIFO

When the number of bytes in the receive FIFO is less than the trigger level and no more data is being received, the bytes in the FIFO are called trailing bytes. Trailing bytes do not trigger a receive DMA request. Instead they trigger the end/error in FIFO, ICSR0[EIF] interrupt, which is nonmaskable. When ICSR0[EIF] is set, DMA requests are disabled. The core must read bytes from the FIFO until ICSR0[EIF] is cleared.

The core must also read bytes from the FIFO until ICSR0[EIF] is cleared if there are errors in FIFO entries below the DMA trigger level. When the entries below the DMA trigger level no longer contain status flags, DMA requests are enabled.

11.3 FICP Register Definitions

The FICP has six registers: three control registers, one data register, and two status registers. The FICP registers are 32 bits wide, but only the lower 8 bits have valid data. The FICP does not support byte or half-word operations. CPU reads and writes to the FICP registers must be word wide.

The control registers determine: IrDA transmission rate, address match value, how transmit FIFO underruns are handled, normal or active low transmit and receive data, whether transmit and receive operations are enabled, the FIFO interrupt service requests, receive address matching, and loopback mode.

The data register addresses the top of the transmit FIFO and the bottom of the receive FIFO. Reads to the data register access the receive FIFO. Writes to the data register access the transmit FIFO.

The status registers contain: CRC, overrun, underrun, framing, and receiver abort errors; the transmit FIFO service request; the receive FIFO service request; and end-of-frame conditions. Each of these hardware-detected events signals an interrupt request to the interrupt controller. The status registers also contain flags for transmitter busy, receiver synchronized, receive FIFO not empty, and transmit FIFO not full (no interrupt generated).

11.3.1 FICP Control Register 0

The FICP control register 0 (ICCR0) contains eight valid bit fields that control various functions for 4 Mbps IrDA transmission. The FICP must be disabled (RXE=TXE=0) when ICCR0[ITR] and ICCR0[LBM] are changed. To allow various modes to be changed during active operation, ICCR0[7:2] may be written when the FICP is enabled.

Table 11-2. Fast Infrared Communication Port Control Register 0 (Sheet 1 of 2)

				0x4	4080	00	00				F	ast I				mmı ster				ort						FIG	CP					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												70000	00000												AME	TIE	RIE	RXE	TXE	TUS	LBM	ITR
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
[31:8]	_	Reserved
7	AME	Address match enable. Receive logic will compare the address of the incoming frames to the Address Match Value field in ICCR1. 0 = Disable receiver address match function. Store data in receive FIFO. 1 = Enable receiver address match function. Do not put data in the receive FIFO unless address is recognized or address is the broadcast address.
6	TIE	Transmit FIFO interrupt enable. 0 = Transmit FIFO service request, ICSR0[TFS], does not generate an interrupt. 1 = Transmit FIFO service request generates an interrupt. Setting TIE does not clear TFS or prevent TFS from being set or cleared by the transmit FIFO. TIE does not affect transmit FIFO DMA requests.
5	RIE	Receive FIFO interrupt enable. 0 = Receive FIFO service request, ICSR0[RFS], does not generate an interrupt. 1 = Receive FIFO service request generates an interrupt Setting RIE does not clear RFS or prevent RFS from being set or cleared by the receive FIFO. RIE does not affect receive FIFO DMA requests.
4	RXE	Receive enable. 0 = FICP receive logic disabled. 1 = FICP receive logic enabled if ICCR0[ITR] is set. All other control bits must be configured before setting RXE. If RXE is cleared while receiving data then reception is stopped immediately, all data within the receive FIFO and serial input shifter is cleared, and control of the receive data pin is given to the SIU. While communication is normally half-duplex, it is possible to transmit and receive data at the same time. This is used for testing in Loopback Mode. If RXE is used to clear the receive FIFO, check ICSR1[RNE] to ensure the receive FIFO is clear before re-enabling the receiver.

Table 11-2. Fast Infrared Communication Port Control Register 0 (Sheet 2 of 2)

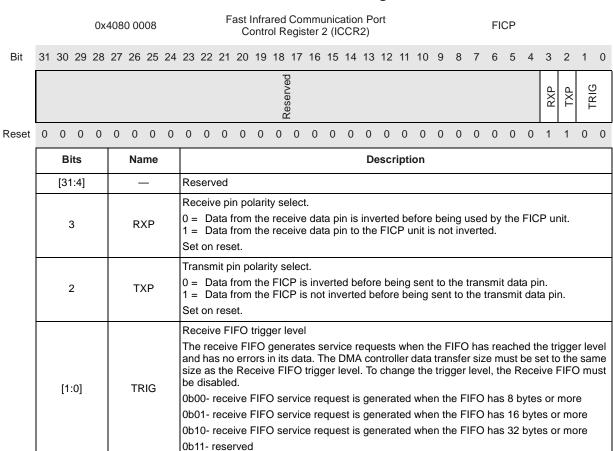
				0x4	4080	0 00	000				F		Infra ontr						n Po (0)	ort						FIC	CP					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												70000	Develved												AME	TIE	RIE	RXE	TXE	TUS	LBM	ITR
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
		Transmit enable. 0 = FICP transmit logic disabled. 1 = FICP transmit logic enabled if ICCR0[ITR] is set. All other control bits must be configured before TXE is set. An SIP is transmitted
2	TXF	immediately after the transmitter is enabled. If the transmit FIFO is empty, preambles are sent until data is placed in the FIFO.
3	IXE	If TXE is cleared while it transmits data, transmission stops immediately, all data in the transmit FIFO and serial output shifter is cleared, and the SIU takes control of the transmit data pin.
		While communication is normally half-duplex, it is possible to transmit and receive data at the same time. Duplex communication is used for testing in Loopback Mode.
		If TXE is used to clear the transmitter, check ICSR1[TBY] to ensure the transmitter is not busy before the transmitter is re-enabled.
		Transmit FIFO underrun select.
		A transmit FIFO underrun can either end the current frame normally, or transmit an abort.
2	TUS	 0 = Transmit FIFO underrun causes CRC, stop flag, and SIP to be transmitted, and masks transmit underrun interrupt generation. 1 = Transmit FIFO underrun causes abort to be transmitted, and generates an interrupt.
		Clearing ICCR0[TUS] does not affect the current state of ICSR0[TUR] or prevent TUR from being set or cleared by the transmit FIFO. After an abort, a SIP is transmitted followed by 16 preambles. Preambles continue until data is in the FIFO.
		Loopback mode.
1	LBM	Used for testing FICP.
		 0 = Normal FICP operation enabled. 1 = Output of transmit serial shifter is connected to input of receive serial shifter.
	ITD	IrDA transmission.
0	ITR	0 = ICP unit is not enabled. 1 = ICP unit is enabled.

11.3.2 FICP Control Register 1

FICP control register 1 (ICCR1) contains the 8-bit address match value field that the FICP uses to selectively receive frames. To allow the address match value to be changed during active receive operation, ICCR1 may be written while the FICP is enabled.

Table 11-3. Fast Infrared Communication Port Control Register 1


				0x4	4080	00	004				F	ast I Co						atior CCR		ort						FIC	CP					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												Reserved																VVV	2			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	s			Na	me												De	escr	inti	on										
																			De	,501	ipti	011										
		[31	:8]			_	_		Res	serv	ed								<u> </u>		ipti	JII										

11.3.3 FICP Control Register 2

The FICP control register 2 (ICCR2) contains two bit fields that control the polarity of the transmit and receive data pins and two bits that determine the trigger level for the receive FIFO. The FICP must be disabled (RXE=TXE=0) when these bits are changed.

Table 11-4. Fast Infrared Communication Port Control Register 2

11.3.4 FICP Data Register

The FICP data register (ICDR) is a 32-bit register and its lower 8 bits are the top entry of the transmit FIFO when the register is written and the bottom entry of the receive FIFO when the register is read.

Reads to ICDR access the lower 8 bits of the receive FIFO's bottom entry. As data enters the top of the receive FIFO, bits 8 – 10 are used as tags to indicate conditions that occur as each piece of data is received. The tag bits are transferred down the FIFO with the data byte that encountered the condition. When data reaches the bottom of the FIFO, bit 8 of the FIFO entry is transferred to the end-of-frame (EOF) flag, bit 9 to the CRC error (CRE) flag, and bit 10 to the receiver overrun (ROR) flag. All these flags are in FICP status register 1. These flags can be read to determine whether the value at the bottom of the FIFO represents the frame's last byte or an error that was encountered during reception. After the flags are checked, the FIFO value can be read. This causes the data in the next location of the receive FIFO to be transferred to the bottom entry and its EOF, CRE, and ROR bits to be transferred to the status register.

The end/error in FIFO (EIF) flag is set in status register 0 when a tag bit is set in any of the receive FIFO's bottom eight, 16, or 32 entries, as determined by the trigger level. The EIF flag is cleared when no error bits are set in the FIFO's bottom entries. When EIF is set, an interrupt is generated and the receive FIFO DMA request is disabled. Software must empty the FIFO and check for the EOF, CRE, and ROR error flags in ICSR1 before it removes each data value from the FIFO. After each entry is removed, the EIF bit must be checked to determine if any set end or error tag remains and the procedure is repeated until all set tags are flushed from the FIFO's bottom entries. When EIF is cleared, DMA service for the receive FIFO is re-enabled.

Both FIFOs are cleared when the application processor is reset. The transmit FIFO is cleared when TXE is 0. The receive FIFO is cleared when RXE is 0.

Table 11-5. Fast Infrared Communication Port Data Register

				0x4	1080	00 0	0C				F	ast I	nfra Da	red ta R					n Po	rt						FIG	CP					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												Doynoug	200000000000000000000000000000000000000															DATA				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Na	me												De	scr	ipti	on										
		[31	:8]			_	_		Res	serv	ed																					
		[7:	:0]			DA	λTΑ		Rea	ad -	Rea	ad d	trans ata ata	from	ı fro	nt o	f red	ceive														

11.3.5 FICP Status Register 0

FICP status register 0 (ICSR0) contains bits that signal the transmit FIFO service request, receive FIFO service request, receiver abort, transmit FIFO underrun, framing error, and the end/error in receive FIFO conditions. Each of these hardware-detected events signal an interrupt request to the interrupt controller.

If a bit signals an interrupt request, it signals the interrupt request as long as the bit is set. When the bit is cleared, the interrupt is cleared. Read/write bits are called status bits. Read-only bits are called flags. Status bits that must be cleared by software after they are set by hardware are called sticky status bits. Writing a 1 to a sticky status bit clears it. Writing a 0 to a sticky status bit has no effect. Read-only flags are set and cleared by hardware. Writes to read-only flags have no effect. Some bits that cause interrupts have corresponding mask bits in the control registers. These bits are indicated in the sections that follow.

Table 11-6. Fast Infrared Communication Port Status Register 0

				0x4	408	0 00)14				F					mmı ter (n Po 0)	ort						FIG	CP					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													70000	<u>></u>													FRE	RFS	TFS	RAB	TUR	EIF
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
[31:6]	_	Reserved
5	FRE	Framing error. 0 = No framing errors encountered in the receipt of this data. 1 = Framing error occurred. A preamble was followed by something other than another preamble or start flag, request interrupt.
4	RFS	Receive FIFO service request (read-only). 0 = Receive FIFO has not reached it trigger level or receiver disabled. 1 = Receive FIFO has reached its trigger level and receiver is enabled. DMA service request signalled. Interrupt request signalled if not masked by ICCR0[RIE].
3	TFS	Transmit FIFO service request (read-only). 0 = Transmit FIFO has more than 96 entries of data or transmitter disabled. 1 = Transmit FIFO has 96 or less entries of data and transmitter is enabled. DMA service request signalled. Interrupt request signalled if not masked by ICCR0[TIE].

Table 11-6. Fast Infrared Communication Port Status Register 0

																_													
			0x	4080	0014			F	as	st Infra Statu							ort						FIG	CP					
Bit	31	30 29	28	27 2	6 25	24	23 22	21	2	20 19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										70/2000	חפאפו אפר													FRE	RFS	SHL	RAB	TUR	EIF
Reset	0	0 0	0	0 (0	0	0 0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bits		N	lame											De	esci	ripti	on										
		2		١	RAB		1 = A	o al bort ulse	boi t de	ort. rt has etecte or any d" data	d du inva	uring alid c	rec nip	eipt s we	of i	nco dete	min ecte	g fra	ame the	. Tw rec	o or eive	pin	. EC						ece
		1		-	TUR		0 – Tra 1 – Tra reques	ansr ansr st si	mit mit gn	FO und t FIFO t logic alled it are not	has atte	s not mpte t mas	d to	o fet d by	ch o	data CR0	fro	m tr IS].	ansı	mit F								erru	ıpt
		0			EIF		0 – Bit FIFO. 1 – Or receiv This ir	s 8- Red ne o e FI nterr	-1(cei r n FC	FIFO of are related are fixed are fi	not so O D ag b ues ot ma	set wi DMA s its (8 t inte askat	thii er – ' ru le	vice 10) a ot, d in th	req are : lisal ne F	ues set v ole r	ts a with ece . Or	re e in th ive nce	nab ne e FIF(the l	led. ntrie D DI pad	s be MA s byte	elow serv	the ice	trig requ	ger ests	leve 3.	el of	the	

11.3.6 FICP Status Register 1

FICP status register 1 (ICSR1) contains flags that indicate that the receiver is synchronized, the transmitter is active, the transmit FIFO is not full, the receive FIFO is not empty, and that an EOF, CRE, or underrun error has occurred. All bits in ICSR1 are read-only.

Table 11-7. Fast Infrared Communication Port Status Register 1

ıa	bie) 11- <i>1</i>	. Fa	IST	ınırar	ea	C	omm	ıun	IICa	atio	'n	-(ort :	Sta	atu	IS I	Ke	gisi	ier	1										
			0x	:408	30 0018				F					Com giste					ort						FIC	СР					
Bit	31	30 2	9 28	27	26 25	5 24	2	23 22	21	20) 19	18	, -	17 1	6	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											Reserved														ROR	CRE	EOF	TNF	RNE	TBY	RSY
Reset	0	0 0	0	0	0 0	0	(0 0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
		Bits			Name	<u>;</u>												D	esc	ripti	on										
		[31:7]]				R	Reserv	/ed	_		_	_		_	_															
		6			ROR		0 1 E	Each ti	ecei ecei fter t ime	ive I ive I the an	FIFC logic FIFC 11-b	D ha c atte D is to	as en fu	not on the substitution in	exp d to e lo	peri o pla ost. hes	ienc ace s the	dat	ta int	to re	ceiv										
	<u> </u>			-			+	entry is						ie Ki	Эĸ	l bit															
		5			CRE		0	CRC e 0 = CI 1 = CI the Each ti	RC i RC i	not calc	enco culat ved f	ount ted of fram	te on ne	the e.	inc	com	ning	dat	ta. D	oes)	not	mat	tch (CRC	c val	lue o	cont	aine	ed wi	ithin	1
							е	entry is	s tra	ansfe	erre	d to	th	he Cl								-									
		4			EOF		0		urre he v clud	ent fo alue ding	rame e at abo	e ha the l orted	as bo	not o otton	n o es.	of th	e re	ecei						•							·
								Each ti entry is) DO	ttori	1 01	tne i	rece	ive	FIFC	J, DI	ıtδı	rom	the	lasi	. F I F	Ö
		3			TNF		0	Γransm) = Tr l = Tr	rans	mit	FIF	O is	fu	ull.		•		rrup	ot ge	enera	ated).									
		2			RNE	_	C	Receiv 0 – Re 1 – Re	eceiv	ve F	FIFO) is e	en	npty.			• /	nterr	upt	gen	erat	ed).								_	
		1			TBY		1	Fransm 0 – Tra 1 – Tra stop fla	ansr ansr	mitt mit	ter is logic	idle c is c	e (cu	(cont urren	tinu itly	uous	s pr			,				, cor	ntrol	, da	ta, C	CRC	;, or	star	·t/
		0			RSY			Receiv 0 – Re		-				_					ed.												

1 – Receiver logic is synchronized with the incoming data (no interrupt generated).

11.4 FICP Register Locations

Table 11-8 shows the registers associated with the FICP block and the physical addresses used to access them.

Table 11-8. FICP Control, Data, and Status Register Locations

Address	Name	Description
0x4080_0000	ICCR0	FICP control register 0
0x4080_0004	ICCR1	FICP control register 1
0x4080_0008	ICCR2	FICP control register 2
0x4080_000C	ICDR	FICP data register
0x4080_0010	_	Reserved
0x4080_0014	ICSR0	FICP status register 0
0x4080_0018	ICSR1	FICP status register 1

USB Device Controller

This section describes the Universal Serial Bus (USB) protocol and its implementation-specific options for device controllers for the PXA250 and PXA210 application processors. These options include endpoint number, type, and function; interrupts to the Megacell; and a transmit/receive FIFO interface. A working knowledge of the USB standard is vital to using this section effectively. The Universal Serial Bus Device Controller (UDC) is USB-compliant and supports all standard device requests issued by the host. UDC operation summaries and quick reference tables are provided. Refer to the *Universal Serial Bus Specification*, revision 1.1, for a full description of the USB protocol. The *Universal Serial Bus Specification* is available at http://www.usb.org.

12.1 USB Overview

The UDC supports 16 endpoints and can operate half-duplex at a rate of 12 Mbps (as a slave only, not as a host or hub controller). The UDC supports four device configurations. Configurations 1, 2, and 3 each support two interfaces. This allows the host to accommodate dynamic changes in the physical bus topology. A configuration is a specific combination of USB resources available on the device. An interface is a related set of endpoints that present a device feature or function to the host.

The UDC transmits serial information that contains layers of communication protocols. Fields are the most basic protocol. UDC fields include: sync, packet identifier (PID), address, endpoint, frame number, data, and Cyclic Redundancy Check (CRC). Fields are combined to produce packets. A packet's function determines the combination and number of fields that make up the packet. Packet types include: token, start of frame, data, and handshake. Packets are assembled into groups to produce transactions. Transactions fall into four groups: bulk, control, interrupt, and isochronous. Endpoint 0 is used only to communicate the control transactions that configure the UDC. Endpoint 0's responsibilities include: connection, address assignment, endpoint configuration, bus enumeration, and disconnection.

The UDC uses a dual-port memory to support FIFO operations. Each Bulk and Isochronous Endpoint FIFO structure is double buffered to enable the endpoint to process one packet as it assembles another. The DMA and the Megacell can fill and empty the FIFOs. An interrupt or DMA service request is generated when a packet has been received. The DMA engine services the UDC FIFOs in 32-byte increments. Interrupts are also generated when the FIFO encounters a short packet or zero-length packet. Endpoint 0 has a 16-entry long, 8-bit wide FIFO that can only be read or written by the processor.

For endpoints 1-15, the UDC uses its dual-ported memory to hold data for a Bulk OUT transaction while the transaction is checked for errors. If the Bulk OUT transaction data is invalid, the UDC sends a NAK handshake to request the host to resend the data. The software is not notified that the OUT data is invalid until the Bulk OUT data is received and verified. If the host sends a NAK handshake in response to a Bulk IN data transmission, the UDC resends the data. Because the FIFO maintains a copy of the data, the software does not have to reload the data.

The external pins dedicated to the UDC interface are UDC+ and UDC-. The USB protocol uses differential signalling between the two pins for half-duplex data transmission. A 1.5 k Ω pull-up resistor must be connected to the USB cable's D+ signal to pull the UDC+ pin high when it is not driven. Pulling the UDC+ pin high when it is not driven allows the UDC to be a high-speed,

12-Mbps device and provides the correct polarity for data transmission. The serial bus uses differential signalling to transmit multiple states simultaneously. These states are combined to produce transmit data and various bus conditions, including: Idle, Resume, Start of Packet, End of Packet, Disconnect, Connect, and Reset.

12.2 Device Configuration

Table 12-9 shows the device's configuration.

Table 12-9. Endpoint Configuration

Endpoint Number	Туре	Function	FIFO Size (bytes) X number of FIFOs
0	Control	IN/OUT	16
1	Bulk	IN	64x2
2	Bulk	OUT	64x2
3	Isochronous	IN	256x2
4	Isochronous	OUT	256x2
5	Interrupt	IN	8
6	Bulk	IN	64x2
7	Bulk	OUT	64x2
8	Isochronous	IN	256x2
9	Isochronous	OUT	256x2
10	Interrupt	IN	8
11	Bulk	IN	64x2
12	Bulk	OUT	64x2
13	Isochronous	IN	256x2
14	Isochronous	OUT	256x2
15	Interrupt	IN	8

Data flow is relative to the USB host. IN packets represent data flow from the UDC to the host. OUT packets represent data flow from the host to the UDC.

The FIFOs for the Bulk and Isochronous endpoints are double-buffered so one packet can be processed as the next is assembled. While the UDC transmits an IN packet from a particular endpoint, the Megacell can load the same endpoint for the next frame transmission. While the Megacell unloads an OUT endpoint, the UDC can continue to process the next incoming packet to that endpoint.

12.3 USB Protocol

After a Megacell reset or when the USB host issues a USB reset, the UDC configures all endpoints and is forced to use the USB default address, zero. After the UDC configures the endpoints, the host assigns the UDC a unique address. At this point, the UDC is under the host's control and responds to commands that use control transactions to transmit to endpoint 0.

12.3.1 Signalling Levels

USB uses differential signalling to encode data and to indicate various bus conditions. The USB specification refers to the J and K data states to differentiate between high- and low-speed transmissions. Because the UDC supports only 12 Mbps transmissions, references are only made to actual data state 0 and actual data state 1.

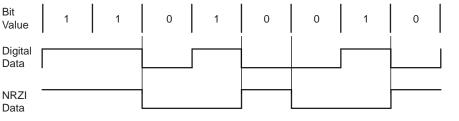
By decoding the polarity of the UDC+ and UDC- pins and using differential data, four distinct states are represented. Two of the four states are used to represent data. A 1 indicates that UDC+ is high and UDC- is low. A 0 indicates that UDC+ is low and UDC- is high. The two remaining states and pairings of the four encodings are further decoded to represent the current state of the USB. Table 12-10 shows how differential signalling represents eight different bus states.

Table 12-10, USB States

Bus State	UDC+/UDC- Pin Levels
Idle	UDC+ high, UDC- low (same as a 1).
Suspend	Idle state for more than 3 ms.
Resume	UDC+ low, UDC- high (same as a 0).
Start of Packet	Transition from idle to resume.
End of Packet	UDC+ AND UDC- low for 2 bit times followed by an idle for 1 bit time.
Disconnect	UDC+ AND UDC- below single-ended low threshold for more than 2.5 μs. (Disconnect is the static bus condition that results when no device is plugged into a hub port.)
Connect	UDC+ OR UDC- high for more than 2.5 μs.
Reset	UDC+ AND UDC- low for more than 2.5 μs . (Reset is driven by the host controller and sensed by a device controller.)

Hosts and hubs have pull-down resistors on both the D+ and D- lines. When a device is not attached to the cable, the pull-down resistors cause D+ and D- to be pulled down below the single-ended low threshold of the host or hub. This creates a state called single-ended zero (SE0). The host detects a disconnect when an SE0 persists for more than 2.5 μ s (30 bit times). When the UDC is connected to the USB cable, the pull-up resistor on the UDC+ pin causes D+ to be pulled above the single-ended high threshold level. After 2.5 μ s, the host detects a connect.

After the host detects a Connect, the bus is in the Idle state because UDC+ is high and UDC- is low. The bus transitions from the Idle state to the Resume state (a 1 to 0 transition) to signal the Start of Packet (SOP). Each USB packet begins with a Sync field that starts with the 1-to-0 transition (see Section 12.3.1, "Signalling Levels" on page 12-3). After the packet data is transferred, the bus signals the End of Packet (EOP) state by pulling both UDC+ and UDC- low for 2 bit times followed by an Idle state for 1 bit time. If the idle persists for more than 3 ms, the UDC enters Suspend state and is placed in low-power mode. The host can awaken the UDC from the Suspend state by signalling a reset or by switching the bus to the resume state via normal bus activity. Under normal operating conditions, the host periodically signals an Start of Frame (SOF) to ensure that devices do not enter the suspend state.


12.3.2 Bit Encoding

USB uses nonreturn to zero inverted (NRZI) to encode individual bits. Both the clock and the data are encoded and transmitted in the same signal. Data is represented by transitions rather than by the signal's state. A zero is represented by a transition, and a one is represented by no transition, which

produces the data. Each time a zero occurs, the receiver logic synchronizes the baud clock to the incoming data, which produces the clock. To ensure the receiver is periodically synchronized, six consecutive ones in the serial bit stream trigger the transmitter to insert a zero. This procedure is known as bit stuffing. The receiver logic detects stuffed bits and removes them from incoming data. Bit stuffing causes a transition on the incoming signal at least once every 7 bit times to ensure the baud clock is locked. Bit stuffing is enabled for an entire packet from the time the SOP is detected until the EOP is detected (enabled during the Sync field through the CRC field). Figure 12-4 shows the NRZI encoding of the data byte 0b1101 0010.

Figure 12-4. NRZI Bit Encoding Example

A4795-01

12.3.3 Field Formats

Individual bits are assembled into groups called fields. Fields are used to construct packets and packets are used to construct frames or transactions. There are seven USB field types: Sync, PID, Address, Endpoint, Frame Number, Data, and CRC.

A Sync is preceded by the Idle state and is the first field of every packet. The first bit of a Sync field signals the SOP to the UDC or host. A Sync is 8 bits wide and consists of seven zeros followed by a one (0x80). Bits are transmitted to the bus least significant bit first in every field, except the CRC field.

The PID is 1 byte wide and always follows the sync field. The first four bits contain an encoded value that represents packet type (Token, Data, Handshake, and Special), packet format, and type of error detection. The last four bits contain a check field that ensures the PID is transmitted without errors. The check field is generated by performing a ones complement of the PID. The UDC XORs the PID and CRC fields and takes the action prescribed in the USB standard if the result does not contain all ones, which indicates an error has occurred in transmission.

The Address and Endpoint fields are used to access the UDC's 16 endpoints. The Address field contains seven bits and permits 127 unique devices to be placed on the USB. After the USB host signals a reset, the UDC and all other devices are assigned the default address, zero. The host is then responsible for assigning a unique address to each device on the bus. Addresses are assigned in the enumeration process, one device at a time. After the host assigns the an address to the UDC, the UDC only responds to transactions directed to that address. The Address field follows the PID in every packet transmitted.

When the UDC detects a packet that is addressed to it, it uses the Endpoint field to determine which of the UDC's endpoints is being addressed. The Endpoint field contains four bits. Encodings for endpoints 0 (0000b) through 15 (1111b) are allowed. The Endpoint field follows the Address field.

The Frame Number is an 11-bit field incremented by the host each time a frame is transmitted. When it reaches its maximum value, 2047 (0x7FF), its value rolls over. Frame Number is transmitted in the SOF packet, which the host outputs in 1 ms intervals. Device controllers use the Frame Number field to control isochronous transfers. Data fields are used to transmit the packet data between the host and the UDC. A data field consists of 0 to 1023 bytes. Each byte is transmitted least significant bit first. The UDC generates an interrupt to indicate that a Start of Frame event has occurred.

CRC fields are used to detect errors introduced during token and data packet transmission, and are applied to all the fields in the packet except the PID field. The PID contains its own 4-bit ones complement check field for error detection. Token packets use a 5-bit CRC (x^5+x^2+1) called CRC5 and Data packets use a 16-bit CRC ($x^{16}+x^{15}+x^2+1$) called CRC16. For both CRCs, the checker resets to all ones at the start of each packet.

12.3.4 Packet Formats

USB supports four packet types: Token, Data, Handshake, and Special. A PRE (Preamble) PID precedes a low-speed (1.5 Mbps) USB transmission. The UDC supports high-speed (12 Mbps) USB transfers only. PRE packets that signify low-speed devices and the low-speed data transfer that follows such PRE packets are ignored.

12.3.4.1 Token Packet Type

A Token packet is placed at the beginning of a frame and is used to identify OUT, IN, SOF, and SETUP transactions. OUT and IN frames are used to transfer data, SOF packets are used to time isochronous transactions, and SETUP packets are used for control transfers to configure endpoints. A Token packet consists of a sync, a PID, an address, an endpoint, and a CRC5 field (see Table 12-11). For OUT and SETUP transactions, the address and endpoint fields are used to select the UDC endpoint that receives the data. For an IN transaction, the address and endpoint fields are used to select the UDC endpoint that transmits data.

Table 12-11. IN, OUT, and SETUP Token Packet Format

8 bits	8 bits	7 bits	4 bits	5 bits
Sync	PID	Address	Endpoint	CRC5

12.3.4.2 Start of Frame Packet Type

An SOF is a special type of Token packet that the host issues at a nominal interval of once every 1 ms +/- 0.0005 ms. SOF packets consist of a Sync, a PID, a Frame Number (incremented after each frame is transmitted), and a CRC5 field (see Table 12-12). The presence of SOF packets every 1 ms prevents the UDC from entering Suspend mode.

Table 12-12. SOF Token Packet Format

8 bits	8 bits	11 bits	5 bits
Sync	PID	Frame Number	CRC5

12.3.4.3 Data Packet Type

Data packets follow Token packets and are used to transmit data between the host and UDC. The PID specifies two types of Data packets: DATA0 and DATA1. These Data packets are used to provide a mechanism to ensure that the data sequence between the transmitter and receiver is synchronized across multiple transactions. During the handshake phase, the transmitter and receiver determine which data token type to transmit first. For each subsequent packet transmitted, the data packet type is toggled (DATA0, DATA1, DATA0, and so on). A Data packet consists of a Sync, a PID, from 0 to 1023 bytes of data, and a CRC16 field (see Table 12-13). The UDC supports a maximum of eight bytes of data for an Interrupt IN data payload, a maximum of 64 bytes of data for a Bulk data payload and a maximum of 256 bytes of data for an Isochronous data payload.

Table 12-13. Data Packet Format

8 bits	8 bits	0-1023 bytes	16 bits
Sync	PID	Data	CRC16

12.3.4.4 Handshake Packet Type

Handshake packets consist of a Sync and a PID. Handshake packets do not contain a CRC because the PID contains its own check field. Handshake packets are used to report data transaction status, including confirmation that data was successfully received, flow control, and stall conditions. Only transactions that support flow control can return handshakes. The three types of handshake packets are: ACK, NAK, and STALL. ACK indicates that a data packet was received without bit stuffing, CRC, or PID check errors. NAK indicates that the UDC was unable to accept data from the host or has no data to transmit. STALL indicates that the UDC was unable to transmit or receive data, and requires host intervention to clear the stall condition. The receiving unit signals Bit stuffing, CRC, and PID errors by omitting a handshake packet. Table 12-14 shows the format of a handshake packet.

Table 12-14. Handshake Packet Format

8 bits	8 bits	
Sync	PID	

12.3.5 Transaction Formats

Packets are assembled into groups to form transactions. The USB protocol uses four different transaction formats. Each transaction format is specific to a particular type of endpoint: Bulk, Control, Interrupt, or Isochronous. Endpoint 0, by default, is a control endpoint and receives only control transactions. All USB transactions are initiated by the host controller and transmitted in one direction at a time (known as half-duplex) between the host and UDC.

12.3.5.1 Bulk Transaction Type

Bulk transactions guarantee error-free data transmission between the host and UDC by using packet error detection and retry. The host schedules bulk packets when the bus has available time. Bulk transactions are made up of three packet types: Token, Data, and Handshake. The eight types of bulk transactions are based on data direction, error, and stall conditions. The types of bulk transactions are shown in Table 12-15. Packets sent from the UDC to the host are highlighted in boldface type and packets sent from the host to the UDC are not.

Table 12-15. Bulk Transaction Formats

Action	Token Packet	Data Packet	Handshake Packet	
Host successfully received data from UDC	IN	DATA0/DATA1	ACK	
UDC temporarily unable to transmit data	IN	None	NAK	
UDC endpoint needs host intervention	IN	None	STALL	
Host detected PID, CRC, or bit stuff error	IN	DATA0/DATA1	None	
UDC successfully received data from host	OUT	DATA0/DATA1	ACK	
UDC temporarily unable to receive data	OUT	DATA0/DATA1	NAK	
UDC endpoint needs host intervention	OUT	DATA0/DATA1	STALL	
UDC detected PID, CRC, or bit stuff error	OUT	DATA0/DATA1	None	
Packets from UDC to host are boldface				

12.3.5.2 Isochronous Transaction Type

Isochronous transactions ensure constant rate, error-tolerant transmission of data between the host and UDC. The host schedules isochronous packets during every frame. USB protocol allows isochronous transfers to take up to 90% of the USB bandwidth. Unlike bulk transactions, if corrupted data is received, the UDC will continue to process the corrupted data that corresponds to the current start of frame indicator. Isochronous transactions do not support a handshake phase or retry capability. Two packet types are used to construct isochronous transactions: token and data. The types of isochronous transactions based on data direction are shown in Table 12-16.

Table 12-16. Isochronous Transaction Formats

Action	Token Packet	Data Packet	
Host received data from UDC	IN	DATA0	
UDC received data from host	OUT	DATA0	
	Packets from UDC t	o host are boldface	

12.3.5.3 Control Transaction Type

The host uses control transactions to configure endpoints and query their status. Like bulk transactions, control transactions begin with a setup packet, followed by an optional data packet, then a handshake packet. Control transactions, by default, use DATA0 type transfers. Table 12-17 shows the four types of control transactions.

Table 12-17. Control Transaction Formats

Action	Token Packet	Data Packet	Handshake Packet	
UDC successfully received control from host	SETUP	DATA0	ACK	
UDC temporarily unable to receive data	SETUP	DATA0	NAK	
UDC endpoint needs host intervention	SETUP	DATA0	STALL	
UDC detected PID, CRC, or bit stuff error	SETUP DATA0 None			
Packets from UDC to host are boldface				

To assemble control transfers, the host sends a control transaction to tell the UDC what type of control transfer is taking place (control read or control write), followed by one or more data transactions. The setup is the first stage of the control transfer. The device must respond with an ACK or no handshake (if the data is corrupted). The control transaction, by default, uses a DATA0 transfer and each subsequent data transaction toggles between DATA1 and DATA0 transfers. A control write to an endpoint uses OUT transactions. Control reads use IN transactions. The transfer direction is the opposite of the last data transaction. The transfer direction is used to report status and functions as a handshake. For a control write, the last transaction is an IN from the UDC to the host. For a control read, the last transaction is an OUT from the host to the UDC. The last data transaction always uses a DATA1 transfer, even if the previous transaction used DATA1.

12.3.5.4 Interrupt Transaction Type

The host uses interrupt transactions to query the status of the device. Like bulk transactions, interrupt transactions begin with a setup packet, followed by an optional data packet, then a handshake packet. Interrupt transactions, by default, use DATA0 type transfers. Figure 12-18 shows the four types of interrupt transactions.

Table 12-18. Interrupt Transaction Formats

Action	Token Packet	Data Packet	Handshake Packet	
Host successfully received data from UDC	IN	DATA0	ACK	
UDC temporarily unable to transmit data	IN	IN None		
UDC endpoint needs host intervention	IN	None	STALL	
Host detected PID, CRC, or bit stuff error	IN	DATA0	None	
Packets from UDC to host are boldface				

12.3.6 UDC Device Requests

The UDC uses its control, status, and data registers to control and monitor the transmit and receive FIFOs for endpoints 1 - 15. The host controls all other UDC configuration and status reporting using device requests that are sent as control transactions to endpoint 0 via the USB. Each setup packet to Endpoint 0 is 8 bytes long and specifies:

- Data transfer direction: host to device, device to host
- Data transfer type: standard, class, vendor
- Data recipient: device, interface, endpoint, other
- Number of bytes to transfer
- · Index or offset
- · Value: used to pass a variable-sized data parameter
- Device request

Table 12-19 shows a summary of all device requests. Refer to the *Universal Serial Bus Specification Revision 1.1* for a full description of host device requests.

Table 12-19. Host Device Request Summary

Request	Name
SET_FEATURE	Enables a specific feature such as device remote wake-up or endpoint stalls.
CLEAR_FEATURE	Clears or disables a specific feature.
SET_CONFIGURATION	Configures the UDC for operation. Used after a reset of the Megacell or after a reset has been signalled via the USB.
GET_CONFIGURATION	Returns the current UDC configuration to the host.
SET_DESCRIPTOR	Sets existing descriptors or add new descriptors. Existing descriptors include: device, configuration, string, interface, and endpoint.
GET_DESCRIPTOR	Returns the specified descriptor, if it exists.
SET_INTERFACE	Selects an alternate setting for the UDC's interface.
GET_INTERFACE	Returns the selected alternate setting for the specified interface.
GET_STATUS	Returns the UDC's status including: remote wake-up, self-powered, data direction, endpoint number, and stall status.
SET_ADDRESS	Sets the UDC's 7-bit address value for all future device accesses.
SYNCH_FRAME	Sets then reports an endpoint's synchronization frame.

The UDC decodes most standard device commands with no intervention required by the user. The following commands are not passed to the user are: Set Address, Set Feature, Clear Feature, Get Configuration, Get Status, Get Interface, and Sync Frame. The Set Configuration and Set Interface commands are passed to the user to indicate that the host set the specified configuration or interface and the software must take any necessary actions. The Get Descriptor and Set Descriptor commands are passed to the user to be decoded.

Because the Set Feature and Clear Feature commands are not passed on, the user is not able decode the device remote wakeup feature commands. To solve this problem, the status bit UDCCS0:DRWF indicates whether or not the device remote wakeup feature is enabled. UDCCS0: DRWF is a read-only bit. When the bit is set to 1, the device remote wakeup feature is enabled. When the bit is set to 0, the feature is not enabled.

12.3.7 Configuration

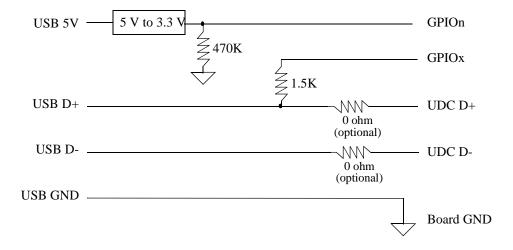
In response to the GET_DESCRIPTOR command, the user device sends back a description of the UDC configuration. The UDC can physically support more data channel bandwidth than the USB specification allows. When the device responds to the host, it must specify a legal USB configuration. For example, if the device specifies a configuration of six isochronous endpoints of 256 bytes each, the host is not be able to schedule the proper bandwidth and does not take the UDC out of Configuration 0. The user device determines which endpoints to report to the host. If an endpoint is not reported, it is not used. Another option, attractive for use with isochronous endpoints, is to describe a configuration of a packet with a maximum size less than 256 bytes to the host. For example, if software responds to the GET_DESCRIPTOR command that Endpoint 3 only supports 64 bytes maximum packet Isochronous IN data, the user device must set the UDCCS3[TSP] bit after it loads 64 bytes for transmission. Similarly, if Endpoint 4 is described as supporting 128 bytes maximum packet Isochronous OUT data, the UDC recognizes the end of the packet, sets UDCCS4[RPC], and an interrupt is generated.

The direction of the endpoints is fixed. Physically, the UDC only supports interrupt endpoints with a maximum packet size of 8 bytes or less, bulk endpoints with a maximum packet size of 64 bytes or less, and isochronous endpoints with a maximum packet size of 256 bytes or less.

To make the application processor more adaptable, the UDC supports a total of four configurations. Each of these configurations are identical in the UDC, software can make three distinct configurations, each with two interfaces. Configuration 0 is a default configuration of Endpoint 0 only and cannot be defined as any other arrangement.

After the host completes a SET_CONFIGURATION or SET_INTERFACE command, the software must decode the command to empty the OUT endpoint FIFOs and allow the Megacell to set up the proper power/peripheral configurations.

12.4 UDC Hardware Connection


This section explains how to connect the USB interface for a variety of devices.

12.4.1 Self-Powered Device

Figure 12-5 shows how to connect the USB interface for a self-powered device. The 0 Ω resistors are optional and if they are not used, USB D+ must connect directly to the device UDC D+ and connect USB D- must connect directly to the device UDC D-. The UDC D+ and UDC D- pins are designed to match the impedance of a USB cable, 90 Ω , without external series resistors. To allow minor impedance corrections to compensate for the impedance that results from the board trace, 0 Ω resistors are recommended on the board.

The "5 V to 3.3 V" device is required because the input pins of the application processor can only tolerate 3.3 V. The device can be implemented in a number of ways. The most robust and expensive solution is a Power-On-Reset device such as a MAX6348. This solution produces a clean signal edge and minimizes signal bounce. A more inexpensive solution is a 3.3 V line buffer with inputs that can tolerate 5 V. This solution does not reduce signal bounce, so software must compensate by reading the GPIO repeatedly until it proves to be stable. A third solution is a signal bounce minimization circuit that can tolerate 5 V but produces a 3.3 V signal to the GPIO pin.

Figure 12-5. Self-Powered Device

12.4.1.1 When GPIOn and GPIOx are Different Pins

The GPIOn and GPIOx pins can be any GPIO pins. GPIOn must be a GPIO that can wake the device from Sleep Mode. After a reset, GPIOx is configured as an input. This causes the UDC+ line to float. GPIOn is configured to act as an input and to cause an interrupt on a rising or falling edge. When an interrupt occurs, software must read the GPIOn pin to determine if the cable is connected. The GPIOn pin is set to a 1 when the cable is connected and a 0 when the cable is disconnected. When a USB connect is detected, software must enable the UDC peripheral and drive a 1 to the GPIOx pin to indicate to the host PC that a high-speed USB device is connected. When a USB disconnect is detected, software must configure the GPIOx pin as an input, configure the GPIOn pin to detect a wakeup event, and put the disconnected peripheral in Sleep Mode, if desired.

If software must put a peripheral in Sleep Mode, it configures the GPIOx pin as an input. This causes the UDC+ line to float, which appears to be a disconnect to the host PC. The peripheral is put in Sleep Mode. When the peripheral comes out of Sleep Mode, software must drive a 1 to the GPIOx pin to indicate to the host PC that a high-speed USB peripheral is connected.

12.4.1.2 When GPIOn and GPIOx are the Same Pin

After a reset, GPIOn is configured to act as an input and to cause an interrupt on a rising or falling edge. When an interrupt occurs, software must read the GPIOn pin to determine if the cable is connected. GPIOn is set to a 1 when the cable is connected and a 0 when the cable is disconnected. If a USB connect is detected, software must enable the UDC peripheral before the host PC sends the first USB command. If a USB disconnect is detected, software must configure the GPIOn pin to detect a wakeup event and put the peripheral in Sleep Mode, if desired.

When GPIOn and GPIOx are the same pin, do not put a peripheral in Sleep Mode if the USB cable is connected to the device. During sleep, the USB controller is in reset and does not respond to the host PC. When it returns from sleep mode, the peripheral does not respond to its host-assigned address.

12.4.2 Bus-Powered Devices

The application processor does not support bus-powered devices because it is required to consume less that 500 μA when the host issues a suspend (see Section 7.2.3 of the USB Specification, version 1.1). The application processor cannot limit the amount of current it consumes to 500 μA unless it enters Sleep Mode. When application processor enters Sleep Mode it resets the USB registers and does not respond to its host-assigned address.

12.5 UDC Operation

When a USB interrupt is received, software is directed to the USB ISR. USIR is level sensitive. Be sure to clear USIR as the last step before exiting the ISR. Upon exiting the ISR, the user should always clear the interrupt source bit, then clear the USIR. On power up or after a reset, software initially enables only EP0 interrupt. The other interrupts are enabled as required by the SET_CONFIG command.

12.5.1 Case 1: EP0 Control Read

- 1. When software starts, it initializes a software state machine to EP0_IDLE. The software state machine is used to track endpoints stages when software communicates with the host PC.
- 2. The host PC sends a SETUP command.
- 3. UDC generates an EP0 Interrupt.
- 4. Software determines that the UDCCS0[SA] and UDCCS0[OPR] bits are set. This indicates that a new OUT packet is in the EP0 Buffer and identifies a SETUP transaction.
- 5. Software reads the data into a buffer while UDCCS0[RNE] bit (receiver not empty) is set.
- 6. Software parses the command in the buffer and determines that it is a Control Read.
- 7. Software starts to load the UDDR0 register FIFO with the first data packet and sets the internal state machine to EP0_IN_DATA_PHASE.
- 8. After it reads and parses the data, software clears the UDCCS0[SA] and the UDCCS0[OPR] bits and sets the UDCCS0[IPR] bit, which prompts the UDC to transmit the data on the next IN. The UDC sends NAKs to all requests on this EP until the UDCCS0[IPR] bit is set.
- 9. Software clears the UDC interrupt bit and returns from the interrupt service routine.
- 10. The host PC issues an IN packet, which the UDC sends data back to the host. After the host PC sends an ACK to the UDC, the UDC clears the UDDCS0[IPR] bit and generates an interrupt.
- 11. Software enters the ISR routine and examines its internal state machine. It determines that it is in the EPO_IN_DATA_PHASE state and must transmit more data. Software loads the next amount of data, sets the UDCCS0[IPR] bit if necessary, and returns from the interrupt. The internal state machine is not affected.
- 12. Repeat Steps 10 and 11 until all the data is transmitted or the last data packet is a short packet.
- 13. If the last packet software sends is a short packet, it sets its internal state machine to EP0_END_XFER. If the last data packet ends on a 16-byte boundary, software sets UDCCS0[IPR] to send a zero-length packet without loading data in the FIFO. After it sends the zero-length packet, software sets the internal state machine to EP0_END_XFER.
- 14. When the host executes the STATUS OUT stage (zero-length OUT), the UDC sets the UDDCS0[OPR] bit, which causes an interrupt.
- 15. Software enters the ISR routine and determines that the UDCCS0[OPR] bit is set, the UDCCS0[SA] bit is clear, and its internal state machine is EP0_END_XFER. Software clears the UDCCS0[OPR] bit and transfers its internal state machine to EP0_IDLE.
- 16. Software clears the UDC interrupt bit and returns from the interrupt service routine.

If the host sends another SETUP command during these steps, the software must terminate the first SETUP command and start the new command.

12.5.2 Case 2: EP0 Control Read with a Premature Status Stage

Case 2 occurs during an enumeration cycle when the host PC sends a premature status stage during a Get Device Descriptor command.

- 1. When software starts, it initializes a software state machine to EPO_IDLE. The software state machine is used to track endpoints stages when software communicates with the host PC.
- 2. The host PC sends a SETUP command.

- 3. UDC generates an EP0 Interrupt.
- 4. Software determines that the UDCCS0[SA] and UDCCS0[OPR] bits are set. This indicates that a new OUT packet is in the EP0 Buffer and identifies a SETUP transaction.
- 5. Software reads the data into a buffer while UDCCS0[RNE] bit (receiver not empty) is set.
- 6. Software parses the command in the buffer and determines that it is a Control Read.
- 7. Software starts to load the UDDR0 register FIFO with the first data packet and sets the internal state machine to EP0_IN_DATA_PHASE.
- 8. After it reads and parses the data, software clears the UDCCS0[SA] and the UDCCS0[OPR] bits and sets the UDCCS0[IPR] bit, which prompts the UDC to transmit the data on the next IN. The UDC sends NAKs to all requests on this EP until the UDCCS0[IPR] bit is set.
- 9. Software clears the UDC interrupt bit and returns from the interrupt service routine.
- 10. The host PC issues an IN packet, which the UDC sends back to the host. After the host PC sends an ACK to the UDC, the UDC clears the UDDCS0[IPR] bit and generates an interrupt.
- 11. Software enters the ISR routine and examines its internal state machine. It determines that it is in the EPO_IN_DATA_PHASE state and must transmit more data. Software loads the next amount of data, sets the UDCCS0[IPR] bit if necessary, and returns from the interrupt. The internal state machine is not affected.
- 12. Repeat Steps 10 and 11 until all the data is transmitted or the last data packet is a short packet.
- 13. As Steps 10 and 11 are repeated, the host sends a premature STATUS OUT stage, which indicates that the host PC can not accept more data, instead of an IN packet.
- 14. When the EP0 interrupt occurs, software determines that the UDCCS0[OPR] bit is set, the UDCCS0[SA] bit is cleared, and its machine state is EP0_IN_DATA_PHASE. This indicates that a premature STATUS OUT occurred.
- 15. Software clears the UDCCS0[OPR] bit and changes the pin's state to EP0_IDLE. The software writes to the UDCCS0[FTF] bit to clean up any buffer pointers and empty the transmit FIFO.
- 16. Software clears the UDC interrupt bit and returns from the interrupt service routine.

If the host sends another SETUP command during these steps, the software must terminate the first SETUP command and start the new command.

12.5.3 Case 3: EP0 Control Write With or Without a Premature Status Stage

- 1. When software starts, it initializes a software state machine to EP0_IDLE. The software state machine is used to track stages when software communicates with the host PC.
- 2. The host PC sends a SETUP command.
- 3. UDC generates an EP0 Interrupt.
- 4. Software determines that the UDCCS0[SA] and UDCCS0[OPR] bits are set. This indicates that a new OUT packet is in the EP0 Buffer and identifies a SETUP transaction.
- 5. Software reads the data into a buffer while UDCCS0[RNE] bit (receiver not empty) is set.
- 6. Software parses the command in the buffer and determines that it is a Control Write (such as Set Descriptor).

- Software sets the internal to EP0_OUT_DATA_PHASE and clears the UDCCS0[OPR] and UDCCS0[SA] bits.
- 8. To allow a premature STATUS IN stage, software sets the UDCCS0[IPR] bit and loads a zero-length packet in the transmit FIFO.
- 9. Software clears the UDC interrupt bit and returns from the interrupt service routine.
- 10. The host PC issues an OUT packet and the UDC issues an EP0 interrupt.
- 11. Software enters the ISR routine and determines that it is in the EP0_OUT_DATA_PHASE state, the UDCCS0[OPR] bit is set, and the UDCCS0[SA] bit is clear. This indicates that there is more data to receive.
- 12. Software reads the data into a buffer while UDCCS0[RNE] bit is set and clears the UDDCCS0[OPR] bit.
- 13. Software sets the UDCCS0[IPR] bit to allow a premature STATUS IN stage.
- 14. Software clears the UDC interrupt bit and returns from the interrupt service routine.
- 15. Steps 11 through 14 are repeated until all of the data is received.
- 16. As Steps 11 through 14 are repeated, the host sends a STATUS IN stage, which indicates that the host PC can not send more data, instead of an OUT packet. The STATUS IN stage may be premature or not.
- 17. Because software loaded a zero-length packet (see Step 8), the UDC responds to the STATUS IN by sending a a zero-length packet back to the host PC. This causes an interrupt.
- 18. Software enters the ISR routine and determines that it is in the EP0_OUT_DATA_PHASE state and the UDCCS0[OPR] and UDCCS0[IPR] bits are clear. This indicates that a STATUS IN stage occurred.
- 19. Software determines how many bytes were received before the interrupt and compares the number of received bytes to the wLength field in the original SETUP packet. If the correct amount of data was sent, software parses the data and performs the action the data indicates. If the wrong amount of data was sent, software cleans up any buffer pointers and disregards the received data.
- 20. Software changes its internal state machine to EP0_IDLE.
- 21. Software clears the UDC interrupt bit and returns from the interrupt service routine.

If the host sends another SETUP command during these steps, the software must terminate the first SETUP command and start the new command.

12.5.4 Case 4: EP0 No Data Command

- 1. When software starts, it initializes a software state machine to EPO_IDLE. The software state machine is used to track stages when software communicates with the host PC.
- 2. The host PC sends a SETUP command.
- 3. UDC generates an EP0 Interrupt.
- 4. Software determines that the UDCCS0[SA] and UDCCS0[OPR] bits are set. This indicates that a new OUT packet is in the EP0 Buffer and identifies a SETUP transaction.
- 5. Software reads the data into a buffer while UDCCS0[RNE] bit (receiver not empty) is set.
- 6. Software parses the data in the buffer and determines that it is a No Data command.

- 7. Software executes the command and sets its internal state machine to EP0_IDLE. Software clears the UDCCS0[OPR] and UDCCS0[SA] bits and MUST NOT set the UDCCS0[IPR] bit.
- 8. When the host PC executes the STATUS IN stage, the UDC sends back a zero-length packet, which indicates a successful handshake. This does not cause an interrupt.

If the host sends another SETUP command during these steps, the software must terminate the first SETUP command and start the new command.

12.5.5 Case 5: EP1 Data Transmit (BULK-IN)

The procedure in Case 5 can also be used to operate Endpoints 6 and 11.

In Case 5, the Transmit Short Packet is only set if a packet size of less than 64 bytes is sent. If the packet size is 64 bytes, the system arms when the 64th byte is loaded. Loading the 64th byte and setting the UDCCS1[TSP] bit produces one 64-byte packet and one zero-length packet.

When software receives a SETUP VENDOR command to set up an EP1 BULK IN transaction, it may take one of two courses of action, as appropriate for the chosen operating model:

- Configure the DMA engine and disable the EP1 interrupt to allow the DMA engine to handle the transaction.
- Enable the EP1 interrupt to allow the Megacell to directly handle the transaction.

12.5.5.1 Software Enables the DMA

If software enables the DMA engine, use the following steps:

- 1. During the SETUP VENDOR command, software enables the DMA engine and masks the EP1 interrupt. The DMA start address must be aligned on a 16-byte boundary.
 - a. If the packet size is 64 bytes, software transfers the all the data in one DMA descriptor and sets the UDCCS1[TSP] bit in the second DMA descriptor.
 - b. If the packet size is less than 64 bytes, software sets up a string of descriptors in which the odd numbered descriptors point to the data and the even numbered descriptors are writes to the UDCCS1[TSP] bit.
- 2. The host PC sends a BULK-IN and the UDC sends a data packet back to the host PC.
- 3. The UDC generates an interrupt that is masked from the Megacell.
- 4. The DMA engine fills the EP1 data FIFO (UDDR1) with data and sets the UDCCS1[TSP] bit if the data packet is a short packet.
- 5. Steps 2 through 4 repeat until all the bulk data is sent to the host PC.

12.5.5.2 Software Enables the EP1 Interrupt

If software enables the EP1 interrupt to allow the Megacell to directly handle the transaction:

- 1. During the SETUP VENDOR command, software fills the EP1 data FIFO (UDDR1) with data and clears the UDCCS1[TPC] bit. If the data packet is a short packet, software also sets the UDCCS1[TSP] bit.
- 2. The host PC sends a BULK-IN and the UDC sends a data packet back to the host PC and generates an EP1 Interrupt.

- 3. Software fills the EP1 data FIFO (UDDR1) with data and clears the UDCCS1[TPC] bit. If the data packet is a short packet, software also sets the UDCCS1[TSP] bit.
- 4. Return from interrupt.
- 5. Steps 2 through 4 repeat until all of the data is sent to the host PC.

12.5.6 Case 6: EP2 Data Receive (BULK-OUT)

This procedure can also be used to operate Endpoints 7 and 12.

When software receives a SETUP VENDOR command to set up an EP2 BULK OUT transaction, it may take one of two courses of action, as appropriate for the chosen operating model:

- Enable the DMA engine to handle the transaction.
- Allow the Megacell to directly handle the transaction.

12.5.6.1 Software Enables the DMA:

If software enables the DMA engine to handle the transaction:

- 1. During the SETUP VENDOR command, software sets up the DMA engine and sets the UDCCS2[DME] bit.
 - a. If the packet size is 32 or 64 bytes, software sets up a string of descriptors, each with a length of modulo 32 or 64. Software sets the interrupt bit for the appropriate descriptor.
 - b. If the packet size is less than 32 bytes, software uses interrupt mode.
- 2. The host PC sends a BULK-OUT.
- 3. The DMA engine reads data from the EP2 data FIFO (UDDR2).
- 4. Steps 2 and 3 repeat until all the data has been read from the host.
- 5. If the software receives an EP2 interrupt it completes the following process:
 - a. If UDCCS2[RNE] is clear and UDCCS2[RSP] is set, the data packet was a zero-length packet.
 - b. If UDCCS2[RNE] is set, the data packet was a short packet and software must use the UDCWC2 count register to read the proper amount of data from the EP2 data FIFO (UDDR2).
 - c. Software clears the UDCCS2[RPC] bit.
- 6. Return from interrupt.

12.5.6.2 Software Allows the Megacell to Handle the Transaction

If software allows the Megacell to handle the transaction:

- 1. During the SETUP VENDOR command, software clears the UDCCS2[DME] bit.
- 2. The host PC sends a BULK-OUT and the UDC generates an EP2 Interrupt.
- 3. If UDCCS2[RNE] is clear and UDCCS2[RSP] is set, the data packet was a zero-length packet.
- 4. If UDCCS2[RNE] is set, software uses the UDCWC2 count register to read the proper amount of data from the EP2 data FIFO (UDDR2).

- 5. Software clears the UDCCS2[RPC] bit.
- 6. Return from interrupt.
- 7. Steps 2 through 6 repeat until all the data has been read from the host.

12.5.7 Case 7: EP3 Data Transmit (ISOCHRONOUS-IN)

The procedure in Case 7 can also be used to operate Endpoints 8 and 13.

In Case 7, the Transmit Short Packet is only set if a packet size of less than 256 bytes is sent. If the packet size is 256 bytes, the system arms when the 256th byte is loaded. Loading the 256th byte and setting the UDCCS3[TSP] bit produces one 256-byte packet and one zero-length packet.

When software receives a SETUP VENDOR command to set up an EP3 ISOCHRONOUS IN transaction, it may take one of three courses of action, as appropriate for the chosen operating model:

- Configure the DMA engine and disable the EP3 interrupt to allow the DMA engine to handle the transaction.
- Enable the EP3 interrupt to allow the Megacell to directly handle the transaction.
- Enable the SOF interrupt to handle the transaction on a frame count basis.

12.5.7.1 Software Enables DMA

If software enables the DMA engine to handle the transaction:

- 1. During the SETUP VENDOR command, software enables the DMA engine and masks the EP3 interrupt. The DMA start address must be aligned on a 16-byte boundary.
 - a. If the packet size is 256 bytes, software transfers the all the data in one DMA descriptor.
 - b. If the packet size is less than 256 bytes, software sets up a string of descriptors in which the odd numbered descriptors point to the data and the even numbered descriptors are writes to the UDCCS1[TSP] bit.
- 2. The host PC sends an ISOC-IN and the UDC sends a data packet back to the host PC.
- 3. The UDC generates an interrupt that is masked from the Megacell.
- 4. The DMA engine fills the EP3 data FIFO (UDDR3) with data and sets the UDCCS3[TSP] bit if the data packet is a short packet.
- 5. Steps 2 through 4 repeat until all the data has been sent to the host.

12.5.7.2 Software Enables the EP3 Interrupt

If software enables the EP3 interrupt to allow the Megacell to directly handle the transaction:

- 1. During the SETUP VENDOR command, software fills the EP3 data FIFO (UDDR3) with data and clears the UDCCS3[TPC] bit. If the data packet is a short packet, software also sets the UDCCS3[TSP] bit.
- 2. The host PC sends a ISOC-IN command and the UDC sends a data packet back to the host PC and generates an EP3 Interrupt.
- 3. Software fills the EP3 data FIFO (UDDR3) with data and clears the UDCCS3[TPC] bit. If the data packet is a short packet, software also sets the UDCCS3[TSP] bit.

- 4. Return from interrupt.
- 5. Steps 2 through 4 repeat until all of the data is sent to the host PC.

12.5.7.3 Software Enables the SOF Interrupt

If software enables the SOF interrupt to handle the transaction on a frame count basis:

- 1. Software disables the UDCCS3 Interrupt by setting UICR0[IM3] to a 1 and enables the SOF interrupt in the UFNHR register by setting UFNHR[SIM] to a 0.
- When the host PC sends an SOF, the UDC sets the UFNHR[SIR] bit, which causes an SOF interrupt.
- 3. Software checks the UDCCS3[TFS] bit to determine if there is room for a data packet. If there is room, software fills the EP3 data FIFO (UDDR3) with data and clears the UDCCS3[TPC] bit. If the data packet is a short packet, software sets the UDCCS3[TSP] bit.
- 4. Software clears the UFNHR[SIR] bit.
- 5. Return from interrupt.
- 6. Steps 2 through 5 repeat until all the data is sent to the host PC.

12.5.8 Case 8: EP4 Data Receive (ISOCHRONOUS-OUT)

The procedure in Case 8 can also be used to operate Endpoints 9 and 14.

When software receives a SETUP VENDOR command to set up an EP4 ISOCHRONOUS OUT transaction, it may take one of three courses of action, as appropriate for the chosen operating model:

- Configure the DMA engine and disable the EP4 interrupt to allow the DMA engine to handle the transaction.
- Enable the EP4 interrupt to allow the Megacell to directly handle the transaction.
- Enable the SOF interrupt to handle the transaction on a frame count basis.

12.5.8.1 Software Enables the DMA

If software enables the DMA engine, use the following steps:

- 1. During the SETUP VENDOR command, software enables the DMA engine and sets the UDCCS4[DME] bit. ISO packet sizes are not restricted, but a packet size of modulo 32 is highly recommended efficiency.
 - a. If the packet size is between 32 and 256 bytes modulo 32, software determines the number of descriptors needed and sets up a string of descriptors. Software sets the interrupt bit for the appropriate descriptor.
 - b. If the packet size is between 32 bytes and 256 bytes, but not modulo 32 bytes, software sets up a descriptor to receive each data packet, then reads the remaining data on each UDCCS2[RSP] bit interrupt and sets up another descriptor.
 - c. If the packet size is less than 32 bytes, software must use interrupt mode.
- 2. The host PC sends a ISOC-OUT.
- 3. The DMA engine reads the data from the EP4 data FIFO (UDDR4).

- 4. Steps 2 and 3 repeat until all the data has been read from the host.
- 5. If the software receives an EP4 interrupt it completes the following process:
 - a. If UDCCS4[RNE] is clear and UDCCS4[RSP] is set, the data packet was a zero-length packet.
 - b. If UDCCS4[RNE] is set, the data packet was a short packet and software uses the UDCWC4 count register to read the proper amount of data from the EP4 data FIFO (UDDR4).
 - c. Software clears the UDCCS4[RPC] bit.
- 6. Return from interrupt.

12.5.8.2 Software Allows the Megacell to Handle the Transaction

If software allows the Megacell to handle the transaction:

- 1. During the SETUP VENDOR command, software clears the UDCCS4[DME] bit.
- 2. The host PC sends a ISOC-OUT and the UDC generates an EP4 Interrupt.
- 3. If UDCCS4[RNE] is clear and UDCCS4[RSP] is set, the data packet was a zero-length packet.
- 4. If UDCCS4[RNE] is set, software uses the UDCWC4 count register to read the proper amount of data from the EP4 data FIFO (UDDR4).
- 5. Software clears the UDCCS4[RPC] bit.
- 6. Return from interrupt.
- 7. Steps 2 through 6 repeat until all the data has been read from the host.

12.5.8.3 Software Enables the SOF Interrupt

If software enables the SOF interrupt to handle the transaction on a frame count basis:

- 1. Software disables the UDCCS4 Interrupt by setting UICR0[IM4] to a 1 and enables the SOF interrupt in the UFNHR register by setting UFNHR[SIM] to a 0.
- 2. When the host PC sends an SOF, the UDC sets the UFNHR[SIR] bit, which causes an SOF interrupt.
- 3. If UDCCS4[RNE] is clear and UDCCS4[RSP] is clear, no data packet was received.
- 4. If UDCCS4[RNE] is clear and UDCCS4[RSP] is set, the data packet was a zero-length packet.
- 5. If UDCCS4[RNE] is set, the data packet was a short packet and software uses the UDCWC4 count register to read the proper amount of data from the EP4 data FIFO (UDDR4).
- 6. Software clears the UDCCS4[RPC] and UFNHR[SIR] bits.
- 7. Return from interrupt.
- 8. Steps 2 through 7 repeat until all the data is sent to the host PC.

12.5.9 Case 9: EP5 Data Transmit (INTERRUPT-IN)

The procedure in Case 9 can also be used to operate Endpoints 10 and 15.

In Case 9, the Transmit Short Packet is only set if a packet size of less than 8 bytes is sent. If the packet size is 8 bytes, the system arms when the 8th byte is loaded. Loading the 8th byte and setting the UDCCS5[TSP] bit produces one 8-byte packet and one zero-length packet.

When software receives a SETUP VENDOR command to set up an EP5 INTERRUPT-IN transaction, it can only allow the Megacell to handle the transaction:

- 1. During the SETUP VENDOR command, software fills the EP5 data FIFO (UDDR5) with data and clears the UDCCS5[TPC] bit.
- 2. The host PC sends an INTERRUPT-IN and the UDC generates an EP5 Interrupt.
- 3. Software fills the EP5 data FIFO (UDDR5) with data and clears the UDCCS5[TPC] bit. If the data packet is a short packet, software also sets the UDCCS5[TSP] bit.
- 4. Return from interrupt.
- 5. Steps 2 through 4 repeat until all the data is sent to the host PC.

12.5.10 Case 10: RESET Interrupt

- 1. After a system reset, software loads the registers with the required values.
- 2. Software enables the UDC by setting the UDCCR[UDE] bit and immediately reads the UDCCR[UDA] bit to determine if a USB reset is currently on the USB bus.
 - a. If UDCCR[UDA] is a 0, there is currently a USB reset on the bus and software clears the interrupt by writing a 1 to the UDCCR[RSTIR] bit. Software enables future reset interrupts by clearing the UDCCR[REM] bit.
 - b. If UDCCR[UDA] is a 1, there is currently no USB reset on the bus and software enables future reset interrupts by clearing the UDCCR[REM] bit.
- 3. Return from interrupt.
- 4. The host either asserts a USB reset or negates a USB reset.
- 5. The UDC generates a Reset Interrupt.
- 6. Software determines that the UDCCR[RSTIR] bit is set and clears the interrupt by writing a 1 to the UDCCR[RSTIR] bit. Software then examines the UDCCR[UDA] bit to determine the type of reset that took place:
 - a. If UDCCR[UDA] is a 0, a Reset Assertion took place. Software returns from the interrupt and waits for the Reset Negation interrupt.
 - b. If UDDCR[UDA] is a 1, a Reset Negation took place. Software sets any initialization that is necessary.
- 7. Return from interrupt.

12.5.11 Case 11: SUSPEND Interrupt

- 1. As software starts, it clears the UDCCR[SRM] bit to allow a USB suspend interrupt.
- 2. The host PC asserts a USB suspend by stopping activity on the UDC+ and UDC- signals.

- 3. The UDC generates a Suspend Interrupt.
- 4. Software determines that the UDCCR[SUSIR] bit is set. This indicates that a USB suspend has occurred and software takes any necessary actions to turn off other peripherals, clean up internal buffers, perform power management, and perform similar functions. Software must not disable the UDC and must not allow the processor to go into Sleep Mode while the USB cable is attached.

12.5.12 Case 12: RESUME Interrupt

- 1. As software starts, it clears the UDCCR[SRM] bit to allow a USB resume.
- 2. The host PC asserts a USB resume by resuming activity after a suspend state on the UDC+ and UDC- signals.
- 3. The UDC generates a Resume Interrupt.
- 4. Software determines that the UDCCR[RESIR] bit is set. This indicates that a USB resume has occurred and the OS may take any necessary actions to turn on other peripherals, initialize internal buffers, perform power management, and perform similar functions.

12.6 UDC Register Definitions

All configuration, request/service, and status reporting is controlled by the USB host controller and is communicated to the UDC via the USB. The UDC has registers that control the interface between the UDC and the software. A control register enables the UDC and masks the interrupt sources in the UDC. A status register indicates the state of the interrupt sources. Each of the sixteen endpoints (control, OUT, and IN) have a control or status register. Endpoint 0 (control) has an address for the 16 x 8 data FIFO that can be used to transmit and receive data. Endpoint 0 also has a write count register that is used to determine the number of bytes the USB host controller has sent to Endpoint 0.

12.6.1 UDC Control Register

The UDC control register (UDCCR) contains seven control bits: one to enable the UDC, one to show activity, and five to show status and associated control functions.

12.6.1.1 UDC Enable

The UDC Enable (UDE) bit enables the UDC. When UDE is set to a 1, the UDC is enabled for USB serial transmission or reception. When UDE is set to a 0, the UDC is disabled and the UDC+ and UDC- pins are tristated. This means that the UDC ignores all activity on the USB bus.

If UDE is set to a 0 the entire UDC design is reset. If the reset occurs while the UDC is actively transmitting or receiving data, it stops immediately and the remaining bits in the transmit or receive serial shifter are reset. All entries in the transmit and receive FIFO are also reset.

12.6.1.2 UDC Active

The read-only UDC Active (UDA) bit can be read to determine if the UDC is currently active or in a USB reset. This bit is only valid when the UDC is enabled. A zero indicates that the UDC is currently receiving a USB reset from the host. A one indicates that the UDC is currently involved in a transaction.

12.6.1.3 **UDC** Resume (RSM)

When the UDC is in a suspend state, this bit can be written to force the UDC into a non-idle state (K state) for 3 ms to perform a remote wakeup operation. If the host PC does not start a wakeup sequence in 3 ms, the UDC returns to the suspend mode. This bit is a trigger bit for the UDC and is automatically cleared.

12.6.1.4 Resume Interrupt Request (RESIR)

The resume interrupt request bit is set if the SRM bit in the UDC control register is cleared, the UDC is currently in the suspended state, and the USB is driven with resume signalling.

12.6.1.5 Suspend Interrupt Request (SUSIR)

The suspend interrupt request register is set when the USB remains idle for more than 6 ms. The SUSIR bit retains state so software can determine that the USB is idle. If SRM is zero, SUSIR being set will not generate an interrupt but status continues to be updated.

12.6.1.6 Suspend/Resume Interrupt Mask (SRM)

The suspend/resume interrupt mask (SRM) masks or enables the suspend interrupt request to the interrupt controller. When SRM is 1, the interrupt is masked and the setting of SUSIR will not generate an interrupt. When SRM is 0, the setting of SUSIR generates an interrupt when the USB is idle for more than 6ms. Programming SRM does not affect the state of SUSIR.

12.6.1.7 Reset Interrupt Request (RSTIR)

The reset interrupt request register is set when the host issues a reset. When the host issues a reset, the entire UDC is reset. The RSTIR bit retains its state so software can determine that the design was reset. If REM is zero, RSTIR being set does not generate an interrupt but status continues to be updated.

12.6.1.8 Reset Interrupt Mask (REM)

The reset interrupt mask (REM) masks or enables the reset interrupt request to the interrupt controller. When REM is 1, the interrupt is masked and the setting of RSTIR does not generate an interrupt. When REM is 0, the RSTIR setting generates an interrupt when the USB host controller issues an UDC reset. Programming REM does not affect the state of RSTIR.

Appendix , "UDC Control Register" shows the location of the bits in UDC control register (UDCCR). The UDE bit is cleared to zero, which disables the UDC following a Megacell reset. Writes to reserved bits are ignored and reads return zeros.

Table 12-20. UDC Control Register

		0h 4	4060 0000		UDCCI	₹	Read/V	Vrite and Rea	ad-Only
Bit	31:8	7	6	5	4	3	2	1	0
	Reserved	REM	RSTIR	SRM	SUSIR	RESIR	RSM	UDA	UDE
Reset	Х	1	0	1	0	0	0	0	0
		Bits	Name			Desc	ription		
		31:8	Reserved	Reserved for	or Future Use)			
		7	REM	0 – Reset ir	Reset interrupt mask.(read/write) O – Reset interrupt enabled. 1 – Reset interrupt disabled.				
		6	RSTIR		Reset interrupt request (read/write 1 to clear). 1 – UDC was reset by the host.				
		5	SRM	Suspend/resume interrupt mask (read/write). 0 – Suspend/resume interrupt enabled. 1 – Suspend/resume interrupt disabled.					
		4	SUSIR	Suspend interrupt request (read/write 1 to clear). 1 – UDC received, suspend signalling from the host.					
		3	RESIR		errupt reques ceived, resur	•	,	st.	
		2	RSM	Device Resume (read/write 1 to set) 0 – Maintain UDC suspend state 1 – Force UDC out of suspend					
		1	UDA	UDC active (read-only). 0 – UDC currently receiving a USB reset. 1 – UDC currently not receiving a USB reset.					
		0	UDE	UDC enable 0 – UDC dis 1 – UDC en					

12.6.2 **UDC Endpoint 0 Control/Status Register (UDCCS0)**

The UDC endpoint zero control/status register contains 7 bits that are used to operate endpoint zero, the control endpoint.

12.6.2.1 **OUT Packet Ready (OPR)**

The OUT packet ready bit is set by the UDC when it receives a valid OUT packet to endpoint zero. When this bit is set, the USIR0[IR0] bit will be set in the UDC status/interrupt register if endpoint zero interrupts are enabled. This bit is cleared by writing a one. The UDC is not allowed to enter the data phase of a transaction until this bit is cleared.

12.6.2.2 IN Packet Ready (IPR)

The IN packet ready bit is set by the Megacell if less than max_packet bytes (16) have been written to the endpoint 0 FIFO to be transmitted. The Megacell must not set this bit if a max_packet is to be transmitted. The UDC clears this bit when the packet has been successfully transmitted, the UDCCS0[FTF] bit has been set, or a control OUT is received. When this bit is cleared due to a successful IN transmission or the reception of a control OUT, the USIR0[IR0] bit in the UDC interrupt register is set if the endpoint 0 interrupt is enabled via UICR0[IM0]. The Megacell is not able to clear UDCCS0[IPR] and always reads back a zero

When software enables the status stage for Vendor/Class commands and control data commands such as GET_DESCRIPTOR, GET_CONFIGURATION, GET_INTERFACE, GET_STATUS, and SET_DECSCRIPTOR, software must also set IPR. The data in the Transmit FIFO must be transmitted and the interrupt must be processed before the IPR is set for the status stage.

The status stage for all other USB Standard Commands that do not have a data stage, such as SET_ADDRESS, SET_CONFIGURATION, SET_INTERFACE, SET_FEATURE, and CLEAR_FEATURE, is handled by the UDC and the software must not set IPR.

12.6.2.3 Flush Tx FIFO (FTF)

The Flush Tx FIFO bit triggers the reset of the endpoint 0 transmit FIFO. It is set when software writing a one or when the UDC receives an OUT packet from the host on endpoint 0. This bit always reads back a zero value.

12.6.2.4 Device Remote Wakeup Feature (DRWF)

The host indicates the state of the device remote wakeup feature by sending a Set Feature command or a Clear Function command. The UDC decodes the command sent by the host and sets this bit to a 1 if the feature is enabled and a 0 if the feature is disabled. This bit is read-only.

12.6.2.5 Sent Stall (SST)

The sent stall bit is set by the UDC when FST successfully forces a software-induced STALL on the USB bus. This bit is not set if the UDC detects a protocol violation from the host when a STALL handshake is returned automatically. In this event, there is no intervention by the Megacell and the UDC clears the STALL status before the host sends the next SETUP command. When the UDC sets this bit, the transmit FIFO is flushed. The Megacell writes a one to this bit to clear it.

12.6.2.6 Force Stall (FST)

The force stall bit can be set by the Megacell to force the UDC to issue a STALL handshake. The UDC issues a STALL handshake for the current setup control transfer and the bit is cleared by the UDC because endpoint zero can not remain in a stalled condition.

12.6.2.7 Receive FIFO Not Empty (RNE)

The receive FIFO not empty bit indicates that the receive FIFO contains unread data. To determine if the FIFO has data in it, this bit must be read when the UDCCS0[OPR] bit is set. The receive FIFO must continue to be read until this bit clears or the data will be lost.

If UDCCS0[RNE] is not set when an interrupt generated by UDCCS0[OPR] is initially serviced, it indicates that a zero-length OUT packet was received.

12.6.2.8 Setup Active (SA)

The Setup Active bit indicates that the current packet in the FIFO is part of a USB setup command. This bit generates an interrupt and becomes active at the same time as UDCCS0[OPR]. Software must clear this bit by writing a 1 to it. Both UDCS0[OPR] and UDCCS0[SA] must be cleared.

Table 12-21. UDC Endpoint 0 Control Status Register

		0h 4	0h 4060 0010		UDCCS0			Read/Write		
Bit	31:8	7	6	5	4	3	2	1	0	
	Reserved	SA	RNE	FST	SST	DRWF	FTF	IPR	OPR	
Reset	Х	0	0	0	0	0	0	0	0	
		Bits	Name			Descri	iption			
		0	OPR	OUT packe 1 – OUT pa	• •	d/write 1 to c	lear)			
		1	IPR	IN packet re 1 – IN pack	, ,	s read 0/write	e 1 to set).			
		2	FTF	Flush Tx FIFO (always read 0/write 1 to set) 1 – Flush the contents of Tx FIFO.						
		3	DRWF	Device remote wakeup feature (read-only) 0 – Device Remote Wakeup Feature is disabled. 1 – Device Remote Wakeup Feature is enabled.						
		4	SST	`	ead/write 1 tent stall hand	,				
		5	FST	Force stall (read/write 1 to set)						
		6	RNE	Receive FIFO not empty (read-only). 0 – Receive FIFO empty. 1 – Receive FIFO not empty.						
		7	SA		e (read/write ommand is a	e 1 to clear) active on the	USB			
		31:8	Reserved	Reserved for	or Future Us	е				

12.6.3 UDC Endpoint x Control/Status Register (UDCCSx), Where x is 1, 6, or 11

The UDC endpoint(x) control status register contains 6 bits that are used to operate endpoint(x), a Bulk IN endpoint).

12.6.3.1 Transmit FIFO Service (TFS)

The transmit FIFO service bit is active if one or fewer data packets remain in the transmit FIFO. TFS is cleared when two complete packets of data remain in the FIFO. A complete packet of data is signified by loading 64 bytes of data or by setting UDCCSx[TSP].

12.6.3.2 Transmit Packet Complete (TPC)

The transmit packet complete bit is set by the UDC when an entire packet is sent to the host. When this bit is set, the IRx bit in the appropriate UDC status/interrupt register is set if transmit interrupts are enabled. This bit can be used to validate the other status/error bits in the endpoint(x) control/status register. The UDCCSx[TPC] bit is cleared by writing a 1 to it. This clears the interrupt source for the IRx bit in the appropriate UDC status/interrupt register, but the IRx bit must also be cleared.

Setting this bit does not prevent the UDC from transmitting the next buffer. The UDC issues NAK handshakes to all IN tokens if this bit is set and neither buffer has been triggered by writing 64-bytes or setting UDCCSx[TSP].

When DMA loads the transmit buffers, the interrupt generated by UDCCSx[TPC] can be masked to allow data to be transmitted without Megacell intervention.

12.6.3.3 Flush Tx FIFO (FTF)

The Flush Tx FIFO bit triggers a reset for the endpoint's transmit FIFO. The Flush Tx FIFO bit is set when software writes a 1 to it or when the host performs a SET_CONFIGURATION or SET_INTERFACE. The bit's read value is zero.

12.6.3.4 Transmit Underrun (TUR)

The transmit underrun bit is set if the transmit FIFO experiences an underrun. When the UDC experiences an underrun, NAK handshakes are sent to the host. UDCCSx[TUR] does not generate an interrupt and is for status only. UDCCSx[TUR] is cleared by writing a 1 to it.

12.6.3.5 Sent STALL (SST)

The sent stall bit is set by the UDC in response to FST successfully forcing a user induced STALL on the USB bus. This bit is not set if the UDC detects a protocol violation from the host PC when a STALL handshake is returned automatically. In either event, the Megacell does not intervene and the UDC clears the STALL status when the host sends a CLEAR_FEATURE command. The endpoint operation continues normally and does not send another STALL condition, even if the UDCCSx[SST] bit is set. To allow the software to continue to send the STALL condition on the USB bus, the UDCCSx[FST] bit must be set again. The Megacell writes a 1 to the sent stall bit to clear it.

12.6.3.6 Force STALL (FST)

The Megacell can set the force stall bit to force the UDC to issue a STALL handshake to all IN tokens. STALL handshakes continue to be sent until the Megacell clears this bit by sending a Clear Feature command. The UDCCSx[SST] bit is set when the STALL state is actually entered, but this may be delayed if the UDC is active when the UDCCSx[FST] bit is set. The UDCCSx[FST] bit is

automatically cleared when the UDCCSx[SST] bit is set. To ensure that no data is transmitted after the Clear Feature command is sent and the host resumes IN requests, software must clear the transmit FIFO by setting the UDCCSx[FTF] bit.

12.6.3.7 Bit 6 Reserved

Bit 6 is reserved for future use.

0h 4060 0014

12.6.3.8 Transmit Short Packet (TSP)

The software uses the transmit short packet bit to indicate that the last byte of a data transfer to the FIFO has occurred. This indicates to the UDC that a short packet or zero-sized packet is ready to transmit. Software must not set this bit if a 64-byte packet is to be transmitted. When the data packet is successful transmitted, the UDC clears this bit.

Read/Write

UDCCS1

Table 12-22. UDC Endpoint x Control Status Register, Where x is 1, 6 or 11

		UII	4000 00 14		ODCC	5 I	Read/Wille					
		0h	4060 0028		UDCCS	S 6		Read/Write	!			
		0h	4060 003C		UDCCS11			Read/Write				
Bit	31:8	7	6	5	4	3	2	1	0			
	Reserved	TSP	Reserved	FST	SST	TUR	FTF	TPC	TFS			
Reset	Х	0	0	0	0	0	0	0	1			
		Bits	Name			Desci	ription					
		0	TFS	0 – Transm	Transmit FIFO service (read-only). 0 – Transmit FIFO has no room for new data 1 – Transmit FIFO has room for at least 1 complete data packet							
		1	TPC	Transmit packet complete (read/write 1 to clear). O – Error/status bits invalid. 1 – Transmit packet has been sent and error/status bits are valid.								
		2	FTF		IFO (always		te a 1 to set)				
		3	TUR			un (read/wri perienced ar	te 1 to clear underrun.)				
		4	SST		L (read/writ handshake	e 1 to clear) was sent.						
		5 FST Force STALL (read/write). 1 – Issue STALL handshakes to IN tokens.										
		6	_	Reserved Always rea	ıds 0							
		7	TSP			(always rea y for transmi	d 0/write 1to ssion.	set)				
			1	1								

Reserved for Future Use

Reserved

31:8

12.6.4 UDC Endpoint x Control/Status Register (UDCCSx), Where x is 2, 7, or 12

The UDC endpoint x control/status register contains 7 bits that are used to operate endpoint x, a Bulk OUT endpoint.

12.6.4.1 Receive FIFO Service (RFS)

The receive FIFO service bit is set if the receive FIFO has one complete data packet in it and the packet has been error checked by the UDC. A complete packet may be 64 bytes, a short packet, or a zero packet. This bit is not cleared until all data has been read from both buffers.

12.6.4.2 Receive Packet Complete (RPC)

The receive packet complete bit is set by the UDC when an OUT packet is received. When this bit is set, the IRx bit in the appropriate UDC status/interrupt register is set, if receive interrupts are enabled. This bit must be used to validate the other status/error bits in the endpoint(x) control/status register. Status bits are not updated until RPC is set. Status bits stay set until RPC is cleared. The exception is RNE which will get set with RPC but will clear itself once the active FIFO is empty. After clearing RPC, the next buffer will become active and the status bits will be updated accordingly, including RPC. The UDCCSx[RPC] bit is cleared by writing a 1 to it. The UDC issues NAK handshakes to all OUT tokens while this bit is set and both buffers have unread data.

12.6.4.3 Bit 2 Reserved

Bit 2 is reserved for future use.

12.6.4.4 DMA Enable (DME)

The dma enable is used by the UDC to control the timing of the data received interrupt. If the bit is set, the interrupt is asserted if the end of packet has been received and the receive FIFO has less than 32 bytes of data remaining in it. If the bit is not set, the interrupt is asserted when the end of packet is received and all of the received data is still in the receive FIFO.

12.6.4.5 Sent Stall (SST)

The sent stall bit is set by the UDC in response to FST successfully forcing a user induced STALL on the USB bus. This bit is not set if the UDC detects a protocol violation from the host PC when a STALL handshake is returned automatically. In either event, the Megacell does not intervene and the UDC clears the STALL status when the host sends a CLEAR_FEATURE command. Any valid data in the FIFO remains valid and the software must unload it. The endpoint operation continues normally and does not send another STALL condition, even if the UDCCSx[SST] bit is set. To allow the software to continue to send the STALL condition on the USB bus, the UDCCSx[FST] bit must be set again. The Megacell writes a 1 to the sent stall bit to clear it.

12.6.4.6 Force Stall (FST)

The Megacell can set the force stall bit to force the UDC to issue a STALL handshake to all OUT tokens. STALL handshakes continue to be sent until the Megacell clears this bit by sending a Clear Feature command. The UDCCSx[SST] bit is set when the STALL state is actually entered, but this may be delayed if the UDC is active when the UDCCSx[FST] bit is set. The UDCCSx[FST] bit is

automatically cleared when the UDCCSx[SST] bit is set. To ensure that no data is transmitted after the Clear Feature command is sent and the host resumes IN requests, software must clear the transmit FIFO by setting the UDCCSx[FTF] bit.

12.6.4.7 Receive FIFO Not Empty (RNE)

The receive FIFO not empty bit indicates that unread data remains in the receive FIFO. This bit must be polled when the UDCCSx[RPC] bit is set to determine if there is any data in the FIFO that the DMA did not read. The receive FIFO must continue to be read until this bit clears or data will be lost.

12.6.4.8 Receive Short Packet (RSP)

The UDC uses the receive short packet bit to indicate that the received OUT packet in the active buffer currently being read is a short packet or zero-sized packet. This bit is updated by the UDC after the last byte is read from the active buffer and reflects the status of the new active buffer. If UDCCSx[RSP] is a one and UDCCSx[RNE] is a 0, it indicates a zero-length packet. If a zero-length packet is present, the Megacell must not read the data register. UDCCSx[RSP] is cleared when the next OUT packet is received.

Table 12-23. UDC Endpoint x Control Status Register, Where x is 2, 7, or 12 (Sheet 1 of 2)

		0h	4060 0018	UDCCS2			Read/Write				
		0h	4060 002C	UDCCS7			Read/Write				
		0h	4060 0040	UDCCS12		12	Read/Write				
Bit	31:8	7	6	5	4	3	2	1	0		
	Reserved	RSP	RNE	FST	SST	DME	Reserved	RPC	RFS		
Reset	Х	0	0	0	0	0	0	0	0		
		Bits	Name	Description							
		0	RFS	1 – Receive FIFO has 1 or more data packets.							
		1	RPC	0 – Error/s	tatus bits in	valid.	vrite 1 to clea	,	bits are		
		2	_	Reserved Always rea	ads zero.						
		3	DME	DMA Enable(read/write) 0 – Send data received interrupt after EOP received 1 – Send data received interrupt after EOP received and Receive FIFO has < 32 bytes of data							
		4 SST Sent stall (read/write 1 to clear). 1 – STALL handshake was sent.									
		5	FST	Force stall (read/write). 1 – Issue STALL handshakes to OUT tokens.							

Table 12-23. UDC Endpoint x Control Status Register, Where x is 2, 7, or 12 (Sheet 2 of 2)

		0h	4060 0018	UDCCS2			Read/Write		
		0h	4060 002C	UDCCS7			Read/Write		
		0h	4060 0040		UDCCS	12	Read/Write		
Bit	31:8	7	6	5	4	3	2	1	0
	Reserved	RSP	RNE	FST	SST	DME	Reserved	RPC	RFS
Reset	Х	0 0		0	0	0	0	0	0
		Bits	Name			Descr	iption		
		6	RNE	0 – Receiv	IFO not empre FIFO empre FIFO not	oty.	nly).		
		7	RSP		nort packet backet recei		ady for readi	ing.	
		31:8	Reserved	d Reserved for Future Use					

12.6.5 UDC Endpoint x Control/Status Register (UDCCSx), Where x is 3, 8, or 13

The UDC endpoint(x) control status register contains 4 bits that are used to operate endpoint(x), an Isochronous IN endpoint.

12.6.5.1 Transmit FIFO Service (TFS)

The transmit FIFO service bit is be set if one or fewer data packets remain in the transmit FIFO. UDCCSx[TFS] is cleared when two complete data packets are in the FIFO. A complete packet of data is signified by loading 256 bytes or by setting UDCCSx[TSP].

12.6.5.2 Transmit Packet Complete (TPC)

The the UDC sets transmit packet complete bit when an entire packet is sent to the host. When this bit is set, the IRx bit in the appropriate UDC status/interrupt register is set if transmit interrupts are enabled. This bit can be used to validate the other status/error bits in the endpoint(x) control/status register. The UDCCSx[TPC] bit gets cleared by writing a one to it. This clears the interrupt source for the IRx bit in the appropriate UDC status/interrupt register, but the IRx bit must also be cleared.

Setting this bit does not prevent the UDC from transmitting the next buffer. The UDC issues NAK handshakes to all IN tokens if this bit is set and neither buffer has been triggered by writing 64 bytes or setting UDCCSx[TSP].

When DMA is used to load the transmit buffers, the interrupt generated by UDCCSx[TPC] can be masked to allow data to be transmitted without Megacell intervention.

12.6.5.3 Flush Tx FIFO (FTF)

The Flush Tx FIFO bit triggers a reset for the endpoint's transmit FIFO. The Flush Tx FIFO bit is set when software writes a 1 to it or when the host performs a SET_CONFIGURATION or SET_INTERFACE. The bit's read value is zero.

12.6.5.4 Transmit Underrun (TUR)

The transmit underrun bit is be set if the transmit FIFO experiences an underrun. When the UDC experiences an underrun, UDCCSx[TUR] generates an interrupt. UDCCSx[TUR] is cleared by writing a 1 to it.

12.6.5.5 Bit 4 Reserved

Bit 4 is reserved for future use.

12.6.5.6 Bit 5 Reserved

Bit 5 is reserved for future use.

12.6.5.7 Bit 6 Reserved

Bit 6 is reserved for future use.

12.6.5.8 Transmit Short Packet (TSP)

Software uses the transmit short packet to indicate that the last byte of a data transfer has been sent to the FIFO. This indicates to the UDC that a short packet or zero-sized packet is ready to transmit. Software must not set this bit if a packet of 256 bytes is to be transmitted. When the data packet is successfully transmitted, this bit is cleared by the UDC.

Table 12-24. UDC Endpoint x Control Status Register, Where x is 3, 8, or 13

0h 4060 001C					UDCCS	3		Read/Write			
		0h 4	1060 0030		UDCCS	8	Read/Write				
	0h 4060 0044				UDCCS13			Read/Write			
Bit	31:8	7	6	5	4	3	2	1	0		
	Reserved	TSP	Reserved	Reserved	Reserved	TUR	FTF	TPC	TFS		
Reset	Х	0	0	0	0	0	0	0	1		

Bits	Name	Description
0	TFS	Transmit FIFO service (read-only). 0 – Transmit FIFO has no room for new data 1 – Transmit FIFO has room for at least 1 complete data packet
1	TPC	Transmit packet complete (read/write 1 to clear). 0 – Error/status bits invalid. 1 – Transmit packet has been sent and error/status bits are valid.
2	FTF	Flush Tx FIFO (always read 0/ write a 1 to set) 1 – Flush Contents of TX FIFO
3	TUR	Transmit FIFO underrun (read/write 1 to clear) 1 – Transmit FIFO experienced an underrun.
4	_	Reserved Always reads 0
5	_	Reserved Always reads 0.
6	_	Reserved Always reads 0
7	TSP	Transmit short packet (read/write 1 to set). 1 – Short packet ready for transmission.
31:8	Reserved	Reserved for Future Use

12.6.6 UDC Endpoint x Control/Status Register (UDCCSx), Where x is 4, 9, or 14

The UDC endpoint(x) control/status register contains 6 bits that are used to operate endpoint(x), an Isochronous OUT endpoint.

12.6.6.1 Receive FIFO Service (RFS)

The receive FIFO service bit is set if the receive FIFO has one complete data packet in it and the packet has been error checked by the UDC. A complete packet may be 256 bytes, a short packet, or a zero packet. UDCCSx[RFS] is not cleared until all data is read from both buffers.

12.6.6.2 Receive Packet Complete (RPC)

The receive packet complete bit gets set by the UDC when an OUT packet is received. When this bit is set, the IRx bit in the appropriate UDC status/interrupt register is set if receive interrupts are enabled. This bit can be used to validate the other status/error bits in the endpoint(x) control/status register. The UDCCSx[RPC] bit is cleared by writing a 1 to it.

12.6.6.3 Receive Overflow (ROF)

The receive overflow bit generates an interrupt on IRx in the appropriate UDC status/interrupt register to alert the software that Isochronous data packets are being dropped because neither FIFO buffer has room for them. This bit is cleared by writing a 1 to it.

12.6.6.4 DMA Enable (DME)

The DMA enable is used by the UDC to control the timing of the data received interrupt. If the bit is set, the interrupt is asserted when the end of packet is received and the receive FIFO has less than 32 bytes of data in it. If the bit is not set, the interrupt is asserted when the end of packet is received and all of the received data is still in the receive FIFO.

12.6.6.5 Bit 4 Reserved

Bit 4 is reserved for future use.

12.6.6.6 Bit 5 Reserved

Bit 5 is reserved for future use.

12.6.6.7 Receive FIFO Not Empty (RNE)

The receive FIFO not empty bit indicates that the receive FIFO has unread data in it. When the UDCCSx[RPC] bit is set, this bit must be read to determine if there is any data in the FIFO that DMA did not read. The receive FIFO must continue to be read until this bit clears or data will be lost.

12.6.6.8 Receive Short Packet (RSP)

The receive short packet bit is used by the UDC to indicate that the received OUT packet in the active buffer currently being read is a short packet or zero-sized packet. This bit is updated by the UDC after the last byte is read from the active buffer and reflects the status of the new active buffer. If UDCCSx[RSP] is a one and UDCCSx[RNE] is a zero, it indicates a zero-length packet. If a zero-length packet is present, the Megacell must not read the data register. UDCCSx[RSP] clears when the next OUT packet is received.

Table 12-25. UDC Endpoint x Control Status Register, Where x is 4, 9, or 14

ıa	Table 12-25. ODC Endpoint x Control Status Register, where x is 4, 9, or 14											
		0h	4060 0020		UDCCS	64		Read/Write	;			
		0h	4060 0034		UDCCS	9	Read/Write					
		0h	4060 0048	UDCCS14			Read/Write					
Bit	31:8	7	6	5	4	3	2	1	0			
	Reserved	RSP	RNE	Reserved	Reserved	DME	ROF	RPC	RFS			
Reset	Х	0	0	0	0	0	0	0	0			
		Bits	Name			Descr	iption					
		0	RFS	1 – Receive FIFO has 1 or more data packets.								
		1	RPC	Receive packet complete (read/write 1 to clear). 0 – Error/status bits invalid. 1 – Receive packet has been received and error/status bits are valid.								
		2	ROF	1 – Isochro	erflow (read, nous data pa e receiver is	ackets are b	,	ed from the h	nost			
		3	DME	0 – Send re		upt after EO		eived and Re	ceive FIFO			
		4	_	Reserved. Always read	ds 0.							
		5	_	Reserved. Always reads 0.								
		6	RNE	Receive FIFO not empty (read-only). O – Receive FIFO empty. 1 – Receive FIFO not empty.								
		7	RSP		ort packet (r acket receiv	• •	y for readin	g.				

12.6.7 UDC Endpoint x Control/Status Register (UDCCSx), Where x is 5, 10, or 15.

Reserved for Future Use

The UDC endpoint(x) control status register contains 6 bits that are used to operate endpoint(x), an Interrupt IN endpoint.

12.6.7.1 Transmit FIFO Service (TFS)

The transmit FIFO service bit is set if the FIFO does not contain any data bytes and UDCCSx[TSP] is not set.

12.6.7.2 Transmit Packet Complete (TPC)

The transmit packet complete bit is be set by the UDC when an entire packet is sent to the host. When this bit is set, the IRx bit in the appropriate UDC status/interrupt register is set if transmit interrupts are enabled. This bit can be used to validate the other status/error bits in the endpoint(x) control/status register. The UDCCSx[TPC] bit is cleared by writing a 1 to it. This clears the interrupt source for the IRx bit in the appropriate UDC status/interrupt register, but the IRx bit must also be cleared.

The UDC issues NAK handshakes to all IN tokens if this bit is set and the buffer is not triggered by writing 8 bytes or setting UDCCSx[TSP].

12.6.7.3 Flush Tx FIFO (FTF)

The Flush Tx FIFO bit triggers a reset for the endpoint's transmit FIFO. The Flush Tx FIFO bit is set when software writes a 1 to it or when the host performs a SET_CONFIGURATION or SET_INTERFACE. The bit's read value is zero.

12.6.7.4 Transmit Underrun (TUR)

The transmit underrun bit is be set if the transmit FIFO experiences an underrun. When the UDC experiences an underrun, NAK handshakes are sent to the host. UDCCSx[TUR] does not generate an interrupt and is for status only. UDCCSx[TUR] is cleared by writing a 1 to it.

12.6.7.5 Sent STALL (SST)

The sent stall bit is set by the UDC in response to FST successfully forcing a user induced STALL on the USB bus. This bit is not set if the UDC detects a protocol violation from the host PC when a STALL handshake is returned automatically. In either event, the Megacell does not intervene and the UDC clears the STALL status when the host sends a CLEAR_FEATURE command. The endpoint operation continues normally and does not send another STALL condition, even if the UDCCSx[SST] bit is set. To allow the software to continue to send the STALL condition on the USB bus, the UDCCSx[FST] bit must be set again. The Megacell writes a 1 to the sent stall bit to clear it.

12.6.7.6 Force STALL (FST)

The Megacell can set the force stall bit to force the UDC to issue a STALL handshake to all IN tokens. STALL handshakes continue to be sent until the Megacell clears this bit by sending a Clear Feature command. The UDCCSx[SST] bit is set when the STALL state is actually entered, but this may be delayed if the UDC is active when the UDCCSx[FST] bit is set. The UDCCSx[FST] bit is automatically cleared when the UDCCSx[SST] bit is set. To ensure that no data is transmitted after the Clear Feature command is sent and the host resumes IN requests, software must clear the transmit FIFO by setting the UDCCSx[FTF] bit.

12.6.7.7 Bit 6 Reserved

Bit 6 is reserved for future use.

12.6.7.8 Transmit Short Packet (TSP)

Software uses the transmit short to indicate that the last byte of a data transfer has been sent to the FIFO. This indicates to the UDC that a short packet or zero-sized packet is ready to transmit. Software must not set this bit if a packet of 8 bytes is to be transmitted. When the data packet is successfully transmitted, the UDC clears this bit.

Table 12-26. UDC Endpoint x Control Status Register, Where x is 5, 10, or 15

			•				•				
		0h 4	4060 0024		UDCCS	55	Read/Write				
		0h 4	4060 0038	UDCCS10			Read/Write				
		0h 4	1060 004C	UDCCS15				Read/Write			
Bit	31:8	7	6	5	4	3	2	1	0		
	Reserved	TSP	Reserved	FST	SST	TUR	FTF	TPC	TFS		
Reset	Х	0	0	0	0	0	0	0	1		
		Bits	Name			Descr	Description				
		0	TFS	1 – Transmit FIFO has room for 1 complete data packet							
		1	TPC	Transmit packet complete (read/write 1 to clear). 0 – Error/status bits invalid. 1 – Transmit packet has been sent and error/status bits are valid.							
		2	FTF		O (always ro		a 1 to set)				
		3	TUR		FO underrun t FIFO exper	•	•				
		4	SST		(read/write mandshake w	,					
		5	FST	Force STALL (read/write). 1 – Issue STALL handshakes to IN tokens.							
		6	_	Reserved Always read	ds 0						
		7	TSP		ort packet (reacket for		,				
		31:8	Reserved	Reserved for	r Future Use)					

12.6.8 UDC Interrupt Control Register 0 (UICR0)

The UICR0 contains 8 control bits to enable/disable interrupt service requests from data endpoints 0 - 7. All of the UICR0 bits are reset to a 1 so interrupts are not generated on initial system reset.

12.6.8.1 Interrupt Mask Endpoint x (IMx), Where x is 0 through 7

The UICR0[IMx] bit is used to mask or enable the corresponding endpoint interrupt request, USIR0[IRx]. When the mask bit is set, the interrupt is masked and the corresponding bit in the USIR0 register is not allowed to be set. When the mask bit is cleared and an interruptible condition occurs in the endpoint, the appropriate interrupt bit is set. Programming the mask bit to a 1 does not affect the current state of the interrupt bit. It only blocks future zero to one transitions of the interrupt bit.

Table 12-27. UDC Interrupt Control Register 0

	0h 4060 005		4060 0050	UICR0			Read/Write			
Bit	31:8	7	6	5	4	3	2	1	0	
	Reserved	IM7	IM6	IM5	IM4	IM3	IM2	IM1	IMO	
Reset	х	1	1	1	1	1	1	1	1	
		Bits	Name			Descr	iption			
		0	IMO	0 – Endpoir		oint 0 upt enabled upt disabled				
		1	IM1	0 – Transm	ask for Endp it interrupt e it interrupt d	nabled				
		2	IM2	Interrupt Mask for Endpoint 2 0 – Receive interrupt enabled 1 – Receive interrupt disabled						
		3	IM3	Interrupt mask for Endpoint 3						
		4	IM4	0 – Receive	ask for Endp Interrupt er Interrupt di	nabled				
		5	IM5	0 – Transm	ask for Endp it interrupt e it interrupt d	nabled				
		6	IM6	Interrupt Mask for Endpoint 6 0 – Transmit interrupt enabled 1 – Transmit interrupt disabled						
		7	IM7	Interrupt Mask for Endpoint 7 0 – Receive interrupt enabled 1 – Receive interrupt disabled						
		31:8	Reserved	Reserved for	or Future Us	е				

12.6.9 UDC Interrupt Control Register 1 (UICR1)

The UICR1 contains 8 control bits to enable/disable interrupt service requests from endpoints 8 - 15. The UICR1 bits are reset to 1 so interrupts are not generated on initial system reset.

12.6.9.1 Interrupt Mask Endpoint x (IMx), where x is 8 through 15.

The UICR1[IMx] bit is used to mask or enable the corresponding endpoint interrupt request, USIR1[IRx]. When the mask bit is set, the interrupt is masked and the corresponding bit in the USIR1 register is not allowed to be set. When the mask bit is cleared and an interruptible condition occurs in the endpoint, the appropriate interrupt bit is set. Programming the mask bit to a 1 does not affect the current state of the interrupt bit. It only blocks future zero to one transitions of the interrupt bit.

Table 12-28. UDC Interrupt Control Register 1

		0h	4060 0054		UICR1			Read/Write	
Bit	31:8	7	6	5	4	3	2	1	0
	Reserved	IM15	IM14	IM13	IM12	IM11	IM10	IM9	IM8
Reset	х	1	1	1	1	1	1	1	1
		Bits	Name			Descr	iption		
		0	IM8	0 – Transmi	isk for Endpo t interrupt en t interrupt dis	abled			
		1	IM9	0 – Receive	interrupt en interrupt dis	abled			
		2	IM10	Interrupt mask for Endpoint 10 0 – Receive interrupt enabled 1 – Receive interrupt disabled					
		3	IM11	Interrupt mask for Endpoint 11 0 – Transmit interrupt enabled 1 – Transmit interrupt disabled					
		4	IM12	0 – Receive	sk for Endpo interrupt en interrupt dis	abled			
		5	IM13	0 – Transmi	sk for Endpo t interrupt en t interrupt dis	abled			
		6	IM14	Interrupt mask for Endpoint 14 0 – Receive interrupt enabled 1 – Receive interrupt disabled					
		7	IM15	Interrupt mask for Endpoint 15 0 – Transmit interrupt enabled 1 – Transmit interrupt disabled					
		31:8	Reserved	Reserved for Future Use					

12.6.10 UDC Status/Interrupt Register 0 (USIR0)

The UDC status/interrupt registers (USIR0 and USIR1) contain bits that are used to generate the UDC's interrupt request. Each bit in the UDC status/interrupt registers is logically ORed together to produce one interrupt request. When the ISR for the UDC is executed, it must read the UDC status/interrupt register to determine why the interrupt occurred. USIRx is level sensitive. Be sure to clear USIRx as the last step before exiting the ISR.

The bits in USIR0 and USIR1 are controlled by a mask bit in the UDC Interrupt Control Register (UICR0/1). The mask bits, when set, prevent a status bit in the USIRx from being set. If the mask bit for a particular status bit is cleared and an interruptible condition occurs, the status bit is set. To clear status bits, the Megacell must write a 1 to the position to be cleared. The interrupt request for the UDC remains active as long as the value of the USIRx is non-zero.

12.6.10.1 Endpoint 0 Interrupt Request (IR0)

The endpoint 0 interrupt request is set if the IM0 bit in the UDC control register is cleared and, in the UDC endpoint 0 control/status register, the OUT packet ready bit is set, the IN packet ready bit is cleared, or the sent STALL bit is set. The IR0 bit is cleared by writing a 1 to it.

12.6.10.2 Endpoint 1 Interrupt Request (IR1)

The interrupt request bit is set if the IM1 bit in the UDC interrupt control register is cleared and the IN packet complete (TPC) in UDC endpoint 1 control/status register is set. The IR1 bit is cleared by writing a 1 to it.

12.6.10.3 Endpoint 2 Interrupt Request (IR2)

The interrupt request bit is set if the IM2 bit in the UDC interrupt control register is cleared and the OUT packet ready bit (RPC) in the UDC endpoint 2 control/status register is set. The IR2 bit is cleared by writing a 1 to it.

12.6.10.4 Endpoint 3 Interrupt Request (IR3)

The interrupt request bit is set if the IM3 bit in the UDC interrupt control register is cleared and the IN packet complete (TPC) or Transmit Underrun (TUR) in UDC endpoint 3 control/status register is set. The IR3 bit is cleared by writing a 1 to it

12.6.10.5 Endpoint 4 Interrupt Request (IR4)

The interrupt request bit is set if the IM4 bit in the UDC interrupt control register is cleared and the OUT packet ready (RPC) or receiver overflow (ROF) in the UDC endpoint 4 control/status register or the Isochronous Error Endpoint 4 (IPE4) in the UFNHR are set. The IR4 bit is cleared by writing a 1 to it.

12.6.10.6 Endpoint 5 Interrupt Request (IR5)

The interrupt request bit is set if the IM5 bit in the UDC interrupt control register is cleared and the IN packet complete (TPC) in UDC endpoint 5 control/status register is set. The IR5 bit is cleared by writing a 1 to it.

12.6.10.7 Endpoint 6 Interrupt Request (IR6)

The interrupt request bit gets set if the IM6 bit in the UDC interrupt control register is cleared and the IN packet complete (TPC) in UDC endpoint 6 control/status register gets set. The IR6 bit is cleared by writing a one to it.

12.6.10.8 Endpoint 7 Interrupt Request (IR7)

The interrupt request bit is set if the IM7 bit in the UDC interrupt control register is cleared and the OUT packet ready bit (RPC) in the UDC endpoint 7 control/status register is set. The IR7 bit is cleared by writing a 1 to it.

Poad/Mrite and Poad-Only

HEIDU

Table 12-29. UDC Status / Interrupt Register 0

		0h 4	4060 0058		USIR)	Read/W	rite and Rea	ad-Only	
Bit	31:8	7	6	5	4	3	2	1	0	
	Reserved	IR7	IR6	IR5	IR4	IR3	IR2	IR1	IR0	
Reset	Х	0	0	0	0	0	0	0	0	
		Bits	Name			Des	cription			
		0	IR0	'	equest Endp nt 0 needs s	`	d/write 1 to clo	ear)		
		1	IR1		equest Endp nt 1 needs s	•	d/write 1 to clo	ear)		
		2	IR2	Interrupt Request Endpoint 2 (read/write 1 to clear) 1 – Endpoint 2 needs service.						
		3	IR3		equest Endp nt 3 needs s	•	d/write 1 to cle	ear)		
		4	IR4	· ·	equest Endp nt 4 needs s	`	d/write 1 to clo	ear)		
		5	IR5	Interrupt Request Endpoint 5 (read/write 1 to clear) 1 – Endpoint 5 needs service.						
		6	IR6	Interrupt Request Endpoint 6 (read/write 1 to clear) 1 – Endpoint 6 needs service.						
		7	IR7	Interrupt Request Endpoint 7 (read/write 1 to clear) 1 – Endpoint 7 needs service.						
		31:8	Reserved	Reserved f	or Future U	se				

12.6.11 UDC Status/Interrupt Register 1 (USIR1)

12.6.11.1 Endpoint 8 Interrupt Request (IR8)

The interrupt request bit is set if the IM8 bit in the UDC interrupt control register is cleared and the IN packet complete (TPC) or Transmit Underrun (TUR) in UDC endpoint 8 control/status register is set. The IR8 bit is cleared by writing a 1 to it.

12.6.11.2 Endpoint 9 Interrupt Request (IR9)

The interrupt request bit is set if the IM9 bit in the UDC interrupt control register is cleared and the OUT packet ready (RPC) or receiver overflow (ROF) in the UDC endpoint 9 control/status register or the Isochronous Error Endpoint 9 (IPE9) in the UFNHR are set. The IR9 bit is cleared by writing a 1 to it.

12.6.11.3 Endpoint 10 Interrupt Request (IR10)

The interrupt request bit is set if the IM10 bit in the UDC interrupt control register is cleared and the IN packet complete (TPC) or in UDC endpoint 10 control/status register is set. The IR10 bit is cleared by writing a 1 to it.

12.6.11.4 Endpoint 11 Interrupt Request (IR11)

The interrupt request bit is set if the IM11 bit in the UDC interrupt control register is cleared and the IN packet complete (TPC) in UDC endpoint 11 control/status register is set. The IR11 bit is cleared by writing a 1 to it.

12.6.11.5 Endpoint 12 Interrupt Request (IR12)

The interrupt request bit is set if the IM12 bit in the UDC interrupt control register is cleared and the OUT packet ready bit (RPC) in the UDC endpoint 12 control/status register is set. The IR12 bit is cleared by writing a 1 to it.

12.6.11.6 Endpoint 13 Interrupt Request (IR13)

The interrupt request bit is set if the IM13 bit in the UDC interrupt control register is cleared and the IN packet complete (TPC) or Transmit Underrun (TUR) in UDC endpoint 13 control/status register is set. The IR13 bit is cleared by writing a 1 to it.

12.6.11.7 Endpoint 14 Interrupt Request (IR14)

The interrupt request bit is set if the IM14 bit in the UDC interrupt control register is cleared and the OUT packet ready (RPC) or receiver overflow (ROF) in the UDC endpoint 14 control/status register or the Isochronous Error Endpoint 14 (IPE14) in the UFNHR are set. The IR14 bit is cleared by writing a 1 to it.

12.6.11.8 Endpoint 15 Interrupt Request (IR15)

The interrupt request bit is set if the IM15 bit in the UDC interrupt control is set. The IR15 bit is cleared by writing a 1 to it.

Table 12-30. UDC Status / Interrupt Register 1

		0h 4060 005C			USIR1			Read/Write and Read-Only			
Bit	31:8	7	6	5	4	3	2	1	0		
	Reserved	IR15	IR14	IR13	IR12	IR11	IR10	IR9	IR8		
Reset	Х	0	0	0	0	0	0	0	0		
		Bits	Name			Description					
		0	IR8		Request End int 8 needs	. `	ad/write 1 to	clear)			
		1	IR9		Request End int 9needs s	. `	ad/write 1 to	clear)			
		2	IR10	Interrupt Request Endpoint 10 (read/write 1 to clear) 1 – Endpoint 10 needs service.							
		3	IR11	_	Request End int 11 needs		ad/write 1 to	clear)			
		4	IR12		Request End int 12 needs	. `	ead/write 1 to	o clear)			
		5	IR13		Request End int 13 needs		ead/write 1 to	o clear)			
		6	IR14	Interrupt Request Endpoint 14 (read/write 1 to clear) 1 – Endpoint 14 needs service.							
		7	IR15	•	Request End int 15 needs		ead/write 1 to	o clear)			
		31:8	Reserved								

12.6.12 UDC Frame Number High Register (UFNHR)

The UDC frame number high register holds the three most significant bits of the frame number contained in the last received SOF packet, the isochronous OUT endpoint error status, and the SOF interrupt status/interrupt mask bit.

12.6.12.1 UDC Frame Number MSB (FNMSB)

The UFNHR[FNMSB] is the three most significant bits of the 11-bit frame number contained in the last received SOF packet. The remaining bits are located in the UFNLR. This information is used for isochronous transfers. These bits are updated every SOF.

12.6.12.2 Isochronous Packet Error Endpoint 4 (IPE4)

The isochronous packet error for Endpoint 4 is set if Endpoint 4 is loaded with a data packet that is corrupted. This status bit is used in the interrupt generation of endpoint 4. To maintain synchronization, the software must monitor this bit when it services an SOF interrupt and reads the frame number. This bit is not set if the token packet is corrupted or if the sync or PID fields of the data packet are corrupted.

12.6.12.3 Isochronous Packet Error Endpoint 9 (IPE9)

The isochronous packet error for Endpoint 9 is set if Endpoint 9 is loaded with a data packet that is corrupted. This status bit is used in the interrupt generation of endpoint 9. To maintain synchronization, software must monitor this bit when it services the SOF interrupt and reads the frame number. This bit is not set if the token packet is corrupted or if the sync or PID fields of the data packet are corrupted.

12.6.12.4 Isochronous Packet Error Endpoint 14 (IPE14)

The isochronous packet error for Endpoint 14 is set if Endpoint 14 is loaded with a data packet that is corrupted. This status bit is used in the interrupt generation of endpoint 14. To maintain synchronization, software must monitor this bit when it services the SOF interrupt and reads the frame number. This bit is not set if the token packet is corrupted or if the sync or PID fields of the data packet are corrupted.

12.6.12.5 Start of Frame Interrupt Mask (SIM)

The UFNHR[SIM] bit is used to mask or enable the SOF interrupt request. When UFNHR[SIM]=1, the interrupt is masked and the SIR bit is not allowed to be set. When UFNHR[SIM]=0, the interrupt is enabled and when an interruptible condition occurs in the receiver, the UFNHR[SIR] bit is set. Setting UFNHR[SIM] to a 1 does not affect the current state of UFNHR[SIR]. It only blocks future zero to one transitions of UFNHR[SIR].

12.6.12.6 Start of Frame Interrupt Request (SIR)

The interrupt request bit is set if the UFNHR[SIM] bit is cleared and an SOF packet is received. The UFNHR[SIR] bit is cleared by writing a 1 to it.

Table 12-31. UDC Frame Number High Register

		0h	4060 0060		UFNHI	₹	Read		
Bit	31:8	7	6	5	4	3	2	1	0
	Reserved	SIR	SIM	IPE14	IPE9	IPE4	3-Bit F	rame Numb	er MSB
Reset	X	0	1	0	0	0	0	0	0
		Bits	Name	Description					
		2:0	FNMSB	Frame Number MSB. Most significant 3-bits of 11-bit frame number associated with last receive SOF.					
		3	IPE4	Isochronous Packet Error Endpoint 4 (read/write 1 to clear) 1 – Status indicator that data in the endpoint FIFO is corrupted					ed
		4	IPE9	Isochronous Packet Error Endpoint 9 (read/write 1 to clear) 1 – Status indicator that data in the endpoint FIFO is corrupted					ed
		5	IPE14			•	14 (read/write endpoint FIF0	,	

Table 12-31. UDC Frame Number High Register

		0h 4060 0060		UFNHR				Read	
Bit	31:8	7	6	5	4	3	2	1	0
	Reserved	SIR	SIM	IPE14	IPE9	IPE4	3-Bit F	rame Numb	er MSB
Reset	Х	0	1	0	0	0	0	0	0
		Bits	Name	Description					
		6	SIM	SOF interrupt mask 0 – SOF interrupt enabled. 1 – SOF interrupt disabled.					
		7	SIR	SOF Interrupt Request (read/write 1 to clear) 1 – SOF has been received. Reserved for Future Use					
		31:8	Reserved						

12.6.13 UDC Frame Number Low Register (UFNLR)

The UDC frame number low register is the eight least significant bits of the 11-bit frame number contained in the last received SOF packet. The three remaining bits are located in the UFNHR. This information is used for isochronous transfers. These bits are updated every SOF.

Table 12-32. UDC Frame Number Low Register

		0h	4060 0064	UFNLR				Read-Only		
Bit	31:8	7	6	5	4	3	2	1	0	
	Reserve d			8-Bit Frame Number LSB						
Reset	Х	0	0	0	0	0	0	0	0	
		Bits	Name	Description						
		7:0	FNLSB	Frame number LSB Least significant 8-bits of frame number associated with last received SOF.					t received	
		31:8	Reserved	Reserved	Reserved for Future Use					

12.6.14 UDC Byte Count Register x (UBCRx), Where x is 2, 4, 7, 9, 12, or 14.

The byte count register maintains the remaining byte count in the active buffer of OUT endpoint(x).

12.6.14.1 Endpoint x Byte Count (BC[7:0])

The byte count is updated after each byte is read. When software receives an interrupt that indicates the endpoint has data, it can read the byte count register to determine the number of bytes that remain to be read. The number of bytes that remain in the input buffer is equal to the byte count +1.

Table 12-33. UDC Byte Count Register x, Where x is 2, 4, 7, 9, 12, or 14 0h 4060 0068 UBCR2 Read-Only 0h 4060 006C **UBCR4** Read-Only 0h 4060 0070 **UBCR7** Read-Only 0h 4060 0074 **UBCR9** Read-Only 0h 4060 0078 UBCR12 Read-Only 0h 4060 007C UBCR14 Read-Only Bit 31:8 5 2 0 Reserved BC[7:0] Х 0 0 0 0 0 0 Reset 0 0 Bits Name Description Byte Count (read-only). Number of bytes in the FIFO is Byte BC 7:0 Count plus 1 (BC+1). Reserved for Future Use 31:8 Reserved

12.6.15 UDC Endpoint 0 Data Register (UDDR0)

The UDC Endpoint 0 data register is an 16-entry by 8-bit bidirectional FIFO. When the host transmits data to the UDC Endpoint 0, the Megacell reads the UDC endpoint 0 register to access the data. When the UDC sends data to the host, the Megacell writes the data to be sent in the UDC endpoint 0 register. The Megacell can only read and write the FIFO at specific points in a control sequence. The direction that the FIFO flows is controlled by the UDC. Normally, the UDC is in an idle state, waiting for the host to send commands. When the host sends a command, the UDC fills the FIFO with the command from the host and the Megacell reads the command from the FIFO when it arrives. The only time the Megacell may write the endpoint 0 FIFO is after a valid command from the host is received and it requires a transmission in response.

Table 12-34. UDC Endpoint 0 Data Register

		0h 4	060 0080		UDDR0			Read/Write		
Bit	31:8	7	6	5	4	3	2	1	0	
	Reserved		Bottom of Endpoint 0 FIFO (for Reads)							
Reset	Х	0	0	0	0	0	0	0	0	
	31:8	7	6	5	4	3	2	1	0	
	Reserved	Top of Endpoint 0 FIFO (for Writes)								
Reset	Х	0	0	0	0	0	0	0	0	

Bits	Name	Description			
7:0	DATA	Top/bottom of endpoint 0 FIFO data. Read – Bottom of endpoint 0 FIFO data. Write – Top of endpoint 0 FIFO data.			
31:8	Reserved	Reserved for Future Use			

12.6.16 UDC Data Register x (UDDRx), Where x is 1, 6, or 11

Endpoint(x) is a double-buffered bulk IN endpoint that is 64 bytes deep. Data can be loaded via DMA or direct Megacell writes. Because it is double buffered, up to two packets of data may be loaded for transmission.

Table 12-35. UDC Endpoint x Data Register, Where x is 1, 6, or 11

		0h	4060 0100	UDDR1				Write				
		0h	4060 0600		UDDR6			Write				
		0h	4060 0B00	UDDR11			Write					
Bit	31:8	7	6	5	4	3	2	1	0			
	Reserved				8-Bit [Data						
Reset	Х	0	0	0	0	0	0	0	0			
Bits Name				Description								
	7:0 DATA Top of endpoin					nt data currently being loaded						
	31:8 Reserved Reserved				Future Use							

12.6.17 UDC Data Register x (UDDRx), Where x is 2, 7, or 12

Endpoint(x) is a double-buffered bulk OUT endpoint that is 64 bytes deep. The UDC will generate either an interrupt or DMA request as soon as the EOP is received. Since it is double buffered, up to two packets of data may be ready. Via DMA or by direct read from the Megacell, the data can be removed from the UDC. If one packet is being removed and the packet behind it has already been received, the UDC will issue a NAK to the host the next time it sends an OUT packet to endpoint(x). This NAK condition will remain in place until a full packet space is available in the UDC at Endpoint(x).

0h 4060 0180 UDDR2 Read 0h 4060 0680 **UDDR7** Read 0h 4060 0B80 UDDR12 Read Bit 31:8 7 6 5 3 2 1 0 Reserve 8-Bit Data d Rese X 0 0 0 0 0 0 0 0 Bits Name Description 7:0 DATA Top of endpoint data currently being read Reserved for Future Use 31:8 Reserved

Table 12-36. UDC Endpoint x Data Register, Where x is 2, 7, or 12

12.6.18 UDC Data Register x (UDDRx), Where x is 3, 8, or 13

Endpoint(x) is a double-buffered isochronous IN endpoint that is 256 bytes deep. Data can be loaded via DMA or direct Megacell writes. Because it-is double buffered, up to two packets of data may be loaded for transmission.

0h 4060 0200 UDDR3 Write 0h 4060 0700 **UDDR8** Write 0h 4060 0C00 UDDR13 Write Bit 7 31:8 6 5 3 2 1 0 Reserved 8-Bit Data Х 0 0 0 0 0 0 0 0 Reset Bits Name Description 7:0 DATA Top of endpoint data currently being loaded

Reserved for Future Use

Table 12-37. UDC Endpoint x Data Register, where x is 3, 8, or 13

Reserved

31:8

12.6.19 UDC Data Register x (UDDRx), Where x is 4, 9, or 14

Endpoint(x) is a double-buffered isochronous OUT endpoint that is 256 bytes deep. The UDC generates an interrupt or DMA request when the EOP is received. Because it is double-buffered, up to two packets of data may be ready. The data can be removed from the UDC via DMA or by a direct read from the Megacell. If one packet is being removed and the packet behind it has already been received, the UDC issues a NAK to the host the next time it sends an OUT packet to Endpoint(x). This NAK condition remains in place until a full packet space is available in the UDC at Endpoint(x).

Table 12-38. UDC Endpoint x Data Register, Where x is 4, 9, or 14

		0h	4060 0400	UDDR4				Read				
		0h	4060 0900	UDDR9				Read				
		0h	4060 0E00		UDDR14			Read				
Bit	31:8	7	6	5	4	3	2	1	0			
	Reserved				8-Bit	Data						
Reset	Х	0	0	0	0	0	0	0	0			
		Bits	Name	Description								
7:0 DATA Top of 6					point data currently being read							
31:8 Reserved Reserved				for Future U	se							

12.6.20 UDC Data Register x (UDDRx), Where x is 5, 10, or 15

Endpoint(x) is an interrupt IN endpoint that is 8 bytes deep. Data must be loaded via direct Megacell writes. Because the USB system is a host initiator model, the host must poll Endpoint 5 to determine interrupt conditions. The UDC can not initiate the transaction.

Table 12-39. UDC Endpoint x Data Register, Where x is 5, 10, or 15

		0h 4	4060 00A0	UDDR5				Write				
		0h	4060 00C0	UDDR10			Write					
		0h	4060 00E0	UDDR15			Write					
Bit	31:8	7	6	5	4	3	2	1	0			
	Reserved				8-Bit	Data						
Reset	Х	0	0	0	0	0	0	0	0			
		Bits	Name			Desci	ription					
7:0 DATA			Top of endpoint data currently being loaded									
31:8 Res			Reserved	Reserved	for Future L	Jse						

12.6.21 UDC Register Locations

Table 12-40 shows the registers associated with the UDC and the physical addresses used to access them.

Table 12-40. UDC Control, Data, and Status Register Locations (Sheet 1 of 2)

Address	Name	Description
0h 4060 0000	UDCCR	UDC control register
0h 4060 0004	Reserved	Reserved for Future Use
0h 4060 0008	Reserved	Reserved for Future Use
0h 4060 000C	Reserved	Reserved for Future Use
0h 4060 0010	UDCCS0	UDC Endpoint 0 Control/Status Register
0h 4060 0014	UDCCS1	UDC Endpoint 1 (IN) Control/Status Register
0h 4060 0018	UDCCS2	UDC Endpoint 2 (OUT) Control/Status Register
0h 4060 001C	UDCCS3	UDC Endpoint 3 (IN) Control/Status Register
0h 4060 0020	UDCCS4	UDC Endpoint 4 (OUT) Control/Status Register
0h 4060 0024	UDCCS5	UDC Endpoint 5 (Interrupt) Control/Status Register
0h 4060 0028	UDCCS6	UDC Endpoint 6 (IN) Control/Status Register
0h 4060 002C	UDCCS7	UDC Endpoint 7 (OUT) Control/Status Register
0h 4060 0030	UDCCS8	UDC Endpoint 8 (IN) Control/Status Register
0h 4060 0034	UDCCS9	UDC Endpoint 9 (OUT) Control/Status Register
0h 4060 0038	UDCCS10	UDC Endpoint 10 (Interrupt) Control/Status Register
0h 4060 003C	UDCCS11	UDC Endpoint 11 (IN) Control/Status Register
0h 4060 0040	UDCCS12	UDC Endpoint 12 (OUT) Control/Status Register
0h 4060 0044	UDCCS13	UDC Endpoint 13 (IN) Control/Status Register
0h 4060 0048	UDCCS14	UDC Endpoint 14 (OUT) Control/Status Register
0h 4060 004C	UDCCS15	UDC Endpoint 15 (Interrupt) Control/Status Register
0h 4060 0050	UICR0	UDC Interrupt Control Register 0
0h 4060 0054	UICR1	UDC Interrupt Control Register 1
0h 4060 0058	USIR0	UDC Status Interrupt Register 0
0h 4060 005C	USIR1	UDC Status Interrupt Register 1
0h 4060 0060	UFNHR	UDC Frame Number Register High
0h 4060 0064	UFNLR	UDC Frame Number Register Low
0h 4060 0068	UBCR2	UDC Byte Count Register 2
0h 4060 006C	UBCR4	UDC Byte Count Register 4
0h 4060 0070	UBCR7	UDC Byte Count Register 7
0h 4060 0074	UBCR9	UDC Byte Count Register 9
0h 4060 0078	UBCR12	UDC Byte Count Register 12
0h 4060 007C	UBCR14	UDC Byte Count Register 14
0h 4060 0080	UDDR0	UDC Endpoint 0 Data Register
0h 4060 0100	UDDR1	UDC Endpoint 1 Data Register

Table 12-40. UDC Control, Data, and Status Register Locations (Sheet 2 of 2)

Address	Name	Description
0h 4060 0180	UDDR2	UDC Endpoint 2 Data Register
0h 4060 0200	UDDR3	UDC Endpoint 3 Data Register
0h 4060 0400	UDDR4	UDC Endpoint 4 Data Register
0h 4060 00A0	UDDR5	UDC Endpoint 5 Data Register
0h 4060 0600	UDDR6	UDC Endpoint 6 Data Register
0h 4060 0680	UDDR7	UDC Endpoint 7 Data Register
0h 4060 0700	UDDR8	UDC Endpoint 8 Data Register
0h 4060 0900	UDDR9	UDC Endpoint 9 Data Register
0h 4060 00C0	UDDR10	UDC Endpoint 10 Data Register
0h 4060 0B00	UDDR11	UDC Endpoint 11 Data Register
0h 4060 0B80	UDDR12	UDC Endpoint 12 Data Register
0h 4060 0C00	UDDR13	UDC Endpoint 13 Data Register
0h 4060 0E00	UDDR14	UDC Endpoint 14 Data Register
0h 4060 00E0	UDDR15	UDC Endpoint 15 Data Register

AC97 Controller Unit

13.1 Overview

The AC97 Controller Unit (ACUNIT) of the PXA250 and PXA210 application processors supports the AC97 revision 2.0 features listed in Section 13.2, "Feature List". The ACUNIT also supports audio controller link (AC-link). AC-link is a serial interface for transferring digital audio, modem, Mic-in, Codec register control, and status information.

The AC97 Codec sends the digitized audio samples that the ACUNIT stores in memory. For playback or synthesized audio production, the processor retrieves stored audio samples and sends them to the Codec through the AC-link. The external digital-to-analog converter (DAC) in the Codec then converts the audio sample to an analog audio waveform.

This chapter describes the programming model for the ACUNIT. The information in this chapter requires an understanding of the AC97 revision 2.0 specification.

Note: The ACUNIT and the I²S Controller may not be used at the same time.

13.2 Feature List

The application processor ACUNIT supports the following AC97 features:

- Independent channels for stereo Pulse Code Modulated (PCM) In, Stereo PCM Out, Modem Out, Modem-In and mono Mic-in
 - All of the above channels support only 16-bit samples in hardware. Samples less than 16 bits are supported through software.
- Multiple sample rate AC97 2.0 Codecs (48 kHz and below). The ACUNIT depends on the Codec to control the varying rate.
- Read/write access to AC97 registers
- Secondary Codec support
- Two Receive FIFOs (32-bit, 16 entries)
- Three Transmit FIFOs (32-bit, 16 entries)

The application processor ACUNIT does not support these optional AC97 features:

- Double-rate sampling (n+1 sample for PCM L, R & C)
- 18- and 20-bit sample lengths

13.3 Signal Description

The AC97 signals form the AC-link, which is a point-to-point synchronous serial interconnect that supports full-duplex data transfers. All digital audio streams, Modem line Codec streams, and command/status information are communicated over the AC-link. The AC-link uses General Purpose I/Os (GPIOs). Software must reconfigure the GPIOs to use them as the AC-link. The AC-link pins are listed and described in Table 13-41.

Table 13-41. External Interface to Codecs

Name	Direction	Description summary
nACRESET	0	Active-low Codec reset. The Codec's registers reset when nACRESET is asserted.
GP28/BITCLK	I	12.288 MHz bit-rate clock.
GP31/SYNC O 48		48 kHz frame indicator and synchronizer.
GP30/SDATA_OUT	0	Serial audio output data to Codec for digital-to-analog conversion.
GP29/SDATA_IN_0	1	Serial audio input data from Primary Codec.
GP32/SDATA_IN_1	I	Serial audio input data from Secondary Codec.

13.3.1 Signal Configuration Steps

- 1. Configure SYNC and SDATA_OUT as outputs.
- 2. Configure BITCLK, SDATA IN 0, and SDATA IN 1 as inputs.
- 3. nACRESET is a dedicated output. It remains asserted on power-up. Complete these steps to deassert nACRESET:
 - a. Configure the other AC97 signals as previously described.
 - b. In the Global Control Register (GCR), Set the GCR[COLD_RST] bit. Refer to Table 13-48, "Global Control Register" on page 13-20 for more details.

Note: Refer to Section 4.1.3, "GPIO Register Definitions" on page 4-6 for details on programing the GPDR and GAFR for use with the ACUNIT.

13.3.2 Example AC-link

Figure 13-6 shows an example interconnect for an AC-link. The ACUNIT supports one or two Codecs on the AC-link. SDATA_IN_1 is not needed if only a Primary Codec is connected.

AC97 Primary Codec

Figure 13-6. Data Transfer Through the AC-link

13.4 AC-link Digital Serial Interface Protocol

Each AC97 Codec incorporates a five-pin digital serial interface that links it to the ACUNIT. AC-link is a full-duplex, fixed-clock, PCM digital stream. It employs a time division multiplexed (TDM) scheme to handle control register accesses and multiple input and output audio streams. The AC-link architecture divides each audio frame into 12 outgoing and 12 incoming data streams. Each stream has 20-bit sample resolution and requires a DAC and an analog-to-digital converter (ADC) with a minimum 16-bit resolution. The ACUNIT supports the data streams shown in Table 13-42.

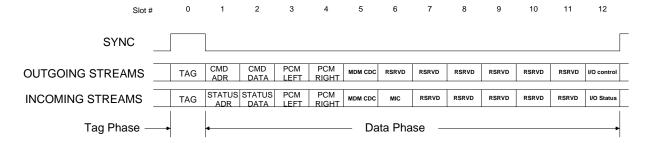
Table 13-42. Supported Data Stream Formats (Sheet 1 of 2)

Channel	Slots	Comments
PCM Playback	Two output slots	Two-channel composite PCM output stream
PCM Record data	Two input slots	Two-channel composite PCM input stream
Codec control	Two output slots	Control register write port
Codec status	Two input slots	Control register read port
Modem Line Codec Output	One output slot	Modem line Codec DAC input stream
Modem Line Codec Input	One input slot	Modem line Codec ADC output stream

Table 13-42. Supported Data Stream Formats (Sheet 2 of 2)

Channel	Slots	Comments
Dedicated Microphone Input	One input slot	Dedicated microphone input stream in support of stereo AEC and other voice applications.
I/O Control	One output slot	One slot dedicated to GPOs on the modem Codec.
I/O Status	One input slot	One slot dedicated to status from GPIs in the modem Codec. Data is returned on every frame.

The ACUNIT provides synchronization for all data transaction on the AC-link. A data transaction is made up of 256 bits of information broken up into groups of 13 time slots and is called a frame. Time slot 0 is called the Tag Phase and is 16 bits long. The other 12 time slots are called the Data Phase. The Tag Phase contains one bit that identifies a valid frame and 12 bits that identify the time slots in the Data Phase that contain valid data. Each time slot in the Data Phase is 20 bits long.

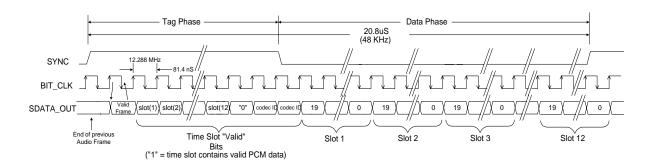

A frame begins when SYNC goes high. The amount of time that SYNC is high corresponds to the Tag Phase. AC97 frames occur at fixed 48 kHz intervals and are synchronous to the 12.288 MHz bit rate clock, BITCLK.

The controller and the Codec use the SYNC and BITCLK to determine when to send transmit data and when to sample receive data. A transmitter transitions the serial data stream on each rising edge of BITCLK and a receiver samples the serial data stream on falling edges of BITCLK. The transmitter must tag the valid slots in its serial data stream. The valid slots are tagged in slot 0.

Serial data on the AC-link is ordered most significant bit (MSB) to least significant bit (LSB). The Tag Phase's first bit is bit 15 and the first bit of each slot in Data Phase is bit 19. The last bit in any slot is bit 0.

Figure 13-7 shows Tag and Data Phase organization for the controller and the Codec. The figure also lists the slot definitions that the ACUNIT supports.

Figure 13-7. AC97 Standard Bidirectional Audio Frame



13.4.1 AC-link Audio Output Frame (SDATA_OUT)

The audio output frame data stream corresponds to the multiplexed bundles that make up the digital output data that targets the AC97 DAC inputs and control registers. Each audio output frame supports up to twelve 20-bit outgoing data time slots. The ACUNIT does not generate samples larger than 16 bits. The four least significant bits are padded with zeroes.

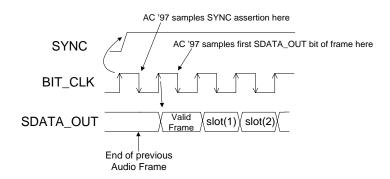


Figure 13-8. AC-link Audio Output Frame

A new audio output frame begins with a low-to-high SYNC transition synchronous to BITCLK's rising edge. BITCLK's falling edge immediately follows and AC97 samples SYNC's assertion. BITCLK's falling edge marks the instance that AC-link's sides are each aware that a new audio frame has started. On BITCLK's next rising edge, the ACUNIT transitions SDATA_OUT into the slot 0's first bit position (valid frame bit). Each new bit position is presented to AC-link on a BITCLK rising edge and then sampled by AC97 on the following BITCLK falling edge. This sequence ensures that data transitions and subsequent sample points for both incoming and outgoing data streams are time aligned.

Figure 13-9. Start of Audio Output Frame

The SDATA_OUT composite stream is MSB-justified (MSB first). The ACUNIT fills all non-valid slot bit positions with zeroes. If fewer than 20 valid bits exist in an assigned valid time slot, the ACUNIT stuffs all trailing non-valid bit positions of the 20-bit slot with zeroes.

For example, if a 16-bit sample stream is being played to an AC97 DAC, the first 16 bit positions are presented to the DAC MSB-justified. They are followed by the next four bit positions that the ACUNIT stuffs with zeroes. This process ensures that the least significant bits do not introduce any DC biasing, regardless of the implemented DAC's resolution (16-, 18-, or 20-bit).

Note: When the ACUNIT transmits mono audio sample streams, software must ensure that the left and right sample stream time slots are filled with identical data.

13.4.1.1 Slot 0: Tag Phase

In slot 0, the first bit is a global bit (SDATA_OUT slot 0, bit 15) that flags the validity for the entire audio frame. If the valid frame bit is a 1, the current audio frame contains at least one slot time of valid data. The next 12 bit positions sampled by AC97 indicate which of the corresponding 12 time slots contain valid data. Bits 0 and 1 of slot 0 are used as Codec ID bits for I/O reads and writes to the Codec registers as described in the next section. This way, data streams of differing sample rates can be transmitted across AC-link at its fixed 48 kHz audio frame rate. The Codec can control the output sample rate of the controller using the SLOTREQ bits as described later (in the Input frame description). The following diagram illustrates the time slot-based AC-link protocol.

Codec Ready, sent by the Codec on its data out stream in slot 0 bit 15, is not expected to change during normal operation. The AC97 Specification revision 2.0 requires that a Codec only change its Codec Ready status in response to a powerdown (PR) state change issued by the controller. The controller hardware by itself does not monitor the Codec Ready for sending or receiving data. The controller stores Codec Ready in GSR[PCR] for a primary Codec and GSR[SCR] for a secondary Codec purely for software to trigger a DMA or a programmed I/O operation. The controller only samples Codec Ready valid once and then ignores it for subsequent frames. Codec Ready is only resampled after a PR state change.

13.4.1.2 Slot 1: Command Address Port

The command port controls features and monitors status for AC97 functions including, but not limited to, mixer settings and power management (refer to AC97 Specification revision 2.0 for more details).

The control-interface architecture supports up to sixty-four16-bit read/write registers, addressable on even byte boundaries. Only accesses to even registers (0x00, 0x02, etc.) are valid. Accesses to odd registers (0x01, 0x03, etc.) are not valid.

Audio output frame slot 1 communicates control register address and write/read command information to the ACUNIT.

Two Codecs are connected to the single SDATA_OUT. To address the primary and secondary Codecs individually, follow these steps:

To access the primary Codec:

- 1. Set the Valid Frame bit (slot 0, bit 15)
- 2. Set the valid bits for slots 1 and 2 (slot 0, bits 14 and 13)
- 3. Write 0b00 to the Codec ID field (slot 0, bits 1 and 0)
- 4. Specify the read/write direction of the access (slot 1, bit 19).
- 5. Specify the index to the Codec register (slot 1, bits 18-12)
- 6. If the access is a write, write the data to the command data port (slot 2, bits 19-4)

To access the secondary Codec:

- 1. Set the Valid Frame bit (slot 0, bit 15)
- 2. Clear the valid bits for slots 1 and 2 (slot 0, bits 14 and 13)
- 3. Write a non-zero value (0b01, 0b10, 0b11) to the Codec ID field (slot 0, bits 1 and 0)
- 4. Specify the read/write direction of the access (slot 1, bit 19).

- 5. Specify the index to the Codec register (slot 1, bits 18-12)
- 6. If the access is a write, write the data to the command data port (slot 2, bits 19-4).

Table 13-43. Slot 1 Bit Definitions

Bit	Name	Description
Bit(19)	RW	1 = read, 0 = write
Bit(18:12)	IDX	Code register index
Bit(11:0)	Reserved	Stuff with 0s

Only one I/O cycle can be pending across the AC-link at any time. The ACUNIT uses write and read posting on I/O accesses across the link. For instance, a read of a Codec register returns immediately, before the access crosses the link. To get the real data, software must monitor the CAR[CAIP] bit. Software must verify that the bit is not set before an access attempt to ensure it is the first access. A set CAR[CAIP] bit indicates that a Codec access is pending. After the CAR[CAIP] bit is cleared, the next Codec access (read or write) can go through.

The exception to posted accesses is reads to the Codec GPIO Pin Status register (address 0x54). Codec GPIO Pin Status reads are returned immediately with the data from the last slot 12 receive. A Codec with a GPIO Pin Status register must constantly send the status of the register in slot 12.

For reads to the Codec, the controller gives the Codec a maximum of four frames to respond, after which if no response is received, it returns a dummy read completion to the CPU (0xFFFF_FFFF), and also sets the read completion status bit, GSR[RDCS].

13.4.1.3 Slot 2: Command Data Port

The command data port delivers 16-bit control register write data in the event that the current command port operation is a write cycle (as indicated by slot 1, bit 19).

Table 13-44. Slot 2 Bit Definitions

Bit	Name	Description
Bit(19:4)	Control register write data	Stuffed with 0s if current operation is a read
Bit(3:0)	Reserved	Stuffed with 0s

If the current command port operation is a read, the ACUNIT fills the entire slot time with zeroes.

13.4.1.4 Slot 3: PCM Playback Left Channel

Audio output frame slot 3 is the composite digital audio left playback stream. If a sample stream is transferred with a resolution that is less than 20 bits, the ACUNIT fills all trailing non-valid bit positions in the slot with zeroes.

13.4.1.5 Slot 4: PCM Playback Right Channel

Audio output frame slot 4 is the composite digital audio right playback stream. The ACUNIT fills all trailing non-valid bit positions in the slot with zeroes.

13.4.1.6 Slot 5: Modem Line Codec

Audio output frame slot 5 contains the MSB justified modem DAC input data if the line Codec is supported. The optional modem DAC input resolution can be implemented as 16, 18, or 20 bits. If the modem line Codec is supported, the ACUNIT driver determines the DAC resolution at boot time. During normal runtime operation, the ACUNIT fills all trailing non-valid bit positions in the slot with zeroes. The modem Codec may be a separate Codec on the secondary line or integrated with the audio Codec.

13.4.1.7 Slots 6-11: Reserved

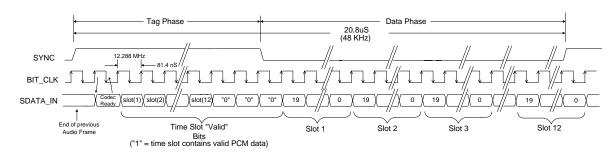
These audio output frame slots are reserved for future use and the ACUNIT fills them with zeroes.

13.4.1.8 Slot 12: I/O Control

Slot 12 has 16 MSB bits for GPIO Control (output) and Status (input). The bits are used to minimize access latency that results from changing conditions. The bits' values are the values written to the Codec GPIO Status Register at address 0x54 in the modem Codec I/O space. The following rules govern slot 12 use:

- 1. Slot 12 is initially marked invalid by default.
- 2. A write to address 0x54 in Codec IO space transfers the data out of slot 12 in the next frame and slot 12 is marked valid. The data is also sent out on slots 1 and 2.
- 3. After the first write to address 0x54, slot 12 remains valid for all subsequent frames. The data transmitted on slot 12 is the data last written to address 0x54. Any subsequent write to the register sends the new data out on the next frame.
- 4. Following a system reset or AC97 cold reset, slot 12 is invalidated. Slot 12 remains invalid until the next write to the address 0x54.

13.4.2 AC-link Audio Input Frame (SDATA_IN)


The ACUNIT has two SDATA_IN lines, a primary and a secondary. Each line can have Codecs attached. The type of Codec attached determines which slots are valid or invalid. The data slots on the two inputs are completely orthogonal (i.e., no two data slots at the same location will be valid on both lines).

Multiple input data streams are received and multiplexed on slot boundaries as dictated by the slot valid bits in each stream. Each AC-link audio input frame consists of twelve 20-bit time slots. Slot 0 is reserved and contains 16 bits that are used for AC-link protocol infrastructure.

Software must poll the first bit in the audio input frame (SDATA_IN slot 0, bit 15) for an indication that the controller is in the Codec ready state before it places the ACUNIT into operation. When the controller is sampled Codec ready, the next 12 bit positions sampled indicate which of the 12 time slots are assigned to input data streams and whether they contain valid data. Figure 13-10, "AC97 Input Frame" illustrates the time slot-based AC-link protocol.

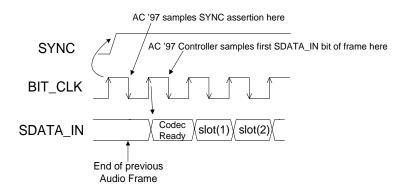


Figure 13-10. AC97 Input Frame

A new audio input frame begins when SYNC transitions from low to high. The low to high transition is synchronous to BITCLK's rising edge. On BITCLK's next falling edge, AC97 samples SYNC's assertion. This falling edge marks the moment that AC-link's sides are each aware that a new audio frame has started. The next time BITCLK rises, the controller transitions SDATA_IN to the first bit position in slot 0 (Codec ready bit). Each new bit position is presented to AC-link on a BITCLK's rising edge and then sampled by ACUNIT on the following BITCLK's falling edge. This sequence ensures that data transitions and subsequent sample points are time aligned for both incoming and outgoing data streams.

Figure 13-11. Start of an Audio Input Frame

The SDATA_IN composite stream is MSB justified (MSB first) and the AC97 Codec fills non-valid bit positions with zeroes. SDATA_IN data is sampled on BITCLK falling edges.

13.4.2.1 Slot 0: Tag Phase

In slot 0, the first bit is a global bit (SDATA_IN slot 0, bit 15) that indicates whether or not the ACUNIT is in the Codec ready state. If the Codec Ready bit is a 0, the ACUNIT is not ready for normal operation. This condition is normal after the power is deasserted on reset and the ACUNIT voltage references are settling. When the AC-link Codec Ready indicator bit is a 1, the AC-link and AC97 control and status registers are fully operational. The ACUNIT must probe the Codec Powerdown Control/Status register to determine which subsections are ready.

13.4.2.2 Slot 1: Status Address Port/SLOTREQ bits

The status port monitors the status for the ACUNIT functions including, but not limited to, mixer settings and power management.

Audio input frame slot 1's stream echoes the control register index for the data to be returned in slot 2, if the controller tags slots 1 and 2 valid during slot 0.

The controller only accepts status data if the accompanying status address matches the last valid command address issued during the most recent read command.

For multiple sample rate output, the Codec examines its sample-rate control registers, its FIFOs' states, and the incoming SDATA_OUT tag bits at the beginning of each audio output frame to determine which SLOTREQ bits to set active (low). SLOTREQ bits asserted during the current audio input frame indicate which output slots require data from the controller in the next audio output frame. For fixed 48 kHz operation, the SLOTREQ bits are set active (low), and a sample is transferred each frame.

For multiple sample-rate input, the tag bit for each input slot indicates whether valid data is present.

For slot 1, the audio input frame's Status Address Port delivers Codec control register read address and multiple sample-rate slot request flags for all output slots. AC97 defines the ten least significant bits as on-demand data request flags for output slots 3-12. For two-channel audio, Codec-only data-request flags corresponding to slots 3 and 4 are meaningful.

Table 13-45. Input Slot 1 Bit Definitions

Bit	Description
19	RESERVED (Filled with zero)
18-12	Control register Index (Filled with zeroes if AC97 tags it invalid)
11	Slot 3 request: PCM Left channel
10	Slot 4 request: PCM Right channel
9	Slot 5 request: Modem Line 1
8	Slot 6 request: NA
7	Slot 7 request: NA
6	Slot 8 request: NA
5	Slot 9 request: NA
4	Slot 10 request: NA
3	Slot 11 request: NA
2	Slot 12 request: NA
1,0	RESERVED (Filled with zero)

Audio Input Frame slot 1 tag bit pertains to Status Address Port data. SLOTREQ bits are always valid independent of the slot 1 tag bit.

Note: Slot requests for slots 3 and 4 are always set or cleared in tandem (both set or both cleared).

13.4.2.3 Slot 2: Status Data Port

The Status data port delivers 16-bit control register read data.

Table 13-46. Input Slot 2 Bit Definitions

Bit	Name	Description
Bit(19:4)	Control register read data	Filled with zeroes if AC97 tags it invalid
Bit(3:0)	Reserved	Filled with zeroes

Note: If slot 2 is tagged invalid, the ACUNIT fills the entire slot with zeroes.

13.4.2.4 Slot 3: PCM Record Left Channel

Audio input frame slot 3 is the ACUNIT Codec left channel output.

The ACUNIT transmits its ADC output data (MSB first) and fills any trailing non-valid bit positions with zeroes to fill its 20-bit time slot.

13.4.2.5 Slot 4: PCM Record Right Channel

Audio input frame slot 4 is the ACUNIT Codec right-channel output.

The ACUNIT transmits its ADC output data (MSB first), and fills any trailing non-valid bit positions with zeroes to fill its 20-bit time slot.

13.4.2.6 Slot 5: Optional Modem Line Codec

Audio input frame slot 5 contains MSB justified modem ADC output data (if the line Codec is supported).

The application processor supports a 16-bit ADC output resolution for the optional modem.

13.4.2.7 Slot 6: Optional Dedicated Microphone Record Data

Audio input frame slot 6 is an optional third PCM system-input channel available for dedicated use by a microphone. This input channel supplements a true stereo output that would enable a more precise echo-cancellation algorithm for speakerphone applications.

The ACUNIT only supports 16-bit resolution for the Mic-in channel.

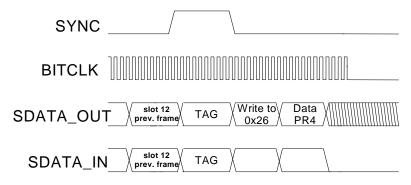
13.4.2.8 Slots 7-11: Reserved

Audio input frame slots 7-11 are reserved for future use and the ACUINT ignores them.

13.4.2.9 Slot 12: I/O Status

The GPIOs configured as inputs return their status on this slot every frame. The data returned on the latest frame is accessible to software through the Codec register at address 0x54 in the modem Codec I/O space. Only the 16 MSBs are used to return GPIO status. Bit 0 in the LSBs indicates a GPI Input Interrupt event. See the AC97 revision 2.0 spec for more information.

Reads from Codec address 0x54 are not transmitted across the link. Data received in slot 12 is stored internally in the controller and the data from the most recent slot 12 is returned on reads from address 0x54


13.5 AC-link Low Power Mode

Software must set the GCR[ACLINK_OFF] bit before it enters the application processor's low power modes. This ensures that the ACUNIT does not drive the output pins on the AC-link.

13.5.1 Powering Down the AC-link

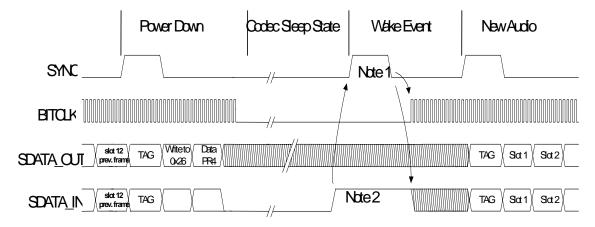
The AC-link signals enter a low power mode when the AC97 Codec Powerdown register (0x26) bit PR4 is set to a 1 (by writing 0x1000). Then the Primary Codec drives both BITCLK and SDATA_IN to a logic low voltage level. The sequence follows the timing diagram shown in Figure 13-12.

Figure 13-12. AC-link Powerdown Timing

Note: BITCLK not to scale

The ACUNIT transmits the write to Powerdown register (0x26) over the AC-link. Set up the ACUNIT so that it does not transmit data to slots 3-12 when it writes to the Powerdown register bit PR4 (data 0x1000). AC97 revision 2.0 does not require the Codec to process other data when it receives a power down request. When the Codec processes the request it immediately transitions BITCLK and SDATA_IN to a logic low level.

The ACUNIT drives SYNC and SDATA_OUT to a logic low level after programming the GCR[ACLINK_OFF] to a 1. The ACUNIT maintains nACRESET high when GCR[ACLINK_OFF]=1.


13.5.2 Waking up the AC-link

13.5.2.1 Wake up triggered by the Codec

To wake up the AC-link a Codec drives its SDATA_IN to a logic high level. The rising edge triggers the Resume Interrupt if that Codec's resume enable bit is set to a 1. The CPU then wakes up the Codec using the cold or warm reset sequence. The ACUNIT uses a warm reset to wake up the primary Codec. The Codec detects a warm reset when SYNC is driven high for a minimum of 1 μ s and the BITCLK is absent. The Codec must wait until it samples SYNC low before it can start BITCLK. The Codec that signaled the wake event must keep its SDATA_IN high until it detects that a warm reset has been completed. The Codec can then transition its SDATA_IN low.

Figure 13-13 shows the AC-link timing for a wake up triggered by a Codec. Because the application processor may need to be awakened, the Power Management unit detects the AC97 wake-up event (SDATA_IN high for more than 1 μ s). When the ACUNIT is ready, it responds to the wake-up event by asserting a warm or cold reset (see Figure 13-13). A Modem Codec may require the capacity to wake up the AC-link to report events such as Caller-ID and wake-up-onring.

Figure 13-13. SDATA_IN Wake Up Signaling

NOTES:

- 1. After SDATA_IN goes high, SYNC must be held for a minimum of 1 µSec.
- 2. The minimum SDATA_IN wake up pulse width is 1 $\mu\text{Sec.}$
- 3. BITCLK not to scale

13.5.2.2 Wake Up Triggered by the ACUNIT

AC-link protocol provides for a cold AC97 reset and a warm AC97 reset. The current power-down state ultimately dictates which AC97 reset is used. Registers must stay in the same state during all power-down modes unless a cold AC97 reset is performed. In a cold AC97 reset, the AC97 registers are initialized to their default values.

After a power down, the AC-link must wait for a minimum of four audio frame times after the frame in which the power down occurred before it can be reactivated by reasserting the SYNC signal. When AC-link powers up, it indicates readiness through the Codec ready bit (input slot 0, bit 15).

13.5.2.2.1 Cold AC97 Reset

A cold reset is generated when the nACRESET pin is asserted through the GCR[COLD_RST]. Asserting and deasserting nACRESET activates BITCLK (if supplied the Codec supplies it) and SDATA_OUT. All AC97 control registers are initialized to their default power on reset values. nACRESET is an asynchronous AC97 input.

13.5.2.2.2 Warm AC97 Reset

A warm AC97 reset reactivates the AC-link without altering the current AC97 register values. A warm reset is generated when BITCLK is absent and SYNC is driven high for a minimum of 1 µs.

In normal audio frames, SYNC is a synchronous AC97 input. When BITCLK is absent, SYNC is treated as an asynchronous input used to generate a warm reset to AC97.

The ACUNIT must not activate BITCLK until it samples SYNC low again. This prevents a new audio frame from being falsely detected.

When the ACUNIT receives a wake-up from the Codec, it issues an Interrupt (if the Interrupt on resume is enabled). Software must then issue a warm or cold reset to the Codec by setting the appropriate bit in the GCR.

13.6 **ACUNIT Operation**

The ACUNIT can be accessed through the processor or the DMA controller. The processor uses programmed I/O instructions to access the ACUNIT and can access four register types:

- ACUNIT registers: Accessible at 32-bit boundaries. They are listed in Section 13.8.3, "Registers" on page 13-18.
- Codec registers: An audio or modem Codec can contain up to sixty-four 16-bit registers. A
 Codec uses a 16-bit address boundary for registers. The ACUNIT supplies access to the Codec
 registers by mapping them to its 32-bit address domain boundary. Section 13.8.3.18,
 "Accessing Codec Registers" on page 13-32 describes the mapping from the 32-bit to 16-bit
 boundary. A write or read operation that targets these registers is sent across the AC-link.
- Modem Codec GPIO register: If the ACUNIT is connected to a modem Codec, the Codec GPIO register can also be accessed. The Codec GPIO register uses access address 0x0054 in the Codec domain. The GPIO write operation goes across the AC-link but a read does not. The register contents are continuously updated into a register in the controller domain when a frame is received from the Codec. When the processor tries to read the Codec GPIO register, this shadow register is read instead.
- ACUNIT FIFO data: The ACUNIT has two Transmit FIFOs for audio-out and modem-out and three receive FIFOs for audio-in, modem-in, and Mic-in. The transmit FIFOs are written by writing either the PCM Data Register (PCDR) or the Modem Data Register (MODR). Receive FIFO entries are read through the PCDR, the MODR, or the Mic-in Data Register (MCDR).

Note: After it is enabled, the ACUNIT requests the DMA immediately to fill the transmit FIFO.

Note: The ACUNIT registers do not store the status of the DMA requests or information regarding the number of data samples in each FIFO. As a result, programmed I/O must not be used in place of DMA requests for data transfers.

Only the DMA can access the FIFOs. Accesses are made through the data registers. The DMA controller accesses FIFO data in 8-, 16-, or 32-byte blocks. The DMA request thresholds are not programmable. The ACUNIT makes a transmit DMA request when the transmit FIFO has less than 32 bytes. The ACUNIT makes a receive DMA request when the receive FIFO has 32 bytes or more.

The DMA controller responds to the following ACUNIT DMA requests:

- PCM FIFO transmit and receive DMA requests made when the PCM transmit and receive FIFOs are half full.
- Modem FIFO transmit and receive DMA requests made when the modem transmit and receive FIFOs are half full.
- Mic-in receive DMA requests made when the Mic-in receive FIFO is half full.

13.6.1 Initialization

The AC97 Codec and ACUNIT circuitry reset on power up. After power up, the nACRESET signal remains asserted until the audio or modem driver sets the GCR[COLD_RST] bit. During operation, clearing the GCR[COLD_RST] bit resets the ACUNIT and Codec. To initialize the ACUNIT follow theses steps:

- Program the GPIO Direction register and GPIO Alternate Function Select register to assign proper pin directions for the ACUNIT ports. Refer to Section 13.3, "Signal Description" for details.
- 2. Set the GCR[COLD_RST] bit to deassert nACRESET. Until this is done, all other registers remain in a reset state. Deasserting nACRESET has the following effects:
 - a. Frames filled with zeroes are transmitted because the transmit FIFO is still empty. This situation does not cause an error condition.
 - b. The ACUNIT records zeroes until the Codec sends in valid data.
 - c. DMA requests are enabled.
- 3. Enable the Primary Ready Interrupt Enable and/or the Secondary Ready Interrupt Enable by setting the GCR[PRIRDY_IEN] and/or the GCR[SECRDY_IEN] bits, respectively.
- 4. Software enables DMA operation in response to primary and secondary ready interrupts.
- 5. The ACUNIT triggers transmit DMA requests. The DMA fills the transmit FIFO in response.
- 6. The ACUNIT continues to transmit zeroes until the transmit FIFO is half full. When it is half full, valid FIFO data is sent across the AC-link.

Note: When nACRESET is deasserted, a read to the Codec Mixer register returns the type of hardware that resides in the Codec. If the Codec is not present or if the AC97 is not supported, the ACUNIT does not set the Codec-ready bit, GCR[PCRDY] for the Primary Codec or GCR[SCRDY] for the Secondary Codec.

13.6.2 Trailing bytes

Trailing bytes in the transmit and receive FIFOs are handled as follows:

If the transmit buffers do not have 32-byte resolution, the trailing bytes in the Transmit FIFO are not transmitted. A transmit buffer must be padded with zeroes if it is smaller than a multiple of 32 bytes.

After the Codec transmits the valid data, the ACUNIT records zeroes until nACRESET is reasserted. If the Codec transmitted data has a total buffer size smaller than a multiple of 32 bytes, zeroes are recorded. A receive DMA request is made when the receive FIFO is half-full.

13.6.3 Operational Flow for Accessing Codec Registers

Software accesses the Codec registers by translating a 7-bit Codec address to a 32-bit application processor physical address. For details regarding the address translation, refer to Section 13.8.3.18, "Accessing Codec Registers".

Software must read the Codec Access Register (CAR) to lock the AC-link. The AC-link is free if the CAR[CAIP] bit is a 0. For details about the CAR, refer to Table 13-54, "Codec Access Register".

The read access to the CAR sets the CAR[CAIP] bit. The ACUNIT clears the CAR[CAIP] bit when the Codec-write or Codec-read operation completes. Software can also clear the CAR[CAIP] bit by writing a 0.

After it locks the AC-link, software can write or read a Codec register using the appropriate application processor physical address.

The ACUNIT sets the GSR[CDONE] bit after the completion of a Codec write operation. For details, refer to Table 13-49, "Global Status Register". Software clears this bit by writing a 1 to it.

To read a Codec, the software must complete the following steps:

- 1. Software issues a dummy read to the Codec register. The ACUNIT responds to this read operation with invalid data. The ACUNIT then initiates the read access across the AC-link.
- 2. When the Codec read operation completes, the ACUNIT sets GSR[SDONE] to a 1. For details, refer to Table 13-49, "Global Status Register". Software clears this bit by writing a 1 it.
- 3. Software repeats the read operation as detailed in Step 1. The ACUNIT now returns the data sent by the Codec. The second read operation also initiates a read access across the AC-link.
- 4. The ACUNIT times-out the read operation if the Codec fails to respond in four SYNC frames. In this case, the second read operation returns a timed-out data value of 0x0000_FFFF.

13.7 Clocks and Sampling Frequencies

By default, the ACUNIT transmits and receives data at a sampling frequency of 48 kHz. It can, however, sample data at frequencies less than 48 kHz if the Codec supports on-demand slot requests. The Codec in this case executes a certain algorithm and informs the controller not to transmit valid data in certain frames. For example, if the controller sends out 480 frames, and the

Codec instructs the controller not to send valid data in 39 of those 480 frames, the Codec would have in effect sampled data at 44.1 kHz. When the Codec transmits data (controller-receive mode), it can use the same algorithm to transmit valid frames with some empty ones mixed in between.

All data transfers across the AC-link are synchronized to SYNC's rising edge. The ACUNIT divides the BITCLK by 256 to generate the SYNC signal. This calculation yields a 48 kHz SYNC signal and its period defines a frame. Data is transitioned on AC-link on every BITCLK rising edge and subsequently sampled on AC-link's receiving side on each following BITCLK falling edge. For a timing diagram see Figure 13-8, "AC-link Audio Output Frame".

The ACUNIT synchronizes data between two different clock domains: the BITCLK and an internal system clock. This internal system clock is always half the run mode frequency. The run mode frequency be equal to or greater than eight times the BITCLK frequency.

13.8 Functional Description

The functional description section applies to all channels.

13.8.1 FIFOs

The ACUNIT has five FIFOs:

- PCM Transmit FIFO, with sixteen 32-bit entries.
- PCM Receive FIFO, with sixteen 32-bit entries.
- Modern Transmit FIFO, with sixteen 32-bit entries (upper 16 bits must always be 0).
- Modem Receive FIFO, with sixteen 32-bit entries (upper 16 bits are always 0).
- Mic-in Receive FIFO, with sixteen 32-bit entries (upper 16 bits are always 0).

A receive FIFO triggers a DMA request when the FIFO has eight or more entries. A transmit FIFO triggers a DMA request when it holds less than eight entries. A transmit FIFO must be half full (filled with eight entries) before any data is transmitted across the AC-link.

13.8.1.1 Transmit FIFO Errors

Channel-specific status bits are updated during transmit under-run conditions and will trigger interrupts if enabled. Refer to Table 13-52, "PCM-Out Status Register" and Table 13-61, "Modem-Out Status Register" for details regarding the status bits. During transmit under-run conditions, the last valid sample is continuously sent out across the AC-link. A transmit under-run can occur under the following conditions:

- Valid transmit data is still available in memory but the DMA controller starves the transmit FIFO because it is servicing other higher priority peripherals.
- The DMA controller has transferred all valid data from memory to the transmit FIFO. This prompts the last valid sample to be echoed across the AC-link until nACRESET is asserted and turns off the ACUNIT.

13.8.1.2 Receive FIFO Errors

Channel-specific status bits are updated during receive overrun conditions and trigger interrupts when enabled. Refer to Table 13-53, "PCM_In Status Register", Table 13-57, "Mic-In Status Register", and Table 13-62, "Modem-In Status Register" for details regarding the status bits. During receive over-run conditions, data that the Codec sends is not recorded.

13.8.2 Interrupts

The following status bits interrupt the processor when the interrupts are enabled:

- Mic-in FIFO error Mic-in Receive FIFO's over-run or under-run error.
- Modem-in FIFO error Modem Receive FIFO's over-run or under-run error.
- PCM-in FIFO error Audio Receive FIFO's over-run or under-run error.
- Modem-out FIFO error Modem Transmit FIFO's over-run or under-run error.
- PCM-out FIFO error Audio Transmit FIFO's over-run or under-run error.
- Modem Codec GPI status change interrupt Interrupts the CPU if bit 0 of slot 12 is set. This indicates a change in one of the bits in the modem Codec's GPIO register.
- Primary Codec resume interrupt Sets a status register bit when the Primary Codec resumes from a lower power mode. Software writes a 1 to this bit to clear it.
- Secondary Codec resume interrupt Sets a status register bit when the Secondary Codec resumes from a lower power mode. Software writes a 1 to this bit to clear it.
- Codec command done interrupt Interrupts the CPU when a Codec register's command is completed. Software writes a 1 to this bit to clear it.
- Codec status done interrupt Interrupts the CPU when a Codec register's status address and data reception are completed. Software writes a 1 to this bit to clear it.
- Primary Codec ready interrupt Sets a status register bit when the Primary Codec is ready. The Codec sets bit 0 of slot 0 on the input frame to signal that it is ready. Software clears the GCR[PRIRDY_IEN] bit to clear this interrupt.
- Secondary Codec ready interrupt Sets a status register bit when the Secondary Codec is ready. The Codec sets bit 0 of slot 0 on the input frame to signal that it is ready. Software clears the GCR[SECRDY_IEN] bit to clear this interrupt.

13.8.3 Registers

The ACUNIT and Codec registers are mapped in addresses ranging from 0x4050_0000 through 0x405F_FFFF. All ACUNIT registers are 32-bit addressable. Though a Codec has up to sixty-four 16-bit registers that are 16-bit addressable they are accessed via 32-bit address map and translated to 16-bit for the Codec.

The programmed I/O and DMA bursts can access the following registers:

- Global registers: The ACUNIT has three global registers: Status, Control, and Codec access registers that are common to the audio and modem domains.
- Channel-specific audio ACUNIT registers refer to PCM-out, PCM-in, and Mic-in channels.
- Channel-specific Modem ACUNIT registers refer to modem-out and modem-in channels.

- Audio Codec registers
- Modem Codec registers

Channel specific data registers are for FIFO accesses and the PCM, Modem, and Mic-in FIFOs each have a register. A write access to one of these registers updates the written data in the corresponding Transmit FIFO. A read access to one of these registers flushes out an entry from the corresponding Receive FIFO.

Note: Register tables show organization and individual bit definitions. All reserved bits are read as unknown values and must be written with a 0. A question mark indicates the value is unknown at reset.

Note: Some register bits receive status from Codecs. The Codec status sets the bit and software clears the bit (write a 1 to clear). The status can come in at any time, even when the bit is set or during a software clear. If software clears the bit as the Codec status updates the bit, the Codec status event takes higher priority. The term interruptible denotes bits that can be affected by this condition.

13.8.3.1 Register Mapping Summary

All ACUNIT registers are word-addressable (32 bits wide) and increment in units of 0x00004. The registers in the Codec are half-word addressable (16 bits wide), and increment in units of 0x00002. These register sets are mapped in the address range of 0x4050_000 through 0x405F_FFFF.

Table 13-47. Register Mapping Summary (Sheet 1 of 2)

Address	Name	Description
0x4050_0000	POCR	PCM Out Control Register
0x4050_0004	PICR	PCM In Control Register
0x4050_0008	MCCR	Mic In Control Register
0x4050_000C	GCR	Global Control Register
0x4050_0010	POSR	PCM Out Status Register
0x4050_0014	PISR	PCM In Status Register
0x4050_0018	MCSR	Mic In Status Register
0x4050_001C	GSR	Global Status Register
0x4050_0020	CAR	Codec Access Register
0x4050_0024 through 0x4050_003C	-	Reserved
0x4050_0040	PCDR	PCM FIFO Data Register
0x4050_0044 through 0x4050_005C	-	Reserved
0x4050_0060	MCDR	Mic-in FIFO Data Register
0x4050_0064 through 0x4050_00FC	-	Reserved
0x4050_0100	MOCR	Modem Out Control Register
0x4050_0104	-	Reserved
0x4050_0108	MICR	Modem In Control Register
0x4050_010C	-	Reserved
0x4050_0110	MOSR	Modem Out Status Register
0x4050_0114	-	Reserved

Table 13-47. Register Mapping Summary (Sheet 2 of 2)

Address	Name	Description
0x4050_0118	MISR	Modem In Status Register
0x4050_011C through 0x4050_013C	-	Reserved
0x4050_0140	MODR	Modem FIFO Data Register
0x4050_0144 through 0x4050_01FC	-	Reserved
(0x4050_0200 through 0x4050_02FC) with all in increments of 0x00004	-	Primary Audio Codec registers
(0x4050_0300 through 0x4050_03FC) with all in increments of 0x00004	-	Secondary Audio Codec registers
(0x4050_0400 through 0x4050_04FC) with all in increments of 0x0000_0004	-	Primary Modem Codec registers
(0x4050_0500 through 0x4050_05FC) with all in increments of 0x00004	-	Secondary Modem Codec registers

13.8.3.2 Global Control Register

Table 13-48. Global Control Register (Sheet 1 of 2)

···	ν. ι		, ,,	<i>.</i> . •		Jui	-		•		9.0		, 0			٠.	-,															
			Ρ			Add _000		ss						GC	R R	egis	ster									AC	97					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												CDONE_IE	SDONE_IE			R	lese	erve	d			SECRDY_IEN	PRIRDY_IEN	Reserved	•	SECRES_IEN	PRIRES_IEN	ACLINK_OFF	WARM_RST	COLD_RST	GIE	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bits	Name	Description
31:20	Reserved	Reserved
19	CDONE_IE	Command Done Interrupt Enable (CDONE_IE): 0 = The controller does not trigger an interrupt to the CPU after sending the command address and data to the Codec. 1 = The controller triggers an interrupt to the CPU after sending the command address and data to the Codec.
18	SDONE_IE	Status Done Interrupt Enable (SDONE_IE): 0 = Interrupt is disabled 1 = Enables an interrupt to occur after receiving the status address and data from the Codec
17:10	Reserved	Reserved
9	SECRDY_IEN	Secondary Ready Interrupt Enable (SECRDY_IEN): 0 = Interrupt is disabled 1 = Enables an interrupt to occur when the Secondary Codec sends the Codec READY bit on the SDATA_IN_1 pin
8	PRIRDY_IEN	Primary Ready Interrupt Enable (PRIRDY_IEN): 0 = Interrupt is disabled 1 = Enables an interrupt to occur when the Primary Codec sends the Codec READY bit on the SDATA_IN_0 pin.
7:6	Reserved	Reserved

Table 13-48. Global Control Register (Sheet 2 of 2)

Physical Address 4050_000C **GCR** Register AC97

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

•																									Ĭ						
				RI	ESE	RVE	ĒD					CDONE_IE	SDONE_IE			R	ese	rve	d			SECRDY_IEN	PRIRDY_IEN	Posoryod	0 1000	SECRES_IEN	PRIRES_IEN	ACLINK_OFF	WARM_RST	COLD_RST	319
^	•	•	•	•	^	•	•	•	•	•	^	•	•	•	•	•	^	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Bits	Name	Description
		Secondary Resume Interrupt Enable:
5	SECRES_IEN	Interrupt is disabled Enables an interrupt to occur when the Secondary Codec causes a resume event on the AC-link
		Primary Resume Interrupt Enable:
4	PRIRES_IEN	Interrupt is disabled Enables an interrupt to occur when the Primary Codec causes a resume event on the AC-link
		AC-link Shut Off:
3	ACLINK_OFF	 0 = If the AC-link was off, turns it back on, otherwise this bit has no effect. 1 = Causes the controller to drive SDATA_OUT and SYNC outputs low and turn off input buffer enables. The reset output is however maintained high. The AC-link will not be allowed to access any of the FIFOs.
		Setting this bit does not ensure a clean shut down. Software must make sure that all transactions are complete before setting this bit.
		AC97 Warm Reset
2	WARM_RST	 0 = A warm reset is not generated. 1 = Causes a warm reset to occur on the AC-link. The warm reset will awaken a suspended Codec without clearing it's internal registers.
		If software attempts to perform a warm reset while BITCLK is running, the write will be ignored and the bit will not change. This bit is self clearing i.e., it remains set until the reset completes and BITCLK is seen on the AC-link after which it clears itself.
		AC'97 Cold Reset
1		 0 = Causes a cold reset to occur throughout the AC'97 circuitry. All data in the Controller and the Codec will be lost. 1 = A cold reset is not generated.
		Defaults to a 0 and after reset, the driver must to set this bit to a 1.The value of this bit is retained after suspends, hence, if this bit was set to a 1 before a suspend, a cold reset is not generated on a resume.
		Codec GPI Interrupt Enable (GIE)
	O.E.	This bit controls whether the change in status of any Modem Codec GPI causes an interrupt.
0	GIE	0 = If this bit is not set, bit 0 of the Global Status Register is set, but an interrupt is not generated.
		1 = If this bit is set the change in value of a GPI (as indicated by bit 0 of slot 12) causes an interrupt and sets bit 0 of the Global Status Register

13.8.3.3 Global Status Register (GSR)

Table 13-49. Global Status Register (Sheet 1 of 2)

Physical Address 4050_001C GSR Register AC97

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					RI	ESE	RVI	ΕD					CDONE	SDONE	Reserved		RDCS	BIT3SLT12	BIT2SLT12	BIT1SLT12	SECRES	PRIRES	SCR	PCR	LNIW	POINT	PIINT	Roservad		MOINT	LNIIW	GSCI
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		_																	_													

Bits	Name	Description
31:20	Reserved	Reserved
		Command Done (CDONE):
19	CDONE	0 = ACUNIT has not sent command address and data to the Codec. 1 = ACUNIT has sent command address and data to the Codec.
		This bit is cleared by software writing a '1' to this location (interruptible)
		Status Done (SDONE):
18	SDONE	0 = ACUNIT has not received status address and data from the Codec. 1 = ACUNIT has received status address and data from the Codec.
		This bit is cleared by software writing a '1' to this location (interruptible)
17:16	Reserved	Reserved
		Read Completion Status:
		This bit indicates the status of Codec read completions.
15	RDCS	0 = The Codec read completed normally 1 = The Codec read resulted in a timeout.
		The bit remains set until cleared by software. This bit is cleared by software writing a '1' to this location.
14	BIT3SLT12	Bit 3 of slot 12:
14	DIISSLIIZ	Display Bit 3 of the most recent valid slot 12
13	BIT2SLT12	Bit 2 of slot 12:
13	DI123L112	Display Bit 2 of the most recent valid slot 12
12	BIT1SLT12	Bit 1 of slot 12:
12	BITTSLTTZ	Display Bit 1 of the most recent valid slot 12
		Secondary Resume Interrupt:
11	SECRES	0 = A resume event has not occurred on the SDATA_IN_1. 1 = A resume event occurred on the SDATA_IN_1.
		This bit is cleared by software writing a '1' to this location (interruptible).
		Primary Resume Interrupt:
10	PRIRES	0 = A resume event has not occurred on the SDATA_IN_0. 1 = A resume event occurred on the SDATA_IN_0.
		This bit is cleared by software writing a '1' to this location (interruptible).
	000	Secondary Codec Ready (SCR)
9	SCR	Reflects the state of the Codec ready bit in SDATA_IN_1 (interruptible)
0	DCD	Primary Codec Ready (PCR)
8	PCR	Reflects the state of the Codec ready bit in SDATA_IN_0 (interruptible)
		Mic In Interrupt (MINT)
7	MINT	0 = None of the Mic-in channel interrupts occurred.
	IVIIINI	1 = One of the Mic-in channel interrupts occurred.
		When the specific interrupt is cleared, this bit will be cleared (interruptible).

Table 13-49. Global Status Register (Sheet 2 of 2)

Physical Address 4050_001C **GSR** Register AC97

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|--|

Bits	Name	Description
6	POINT	PCM Out Interrupt (POINT) 0 = None of the PCM out channel interrupts occurred. 1 = One of the PCM out channel interrupts occurred. When the specific interrupt is cleared, this bit will be cleared (interruptible).
5	PIINT	PCM In Interrupt (PIINT) 0 = None of the PCM in channel interrupts occurred. 1 = One of the PCM in channel interrupts occurred. When the specific interrupt is cleared, this bit will be cleared (interruptible).
4:3	Reserved	Reserved
2	MOINT	Modem Out Interrupt (MOINT) 0 = None of the Modem out channel interrupts occurred. 1 = One of the Modem out channel interrupts occurred. When the specific interrupt is cleared, this bit will be cleared (interruptible).
1	MIINT	Modem In Interrupt (MIINT) 0 = None of the Modem in channel interrupts occurred. 1 = One of the Modem in channel interrupts occurred. When the specific interrupt is cleared, this bit will be cleared (interruptible).
0	GSCI	Codec GPI Status Change Interrupt (GSCI) 0 = Bit 0 of slot 12 is clear. 1 = Bit 0 of slot 12 is set. This indicates that one of the GPI's changed state and that the new values are available in slot 12. The bit is cleared by software writing a "1" to this bit location (interruptible).

13.8.3.4 PCM-Out Control Register (POCR)

Table 13-50. PCM-Out Control Register

			PI	-		Ad _000		ss					ı	POC	CR I	Regi	iste	r								AC	97					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													RE	ESE	RVI	ΞD													FEIE		Reserved	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bits Name																		De	escr	ipti	on										
	31:4 Reserved						d	Res	erv	ed																						
	3 F					FE	ΞIE			bit No	cor	trols	s wh	neth ill o	er tl	ne o	ccu en if	rren bit	4 in	the	PO:	SR i			rror	will	cau	ise a	an ir	nterr	upt	or
		d	Res	erve	ed																											

13.8.3.5 PCM-In Control Register (PICR)

Table 13-51. PCM-In Control Register (PICR)

			P			Add _000		ss						PIC	RR	legi	ster									AC	97					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													RI	ESE	RVI	ED													FEIE		Reserved	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	its			Na	me												De	esci	ripti	on										
		31	:4		F	Rese	erve	d	Res	erv	ed																					
									FIF	ЭΕ	rror	Inte	rrup	ot Eı	nabl	e (F	EIE)														
		3	3			FE	ΙE		This		con	trol	s wh	neth	er tl	he o	ccu	rren	ce c	of a	rece	eive	FIF	O er	ror	will	caus	зе а	n in	terru	ıpt c	or
									0 = 1 =										4 in ie P			R is et.	set									
		2:	:0		F	Rese	erve	d	Res	erv	ed																					

13.8.3.6 PCM-Out Status Register (POSR)

Table 13-52. PCM-Out Status Register

			P		ical 050_			ss					ı	POS	SR F	Regi	ste	r								AC	97					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												ı	RES	SER'	VE)												FIFOE		Reserved		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Na	me												De	esci	riptio	on										
		31	:5		R	Rese	erve	d	Res	erv	ed																					
		4	1			FIF	OE		0 =	No A t this inc	rans s ca crem a. N	nsm smit se, ente	it FIF FIF the ed.1	FO e last his	rror vali cou id b	occ d sa lld h uffe	urre ampl app	e occ ed. T le is en d ta av	his rep lue t	bit i etiti to: ible	vely	sen	t ou	t an	d th	e po	ointe	ers a	ire r	not		
									Bit i	s cl	eare	d b	y wı	ritinç	g a '	1 to	this	bit p	osit	tion												
		3:	:0		R	Rese	erve	d	Res	erv	ed																					

13.8.3.7 PCM_In Status Register (PISR)

Table 13-53. PCM_In Status Register

Physical Address PISR Register AC97 4050_0014 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 2 Reserved FIFOE **RESERVED** Reset 0 Bits Name Description 31:5 Reserved Reserved FIFO error (FIFOE) 0 = No Receive FIFO error has occurred. 1 = A receive FIFO error occurred. This bit is set if a receive FIFO overrun occurs. In this case, the FIFO pointers don't increment, the incoming data from the AC-link is not **FIFOE** 4 written into the FIFO and will be lost. This could happen due to DMA controller having excessive bandwidth requirements and hence not being able to flush out the receive FIFO in time. Bit is cleared by writing a 1 to this bit position. 3:0 Reserved Reserved

13.8.3.8 Codec Access Register (CAR)

Table 13-54. Codec Access Register

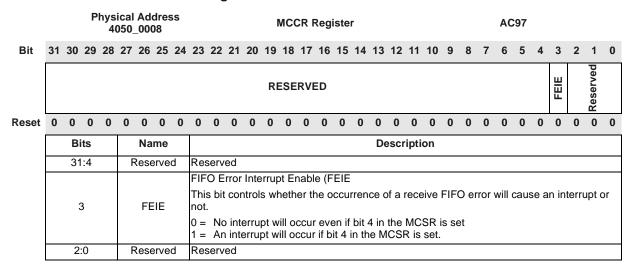
			-	_							J																						
			PI			Ad _002	dres 20	ss						CA	RF	legi	ster										AC	97					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	3 1	2	11	10	9	8	7	6	5	4	3	2	1	0
															RE	SER	VEI)															CAIP
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Na	me												С)es	cri	ptic	on										
		31	:1		F	Rese	erve	d	Res	serv	ed																						
									Cod	dec	Acc	ess	In F	rog	res	s (C	AIP)															
									Thi	s bit	is r	ead	by :	soft	war	e to	che	ck v	whe	the	er a	Co	ode	Ю	сус	le is	cur	rent	lly ir	ı pro	ogre	SS.	
		C)			CA	ΝP			res co thi Ind	serv mpl s bit dica rren	es tete, too	he r this atio that	ight bit n if ancessir	for is a it de the the the the the the the the the th	the utor ecider r dri	soft nati es n ver i	war call ot t	re d y clo o po erfo	rive ear erfo	er to red. orm ing	o pi . Sc . a (erfo oftw Cod	rm t are ec l ec l	the can of contract of the con	O c clea ycle ycle	ets to ycle ar the afte acro ies to	on Or this been had been dead to be seen to be seen dead to be seen dead to be seen dead to be seen dead to be	nce to the state of the state o	the o wrigrea AC-I	cycle ting ad th ink a	e is a '(nis l and	o' to bit. the

13.8.3.9 PCM Data Register (PCDR)

Table 13-55. PCM Data Register

			P			Ad _004	dres 40	ss						PCE	OR F	Regi	stei	r								AC	97					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							РС	M_I	RDA	TΑ													РС	M_I	LDA	TΑ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	its			Na	me												De	esci	ipti	on										
		31:	:16		PC	M_I	RDA	ΤA	PCI	M ri	ght-	chai	nnel	dat	а																	
		15	5:0		PC	CM_	LDA	TA	PCI	M le	ft-cl	nanr	nel d	lata																		

Writing a 32-bit sample to this register updates the data into the PCM Transmit FIFO. Reading this register gets a 32-bit sample from the PCM Receive FIFO.



Receive Data Transmit Data Processor/DMA Write Processor/DMA Read RxEntry15 TxEntry15 **PCDR** Register PCM Receive FIFO **PCM Transmit FIFO** RxEntry3 TxEntry3 **RxFIFO TxFIFO** Read Written RxEntry2 TxEntry2 RxEntry1 TxEntry1 RxEntry0 TxEntry0 Right 16.15 0

Figure 13-14. PCM Transmit and Receive Operation

13.8.3.10 Mic-In Control Register (MCCR)

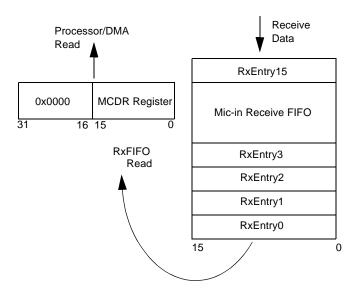
Table 13-56. Mic-In Control Register

13.8.3.11 Mic-In Status Register (MCSR)

Table 13-57. Mic-In Status Register

		_								3																						
			P			Ad _001	dres	SS					ı	MC	SR F	Regi	iste	r								AC	97					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												ı	RES	SER	VEC)												FIFOE		Reserved		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Na	me												De	escr	ipti	on										
		31	:5		F	Rese	erve	d	Res	serv	ed																					
		4	1			FIF	OE		0 = 1 =	No A i ca wr ex FII	se, t itten	ceiv ive he l into sive n tin	re F FIF(o the bar ne.	IFO O er O po e FI ndwi	ror o ointe FO a dth	rs d and requ	urre lon't will uirer	d. T inc be I nen	his breme ost. ts a	oit is ent, This nd h	the s co nenc	inco ould	min hap	ng da pen	ata f	rom to I	the	run (e AC A co h ou	-link	is r ller	not navi	ng
		3:	:0		F	Rese	erve	d	Res	serv	ed																					

13.8.3.12 Mic-In Data Register (MCDR)


Table 13-58. Mic-In Data Register

									_	•																						
			Pl	hysi 40		Add _006		ss					ı	MCE	OR F	Regi	iste	r								AC	97					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							R	ese	rve	d													MI	C_II	N_D	AT						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Na	me												De	escr	iptio	on										
		31:	:16		F	Rese	erve	d	Res	serv	ed																					
		15	5:0		MI	C_II	N_D	ΑT	Mic	-in c	lata																					

The Mic-In Data Register is a read-only register. A write to this register has no effect. A read to this register gets a 32-bit sample from the Mic-in Receive FIFO.

Figure 13-15. Mic-in Receive-Only Operation

13.8.3.13 Modem-Out Control Register (MOCR)

Table 13-59. Modem-Out Control Register

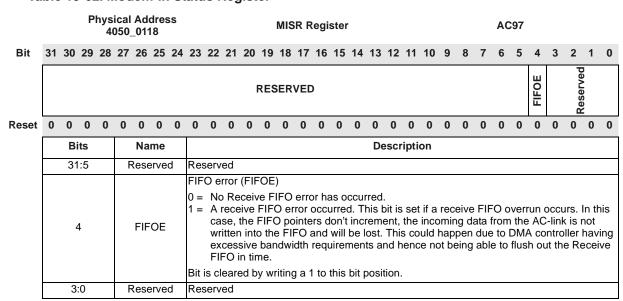
			Р		ical 050 ₋		dres 00	ss					ı	MOC	CR F	Reg	iste	r								AC	97					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													RI	ESE	RVI	ĒD													FEIE		Reserved	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Na	me												De	escr	ipti	on										
		31	:4		F	Rese	erve	d	Res	erv	ed																					
																`	EIE	•														
		3	3			FE	ΞΙΕ		Thi:		con	trol	s wh	neth	er th	ne o	ccu	ren	ce c	of a	tran	smit	FIF	Ое	rror	will	cau	se a	an in	iterr	upt	or
									0 = 1 =	No An	inte inte	erru _l erru	ot w	ill o	ccur	eve if b	en if it 4	bit 4	4 in ie M	the OSI	MO R is	SR i set.	s se	et								
		2	:0		F	Rese	erve	d	Res	serv	ed																					

13.8.3.14 Modem-In Control Register (MICR)

Table 13-60. Modem-In Control Register

			Pi			Ad _010		ss						MIC	RR	egi	ster									AC	97					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													RE	ESE	RVI	ĒD													FEIE		Reserved	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Na	me												De	escr	ipti	on										
		31	:4		F	Rese	erve	d	Res	erv	ed																					
									FIF	ΟE	rror	Inte	rrup	t Er	nabl	e (F	EIE)														
		3	3			FF	ΞIE		Cor	trol	s wl	neth	er a	rec	eive	FIF	O 6	erroi	cau	uses	an	inte	rrup	ot.								
			•						0 = 1 =			errup errup											set	t								
		2:	:0		F	Rese	erve	d	Res	erv	ed																					

13.8.3.15 Modem-Out Status Register (MOSR)


Table 13-61. Modem-Out Status Register

			PI	-		Add _011	dres	ss					N	MOS	SR F	Regi	iste	r								AC	97					
Bit	31	30	29	28	27	26	25	24	23	22	21	20 1	9	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												RI	ES	ER'	VEC)												FIFOE		Reserved		
Reset	0	0	0	0	0	0	0	0	0	0	0	0 ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Na	me												De	esci	iptio	on										
		31	:5		F	Rese	erve	d	Res	erv	ed																					
									FIF	Э еі	rror ((FIFC	E))																		
		4	ļ			FIF	OE		-	A t	rans s ca	nsmit smit F se, th ented	IF e	O e	rror vali	occ d sa	urre	d. T	his rep	bit i etiti						-					s. Ir	1
										C	. N	o mo	re	val	id b	uffei	r dat	a av	/aila	ble	for t	rans	smit	s.								
										C	d. B	uffer	da	ita a	ıvail	able	bu'	t DIV	1A c	ont	rolle	r ha	s ex	ces	sive	bar	ndw	idth	req	uireı	men	ts.
									Bit i	s cl	eare	d by	wr	iting	j a 1	to	this	bit p	osit	tion												
		3:	0		F	Rese	erve	d	Res	erv	ed																					

13.8.3.16 Modem-In Status Register (MISR)

Table 13-62. Modem-In Status Register

13.8.3.17 Modem Data Register (MODR)

Table 13-63. Modem Data Register

			P			Add _014	dres 40	ss					ı	NOI	OR F	Reg	iste	r								AC	97					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							R	ese	erve	d													МО	DE	VI_I	DAT						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	its			Na	me												De	escr	ipti	on										
		31:	:16		F	Rese	erve	d	Res	serv	ed																					
		15	5:0		MC	DE	M_E	DAT	Мо	dem	dat	ta																				

A 32-bit sample write to this register updates the data into the Modem Transmit FIFO. A read to this register gets a 32-bit sample from the Modem Receive FIFO.

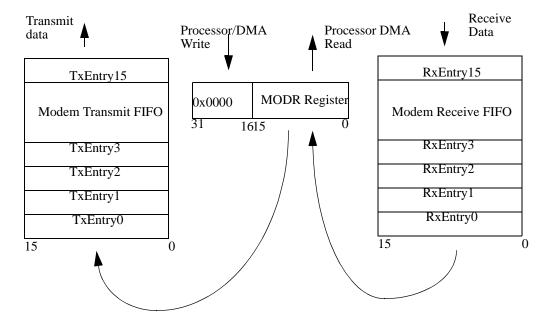


Figure 13-16. Modem Transmit and Receive Operation

13.8.3.18 Accessing Codec Registers

Each Codec has up to sixty-four 16-bit registers that are addressable internal to the Codec at half-word boundaries (16-bit boundaries). Because the application processor only supports internal register accesses at word boundaries (32-bit boundaries), software must select the one of the following formulas to translate a 7-bit Codec address into a 32-bit application processor address:

- Application processor physical address for a Primary Audio Codec
 = 0x4050-0200 + Shift Left Once(Internal 7-bit Codec Register Address)
- Application processor physical address for a Secondary Audio Codec = 0x4050-0300 + Shift_Left_Once(Internal 7-bit Codec Register Address)
- Application processor physical address for a Primary Modem Codec = 0x4050-0400 + Shift_Left_Once(Internal 7-bit Codec Register Address)
- Application processor physical address for a Secondary Modem Codec = 0x4050-0500 + Shift_Left_Once(Internal 7-bit Codec Register Address)

In the equations, Shift_Left_Once() shifts the 7-bit Codec address left by one bit and shifts a 0 to the LSB. The address translations are shown in Table 13-64.

Table 13-64. Address Mapping for Codec Registers (Sheet 1 of 2)

7-bit Codec Address	Application processor Physical Address for a Primary Audio Codec	Application processor Physical Address for a Secondary Audio Codec	Application processor Physical Address for a Primary Modem Codec	Application processor Physical Address for a Secondary Modem Codec
0x00	0x4050_0200	0x4050_0300	0x4050_0400	0x4050_0500
0x02	0x4050_0204	0x4050_0304	0x4050_0404	0x4050_0504
0x04	0x4050_0208	0x4050_0308	0x4050_0408	0x4050_0508
0x06	0x4050_020C	0x4050_030C	0x4050_040C	0x4050_050C
0x08	0x4050_0210	0x4050_0310	0x4050_0410	0x4050_0510
0x0A	0x4050_0214	0x4050_0314	0x4050_0414	0x4050_0514
0x0C	0x4050_0218	0x4050_0318	0x4050_0418	0x4050_0518
0x0E	0x4050_021C	0x4050_031C	0x4050_041C	0x4050_051C
0x10	0x4050_0220	0x4050_0320	0x4050_0420	0x4050_0520
0x12	0x4050_0224	0x4050_0324	0x4050_0424	0x4050_0524
0x14	0x4050_0228	0x4050_0328	0x4050_0428	0x4050_0528
0x16	0x4050_022C	0x4050_032C	0x4050_042C	0x4050_052C
0x18	0x4050_0230	0x4050_0330	0x4050_0430	0x4050_0530
0x1A	0x4050_0234	0x4050_0334	0x4050_0434	0x4050_0534
0x1C	0x4050_0238	0x4050_0338	0x4050_0438	0x4050_0538
0x1E	0x4050_023C	0x4050_033C	0x4050_043C	0x4050_053C
0x20	0x4050_0240	0x4050_0340	0x4050_0440	0x4050_0540
0x22	0x4050_0244	0x4050_0344	0x4050_0444	0x4050_0544
0x24	0x4050_0248	0x4050_0348	0x4050_0448	0x4050_0548
0x26	0x4050_024C	0x4050_034C	0x4050_044C	0x4050_054C
0x28	0x4050_0250	0x4050_0350	0x4050_0450	0x4050_0550
0x2A	0x4050_0254	0x4050_0354	0x4050_0454	0x4050_0554
0x2C	0x4050_0258	0x4050_0358	0x4050_0458	0x4050_0558
0x2E	0x4050_025C	0x4050_035C	0x4050_045C	0x4050_055C
0x30	0x4050_0260	0x4050_0360	0x4050_0460	0x4050_0560
0x32	0x4050_0264	0x4050_0364	0x4050_0464	0x4050_0564
0x34	0x4050_0268	0x4050_0368	0x4050_0468	0x4050_0568
0x36	0x4050_026C	0x4050_036C	0x4050_046C	0x4050_056C
0x38	0x4050_0270	0x4050_0370	0x4050_0470	0x4050_0570
0x3A	0x4050_0274	0x4050_0374	0x4050_0474	0x4050_0574
0x3C	0x4050_0278	0x4050_0378	0x4050_0478	0x4050_0578
0x3E	0x4050_027C	0x4050_037C	0x4050_047C	0x4050_057C
0x40	0x4050_0280	0x4050_0380	0x4050_0480	0x4050_0580
0x42	0x4050_0284	0x4050_0384	0x4050_0484	0x4050_0584

Table 13-64. Address Mapping for Codec Registers (Sheet 2 of 2)

7-bit Codec Address	Application processor Physical Address for a Primary Audio Codec	Application processor Physical Address for a Secondary Audio Codec	Application processor Physical Address for a Primary Modem Codec	Application processor Physical Address for a Secondary Modem Codec
0x44	0x4050_0288	0x4050_0388	0x4050_0488	0x4050_0588
0x46	0x4050_028C	0x4050_038C	0x4050_048C	0x4050_058C
0x48	0x4050_0290	0x4050_0390	0x4050_0490	0x4050_0590
0x4A	0x4050_0294	0x4050_0394	0x4050_0494	0x4050_0594
0x4C	0x4050_0298	0x4050_0398	0x4050_0498	0x4050_0598
0x4E	0x4050_029C	0x4050_039C	0x4050_049C	0x4050_059C
0x50	0x4050_02A0	0x4050_03A0	0x4050_04A0	0x4050_05A0
0x52	0x4050_02A4	0x4050_03A4	0x4050_04A4	0x4050_05A4
0x54	0x4050_02A8	0x4050_03A8	0x4050_04A8	0x4050_05A8
0x56	0x4050_02AC	0x4050_03AC	0x4050_04AC	0x4050_05AC
0x58	0x4050_02B0	0x4050_03B0	0x4050_04B0	0x4050_05B0
0x5A	0x4050_02B4	0x4050_03B4	0x4050_04B4	0x4050_05B4
0x5C	0x4050_02B8	0x4050_03B8	0x4050_04B8	0x4050_05B8
0x5E	0x4050_02BC	0x4050_03BC	0x4050_04BC	0x4050_05BC
0x60	0x4050_02C0	0x4050_03C0	0x4050_04C0	0x4050_05C0
0x62	0x4050_02C4	0x4050_03C4	0x4050_04C4	0x4050_05C4
0x64	0x4050_02C8	0x4050_03C8	0x4050_04C8	0x4050_05C8
0x66	0x4050_02CC	0x4050_03CC	0x4050_04CC	0x4050_05CC
0x68	0x4050_02D0	0x4050_03D0	0x4050_04D0	0x4050_05D0
0x6A	0x4050_02D4	0x4050_03D4	0x4050_04D4	0x4050_05D4
0x6C	0x4050_02D8	0x4050_03D8	0x4050_04D8	0x4050_05D8
0x6E	0x4050_02DC	0x4050_03DC	0x4050_04DC	0x4050_05DC
0x70	0x4050_02E0	0x4050_03E0	0x4050_04E0	0x4050_05E0
0x72	0x4050_02E4	0x4050_03E4	0x4050_04E4	0x4050_05E4
0x74	0x4050_02E8	0x4050_03E8	0x4050_04E8	0x4050_05E8
0x76	0x4050_02EC	0x4050_03EC	0x4050_04EC	0x4050_05EC
0x78	0x4050_02F0	0x4050_03F0	0x4050_04F0	0x4050_05F0
0x7A	0x4050_02F4	0x4050_03F4	0x4050_04F4	0x4050_05F4
0x7C	0x4050_02F8	0x4050_03F8	0x4050_04F8	0x4050_05F8
0x7E	0x4050_02FC	0x4050_03FC	0x4050_04FC	0x4050_05FC

Inter Integrated-circuit Sound (I²S) Controller

14

 I^2S is a protocol for digital stereo audio. The I^2S Controller (I2SC) functional block for the PXA250 and PXA210 application processor controls the I^2S link (I2SLINK), which is a low-power four-pin serial interface for stereo audio. The I^2S interface and the Audio CODEC '97 (AC'97) interface may not be used at the same time.

14.1 Overview

The I2SC consists of buffers, status and control registers, serializers, and counters for transferring digitized audio between the application processor system memory and an external I²S CODEC.

For playback of digitized audio or production of synthesized audio, the I2SC retrieves digitized audio samples from application processor system memory and sends them to a CODEC through the I2SLINK. The external digital-to-analog converter in the CODEC then converts the audio samples into an analog audio waveform.

For recording of digitized audio, the I2SC receives digitized audio samples from a CODEC (through the I2SLINK) and stores them in application processor system memory.

The I²S controller supports the normal-I²S and the MSB-Justified-I²S formats. Four, or optionally five, pins connect the controller to an external CODEC:

- A bit-rate clock, which can use either an internal or an external source.
- A formatting or "Left/Right" control signal.
- Two serial audio pins, one input and one output.
- The bit-rate clock, an optional system clock also sent to the CODEC by the I2SC.

The I²S data can be stored to and retrieved from system memory either by the DMA controller or by programmed I/O.

For I²S systems, additional pins are required to control the external CODEC. Some CODECs use an L3 control bus, which requires 3 signals — L3_CLK, L3_DATA, and L3_MODE — for writing bytes into the L3-bus register. The I2SC supports the L3 bus protocol via software control of the general-purpose I/O (GPIO) pins. The I2SC does not provide hardware control for the L3 bus protocol.

Two similar protocols exist for transmitting digitized stereo audio over a serial path: Normal-I²S and MSB-Justified-I²S. Both work with a variety of clock rates, which can be obtained by dividing the PLL clock by a programmable divider, or from an external clock source. For further details regarding clock rates, see Table 14-2, "Supported Sampling Frequencies" on page 14-6.

14.2 Signal Descriptions

SYSCLK is the clock on which all other clocks in the I²S unit are based. SYSCLK generates a frequency between approximately 2 MHz and 12.2 MHz by dividing down the PLL clock with a programmable divisor. This frequency is always 256 times the audio sampling frequency. SYSCLK is driven out of the application processor system only if BITCLK is configured as an output.

BITCLK supplies the serial audio bit rate, which is the basis for the external CODEC bit-sampling logic. BITCLK is one-quarter the frequency of SYSCLK and is 64 times the audio sampling frequency. One bit of the serial audio data sample is transmitted or received each BITCLK period. A single serial audio sample comprises a "left" and "right" signal, each containing either 8, 16 or 32 bits.

SYNC is BITCLK divided by 64, resulting in an 8 kHz to 48 kHz signal. The state of SYNC is used to denote whether the current serial data samples are "Left" or "Right" channel data.

The SDATA_IN and SDATA_OUT data pins are used to send/receive the serial audio data to/from the CODEC.

Table 14-1 lists the signals between the I²S and an external CODEC device.

Table 14-1. External Interface to CODEC

Name	Direction	Description
GP32/SYSCLK	0	System Clock = BITCLK * 4 used by the CODEC only.
GP28/BITCLK	I or O	bit-rate clock = SYNC * 64
GP31/SYNC	0	Left/Right identifier
GP30/SDATA_OUT	0	Serial audio output data to CODEC
GP29/SDATA_IN	I	Serial audio input data from CODEC

BITCLK can be configured either as an input or as an output. To program the direction, follow these steps:

- 1. Program SYSUNIT's GPIO Direction Register (GPDR). See Section 4.1.3.2, "GPIO Pin Direction Registers (GPDR)" on page 4-8 for details regarding the GPDR.
- 2. Program SYSUNIT's GPIO Alternate Function Select Register (GAFR). See Section 4.1.3.6, "GPIO Alternate Function Register (GAFR)" on page 4-17 for details regarding the GAFR.
- 3. Program the BCKD bit in the I2SC's Serial Audio Control Register. See Section 14.6.1, "Serial Audio Controller Global Control Register (SACR0)" for more details.

Note: Modifying the status of the SACR0[BCKD] bit during normal operation can cause jitter on the BITCLK and can affect serial activity.

If BITCLK is an output, SYSCLK must be configured as an output. If BITCLK is supplied by the CODEC, the GPIO pin GP32 can be used for an alternate function. To configure the pin as an output, follow these steps:

- 1. Program SYSUNIT's GPIO Direction Register (GPDR). See Section 4.1.3.2, "GPIO Pin Direction Registers (GPDR)" on page 4-8 for details regarding the GPDR.
- 2. Program SYSUNIT's GPIO Alternate Function Select Register (GAFR). See Section 4.1.3.6, "GPIO Alternate Function Register (GAFR)" on page 4-17 for details regarding the GAFR.

To configure SYNC and SDATA_OUT as outputs, follow these steps:

- 1. Program SYSUNIT's GPIO Direction Register (GPDR). See Section 4.1.3.2, "GPIO Pin Direction Registers (GPDR)" on page 4-8 for details regarding the GPDR.
- 2. Program SYSUNIT's GPIO Alternate Function Select Register (GAFR). See Section 4.1.3.6, "GPIO Alternate Function Register (GAFR)" on page 4-17 for details regarding the GAFR.

To configure SDATA_IN as an input, follow these steps:

- 1. Program SYSUNIT's GPIO Direction Register (GPDR). See Section 4.1.3.2, "GPIO Pin Direction Registers (GPDR)" on page 4-8 for details regarding the GPDR.
- 2. Program SYSUNIT's GPIO Alternate Function Select Register (GAFR). See Section 4.1.3.6, "GPIO Alternate Function Register (GAFR)" on page 4-17 for details regarding the GAFR.

14.3 Controller Operation

The I²S Controller (I2SC) can be accessed either by the processor or by the DMA controller.

The processor uses programmed I/O instructions to access the I2SC and can access the following types of data:

- I2SC registers data All registers are 32 bits wide and are aligned to word boundaries. See Section 14.6, "Registers" for further details.
- I2SC FIFO data An entry is placed into the Transmit FIFO by writing to the I2SC's Serial Audio Data register (SADR). Writing to SADR updates a Transmit FIFO entry. Reading SADR flushes out a Receive FIFO entry.
- I²S CODEC data The CODEC registers can be accessed through the L3 bus. The L3 bus operation is emulated by software controlling 3 GPIO pins.

The DMA controller can only access the FIFOs. Accesses are made through the data registers, as explained in the previous paragraph. The DMA controller accesses FIFO data in blocks of 8, 16, or 32 bytes. The DMA controller responds to the following DMA requests made by the I2SC:

- The Transmit FIFO request is based on the transmit threshold (TFTH) setting and is asserted if the Transmit FIFO has less than TFTH+1 entries. See Table 14-3, "SACR0 Bit Descriptions" on page 14-9 for further details regarding TFTH.
- The Receive FIFO request is based on the receive threshold (RFTH) setting and is asserted if
 the Receive FIFO has RFTH+1 or more entries. See Table 14-3, "SACR0 Bit Descriptions" on
 page 14-9 for further details regarding RFTH.

14.3.1 Initialization

- 1. Set the BITCLK direction by programming the SYSUNIT's GPIO Direction register, the SYSUNIT's GPIO Alternate Function Select register, and the I2SC's Serial Audio Controller Global Control register (bit 2).
- Choose between Normal I²S or MSB-Justified modes of operation. This can be done by programming bit 0 of Serial Audio Controller I²S/MSB-Justified Control Register (SACR1). For further details, see Section 14.6.2, "Serial Audio Controller I2S/MSB-Justified Control Register (SACR1)" on page 14-11.

- 3. Optional: Programmed I/O may be used for priming the Transmit FIFO with a few samples (ranging from 1 to 16). If the I2SLINK is enabled with an empty Transmit FIFO, a Transmit Under-run error bit will be set in the Status register. For further details, see Section 14.6.3, "Serial Audio Controller I2S/MSB-Justified Status Register (SASR0)". This is hence an optional step, which prevents such an error. If Step3 is not executed, then Programmed I/O must clear the Transmit Under-run status bit by setting bit 5 of the Interrupt Clear Register. For further details, see Section 14.6.5, "Serial Audio Interrupt Clear Register (SAICR)".
- 4. The following control bits can be simultaneously programmed in the I2SC's Serial Audio Controller Global Control register (SACR0):
 - a. Enable I2SLINK by setting the ENB bit (bit-0) of SACR0.
 - Since the SACR0 register will be over-written in Step2, maintain BITCLK direction as programmed in Step1. Modifying BITCLK direction will glitch the clock and affect I2SLINK activity.
 - c. Program transmit and receive threshold levels by programming the TFTH and RFTH bits of SACR0[11:8] and SACR0(15:12), respectively. See Section 14.6.1.2, "Suggested TFTH and RFTH for DMA servicing", regarding permitted threshold levels.

Once the I2SLINK is enabled, frames filled with 0s will be transmitted if the Transmit FIFO is still empty. This will set a Transmit Under-run status bit in SASR0. Step 2 can be executed to avoid this error condition. Valid data is sent across the I2SLINK after filling the Transmit FIFO with at least one sample. One sample consists of a 32-bit value with 16 bits each dedicated to a left and a right value.

Enabling the I2SLINK will also cause zeros to be recorded by the I2SC until the CODEC sends in valid data.

Enabling the I2SLINK also enables transmit and receive DMA Requests.

14.3.2 Disabling and Enabling Audio Replay

Audio transmission is enabled automatically when the I2SC is enabled. Transmission, or replay, can be stopped by asserting the DRPL bit of the SACR1 Register. For more details, see Section 14.6.2, "Serial Audio Controller I2S/MSB-Justified Control Register (SACR1)".

Asserting the DRPL bit in SACR1 has the following effects:

- All I2SLINK replay activity is disabled. The frame or data sample, in the midst of which the replay is disabled, will have invalid data (some data bits will be over-written with zeros). To avoid this, disable replay only after the transfer of valid data. In this case, frames with zeros are transmitted.
- 2. Transmit FIFO pointers are reset to zero.
- 3. Transmit FIFO fill-level is reset to zero.
- 4. Zeros are transmitted across the I2SLINK.
- 5. Transmit DMA requests are disabled.

14.3.3 Disabling and Enabling Audio Record

Audio recording is enabled automatically when the I2SC is enabled. Recording can also be stopped by asserting the DREC bit of the SACR1 Register. For more details, see Section 14.6.2, "Serial Audio Controller I2S/MSB-Justified Control Register (SACR1)".

Asserting the DREC bit in SACR1 has the following effects:

- 1. I2SLINK recording activity is disabled. The frame or data sample, in the midst of which the recording is disabled, could have invalid data (some data bits will be over-written with zeros). To avoid this, disable record only after the transfer of valid data.
- 2. Receive FIFO pointers are reset to zero.
- 3. Receive FIFO fill-level is reset to zero.
- 4. Any read operations by the DMA/CPU are returned with zeros.
- 5. Receive DMA requests are disabled.

14.3.4 Transmit FIFO Errors

A status bit is set during Transmit Under-run conditions. If enabled, this can trigger an interrupt. For further details, see Section 14.6.3, Section 14.6.6 and Section 14.6.5. During Transmit Under-run conditions, the last valid sample is continuously sent out across the I2SLINK. Transmit Under-run can occur under the following conditions:

- 1. Valid transmit data is still available in memory, but the DMA controller starves the Transmit FIFO, as it is busy servicing other higher-priority peripherals.
- 2. The DMA controller has transferred all valid data from memory to the Transmit FIFO.

The second condition prompts for the last valid sample to be echoed across the I2SLINK until the I2SC is turned off by disabling the SACR0[ENB] bit.

14.3.5 Receive FIFO Errors

A status bit is set during Receive Over-run conditions. If enabled, this can trigger an interrupt. For further details, see Section 14.6.3, Section 14.6.6 and Section 14.6.5. During Receive Over-run conditions, data sent by the CODEC is lost (will not be recorded).

14.3.6 Trailing Bytes

When the CODEC has completed transmitting valid data, zeros will be recorded by the I2SC, and this will continue until the unit is turned off by disabling the SACR0[ENB] bit.

If the total buffer size of the received data is less than a factor of the receive threshold, zeross will be recorded. A receive DMA request is made when the programmed threshold is reached.

14.4 Serial Audio Clocks and Sampling Frequencies

The BITCLK is the rate at which audio data bits enter or leave the I2SLINK. SYSCLK is required by the CODEC to run delta sigma ADC operations.

BITCLK can be supplied either by the CODEC or by an internal PLL. If supplied internally, BITCLK and SYSCLK are configured as output pins, and both are supplied to the CODEC. If BITCLK is supplied by the CODEC, then it is configured as an input pin. In this case, the SYSCLK's GPIO pin can be used for an alternate function.

The BITCLK, as shown in Table 14-2, is different for different sampling frequencies. If the BITCLK is chosen as an output, the Audio Clock Divider Register divides the 147.46MHz PLL clock to generate the SYSCLK. The SYSCLK is further divided by four to generate the BITCLK. The sampling frequency is the frequency of the SYNC signal, which is generated by dividing the BITCLK by 64. See Section 14.6.4, "Serial Audio Clock Divider Register (SADIV)", for further details about the register.

A sampling rate of 48kHz supports MPEG2 and MPEG4. A rate of 44.1kHz supports MP3.

Table 14-2. Supported Sampling Frequencies

Audio Clock Divider Register (31:0)	SYSCLK = 147.6 MHz / (SADIV)	BITCLK = SYSCLK / 4	SYNC or Sampling frequency = BITCLK / 64
0x0000-000C	12.288 MHz	3.072 MHz	48.000 kHz (closest std = 48 kHz)
0x0000-000D	11.343 MHz	2.836 MHz	44.308 kHz (closest std = 44.1 kHz)
0x0000-001A	5.671 MHz	1.418 MHz	22.154 kHz (closest std = 22.05 kHz)
0x0000-0024	4.096 MHz	1.024 MHz	16.000 kHz (closest std = 16.00 kHz)
0x0000-0034	2.836 MHz	708.92 kHz	11.077 kHz (closest std = 11.025 kHz)
0x0000-0048	2.048 MHz	512.00 kHz	8.000 kHz (closest std = 8.00 kHz)

14.5 Data Formats

14.5.1 FIFO and Memory Format

FIFO buffers are 16 words deep and 32 bits wide. This stores 32 samples per channel in each direction.

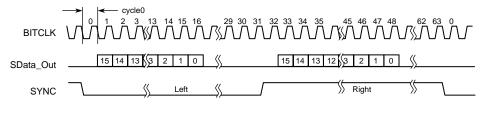
Audio data is stored with two samples (Left + Right) per 32-bit word, even if samples are smaller than 16 bits. The Left channel data occupies bits [15:0], while the Right channel data uses bits [31:16] of the 32-bit word. Within each 16-bit field, the audio sample is left-justified, with unused bits packed as zeroes on the right-hand (LSB) side.

In memory, the mapping of stereo samples is the same as in the FIFO buffers. However, single-channel audio occupies a full 32-bit word per sample, using either the upper or lower half of the word, depending on whether it's considered a Left or Right sample.

14.5.2 I²S and MSB-Justified Serial Audio Formats

I²S and MSB-Justified are similar protocols for digitized stereo audio transmitted over a serial path.

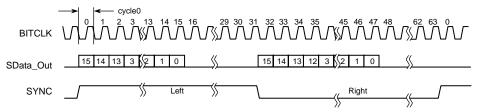
The BITCLK supplies the serial audio bit rate, the basis for the external CODEC bit-sampling logic. Its frequency is 64 times the audio sampling frequency. Divided by 64, the resulting 8 kHz to 48 kHz signal signifies timing for Left and Right serial data samples passing on the serial data paths. This Left/Right signal is sent to the CODEC on the SYNC pin. Each phase of the Left/Right signal is accompanied by one serial audio data sample on the data pins SDATA_IN and SDATA_OUT.


Figure 14-1 and Figure 14-2 provide timing diagrams that show formats for I²S and MSB-justified modes of operations.

Data is transmitted and received in frames of 64 BITCLK cycles. Each frame consists of a Left sample and a Right sample. Each sample holds 16-bit of valid data. The LSB 16-bit of each sample is padded with zeros.

In the Normal I²S mode, the SYNC is low for the Left sample and high for the Right sample. Also, the MSB of each data sample lags behind the SYNC edges by one BITCLK cycle.

In the MSB-Justified mode, the SYNC is high for the Left sample and low for the Right sample. Also, the MSB of each data sample is aligned with the SYNC edges.


Figure 14-1. I²S Data Formats (16 bits)

Note: Timing for SData_In is identical to SData_Out.

A8842-01

Figure 14-2. MSB-Justified Data Formats (16 bits)

Note: Timing for SData_In is identical to SData_Out.

A8843-01

14.6 Registers

The I²S Controller registers are all 32-bit addressable, ranging from 0x4040-0000 through 0x404F-FFFF.

The I²S Controller has the following types of registers:

- Control registers are used to program common control, alternate mode specific control.
- The Data Register is used for Transmit and Receive FIFO accesses.
- The Status Register signals the state of the FIFO buffers and the status of the interface that is selected by the common control register.
- The Interrupt Registers include the Interrupt Mask Register, the Interrupt Clear Register, and the Interrupt Test Register.

14.6.1 Serial Audio Controller Global Control Register (SACR0)

This register controls common I²S functions. All bits are read/write. Table 14-3 shows the bit layout of SACR0.

The ENB bit controls the I2SLINK, as follows:

- Clearing ENB to zero does the following:
 - disables any I2SLINK activity
 - resets all Receive FIFO pointers and also the counter that controls the I2SLINK
 - resets the Receive FIFO
 - does not affect the Transmit FIFO
 - the output pin SYNC will not toggle
 - de-asserts all DMA requests
 - any read accesses to the Data Register (SADR), by the process or, or by the DMA controller is returned with zeros
 - disables all interrupts.
- Setting ENB to one does the following:
 - enables I2SLINK activity
 - enables DMA requests.

Table 14-3. SACR0 Bit Descriptions

Physical Address 0x4040-0000 Serial Audio Controller Global Control Register

I²S Controller

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							r	ese	erved	t								RF	TH			TF	TH		הפעתפים		STRF	EFWR	RST	BCKD	reserved	ENB
ı+	0	Λ	Λ	0	Λ	Λ	Λ	Λ	0	0	Λ	Λ	Λ	Λ	Λ	Λ	0	1	1	1	Λ	1	1	1	Λ	Λ	Λ	Λ	0	0	Λ	Λ

Bit

Bits	Name	Description
31:16	-	reserved
15:12	RFTH	Receive FIFO interrupt or DMA threshold. Set to value 0 – 15. This value must be set to the threshold value minus 1.
		Receive DMA Request asserted whenever the Receive FIFO has >= (RFTH+1) entries.
11:8	TFTH	Transmit FIFO interrupt or DMA threshold. Set to value 0 – 15. This value must be set to the threshold value minus 1.
		Transmit DMA Request asserted whenever the Transmit FIFO has < (TFTH+1) entries.
7:6	-	reserved
		Select Transmit or Receive FIFO for EFWR based special purpose function:
5	STRF	0 = Transmit FIFO is selected
5	SIKE	1 = Receive FIFO is selected
		See Table 14-4 for details.
		This bit enables a special purpose FIFO Write/Read function:
4	FFWR	0 = Special purpose FIFO Write/Read Function is disabled
4	EFVIK	1 = Special purpose FIFO Write/Read Function is enabled
		See Table 14-4 for details.
		Resets FIFOs logic and all registers, except this register (SACR0):
3	RST ⁽¹⁾	• 0 = Not reset
		1 = Reset is Active to Other Registers
		This bit specifies input/output direction of BITCLK:
2	BCKD	0 = Input. BITCLK driven by an external source.
		1 = Output. BITCLK generated internally and driven out to the CODEC.
1	-	reserved
		Enable I ² S function:
0	ENB ⁽¹⁾⁽²⁾	0 = I2SLINK is disabled
		• 1 = I2SLINK is enabled

NOTES:

- 1. If ENB is toggled in the middle of a normal operation, the RST bit must also be set and cleared to reset all I2SC registers.
- 2. The SACR0[ENB] control signal crosses clock domains. It is registered in an internal clock domain that is much faster than the BITCLK domain. It takes four BITCLK cycles and four internal clock cycles before SACR0[ENB] is conveyed to the slower BITCLK domain. If the control setting is modified at a rate faster than (4 BITCLK + 4 internal clock) cycles, the last updated value in this time frame is stored in a temporary register and is transferred to the BITCLK domain.

14.6.1.1 Special purpose FIFO Read/Write function

As shown in Table 14-4, EFWR and STRF can be programmed for special purpose FIFO accesses. Under normal operating conditions, the processor or the DMA controller can only write to the Transmit FIFO and only read the Receive FIFO. Programming these bits allows the processor or the DMA controller to read and write both FIFOs.

Table 14-4. FIFO Write/Read table

EFWR	STRF	Description
0	х	Normal CPU/DMA Write/Read condition: A write access to the Data Register writes a Transmit FIFO entry. A read access to the Data Register reads out a Receive FIFO entry. I2SLINK reads from the Transmit FIFO and writes to the Receive FIFO.
1	0	 CPU or DMA only writes and reads Transmit FIFO: A write access to the Data Register writes a Transmit FIFO entry. A read access to the Data Register reads out a Transmit FIFO entry. I2SLINK cannot read the Transmit FIFO but can write to the Receive FIFO.
1	1	 CPU or DMA only writes and reads Receive FIFO: A write access to the Data Register writes a Receive FIFO entry. A read access to the Data Register reads out a Receive FIFO entry. I2SLINK can read the Transmit FIFO but cannot write to the Receive FIFO.

14.6.1.2 Suggested TFTH and RFTH for DMA servicing

The DMA controller can only be programmed to send 8, 16, or 32 bytes of data. This corresponds to 2, 4, or 8 FIFO samples. Table 14-5 shows the recommended TFTH and RFTH values to prevent Transmit FIFO over-run errors and Receive FIFO under-run errors.

Table 14-5. TFTH and RFTH Values for DMA Servicing

DMA Transfer Size	# of FIFO entries	TFTH	Value	RFTH	l Value
		Min	Max	Min	Max
8 Bytes	2	0	14	1	15
16 Bytes	4	0	12	3	15
32 Bytes	8	0	8	7	15

14.6.2 Serial Audio Controller I²S/MSB-Justified Control Register (SACR1)

This register specifically controls the I^2S and MSB-Justified modes. All bits are read-only. Table 14-6 shows the bit layout of SACR1.

Table 14-6. SACR1 Bit Descriptions

			F	hys 0x4		Adc 0-00		3			Se	rial A Just		io Co					3-					I ² S	Со	ntro	ller				
Bit	31	30	29	28	27	26	25	24	23	22	21 2	0 19) 1	8 17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 (
												res	erv	ed												ENLBF	DRPL	DREC	reserved	SMA	
Reset	0	0	0	0	0	0	0	0	0	0	0	0 0	(0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	1
		Bi	ts			Na	me											De	escr	iptio	on										
		31	:6			-				erve																					
		Ę	5			ENL	_BF		•	0 = 1 =	I ² S/ : I ² S/ : I ² S/	MSB MSB	Int Int	erfac erfac	e Lo e Lo	op E	Back Back	k Fu k Fu	nctio	on is	En	able	d								
		4	1			DRI	PL [†]		•	0 = 1 =	Rep Rep Rep	aying aying	j Fi	uncti uncti	on is on is	Ena Dis	able able	d ed													
		3	3			DRI	EC†		•	0 =	Rec Rec Rec	ording	g F	uncti	on is	En	able	d	B-Ju	ıstifi	ed I	nter	face	: :							
		2:	1			-			res	erve	ed																				
		()			AM:	SL [†]			0 =	Alter Sele Sele	ct ${ m I}^2$	SC	pera	ition	Mod	le				oera	tion	:								

[†] SACR1 bits DRPL, DREC, and AMSL cross clock domains. They are registered in an internal clock domain that is much faster than the BITCLK domain. It takes 4 BITCLK cycles and 4 internal clock cycles before these controls are conveyed to the slower BITCLK domain. If the above control settings are modified at a rate faster than (4 BITCLK + 4 internal clock) cycles, the last updated value in this time frame is stored in a temporary register and is transferred to the BITCLK domain.

14.6.3 Serial Audio Controller I²S/MSB-Justified Status Register (SASR0)

The Serial Audio Status Register (SASR0) is used for recording the status of the FIFOs and I2SLINK. All bits are read-only. Table 14-7 shows the bit layout of SASR0.

Only 4 bits are assigned for TFL and RFL. Actual fill levels are interpreted as follows:

```
Actual_TFL(4:0) = {~TNF, TFL(3:0)}

Actual_RFL(4:0) calculation:
   if (RFL(3:0) == 4'b0)
        Actual_RFL(4:0) = {RNE, RFL(3:0)}
   else
        Actual_RFL(4:0) = {1'b0, RFL(3:0)}
```

Table 14-7. SASR0 Bit Descriptions

			F			Add		S			S				Cor Sta				MSB r	3-					I ² S	Со	ntro	ller				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							r	ese	rved									RI	FL			TF	EL		reserved	ROR	TUR	RFS	TFS	' (0	RNE	TNF
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Bits	Name	Description
31:16	-	reserved
15:12	RFL	Receive FIFO Level: number of entries in Receive FIFO
11:8	TFL	Transmit FIFO Level: number of entries in Transmit FIFO
7	-	reserved
6	ROR	Receive FIFO Overrun: • 0 = Receive FIFO has not experienced an overrun • 1 = I ² S attempted data write to full Receive FIFO (Interruptible) Can interrupt processor if bit6 of Serial Audio Interrupt Mask Register is set. Cleared by setting bit 6 of Serial Audio Interrupt Clear Register.
5	TUR	Transmit FIFO Under-run: • 0 =Transmit FIFO has not experienced an under-run • 1= I ² S attempted data read from an empty Transmit FIFO Can interrupt processor if bit5 of Serial Audio Interrupt Mask Register is set. Cleared by setting bit 5 of Serial Audio Interrupt Clear Register.
4	RFS	Receive FIFO Service Request: • $0 = \text{Receive FIFO level below RFL threshold, or } I^2S$ disabled • $1 = \text{Receive FIFO level is at or above RFL threshold.}$ Can interrupt processor if bit 4 of Serial Audio Interrupt Mask Register is set. Cleared automatically when # of Receive FIFO entries < (RFTH + 1).

2

1

0

Table 14-7. SASR0 Bit Descriptions

BSY

RNE

TNF

			F			Add 0-00		S			S					ntro atus			MSB er	}-					I ² S	Со	ntro	ller				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							1	ese	rved	t								R	FL			TF	EL		reserved	ROR	TUR	RFS	TFS	BSY	RNE	TNF
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
		Bi	ts			Na	me												De	escr	ipti	on										
		3	3			Τſ	=S		Cai	0 - 1 - n int are	Tra Tra erru d au	nsm nsm	nit F nit F proc	IFO IFO esso	lev lev or if	el is	at of	or be	TFL elow ial A nsmit	TFI udic	thr	esho	old pt M	lask	Re	gist		set	i.			
									I^2S	Bu	sy:																					

• 1 = I^2S currently transmitting or receiving a frame

14.6.4 Serial Audio Clock Divider Register (SADIV)

• $0 = I^2S$ is idle or disabled

• 0 = Receive FIFO is empty

0 = Transmit FIFO is full
1 = Transmit FIFO is not full

1 = Receive FIFO is not empty

Receive FIFO not empty:

Transmit FIFO not full:

This register is used for generating six different BITCLK frequencies and hence six different sampling frequencies. All bits are read/write. Table 14-8 shows the bit layout of SADIV.

The reset value, 0x0000001A, defaults to a sampling frequency of 22.05 kHz.

Note: Setting this register to values other than those shown in Table 14-2, "Supported Sampling Frequencies" on page 14-6 is not allowed and will cause unpredictable activity.

Table 14-8. SADIV Bit Descriptions

			F	hys 0x4		Add		S			Se	erial	Auc	dio C	Cloc	k Di	vide	r Re	egist	ter					I ² S	Co	ntro	ller				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												res	serv	ed														S	ADI	V		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0
		Bi	ts			Na	me												De	escr	iptio	on										
		31	:7				-		res	erve	ed																					
		6:	:0			SAI	DIV		Au	000 000 010 010	0 11 0 11 1 10 0 01 1 01	00 = 01 = 010 = 00 =	= Bl' = Bl' = Bl' = Bl' = Bl'	TCL TCL TCL TCL	Ko Ko Ko Ko	f 3.0 f 2.8 f 1.4 f 1.0 f 70	072N 836 I 118N 024N 8.92	S:0) i MHz MHz MHz MHz KH	ː z													

14.6.5 Serial Audio Interrupt Clear Register (SAICR)

The Serial Audio Interrupt Clear Register (SAICR) is the Interrupt Control Register. This is only an addressable location and no data is actually stored. These addressable locations are used only for clearing status register (SASR0) bits. Each bit position corresponds to an interrupt source bit position in the Status register. Table 14-9 shows the bit layout of SAICR.

This is a write-only register. A read operation will be treated as a read from a reserved location. The reset value is reserved, since the register cannot be read.

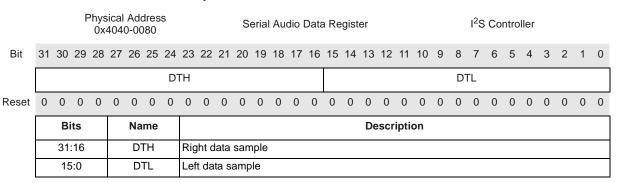
Table 14-9. SAICR Bit Descriptions

			F		ical 4040			S			Se	rial .	Aud	io Ir	nterr	upt	Clea	ar R	egis	ter					I ² S	Со	ntro	ller				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												res	serv	ed												ROR	TUR		res	serv	ed	
Reset	r										r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
		Bi	ts			Na	me												De	escr	ipti	on										
		31:7 -								erve	ed																					
		6	3			RO	DR		Cle	ar F	Rece	eive	FIF	O 0	verr	un Ir	nter	upt	and	IRC	R s	tatu	s bit	in S	SAS	R0.						
	5 TUR									ar T	ran	smit	FIF	O u	nde	r-ru	n Int	erru	ıpt a	and '	TUF	R sta	tus	bit i	n SA	ASR	0.					
	4:0 -								res	erve	ed																					

14.6.6 Serial Audio Interrupt Mask Register (SAIMR)

Writing a one to the corresponding bit position in the Interrupt Mask Register enables the corresponding interrupt signal. All bits are read/write. Table 14-10 shows the bit layout of SAIMR.

Table 14-10. SAIMR Bit Descriptions


			P		ical 4040		dres 014	S			Se	rial /	٩ud	io Ir	nterr	upt	Mas	sk R	egis	ter					I ² S	Coı	ntro	ller				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												res	serv	ed												ROR	TUR	RFS	TFS	res	erv	ed
Reset	0 0 0 0 0 0 0 0 0 0										0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bits Name																		De	scr	iptio	on										
		31	:7				-		res	erve	ed																					
		6	3			RC	DR		Ena	able	Red	ceiv	e FI	FO	Ove	rrur	n co	nditi	on b	ase	ed in	terr	upt.									
		5	5			Τl	JR		Ena	able	FIF	O U	nde	er-ru	n co	ondit	tion	bas	ed i	nter	rupt											
	4 RFS									able	Red	ceiv	e FI	FΟ	Ser	vice	Red	ques	st ba	asec	linte	erru	ot.									
	3 TFS Er										Tra	nsm	it F	IFO	Ser	vice	Re	que	st b	ase	d int	erru	pt.									
	2:0 - re										ed																					

14.6.7 Serial Audio Data Register (SADR)

Writing a 32-bit sample to this register updates the data into the Transmit FIFO. Reading this register flushes a 32-bit sample from the Receive FIFO.

Table 14-11 shows the bit layout of SADR. Figure 14-3 illustrates data flow through the FIFOs and SADR.

Table 14-11. SADR Bit Descriptions

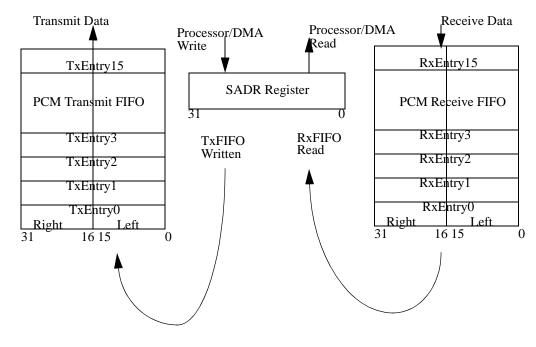


Figure 14-3. Transmit and Receive FIFO Accesses Through the SADR

14.6.8 Controller: Register Memory Map

All registers are word addressable (32 bits wide) and hence increment in units of 0x00004. All I2SC registers are mapped in the address range of 0x4040-000 through 0x404F-FFFF, as shown in Table 14-12

Table 14-12. Register Memory Map

Address (paddr(9:0)	Register name	Description
0x4040-0000	SACR0	Global Control Register
0x4040-0004	SACR1	Serial Audio I ² S/MSB-Justified Control Register
0x4040-0008	=	reserved
0x4040-000C	SASR0	Serial Audio I^2S/MSB -Justified Interface and FIFO Status Register
0x4040-0014	SAIMR	Serial Audio Interrupt Mask Register
0x4040-0018	SAICR	Serial Audio Interrupt Clear Register
0x4040-001C through 0x4040-005C	-	reserved
0x4040-0060	SADIV	Audio clock divider register. See Section 14.4, "Serial Audio Clocks and Sampling Frequencies".
0x4040-0064 through 0x4040-007C	-	reserved
0x4040-0080	SADR	Serial Audio Data Register (TX and RX FIFO access register).

14.7 Interrupts

The following SASR0 status bits, if enabled, interrupt the processor:

- Receive FIFO Service DMA Request (RFS)
- Transmit FIFO Service DMA Request (TFS)
- Transmit Under-run (TUR)
- Receive Over-run (ROR).

Note: For further details, see Section 14.6.3, "Serial Audio Controller I2S/MSB-Justified Status Register (SASR0)".

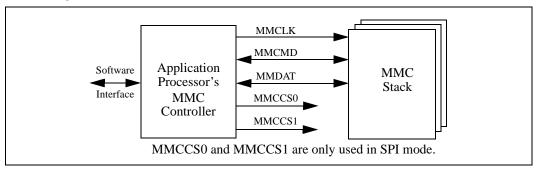
MultiMediaCard Controller

15.1 Overview

The PXA250 and PXA210 application processor's MultiMediaCard (MMC) controller acts as a link between the software used to access the application processor and the MMC stack (a set of memory cards). The MMC controller is designed to support the MMC system, a low-cost data storage and communications system. A detailed description of the MMC system is available through the MMC Association's web site at www.mmca.org. The application processor's MMC controller is based on the standards outlined in *The MultiMediaCard System Specification Version 2.1* with the exception that one- and three-byte data transfers are not supported and the maximum block length is 1023.

The MMC controller supports the translation protocol from a standard MMC or Serial Peripheral Interface (SPI) bus to the MMC stack. The software used to access application processor must indicate whether to use MMC or SPI mode as the protocol to communicate with the MMC controller.

The MMC controller features:


- Data transfer rates up to 20 Mbps
- A response FIFO
- · Dual receive data FIFOs
- Dual transmit FIFOs
- Support for two MMCs in either MMC or SPI mode

The MMC controller contains all card-specific functions, serves as the bus master for the MMC system, and implements the standard interface to the card stack. The controller handles card initialization; CRC generation and validation; and command, response, and data transactions.

The MMC controller is a slave to the software and consists of command and control registers, a response FIFO, and data FIFOs. The software has access to these registers and FIFOs and generates commands, interprets responses, and controls subsequent actions.

Figure 15-1 shows a block diagram of the interaction of a typical MMC stack, the MMC controller, and a software.

Figure 15-1. MMC System Interaction

The MMC bus connects the card stack to the controller. The software and controller can turn the MMC clock on and off. The card stack and the controller communicate serially through the command and data lines and implement a message-based protocol. The messages consist of the following tokens:

• Command: a 6-byte command token starts an operation. The command set includes card initialization, card register reads and writes, data transfers, etc. The MMC controller sends the command token serially on the MMCMD signal. The format for a command token is shown in Table 15-1.

Table 15-1. Command Token Format

Bit Position	47	46	[45:40]	[39:8]	[7:1]	0
Width (bits)	1	1	6	32	7	1
Value	0	1	х	х	х	1
Description	start bit	transmission bit	command index	argument	CRC7	end bit

- Response: a response token is an answer to a command token. Each command has either a specific response type or no response type. The format for a response token varies according to the response expected and the card's mode. Response token formats are detailed *The MultiMediaCard System Specification Version 2.1*.
- Data: data is transferred serially between the controller and the card in 8-bit blocks at rates up to 20 Mbps. The format for the data token depends on the card's mode. Table 15-2 shows the data token format for MMC mode and Table 15-3 shows the data token format for SPI mode.

Table 15-2. MMC Data Token Format

Stream Data	1	х	no CRC	1
Block Data	0	х	х	1
Description	start bit	data	CRC7	end bit

Table 15-3. SPI Data Token Format

Value	11111110	х	х
Description	start byte	data	CRC16

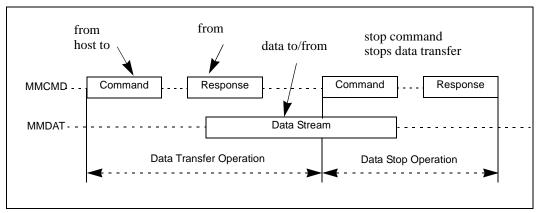

In MMC mode, all operations contain command tokens and most commands have an associated response token. Read and write commands also have a data token. Command and response tokens are sent and received on the bidirectional MMCMD signal and data tokens are sent and received on the bidirectional MMDAT signal. A typical MMC mode command timing diagram with and without a response is shown in Figure 15-2 while Figure 15-3 shows a typical MMC mode timing diagram for a sequential read or write

Figure 15-2. MMC Mode Operation Without Data Token

Figure 15-3. MMC Mode Operation With Data Token

In SPI mode, not all commands are available. The available commands have both a command and response token. The MMCMD and MMDAT signals are no longer bidirectional in SPI mode. The MMCMD is an output and the MMDAT is an input with respect to the application processor. The command and data tokens to be written are sent on the MMCMD signal and the response and read data tokens are received on the MMDAT signal. Figure 15-4 shows a typical SPI mode timing diagram without a data token. Figure 15-5 and Figure 15-6 show SPI mode read and write timing diagrams, respectively.

Figure 15-4. SPI Mode Operation Without Data Token

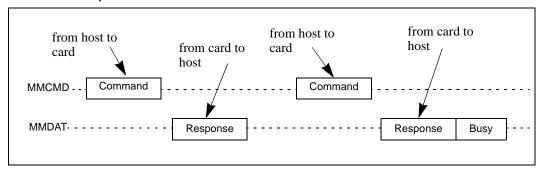


Figure 15-5. SPI Mode Read Operation

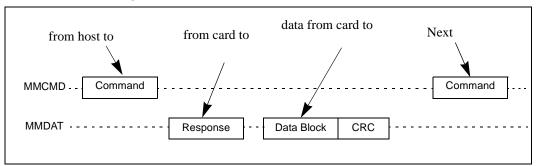
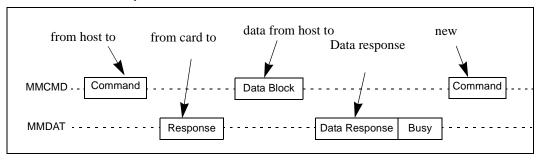



Figure 15-6. SPI Mode Write Operation

Note: One- and three-byte data transfers are not supported with this controller. Data transfers of 10 or more bytes are supported for stream writes only.

Refer to *The MultiMediaCard System Specification* for detailed information on MMC and SPI modes of operation.

15.2 MMC Controller Functional Description

The software must read and write the MMC controller registers and FIFOs to initiate communication to a card.

The MMC controller is the interface between the software and the MMC bus. It is responsible for the timing and protocol between the software and the MMC bus. It consists of control and status registers, a 16-bit response FIFO that is eight entries deep, two 8-bit receive data FIFOs that are 32 entries deep, and two 8-bit transmit FIFOs that are 32 entries deep. The registers and FIFOs are accessible by the software.

The MMC controller also enables minimal data latency by buffering data and generating and checking CRCs.

Refer to Section 15.4, "MultiMediaCard Controller Operation" for examples.

15.2.1 Signal Description

The MMC controller signals are MMCLK, MMCMD, MMDAT, MMCCS0, and MMCCS1. Table 15-4 describes each signal's function.

Table 15-4. MMC Signal Description

Signal Name	Input/Output	Description
MMCLK	Output	Clock signal to MMC
MMCMD	BiDirectional	Command line
MMDAT	BiDirectional	Data line
MMCCS0	Output	Chip Select 0 (used only in SPI mode)
MMCCS1	Output	Chip Select 1 (used only in SPI mode)

The MMCLK, MMCCS0, and MMCCS1 signals are routed through alternate functions within the GPIO. Refer to Section 4.1, "General-Purpose I/O" for a description of the process used to assign these signals to a specific GPIO. Even though there are several GPIO assigned to each signal, each signal must be programmed to one of the possible GPIOs. Refer to Section 4.1.2, "GPIO Alternate Functions" for a complete description of the GPIO alternate functions.

15.2.2 MMC Controller Reset

The MMC controller can only be reset by a hard or soft reset of the application processor. The ways to reset the application processor and the MMC controller can be found in Section 2.7, "Reset". All registers and FIFO controls are set to their default values after any reset.

15.2.3 Card Initialization Sequence

After reset, the MMC card must be initialized by sending 80 clocks to it on the MMCLK signal. To initialize the MMC card, set the MMC_CMDAT[INIT] bit to a 1. This sends 80 clocks before the current command in the MMC_CMD register. This function is useful for acquiring new cards that have been inserted on the bus. Chip selects are not asserted during the initialization sequence.

After the 80-clock initialization sequence, the software must continuously send CMD1 (see Table 15-19 for command definitions) by loading the appropriate command index into the MMC_CMD register until the card indicates that the power-up sequence is complete. The software can then assign an address to the card or put it into SPI mode.

15.2.4 MMC and SPI Modes

After reset, the MMC card is in the MMC mode. The card may remain in MMC mode or be configured to SPI mode by setting the MMC_SPI register bits. The following sections briefly describe each mode as it pertains to the MMC controller.

15.2.4.1 MMC Mode

In MMC mode, the MMCMD and MMDAT signals are bidirectional and require external pullups. The command and response tokens are sent and received via the MMCMD signal and data is read and written via the MMDAT signal.

After an MMC card is powered on, it is assigned a default relative card address (RCA) of 0x0001. The software assigns different addresses to each card during the initialization sequence described in Section 15.2.3, "Card Initialization Sequence". A card is then addressed by its new relative address in the argument portion of the command token that is protected with a 7-bit CRC (see Table 15-1). For a description of the identification process when multiple cards are connected to a system, refer to the Card Identification Process as described in *The MultiMediaCard System Specification*.

There are five formats for the response token, including a no response token. The response token length is 48 or 136 bits and may be protected with a 7-bit CRC. Details of the response token can be found in *The MultiMediaCard System Specification*.

In write data transfers, the data is suffixed with a 5-bit CRC status token from the card. After the CRC status token, the card may indicate that it is busy by pulling the MMDAT line low.

The start address for a read operation can be any random byte address in the valid address space of the card memory. For a write operation, the start address must be on a sector boundary and the data length must be an integer multiple of the sector length. A sector is the number of blocks that will be erased during the write operation and is fixed for each MMC card. A block is the number of bytes to be transferred.

The MMC mode supports the following data transfer modes:

- Single block read/write: in single block mode, a single block of data is transferred. The starting
 address is specified in the command token of the read or write command used. The software
 must set the block size in the controller by entering the number of bytes to be transferred in the
 MMC_BLKLEN register. The data block is protected with a 16-bit CRC that is generated by
 the sending unit and checked by the receiving unit. The CRC is appended to the data after the
 last data bit is transferred.
- Multiple block read/write: in multiple block mode, multiple blocks of data are transferred.
 Each block is the same length as specified by the software in the MMC_BLKLEN register.
 The blocks of data are stored or retrieved from contiguous memory addresses starting at the address specified in the command token. The software specifies the number of blocks to transfer in the MMC_NOB register. Each data block is protected by appending a 16-bit CRC. Multiple block data transfers are terminated with a stop transmission command.
- Stream read/write: in stream mode, a continuous stream of data is transferred. The starting address is specified in the command token of the read or write command used. The data stream is terminated with a stop transmission command. For write transfers, the stop transmission command must be transmitted with the last six bytes of data. This ensures that the correct amount of data is written to the card. For read transfers, the stop transmission command may occur after the data transmission has occurred. There is no CRC protection for data in this mode.

15.2.4.2 SPI Mode

SPI mode is an optional secondary communication protocol. In SPI mode, the MMCMD and MMDAT lines are unidirectional and only single block data transfers are allowed. The MMCMD signal is an output from the controller and sends the command token and write data to the MMC card. The MMDAT signal is an input to the controller and receives the response token and read data from the MMC card.

Note: When the card is in SPI mode, the only way to return to MMC mode is by toggling the power to the card.

Card addressing is implemented with hardware chip selects, MMCCS1 and MMCCS0. All command, response, and data tokens are 8-bits long and are transmitted immediately following the assertion of the respective chip select.

The command token is protected with a 7-bit CRC. The card always sends a response to a command token. The response token has four formats, including an 8-bit error response. The length of the response tokens is one, two, or five bytes.

SPI mode offers a non protected mode. In this mode, CRC bits of the command, response, and data tokens are still required in the tokens but these bits are ignored by the card and the controller.

In write data transfers, the data is suffixed with an 8-bit CRC status token from the card. As in MMC mode, the card may indicate that it is busy by pulling the MMDAT line low after the status token. In read data transfers, the card may respond with the data or a data error token one byte long.

15.2.5 Error Detection

The MMC controller detects the following errors on the MMC bus and reports them in the status register (MMC_STAT):

- Response CRC error: a CRC error was calculated on the command response.
- Response time out: the response did not begin before the specified number of clocks.
- Write data CRC error: the card returned a CRC status error on the data.
- Read data CRC error: a CRC error was calculated on the data.
- Read time out: the read data operation did not begin before the specified number of clocks.
- SPI data error: a read data error token was detected In SPI mode.

15.2.6 Interrupts

The MMC controller generates interrupts to signal the status of a command sequence. The software is responsible for masking the interrupts appropriately, verifying the interrupts, and performing the appropriate action as necessary.

Interrupts and masking are described in sections Section 15.5.11, "MMC_I_MASK Register" and Section 15.5.12, "MMC_I_REG Register". The CMDAT[DMA_EN] bit will also mask the MMC_I_MASK[RXFIFO_RD_REQ] and MMC_I_MASK[TXFIFO_WR_REQ] interrupt bits.

15.2.7 Clock Control

Both the MMC controller and the software can control the MMC bus clock (MMCLK) by turning it on and off. This helps to control the data flow to prevent underruns and overflows and also conserves power. The software can also change the frequency at any time to achieve the maximum data transfer rate specified for a card's identification frequency.

The MMC controller has an internal frequency generator that may start, stop, and divide the MMC bus clock. The software may start and stop the clock by setting the appropriate bits in the MMC_STRPCL register. The MMCLK frequency is controlled by the value written in the MMC_CLKRT register.

To write any MMC controller register for the next command sequence, software must:

- 1. Stop the clock.
- 2. Write the registers.
- 3. Restart the clock.

Software must not stop the clock when it attempts to read the receive FIFOs or write the transmit FIFOs. When the clock stops, it resets the pointers in the FIFOs and any data left in the FIFOs can not be transmitted or accessed. When the receive FIFOs are empty and the MMC_STAT[DATA_TRAN_DONE] is set, software may stop the clock.

The software can specify the clock divisor of the 20 Mhz clock by setting the MMC_CLKRT register. The clock rate may be set as follows:

- 20 Mhz
- 1/2 of 20 Mhz, 10 Mhz
- 1/4 of 20 Mhz, 5 Mhz
- 1/8 of 20 Mhz, 2.5 Mhz
- 1/16 of 20 Mhz, 1.25 Mhz
- 1/32 of 20 Mhz, 625 khz
- 1/64 if 20 Mhz, 312.5 khz

The controller can also turn the clock off automatically. If both receive FIFOs become full during data reads, or one receive FIFO is being read by the software and the other receive FIFO becomes full, or both transmit FIFOs become empty during data writes, or one transmit FIFO is being written by the software and the other transmit FIFO is empty, the controller will automatically turn the clock off to prevent data overflows and underruns. For read data transfers, the controller turns the clock back on after a receive FIFO has been emptied. For write data transfers, the controller turns the clock back on after the transmit FIFO is no longer empty.

Warning: Stopping the clock while data is in the transmit or receive FIFOs will cause unpredictable results.

If the software stops the clock at any time, it must wait for the MMC_STAT[CLK_EN] status bit to be cleared before proceeding.

15.2.8 Data FIFOs

The controller FIFOs for the response tokens, received data, and transmitted data are MMC_RES, MMC_RXFIFO, and MMC_TXFIFO, respectively. These FIFOs are accessible by the software and are described in the following paragraphs.

15.2.8.1 Response Data FIFO (MMC_RES)

The response FIFO, MMC_RES, contains the response received from an MMC card after a command is sent from the controller. MMC_RES is a read only, 16-bit, and 8-entry deep FIFO.

The FIFO will hold all possible response lengths. Responses that are only one byte long are located on the MSB of the 16-bit entry in the FIFO. The first half-word read from the response FIFO is the most significant half-word of the received response.

The FIFO does not contain the response CRC. The status of the CRC check is in the status register, MMC STAT.

15.2.8.2 Receive Data FIFO, MMC_RXFIFO

The two receive data FIFOs are read only by the software and are readable on a single byte basis. They are dual FIFOs, where each FIFO is 32 entries of 1-byte data. Access to the FIFOs is controlled by the controller and depends on the status of the FIFOs.

Both FIFOs and their controls are cleared to a starting state after a system reset and at the beginning of all command sequences.

The FIFOs swap between the software and MMC bus. At any time, while the software has read access to one of the FIFOs, the MMC bus has write access to the other FIFO.

For purposes of an example, the FIFOs are called RXFIFO1 and RXFIFO2. After a reset or at the beginning of a command sequence, both FIFOs are empty and the software has read access to RXFIFO1 and the MMC has write access to RXFIFO2. When RXFIFO2 becomes full and RXFIFO1 is empty, the FIFOs swap and the software has read access to RXFIFO2 and the MMC has write access to RXFIFO1. When RXFIFO1 becomes full and RXFIFO2 is empty, the FIFOs swap and the software has read access to RXFIFO1 and the MMC has write access to RXFIFO2.

This swapping process continues through out the data transfer and is transparent to both the software and the MMC controller.

If at any time both FIFOs become full and the data transmission is not complete, the controller turns the MMCLK off to prevent any overflows. When the clock is off, data transmission from the card stops until the clock is turned back on. After the software has emptied the FIFO that it is connected to, the controller turns the clock on to continue data transmission.

The full status of the FIFO that the software is connected to is registered in the MMC_STAT[RECV_FIFO_FULL] bit.

The receive FIFO is readable on byte boundaries and the FIFO read request is only asserted once per FIFO access (once per 32 bytes available). Therefore, 32 bytes must be read for each request, except for the last read which may be less than 32 bytes.

If the DMA is used, it must be programmed to do 1-byte reads of 32-byte bursts. The last read can be less than a 32-byte burst. Some examples are:

- Receive 96 bytes of data: Read 32 bytes three times.
 - For the DMA, use three descriptors of 32 bytes and 32-byte bursts.
- Receive 98 bytes of data:
 Read 32 bytes three times, then read two more bytes.

For the DMA, use three descriptors of 32 bytes and 32-byte bursts and one descriptor of two more bytes and 8-, 16-, or 32- byte bursts.

• Receive 105 bytes:

Read 32 bytes three times, then read nine more bytes.

For the DMA, use three descriptors of 32 bytes and 32-byte bursts and one descriptor of nine or more bytes and 16- or 32-byte bursts.

15.2.8.3 Transmit Data FIFO, MMC TXFIFO

The two transmit data FIFOs are written only by the software and are writable on a single byte basis. They are dual FIFOs, where each FIFO is 32 entries of one byte data. Access to the FIFOs is controlled by the controller and depends on the status of the FIFOs.

Both FIFOs and their controls are cleared to a starting state after a system reset and at the beginning of all command sequences.

The FIFOs swap between the software and MMC bus. At any time, while the software has write access to one of the FIFOs, the MMC bus has read access to the other FIFO.

For purposes of an example, the FIFOs are called TXFIFO1 and TXFIFO2. After a reset or at the beginning of a command sequence, both FIFOs are empty and the software has write access to TXFIFO1 and the MMC has read access to TXFIFO2. When TXFIFO1 becomes full and TXFIFO2 is empty, the FIFOs swap and the software has write access to TXFIFO2 and the MMC has read access to TXFIFO1. When TXFIFO2 becomes full and TXFIFO1 is empty, the FIFOs swap and the software has write access to TXFIFO1 and the MMC has read access to TXFIFO2.

This swapping process continues through out the data transfer and is transparent to both the software and the MMC controller.

If at any time both FIFOs become empty and the data transmission is not complete, the controller turns the MMCLK off to prevent any underruns. When the clock is off, data transmission to the card stops until the clock is turned back on. When the transmit FIFO is no longer empty, the MMC controller automatically restarts the clock.

If the software does not fill the FIFO to which it is connected, the MMC_PRTBUF[BUF_PART_FULL] bit must be set to a 1. This enables the FIFOs to swap without filling the FIFO.

The empty status of the FIFO that the software is connected to is registered in the MMC_STAT[XMIT_FIFO_EMPTY] bit.

The transmit FIFO is writable on byte boundaries and the FIFO write request is only asserted once per FIFO access (once per 32 entries available). Therefore, 32 bytes must be written for each request, except for the last write which may be less than 32 bytes.

When the DMA is used, it must be programmed to do 1-byte writes of 32-byte bursts. The last write can be less than a 32-byte burst.

If the last write is less than 32 bytes, then the MMC_PRTBUF[BUF_PART_FULL] bit must be set. When the DMA is used, the last descriptor must be programmed to allow the DMA to set an interrupt after the data is written to the FIFO. After the interrupt occurs, the software must set the MMC PRTBUF[BUF PART FULL] bit.

Some examples are:

• Transmit 96 bytes of data:

Write 32 bytes three times.

For the DMA, use three descriptors of 32 bytes and 32-byte bursts.

• Transmit 98 bytes of data:

Write 32 bytes three times, then write two more bytes.

For the DMA, use three descriptors of 32 bytes and 32-byte bursts and one descriptor of two more bytes and 8-, 16- or 32-byte bursts and program the descriptor to set an interrupt, for the software to write the MMC_PRTBUF[BUF_PART_FULL] bit.

• Transmit 105 bytes:

Write 32 bytes three times, then write nine more bytes.

For the DMA, use three descriptors of 32 bytes and 32-byte bursts and one descriptor of nine more bytes and 16- or 32-byte bursts and program the descriptor to set an interrupt, for the software to write MMC_PRTBUF[BUF_PART_FULL] bit.

15.2.8.4 DMA and Program I/O

The software may communicate to the MMC controller via the DMA or program I/O.

To access the FIFOs with the DMA, the software must program the DMA to read or write the MMC FIFOs with single byte transfers, and 32-byte bursts. For example, to write 64 bytes of data to the MMC_TXFIFO, the software must program the DMA to write 64 bytes with an 8-bit port size to the MMC and for 32-byte bursts. The MMC issues a request to read the MMC_RXFIFO and a request to write the MMC_TXFIFO.

With program I/O, the software waits for the MMC_I_REG[RXFIFO_RD_REQ] or MMC_I_REG[TXFIFO_WR_REQ] interrupts before reading or writing the respective FIFO.

The CMDAT[DMA_EN] bit must be set to a 1 to enable communication with the DMA and it must be set to a 0 to enable program I/O.

15.3 Card Communication Protocol

This section discusses the software's responsibilities and the communication protocols used between the MMC and the card.

15.3.1 Basic, No Data, Command and Response Sequence

The MMC controller performs the basic MMC or SPI bus transaction. It formats the command from the command registers and generates and appends the 7-bit CRC if applicable. It then serially translates this to the MMCMD bus, collects the response data, and validates the response CRC. It also checks for response time-outs and card busy if applicable. The response data is in the MMC_RES FIFO and the status of the transaction is in the status register, MMC_STAT.

The protocol of events for the software is:

- 1. Stop the clock
- 2. Write 0x6f to the MMC_I_MASK register and wait for and verify the MMC_I_REG[CLK_IS_OFF] interrupt
- 3. Write to the following registers, as necessary:
 - MMC_CMD
 - MMC_ARGH
 - MMC_ARGL
 - MMC CMDAT, this register must be written, even if there is no change to the register
 - MMC CLKRT
 - MMC_SPI
 - MMC RESTO
- 4. Start the clock
- 5. Write 0x7b to the MMC_I_MASK register and wait for and verify the MMC_I_REG[END_CMD_RES] interrupt
- 6. Read the MMC_RES FIFO and MMC_STAT registers

Some cards may become busy as the result of a command. The software may wait for the card to become not busy by writing the MMC_I_MASK register and waiting for the MMC_I_REG[PRG_DONE] interrupt or the software can start communication to another card. The software may not access the same card again until the card is no longer busy. Refer to *The MultiMediaCard System Specification* for additional information.

15.3.2 Data Transfer

A data transfer is a command and response sequence with the addition of a data transfer to a card.

Refer to the examples in Section 15.4, "MultiMediaCard Controller Operation".

The software must follow the steps as described in Section 15.3.1, "Basic, No Data, Command and Response Sequence". In addition, before starting the clock, the software must write the following registers as necessary.

- MMC_RDTO
- MMC_BLKLEN
- MMC_NOB

After the software writes the registers and starts the clock, the software must read the MMC_RES as described above and read or write the MMC_RXFIFO or MMC_TXFIFO FIFOs.

After completely reading or writing the data FIFOs, the software must wait for the appropriate interrupts. The status register, MMC_STAT, must be read to ensure that the transaction is complete and to check the status of the transaction.

When using DMA request signals, the controller indicates to the DMA when a FIFO is ready for reading or writing. It is expected that all FIFO reads and writes will empty and fill the FIFO to which it is connected. If at any time the MMC_TXFIFO is not filled (32 bytes) by the software, the software must notify the controller by setting the MMC_PRTBUF[BUF_PART_FULL]. The software can write more bytes of data than is needed into the MMC_TXFIFO, but the controller will only transmit the number of bytes in the MMC_BLKLEN register.

At the end of any data transfer or busy signal on the MMC bus, the MMC controller waits eight MMC clocks before asserting the MMC_I_REG[DATA_TRAN_DONE] interrupt to notify the software that the data transfer is complete. This guarantees that the specified minimum of eight MMC clocks occurs between a data transfer and the next command.

On write data transfers, a card may become busy while programming the data. The software may wait for the card to become not busy by writing the MMC_I_MASK register and waiting for the MMC_I_REG[PRG_DONE] interrupt or the software can start communication to another card. Refer to *The MultiMediaCard System Specification* for additional information.

The MMC controller performs data transactions in all the basic modes: single block, multiple blocks, and stream modes.

15.3.2.1 Block Data Write

In a single block data write, a block of data is written to a card. In a multiple block write, the controller performs multiple single block write data transfers on the MMC bus.

After turning the clock on to start the command sequence, the software must program the DMA to fill the MMC_TXFIFO (write 32 bytes). The software must continue to fill the FIFO until all of the data has been written to the FIFOs. The software must then wait for the transmission to complete by waiting for the MMC_I_REG[DATA_TRAN_DONE] interrupt and MMC_I_REG[PRG_DONE] interrupt. The software can then read the status register, MMC_STAT, to verify the status of the transaction.

For multiple block writes, *The MultiMediaCard System Specification* specifies that the card will continue to receive blocks of data until the stop transmission command is received. After the controller has transmitted the number of bytes specified in the MMC_NOB register, the controller will stop transmitting data. After the MMC_I_REG[DATA_TRAN_DONE] interrupt is detected, the software must setup the controller to send the stop transmission command, CMD12. Consult *The MultiMediaCard System Specification* for a description of the stop transmission command.

If both transmit FIFOs become empty during data transmission, the MMC controller turns the clock off. After a FIFO has been written, the controller turns the clock back on.

In a block data write, the following parameters must be specified:

- The data transfer is a write.
- The block length if the block length is different from the previous block data transfer or this is the first time that the parameter is being specified.
- The number of blocks to be transferred.

15.3.2.2 Block Data Read

In a single block data read, a block of data is read from a card. In a multiple block read, the controller performs multiple single block read data transfers on the MMC bus.

After turning the clock on to start the command sequence, the software must program the DMA to empty the MMC_RXFIFO (read 32 bytes). The software will continue the process of emptying the FIFO until all of the data has been read from the FIFO. The software must then wait for the transmission to complete by waiting for the MMC_I_REG[DATA_TRAN_DONE] interrupt. The software can then read the status register, MMC_STAT, to verify the status of the transaction.

For multiple block reads, *The MultiMediaCard System Specification* specifies that the card will continue to send blocks of data until the stop transmission command is received. After the controller has received the number of bytes specified in the MMC_NOB register, the controller will stop receiving data. After the MMC_I_REG[DATA_TRAN_DONE] interrupt is detected, the software must set up the controller to send the stop transmission command, CMD12. Consult *The MultiMediaCard System Specification* for a description of the stop transmission command.

If both receive FIFOs become full during the data transmission, the controller turns the clock off. Once the software empties the FIFO to which it is connected, the controller turns the clock back on.

In a block data read, the following parameters must be specified:

- The data transfer is a read.
- The block length, if the block length is different from the previous block data transfer or this is the first time that the parameter is being specified.
- The number of blocks to be transferred.
- The receive data time-out period.

The controller will mark the data transaction as timed out if data is not received before the time-out period. The delay for the time-out period is defined as:

Time-out Delay =
$$\frac{(MMC_RDTO[READ_TO]) \times (128)}{10^7} sec$$

The software is required to calculate this value and write the appropriate value into the MMC_RDTO register.

15.3.2.3 Stream Data Write

The stream data write looks like the single block write except a stop transmission command is sent in parallel with the last six bytes of data.

After turning the clock on to start the command sequence, the software must start the process of filling the MMC_TXFIFO and starting the clock as describe in Section 15.3.2.1, "Block Data Write". The software must then wait for the MMC_I_REG[STOP_CMD] interrupt. This interrupt indicates that the MMC controller is ready for the stop transmission command. The software must then stop the clock, write the registers for a stop transmission command, and then start the clock. At this point, the software must wait for the MMC_I_REG[DATA_TRAN_DONE] and MMC_I_REG[PRG_DONE] interrupts.

In a stream data write, the following parameters must be specified:

- The data transfer is a write.
- The data transfer is in stream mode
- The block length, if the block length is different from the previous block data transfer or this is the first time that the parameter is being specified.
- The number of blocks to be transferred as 0xffff.

15.3.2.4 Stream Data READ

The stream data read looks like the single block read except a stop transmission command must be sent after the data transfer.

After turning the clock on to start the command sequence, the software must start the process of reading the MMC_RXFIFO as described in Section 15.3.2.2, "Block Data Read".

When it uses the DMA, the software must also configure the DMA to send an interrupt after all data has been read. After the DMA interrupt or the program has read all of the data, the software must send the stop transmission command. The MCC_STAT[DATA_TRAN_DONE] bit is not set until after software sends the stop transmission command.

In a stream data read, the following parameters must be specified:

- The data transfer is a read.
- The data transfer is in stream mode.
- The block length, if the block length is different from the previous block data transfer or this is the first time that the parameter is being specified.
- The number of blocks to be transferred as 0xffff.
- The receive data time-out period.

15.3.3 Busy Sequence

The MMC controller expects a busy signal automatically from the card after every block of data for single and multiple block write operations. It will also expect a busy at the end of a command every time that the software specifies that a busy signal is expected (i.e. a busy signal is expected after the commands for stop transmission, card select, erase, program CID, etc.). Refer to the *The MultiMediaCard System Specification*.

While a busy signal is on the MMC bus, the software can send only one of two commands:

- Send status command (CMD13).
- Disconnect command (CMD7).

If the software disconnects a card while it is in a busy state, the busy signal will be turned off and the software can connect a different card. The software may not start another command sequence on the same card while the card is busy.

15.3.4 SPI Functionality

The MMC controller can address up to two cards in SPI mode using the MMCCS[1:0] chip select signals. Once the software specifies which chip select to enable in the MMC_SPI register, the selected signal is driven active low at a falling edge of the MMC clock. The chip select remains asserted until software clears the chip select enable bit or selects another card.

Note: The clock must be stopped before writing to any registers as described in Section 15.3.1, "Basic, No Data, Command and Response Sequence".

In SPI mode, the software has the option of performing a CRC check. The default is no CRC checking.

The command and data are sent on the MMC bus aligned to every 8 clocks as described in the SPI section of *The MultiMediaCard System Specification*.

In a read sequence, the card may return data or a data error token. If a data error token is received, the controller will stop the transmission and update the status register.

15.4 MultiMediaCard Controller Operation

The software directs all communication between the card and the controller. The operations shown in the preceding sections are valid for MMC mode only.

15.4.1 Start and Stop Clock

The set of registers is accessed by stopping the clock, writing the registers, and starting the clock.

The software stops the clock, as follows:

- 1. Write 0x01 in MMC_STRPCL to stop the MMC clock.
- 2. Write 0x0f in MMC_I_MASK to mask all interrupts except the MMC_I_REG[CLK_IS_OFF] interrupt.
- 3. Wait for the MMC_I_REG[CLK_IS_OFF] interrupt.

To start the clock the software writes 0x02 in MMC_STRPCL.

15.4.2 Initialize

Card initialization sequences must be prefixed with 80 clock cycles. To generate 80 clock cycles before any command, the software must set the MMC_CMDAT[INIT] bit.

15.4.3 Enabling SPI Mode

To communicate with a card in SPI mode, the software must set the MMC_SPI register as follows:

- 1. MMC_SPI[SPI_EN] must be set to 1.
- 2. MMC_SPI[SPI_CS_EN] must be set to 1.

3. MMC_SPI[SPI_CS_ADDRESS] must be set to specify the card that the software wants to address. A 1 enables CS0 and a 0 enables CS1.

Note: When the card is in SPI mode, the only way to return to MMC mode is by toggling power to the card.

15.4.4 No Data Command and Response Sequence

For the basic no data transfer, command and response transaction, the software must:

- 1. Turn the clock off, as described in chapter in Section 15.4.1, "Start and Stop Clock".
- 2. Write the command index in the MMC_CMD[CMD_INDEX] bits.
- 3. Write the command argument in the MMC_ARGH and MMC_ARGL registers.
- 4. Write the MMC CMDAT register set as follows:
 - a. Write 0b00 to MMC_CMDAT[RESPONSE_FORMAT].
 - b. Clear the MMC_CMDAT[DATA_EN] bit.
 - c. Clear the MMC_CMDAT[BUSY] bit, unless the card may respond busy.
 - d. Clear the MMC_CMDAT[INIT] bit.
- 5. Write MMC_RESTO register with the appropriate value.
- 6. Write 0x1b in MMC_I_MASK to unmask the MMC_I_REG[END_CMD_RES] interrupt.
- 7. Start the clock, as described in Section 15.4.1, "Start and Stop Clock"

The software must not make changes in the set of registers until the end of the command and response sequence, after the clock is turned on.

After the clock is turned on, the software must wait for the MMC_I_REG[END_CMD_RES] interrupt, which indicates that the command and response sequence is finished and the response is in the MMC_RES FIFO.

The software may then read the MMC_STAT register to verify the status of the transaction and then read MMC_RES FIFO. If a response time-out occurred, the MMC_RES FIFO will not contain any valid data.

15.4.5 Erase

An erase command is performed as described in the previous section, Section 15.4.4, "No Data Command and Response Sequence" with the following additions: The BUSY_BIT in the MMC_CMDAT register must be set to a 1 after it reads the MMC_RES FIFO.

15.4.6 Single Data Block Write

In a single block write command, the software must stop the clock and set the registers as described in section Section 15.4.4, "No Data Command and Response Sequence". The following registers must be set before the clock is started:

- Set MMC NOB register to 0x0001.
- Set MMC_BLKLEN to the number of bytes per block.

- Update the MMC_CMDAT register as follows:
 - Write 0x01 to MMC_CMDAT[RESPONSE_FORMAT]
 - Set the MMC_CMDAT[DATA_EN] bit.
 - Set the MMC_CMDAT[WRITE/READ] bit.
 - Clear the MMC_CMDAT[STREAM_BLOCK] bit.
 - Clear the MMC_CMDAT[BUSY] bit.
 - Clear the MMC_CMDAT[INIT] bit.
- Turn the clock on.

After it starts the clock, the software must perform the following steps:

- 1. Wait for the response as described in section Section 15.4.4, "No Data Command and Response Sequence".
- 2. Write data to the MMC_TXFIFO FIFO and continue until all of the data has been written to the FIFO.

Note: If a piece of data smaller than 32 bytes is written to the FIFO, the MMC_PRTBUF register must be set.

- 3. Set MMC_I_MASK register to 0x1e and wait for MMC_I_REG[DATA_TRAN_DONE] interrupt.
- 4. Set MMC_I_MASK to 0x1d.
- 5. Wait for MMC_I_REG[PRG_DONE] interrupt. This interrupt indicates that the card has finished programming. Software may wait for MMC_I_REG[PRG_DONE] or start another command sequence on a different card.
- 6. Read the MMC_STAT register to verify the status of the transaction (i.e. CRC error status).

To address a different card, the software sends a select command to that card by sending a basic no data command and response transaction. To address the same card, the software must wait for MMC_I_REG[PRG_DONE] interrupt. This ensures that the card is not in the busy state.

15.4.7 Single Block Read

In a single block read command, the software must stop the clock and set the registers as described in section Section 15.4.4, "No Data Command and Response Sequence".

The following registers must be set before the clock is started:

- Update the following bits in the MMC_CMDAT register:
 - Set the MMC_CMDAT[RESPONSE_FORMAT] bit.
 - Set the MMC_CMDAT[DATA_EN] bit.
 - Clear the MMC CMDAT[WRITE/READ] bit.
 - Clear the MMC_CMDAT[STREAM_BLOCK] bit.
 - Clear the MMC_CMDAT[BUSY] bit.
 - Clear the MMC_CMDAT[INIT] bit.
- Set MMC_NOB register to 0x0001.
- Set MMC_BLKLEN register to the number of bytes per block.
- Turn the clock on.

After it turns the clock on, the software must perform the following steps:

- 1. Wait for the response as described in section Section 15.4.4, "No Data Command and Response Sequence".
- 2. Read data from the MMC_RXFIFO FIFO, as data becomes available in the FIFO, and continue reading until all data is read from the FIFO.
- 3. Set MMC_I_MASK to 0x1e.
- 4. Wait for the MMC_I_REG[DATA_TRAN_DONE] interrupt.
- 5. Read the MMC_STAT register to verify the status of the transaction (i.e. CRC error status).

15.4.8 Multiple Block Write

The multiple block write mode is similar to the single block write mode, except that multiple blocks of data are transferred. Each block is the same length. All the registers are set as they are for the single block write, except that the MMC_NOB register is set to the number of blocks to be written.

The multiple block write mode also requires a stop transmission command, CMD12, after the data is transferred to the card. After the MMC_I_REG[DATA_TRAN_DONE] interrupt occurs, the software must program the controller registers to send a stop data transmission command.

15.4.9 Multiple Block Read

The multiple block read mode is similar to the single block read mode, except that multiple blocks of data are transferred. Each block is the same length. All the registers are set as they are for the single block read, except that the MMC_NOB register is set to the number of blocks to be read.

The multiple block read mode requires a stop transmission command, CMD12, after the data from the card is received. After the MMC_I_REG[DATA_TRAN_DONE] interrupt has occurred, the software must program the controller registers to send a stop data transmission command.

15.4.10 Stream Write

In a stream write command, the software must stop the clock and set the registers as described in section Section 15.4.4, "No Data Command and Response Sequence". The following registers must be set before the clock is started:

- Set MMC NOB register to ffffh.
- Set MMC_BLKLEN register to the number of bytes per block.
- Update MMC_CMDAT register as follows:
 - Write 0b01 to the MMC_CMDAT[RESPONSE_FORMAT].
 - Set the MMC_CMDAT[DATA_EN] bit.
 - Set the MMC_CMDAT[WRITE/READ] bit.
 - Set the MMC_CMDAT[STREAM_BLOCK] bit.
 - Clear the MMC_CMDAT[BUSY] bit.
 - Clear the MMC_CMDAT[INIT] bit.
- Turn the clock on.

After it turns the clock on, the software must perform the following steps:

- 1. Wait for the response as described in section Section 15.4.4, "No Data Command and Response Sequence".
- 2. Write data to the MMC_TXFIFO FIFO and continue until all of the data is written to the FIFO.

Note: When data less than 32 bytes is written to the FIFO, the MMC_PRTBUF[BUF_PART_FULL] bit must be set.

- 3. Set MMC_I_MASK to 0x77 and wait for MMC_I_REG[STOP_CMD] interrupt.
- 4. Set the command registers for a stop transaction command (CMD12).
- 5. Wait for a response to the stop transaction command as described in section Section 15.4.4, "No Data Command and Response Sequence".
- 6. Set MMC_I_MASK to 0x1e.
- 7. Wait for MMC_I_REG[DATA_TRAN_DONE] interrupt.
- 8. Set MMC_I_MASK to 0x1d.
- 9. Wait for MMC_I_REG[PRG_DONE] interrupt. This interrupt indicates that the card has finished programming. Software may wait for MMC_I_REG[PRG_DONE] interrupt or start another command sequence on a different card.
- 10. Read the MMC_STAT register to verify the status of the transaction (i.e. CRC error status).

To address a different card, the software must send a select command to that card by sending a basic no data command and response transaction. To address the same card, the software must wait for MMC_I_REG[PRG_DONE] interrupt. This ensures that the card is not in the busy state.

15.4.11 Stream Read

In a stream read command, the software must stop the clock and set the registers as described in section Section 15.4.4, "No Data Command and Response Sequence". The following registers must be set before the clock is turned on:

- Set MMC NOB register to ffffh.
- Set MMC_BLKLEN register to the number of bytes per block.
- Update the MMC_CMDAT register as follows:
 - Write 0x01 to the MMC_CMDAT[RESPONSE_FORMAT].
 - Set the MMC_CMDAT[DATA_EN] bit.
 - Clear the MMC_CMDAT[WRITE/READ] bit.
 - Set the MMC_CMDAT[STREAM_BLOCK] bit.
 - Clear the MMC_CMDAT[BUSY] bit.
 - Clear the MMC_CMDAT[INIT] bit.
- Turn the clock on.

After it turns the clock on, the software must perform the following steps:

- 1. Wait for the response as described in section Section 15.4.4, "No Data Command and Response Sequence".
- Read data from the MMC_RXFIFO FIFO and continue until all of the data has been read from the FIFO.
- Set the command registers for a stop transaction command (CMD12). If the DMA is being used, the last descriptor must set the DMA to send an interrupt to signal that all the data has been read.
- 4. Wait for a response to the stop transaction command as described in section Section 15.4.4, "No Data Command and Response Sequence"
- 5. Set MMC_I_MASK to 0x1e.
- 6. Wait for MMC_I_REG[DATA_TRAN_DONE] interrupt.
- 7. Read the MMC_STAT register to verify the status of the transaction (i.e. CRC error status).

15.5 MMC Controller Registers

The MMC controller is controlled by a set of registers that software configures before every command sequence on the MMC bus.

Table 15-6 lists the address, name, and description of the MMC Controller Registers. Table 15-6 through Table 15-24 describe the registers and FIFOs.

Table 15-5. MMC Controller Registers

Address	Name	Description
0x4110 0000	MMC_STRPCL	Control to start and stop MMC clock
0x4110 0004	MMC_STAT	MMC status register (read only)
0x4110 0008	MMC_CLKRT	MMC clock rate
0x4110 000c	MMC_SPI	SPI mode control bits
0x4110 0010	MMC_CMDAT	Command/response/data sequence control
0x4110 0014	MMC_RESTO	Expected response time out
0x4110 0018	MMC_RDTO	Expected data read time out
0x4110 001c	MMC_BLKLEN	Block length of data transaction
0x4110 0020	MMC_NOB	Number of blocks, for block mode
0x4110 0024	MMC_PRTBUF	Partial MMC_TXFIFO FIFO written
0x4110 0028	MMC_I_MASK	Interrupt Mask
0x4110 002c	MMC_I_REG	Interrupt Register (read only)
0x4110 0030	MMC_CMD	Index of current command
0x4110 0034	MMC_ARGH	MSW part of the current command argument
0x4110 0038	MMC_ARGL	LSW part of the current command argument
0x4110 003c	MMC_RES	Response FIFO (read only)
0x4110 0040	MMC_RXFIFO	Receive FIFO (read only)
0x4110 0044	MMC_TXFIFO	Transmit FIFO (write only)

15.5.1 MMC_STRPCL Register

The MMC_STRPCL register allows the software to start and stop the MMC bus clock. This register is write only and reads are unpredictable. The register bits are described in Table 15-6.

Table 15-6. MMC_STRPCL Register

			Р			Add _000		ss				N	IMC	:_S	ΓRF	CL	Reg	jiste	er							MI	ИС					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																Reserved															STRPCI	5
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bits Name																		De	escr	ipti	on										
							erve	d	Res	erv	ed																					
	1:0 strpcl							Star 00 = 01 = 10 = 11 =	= Do = Sto = Sto	no op t	thin he N he N	g /IMC	C clo	ock																		

MMC_STAT Register 15.5.2

The MMC_STAT Register is the status register for the MMC controller. The register is cleared at the beginning of every command sequence.

Та	ble	15-7.	. MI	MC_	STA	TR	egiste	er	(Sh	eet	1 0	of 2	2)																
		Р		ical /	Addre 0004	ss				MN	IC_	STA	AT R	egis	ster								MI	МС					
Bit	31	30 29	28	27	26 25	24	23 22	2	21 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved									END_CMD_RES	PRG_DONE	DATA_TRAN_DONE	Reserved		CLK_EN	RECV_FIFO_FULL	XMIT_FIFO_EMPTY	RES_CRC_ERR	SPI_READ_ERROR_TOKEN	CRC_READ_ERROR	CRC_WRITE_ERROR	TIME_OUT_RESPONSE	READ_TIME_OUT
Reset	0	0 0	0	0	0 0	0	0 0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
		Bits			Name											De	esci	ripti	on										
		31:14		R	eserve	ed	Reserv	/e	d																				
		13		END	D_CMI ES	_	End Co 1 = Co 0 = Co	m	mand	and	res	por	ise s	•							d								
		12		PR	G_DO	NE	Progra 1 = Ca 0= Ca	rd	has f	inish			-		-														
		11			A_TR.	_	Data T 1 = Da 0 = Da	ta	trans	miss	sion	to c				•		ted											
		10:9		R	eserve	ed	Reserv																						
						nabled																							
	8									k is o	on																		

0 = MMC clock is off Receive FIFO Full

1 = Receive FIFO is full

RECV_FIFO_

7

Table 15-7. MMC_STAT Register (Sheet 2 of 2)

Read Time Out

0 = Card read data has not timed out1 = Card read data timed out

READ_TIME_

0

			Ρ			Add _000		ss				MIV	IC_	STA	T R	egis	ter								МІ	ИС					
Bit	31	30	29	28	27	26	25	24	23 22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									Reserved									END_CMD_RES	PRG_DONE	DATA_TRAN_DONE	Reserved		CLK_EN	RECV_FIFO_FULL	XMIT_FIFO_EMPTY	RES_CRC_ERR	SPI_READ_ERROR_TOKEN	CRC_READ_ERROR	CRC_WRITE_ERROR	TIME_OUT_RESPONSE	READ_TIME_OUT
Reset	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
		Bi	its			Na	me											De	escr	ipti	on										
		2	2			C_V ERF		ΓE_	CRC V 1 = Ca 0 = No	rd ol	osei	ved						ssio	n of	dat	а										
			1			/IE_(SPC		_R E	Time C 1 = Ca 0 = Ca	rd re	espo	nse	tim			ed o	out														

15.5.3 MMC_CLKRT Register

The MMC_CLKRT register specifies the frequency division of the MMC bus clock. The software is responsible for setting this register.

The software can only write this register after the clock is turned off and the software has received an interrupt that indicates the clock is turned off.

Table 15-8. MMC_CLK Register

			P	•	ical 110 ₋			ss				ı	ИM	C_C	LKI	RT F	Regi	iste	r							MI	ИС					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														Re	serv	/ed															K_F [2:0	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bi	ts			Na	me												De	esci	ipti	on										
		31	:3		F	Rese	erve	d	Res	serv	ed																					
									000	= 2	0 M	lHz	cloc	k																		
									001	= 1	0 M	lHz	cloc	k, 1	/2 o	f 20	МН	z cl	ock													
									010	= 5	MH	Iz cl	ock	, 1/4	of.	20 N	ЛHz	clo	ck													
		2:	. ^		CL	K_R	RATE	[2:	011	= 2	.5 N	1Hz	clo	k, 1	/8 c	of 20	МН	z cl	ock													
		2.	.U			C)]		100	= 1	.25	MHz	clo	ck,	1/16	of 2	20 N	ΛHz	clo	ck												

101 = 0.625 MHz clock, 1/32 of 20 MHz clock 110 = 0.3125 MHz clock, 1/64 of 20 MHz clock

111 = Reserved

15.5.4 MMC_SPI Register

The MMC_SPI register is for SPI mode only and is set by the software.

Table 15-9. MMC_SPI Register

			P		ical 110_			s					MI	MC_	SPI	Re	gist	er								MI	ИC					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													R	lese	erve	d													SPI_CS_ADDRESS	SPI_CS_EN	CRC_ON	SPI_EN
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		В	its			Na	me												De	escr	ipti	on										
		31	1:4		F	Rese	rve	b	Res	erve	ed																					
			2		SP	L_CS	S_A	חח	Spe 1 =					ve a	ddre	ess	of th	ne ca	ard 1	to a	ctiva	ate tl	ne S	SPI (CS							
		•	3			RE	SS		0 = 1																							
									SPI					ahl	2																	
			2		SE	PL C	S_E		1=1							elec	rt .															
					•	0			0 = 1																							
									CRO																							
			1		C	CRC	_01	1	1 = 1	Ena	ble	s CF	RC (gene	erati	on a	and	veri	ficat	ion												
									0 = 1	Disa	able	s C	RC	gen	erati	ion	and	veri	ifica	tion												
									SPI																							
		(0			SPI_	_EN		1 = 1	Ena	ble	s SF	Pl m	ode																		

0 = Disables SPI mode

15.5.5 MMC_CMDAT Register

The MMC_CMDAT register controls the command sequence. Writing to this register starts the command sequence on the MMC bus when the MMC bus clock is turned on.

Table 15-10. MMC_CMDAT Register

			Ρ	hysi 41		Add _001		ss				ı	мм	C_C	MD.	AT I	Reg	iste	r							MN	/IC					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											F	Res€	erve	d											MMC_DMA_EN	TINI	BUSY	STREAM_BLOCK	WRITE/READ	DATA_EN	RESPONSE FORMAT[1:0]	1
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

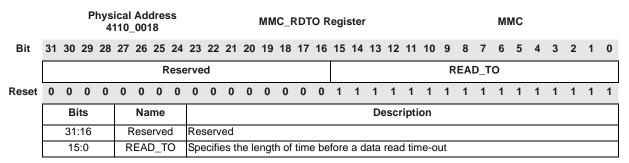
Bits	Name	Description
31:8	Reserved	Reserved
		DMA Mode Enable
	MMC_DMA_E	1 = DMA mode
7	N	0 = Program I/O mode
		When DMA mode is used, this bit is a mask on RXFIFO_RD_REQ and TXFIFO_WR_REQ interrupts.
		80 Initialization Clocks
6	INIT	1 = Precede command sequence with 80 clocks
		0 = Do not precede command sequence with 80 clocks
5	BUSY	Specifies whether a busy signal is expected after the current command.
3	B001	This bit is for no data command/response transactions only.
		Stream Mode
4	STREAM_BL OCK	1 = Data transfer of the current command sequence is in stream mode
		0 = Data transfer of the current command sequence is not in stream mode
		Read or Write Operation
3	WRITE/READ	1 = Specifies that the data transfer of the current command is a write operation
		0 = Specifies that the data transfer of the current command is a read operation
		Data Transfer Enable
2	DATA_EN	1 = Specifies that the current command includes a data transfer
		0 = No data transfer with current command
		These bits specify the response format for the current command.
	RESPONSE	00 = No response in MMC mode. Not supported in SPI mode
1:0	FORMAT[1:0]	01 = Format R1, R1b, R4, and R5 in MMC mode. Format R1 and R1b in SPI mode
		10 = Format R2 in MMC mode. Format R2 in SPI mode
		11 = Format R3 in MMC mode. Format R3 in SPI mode

15.5.6 MMC_RESTO Register

The MMC_RESTO register controls the number of MMC clocks that the controller must wait after the command before it can turn on the time-out error if a response has not occurred. The default value of this register is 64.

Table 15-11. MMC_RESTO Register

			P			Ad _001	dres I4	SS				ľ	ИΜ	C_R	ES	ГО Б	Regi	iste	r							MI	ИС					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												Re	serv	/ed														RE	S_	ТО		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
		Bi	ts			Na	me												De	escr	ipti	on										
		31	:7		F	Rese	erve	d	Res	serv	ed																					
		6:	:0		F	RES	_TC)	Nur	nbe	r of	MM	C cl	ock	s be	fore	a r	esp	onse	e tim	ne-o	ut										


15.5.7 MMC_RDTO Register

The MMC_RDTO register determines the length of time that the controller waits after a command before it turns on the time-out error if data has not been received. The length of time before a time-out occurs is measured in increments of 256 20 MHz periods and can be calculated as follows:

Time-out Delay =
$$\frac{(\text{MMC_RDTO[READ_TO]}) \times (256)}{20MHz} = \frac{(\text{MMC_RDTO[READ_TO]}) \times (128)}{10^7} \sec$$

It is the software's responsibility to calculate the value for READ_TO. The default value is 0xffff, which corresponds to 838.848 ms.

Table 15-12. MMC_RDTO Register

15.5.8 MMC_BLKLEN Register

The MMC_BLKLEN register specifies the number of bytes in a block of data.

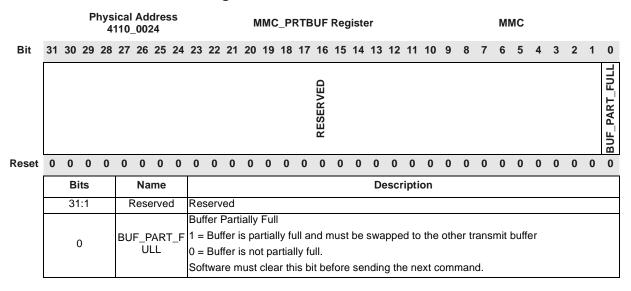
Table 15-13. MMC_BLKLEN Register

Physical Address MMC MMC_BLKLEN Register 4110 001c 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved **BLK LEN** 0 0 0 0 0 0 0 0 0 **Bits** Name Description 31:10 Reserved Reserved 9:0 BLK LEN Number of bytes in the block.

15.5.9 MMC_NOB Register

In block mode, the MMC_NOB register specifies the number of blocks.

Table 15-14. MMC_NOB Register


Physical Address MMC_NOB Register **MMC** 4110_0020 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit **RESERVED** MMC_NOB Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bits** Name Description 31:16 Reserved Reserved 15:0 MMC_NOB Number of blocks for a multiple block transfer

15.5.10 MMC_PRTBUF Register

The MMC_PRTBUF register is used when MMC_TXFIFO is partially written. The FIFOs swap when either FIFO is full (32 bytes) or the MMC_PRTBUF register is set to a 1.

Table 15-15. MMC_PRTBUF Register

15.5.11 MMC_I_MASK Register

The MMC_I_MASK register masks off the various interrupts when set to a 1.

Table 15-16. MMC_I_MASK Register

			Р			Ad _002	dres 28	SS				N	ИΜС	:_I_	MA	SK	Reg	iste	r							MI	ИС					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													RESERVED													TXFIFO_WR_REQ	RXFIFO_RD_REQ	CLK_IS_OFF	STOP_CMD	END_CMD_RES	PRG_DONE	DATA_TRAN_DONE
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
		Bi	ts			Na	me												De	escr	ipti	on										
		31	:7		F	Rese	erve	d	Res	serv	ed																					
		6	6		ТХ		D_W EQ	/R_	1 =	Mas	it Fl sked ma	ł		te R	equ	est																
		Ę	5		RX		O_R EQ	D_	1 =	Mas	e FII sked ma	ł		d R	equ	est																

Table 15-16. MMC_I_MASK Register

			P		ical 110_			ss				N	имс	;_I_	MA	SK I	Reg	iste	er							MIN	ИC					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													RESERVED													TXFIFO_WR_REQ	RXFIFO_RD_REQ	CLK_IS_OFF	STOP_CMD	END_CMD_RES	PRG_DONE	DATA_TRAN_DONE
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
		Ві	ts			Na	me												De	osci	iptio	on										
		4	1		(CLK OI		-	1 =	Mas	S Off sked mas	I	d																			
		;	3		ST	OP.	_CN		1 =	Mas	for S sked mas	· .		nsa	ctio	n Co	omn	nanc	t													
		2	2		EN	D_C E)_R	1 =	Mas	mma sked mas	I		spoi	nse																	
		,	l		PR	RG_	DOI		1 =	mas	nmir sked mas	l		Э																		
		()		DA	TA_ DO		N_	1 =	Mas	ansf sked mas	l		е																		

15.5.12 MMC_I_REG Register

The MMC_I_REG register shows the currently requested interrupt. The FIFO request interrupts, TXFIFO_WR_REQ, and RXFIFO_RD_REQ are masked off with the MMC_DMA_EN bit in the MMC_CMDAT register. The software is responsible for monitoring these bits in program I/O mode. The bits are cleared as described in Table 15-17.

Table 15-17. MMC_I_REG Register

			Р	hysi 41	ical I10_			ss					MM	C_I	_RE	G R	egi	ster	•							MIN	ИC					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													RESERVED													TXFIFO_WR_REQ	RXFIFO_RD_REQ	CLK_IS_OFF	STOP_CMD	END_CMD_RES	PRG_DONE	DATA_TRAN_DONE
Reset	0	n	n	Λ	Λ	n	n	0	Λ	n	n	n	Λ	n	Λ	n	n	n	n	n	0	n	n	n	n	n	n	n	Λ	n	n	0

Bits	Name	Description
31:5	Reserved	Reserved
		Transmit FIFO Write Request
	TXFIFO_WR_	1 = Request for data write to MMC_TXFIFO FIFO
6	REQ	0 = No Request for data write to MMC_TXFIFO FIFO
		Cleared after each write but immediately set again unless there are no entries left in the FIFIO.
		Receive FIFO Read Request
5	RXFIFO_RD_	1 = Request for data read from MMC_RXFIFO FIFO
3	REQ	0 = No Request for data read from MMC_RXFIFO FIFO
		Cleared after each read but immediately set again unless the FIFO is empty.
		Clock Is Off
4	CLK_IS_	1 = MMC clock has been turned off, due to stop bit in STRP_CLK register
7	OFF	0 = MMC clock has not been turned off
		Cleared by the MMC_STAT[CLK_EN] bit when the clock is started.
		For stream mode writes.
3	STOP CMD	1 = MMC is ready for the stop transmission command
	OTOL TOMB	0 = MMC is not ready for the stop transmission command
		Cleared when CMD12 is loaded in the MMC_CMD register and the clock is started.
		End Command Response
2		1 = MMC has received the response or a response time-out has occurred
_	ES	0 = MMC has not received the response
		Cleared by the MMC_STAT[END_CMD_RES] bit.
		Programming Done
1	PRG DONE	1 = Card has finished programming and is no longer busy
'	T NO_DONE	0 = Card has not finished programming and is busy
		Cleared by the MMC_STAT[PRG_DONE] bit.
		Data Transfer Done
0	DATA_TRAN_	1 = Data transfer has completed or a read data time-out has occurred
	DONE	0 = Data transfer is not complete
		Cleared by the MMC_STAT[DATA_TRAN_DONE] bit.

15.5.13 MMC_CMD Register

The MMC_CMD register specifies the command number.

Table 15-18. MMC_CMD Register

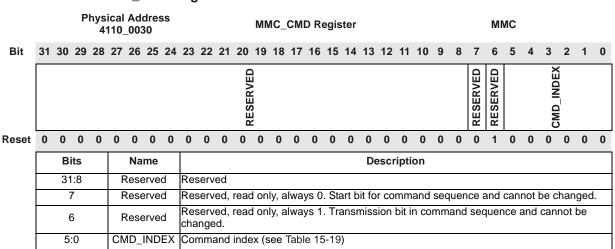


Table 15-19. Command Index Values (Sheet 1 of 3)

CMD	COMM AND	MODE	ABBREVIATION
000000	CMD0	MMC/SPI	GO_IDLE_STATE
000001	CMD1	MMC/SPI	SEND_OP_COND
000010	CMD2	MMC	ALL_SEND_CID
000011	CMD3	MMC	SET_RELATIVE_ADDR
000100	CMD4	MMC	SET_DSR
000101	CMD5	Reserved	
000110	CMD6	Reserved	
000111	CMD7	MMC	SELECT/DESELECT_CARD
001000	CMD8	Reserved	
001001	CMD9	MMC/SPI	SEND_CSD
001010	CMD10	MMC/SPI	SEND_CID
001011	CMD11	MMC	READ_DAT_UNTIL_STOP
001100	CMD12	MMC	STOP_TRANSMISSION
001101	CMD13	MMC/SPI	SEND_STATUS
001110	CMD14	Reserved	
001111	CMD15	MMC	GO_INACTIVE_STATE
010000	CMD16	MMC/SPI	SET_BLOCKLEN
010001	CMD17	MMC/SPI	READ_SINGLE_BLOCK
010010	CMD18	MMC	READ_MULTIPLE_BLOCK
010011	CMD19	Reserved	

Table 15-19. Command Index Values (Sheet 2 of 3)

CMD INDEX	COMM AND	MODE	ABBREVIATION
010100	CMD20	MMC	WRITE_DAT_UNTIL_STOP
010101	CMD21	Reserved	
010110	CMD22	Reserved	
010111	CMD23	Reserved	
011000	CMD24	MMC/SPI	WRITE_BLOCK
011001	CMD25	MMC	WRITE_MULTIPLE_BLOCK
011010	CMD26	MMC	PROGRAM_CID
011011	CMD27	MMC/SPI	PROGRAM_CSD
011100	CMD28	MMC/SPI	SET_WRITE_PROT
011101	CMD29	MMC/SPI	CLR_WRITE_PROT
011110	CMD30	MMC/SPI	SEND_WRITE_PROT
011111	CMD31	reserved	
100000	CMD32	MMC/SPI	TAG_SECTOR_START
100001	CMD33	MMC/SPI	TAG_SECTOR_END
100010	CMD34	MMC/SPI	UNTAG_SECTOR
100011	CMD35	MMC/SPI	TAG_ERASE_GROUP_START
100100	CMD36	MMC/SPI	TAG_ERASE_GROUP_END
100101	CMD37	MMC/SPI	UNTAG_ERASE_GROUP
100110	CMD38	MMC/SPI	ERASE
100111	CMD39	MMC	FAST_IO
101000	CMD40	MMC	GO_IRQ_STATE
101001	CMD41	Reserved	
101010	CMD42	MMC/SPI	LOCK_UNLOCK
101011	CMD43	Reserved	
101100	CMD44	Reserved	
101101	CMD45	Reserved	
101110	CMD46	Reserved	
101111	CMD47	Reserved	
110000	CMD48	Reserved	
110001	CMD49	Reserved	
110010	CMD50	Reserved	
110011	CMD51	Reserved	
110100	CMD52	Reserved	
110101	CMD53	Reserved	
110110	CMD54	Reserved	
110111	CMD55	MMC/SPI	APP_CMD
111000	CMD56	MMC/SPI	GEN_CMD

Table 15-19. Command Index Values (Sheet 3 of 3)

CMD INDEX	COMM AND	MODE	ABBREVIATION
111001	CMD57	Reserved	
111010	CMD58	SPI	READ_OCR
111011	CMD59	SPI	CRC_ON_OFF
111100	CMD60	MMC	reserved for manufacturer
111101	CMD61	MMC	reserved for manufacturer
111110	CMD62	MMC	reserved for manufacturer
111111	CMD63	MMC	reserved for manufacturer

15.5.14 MMC_ARGH Register

The MMC_ARGH register specifies the upper 16 bits of the argument for the current command.

Table 15-20. MMC_ARGH Register

Physical Address MMC_ARGH Register **MMC** 4110_0034 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit **RESERVED** ARG_H Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bits** Name Description 31:16 Reserved Reserved 15:0 ARG_H Upper 16 bits of command argument

15.5.15 MMC_ARGL Register

The MMC_ARGL register specifies the lower 16 bits of the argument in the current command.

Table 15-21. MMC_ARGL Register

Physical Address MMC_ARGL Register **MMC** 4110_0038 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 **RESERVED** ARG_L 0 Reset 0 Bits Name Description 31:16 Reserved Reserved 15:0 ARG L Lower 16 bits of command argument

15.5.16 MMC_RES FIFO (read only)

The MMC_RES FIFO contains the response after a command. It is 16 bits wide by eight entries. The RES FIFO does not contain the 7-bit CRC for the response. The status for CRC checking and response time-out status is in the status register, MMC_STAT.

The first half-word read from the response FIFO is the most significant half-word of the received response.

Table 15-22. MMC_RES, FIFO Entry

	Physical Address MMC_RES FIFO 4110_003c														O E	ntry	,							М	ИС							
Bit	31	30	29	28	27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5												4	3	2	1	0											
	RESERVED														RESPONSE_DATA																	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X	X	X	X	X	х	х	X	X	Х	X	Х	х	X	X	х
		Ві	its			Na	me												De	escr	ipti	on										
	31:16 Reserved Reserve																															
		15	5:0		RE	SP D/	ONS ATA	SE_	Two	b by	tes	of re	spo	nse	da	ta																

15.5.17 MMC_RXFIFO FIFO (read only)

The MMC_RXFIFO consists of two dual FIFOs, where each FIFO is eight bits wide by 32 entries deep. This FIFO holds the data read from a card. It is a read only FIFO to the software, and is read on 8-bit boundaries. The eight bits of data are read on a 32-bit boundary and occupying the least significant byte lane (7:0).

Table 15-23. MMC_RXFIFO, FIFO Entry

	Physical Address 4110_0040														RXF	IFO	En	try							ММС								
Bit	31	30	29	28	27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4													3	2	1	0											
		RESERVED																READ_DATA															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	Х	х	Х	X	X	х	
		Bits Name Description																															
		31	:8		F	Rese	erve	d	Res	serv	ed																						
		7:	:0		RE	AD.	_DA	TΑ	One	e by	te o	of read data																					

15.5.18 MMC_TXFIFO FIFO

The MMC_TXFIFO consists of two dual FIFOs, where each FIFO is wight bits wide by 32 entries deep. This FIFO holds the data to be written to a card. It is a write only FIFO to the software, and is written on boundaries eight bits wide. The eight bits of data are written on a 32-bit APB and occupy the least significant byte lane (7:0).

Table 15-24. MMC_TXFIFO, FIFO Entry

			_						-,-				-)																					
	Physical Address 4110_0044														TXI	FIFC	En	try								ММС								
Bit	31	30	29	28	27	26	25	24	$23\ 22\ 21\ 20\ 19\ 18\ 17\ 16\ 15\ 14\ 13\ 12\ 11\ 10\ 9\ 8\ 7\ 6$												6	5	4	3	2	1	0							
		RESERVED																WRITE_DATA																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X	х	X	X	х	х	х	x		
	Bits Name Description																																	
	31:16 Reserved Reserved																																	
		7:	:0		WR	RITE	_D/	ATA	One	by	te o	f wı	ite c	lata																				

intel®

